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Summary: We consider peer effect estimation in social network models where some network 

links are incorrectly measured. We show that if the number or magnitude of mismeasured 

links does not grow too quickly with the sample size, then standard instrumental variables 

estimators that ignore these measurement errors remain consistent, and standard asymptotic 

inference methods remain valid. These results hold even when the link measurement errors 

are correlated with regressors or with structural errors in the model. Simulations and real data 

experiments confirm our results in finite samples. These findings imply that researchers can 

ignore small numbers of mismeasured links in networks. 
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1. INTRODUCTION 

In many social and economic environments, an individual’s behaviour or outcome (such as a 

consumption choice or a test score) depends, not only on his or her own characteristics, but also 

on the behaviour and characteristics of other individuals. Call such dependence between two 

individuals a link , and call individuals with such links friends . A social network consists of a 

group of linked individuals. Each individual may have a different set of friends in the network, 

and each individual may assign heterogeneous weights to his or her links. The structure of a social 

network is fully characterized by a square adjacency matrix , which lists all links (with possibly 

heterogeneous weights) among the individuals in the network. 

Much of the econometric literature on social networks focuses on disentangling and estimat- 

ing various social or network effects, based on observed outcomes and characteristics of net- 

work members. These structural parameters include the effects on each individual’s outcome by 

(i) the indi vidual’s o wn characteristics ( direct effects ) and possibly group characteristics ( cor- 

related effects ), (ii) the characteristics of the individual’s friends ( contextual effects ), and (iii) 

the outcomes of the individual’s friends ( peer effects ). Standard methods of identifying and 
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estimating these structural network effect parameters assume that the adjacency matrix of links 

among individuals in the sample is perfectly observed. 

1.1. Our contribution 

We consider the case where some network links are misclassified, or generally measured with 

errors. Here we provide good news for empirical researchers, by showing that relatively small 

amounts of measurement error in the network can be safely ignored in estimation. More precisely, 

we show that instrumental variable estimators like Bramoull ́e et al. ( 2009 ), and their standard 

errors, remain consistent and valid despite the presence of misclassified, unreported, or mis- 

measured links, as long as the number and size of these measurement errors grow sufficiently 

slowly with the sample size. Moreo v er, these results hold even when the measurement errors are 

correlated with the regressors, or with the model errors. In Section 1.2 we give examples of how 

such measurement errors arise in real applications. In Section 4 we provide detailed conditions 

for these errors to grow at these sufficiently slow rates. 

It may not be surprising that measurement errors growing at sufficiently slow rates are asymp- 

totically negligible, but it is also not automatic. Slow measurement error rates could still lead 

to substantial estimation errors if the stochastic order of quadratic terms in the errors of the 

parameter estimates can not be bounded. What we show is that, in the case of two-stage least 

squares (2SLS) estimators of network models, minimal and standard regularity conditions suffice 

to bound these terms. 

1.2. Motivation 

There are many reasons why network links can be mismeasured in practice. In some data sets, 

links are imputed from measures of proximity or similarity of individuals (e.g., use of distance 

as a link in gravity models of trade). Such imputations are generally imperfect, resulting in 

measurement errors in the magnitudes of links. 

Mismeasurement may also arise because links that are observed in one context may be irrele v ant 

for outcomes in another context under study. For instance, two people who are observed as linked 

on a social media platform may be connected there for business or political reasons, b ut ha ve no 

effect on each other’s personal outcomes (or vice versa). Or in a school setting, some, but not all, 

reported friends may be study partners who affect academic performance. 

Even in data sets where all observable links are directly relevant for observed outcomes, link 

data may contain a variety of reporting or recording errors. For example, studies that focus on 

links within groups, such as within classrooms or villages, may not report links across groups 

(e.g., friendships with people in other schools). In this case, measurement errors are caused by 

unrecorded links between the groups. 

Another example is a panel data model of social networks, where a slowly evolving network 

is only observed in some intermittent time periods, and is assumed to stay fixed in between those 

periods. In this case, the measurement errors are due to the unobserved formation (or dissolution) 

of new (or existing) links between those observation periods. 

A third example is when sample-collecting surveys limit the number of links (such as the num- 

ber of friends) that a respondent can report, thus leading to missing links for popular individuals. 

Yet another example is when the link data collected from surv e ys hav e recall or response errors. 

For instance, two individuals may report different responses to the question of whether they are 
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friends, leading to uncertainty in how an undirected link between them should be recorded. Or 

more simply, surv e yors may make occasional mistakes in recording responses. 

The main finding of our paper is as follows: if the size of measurement errors in the reported 

adjacency matrix is relatively small (i.e., gro ws slo wly with the network size n ), then asymptotic 

theory that ignores these measurement errors provides a good approximation for estimation and 

inference. Furthermore, in all four examples mentioned above, we provide specific, intuitive 

conditions under which this ‘small error’ property holds (Section 4 ). 

1.3. The model 

With a sample of n individuals, let Y n = ( y 1 , ..., y n ) 
′ ∈ R 

n be a vector of individual outcomes; let 

ιn = (1 , ..., 1) ′ and εn = ( εn, 1 , ..., εn,n ) 
′ be n -dimensional column vectors of ones and individual 

errors. Let X n = ( x 1 , ..., x n ) 
′ be an n -by- K matrix consisting of n vectors of exogenous regressors 

x i ∈ R 
K for i ≤ n . Let G 

∗
n be an actual n -by- n adjacency matrix (a.k.a. network structure) that 

lists the actual links for peer effects and contextual effects. 1 Let G 
∗
n,ij denote the element in row 

i and column j of G 
∗
n . We have G 

∗
n,ij > 0 if i and j are linked for peer effects and G 

∗
n,ij = 0 

otherwise. For each i, let G 
∗
n,ii = 0 by convention in the literature. Note that G 

∗
n,ij can be binary, 

with G 
∗
n,ij ∈ { 0 , 1 } indicating the absence or presence of a link, or continuous and nonne gativ e, 

with G 
∗
n,ij ∈ R + uniformly bounded and signifying the strength of the link. 

We assume a linear social network model: 

Y n = α0 ιn + λ0 G n Y n + X n β0 + G n X n γ0 + εn , (1.1) 

where G n can be either the original adjacency matrix G 
∗
n , or a row-normalized version of G 

∗
n . For 

example, a row-normalized G n is defined by G n,ij = G 
∗
n,ij / 

(∑ n 
j ′ = 1 G 

∗
n,ij ′ 

)
. Row-normalization 

is common in practice; our results hold with or without such normalization. Throughout the 

paper, we maintain that min i 

∑ n 
j= 1 G 

∗
n,ij > 0 with probability one, so the row-normalization 

is well defined almost surely. This means there are no isolated individuals in the network, or 

equi v alently no rows of zeros in G 
∗
n almost surely. This condition is standard in the literature. 

The parameters in equation ( 1.1 ) are as follows: λ0 ∈ R is a scalar peer effect, β0 ∈ R 
K is a 

vector of direct effects, γ0 ∈ R 
K is a vector of contextual effects, and α0 ∈ R is the structural 

intercept. If individuals are divided into groups (such as villages or classrooms), then what are 

known as correlated effects can be modelled as group-level fixed effects, i.e., group membership 

indicators that are included in the term of direct effects ( X n β0 ) , but not in the term of contextual 

effects ( G n X n γ0 ). 

Our goal is to estimate θ0 ≡ ( α0 , λ0 , β
′ 
0 , γ

′ 
0 ) 

′ . If Y n , X n , G 
∗
n (and hence G n ) were perfectly 

observed, the structural model would take the form of a linear regression of Y n on a constant and 

the regressors G n Y n , X n , and G n X n . Ho we ver, e ven if X i is uncorrelated with ε j for all i and j , 

making X n and G n X n strictly e xogenous, this re gression could not be consistently estimated by 

ordinary least squares, because of the endogeneity of G n Y n . Instead, one can use an instrument- 

based, 2SLS estimator using friends of friends of i to construct instruments for G n Y n —see, e.g., 

Lee ( 2007 ) and Bramoull ́e et al. ( 2009 ). F or e xample, G 
2 
n X n can be instruments for G n Y n . To 

1 We can extend the results of this paper to allow the peer and contextual effects to operate through different adjacency 

matrices—say, G ∗n and C ∗n respectiv ely—pro vided one of the two conditions holds: either (a) the data contain two 

distinctive noisy measures for G ∗n and C ∗n respectively with each satisfying the condition of ‘small order’ measurement 

errors (Assumption 3.1), or (b) the differences between G ∗n and C ∗n are small and the data contains a single noisy network 

measure with small measurement errors in the sense of Assumption 3.1. 
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implement this 2SLS estimator, one needs perfect measures of G 
∗
n so that the regressors G n Y n 

and G n X n , and instruments such as G 
2 
n X n , can all be constructed without errors. 

1.4. Estimation with misclassified links 

Instead of observing Y n , X n , and the true adjacency matrices G 
∗
n , we assume that what is observed 

is Y n , X n , and a mismeasured adjacency matrix H 
∗
n . The differences H 

∗
n − G 

∗
n are the measurement 

errors in links. Like G 
∗
n , the matrix H 

∗
n by convention has zeros on the diagonal. 

For a given pair of individuals i and j , if G 
∗
n,ij equals zero or one, misclassification of that 

link corresponds to H 
∗
ij = 1 − G 

∗
ij . More generally, measurement error in a link occurs whenever 

H 
∗
ij �= G 

∗
ij . The measurement errors can be any combination of misclassified links and incorrectly 

weighted links. Similarly, let H n be either a row-normalized version of H 
∗
n , or the noisy measure 

H 
∗
n itself. 

We investigate the asymptotic properties of 2SLS estimation of ( 1.1 ) when the mismeasured 

adjacency matrix H 
∗
n is observed instead of the true unknown matrices G 

∗
n . So instead of a 

2SLS regression of Y n on G n Y n , X n , and G n X n , using as instruments G 
2 
n X n , X n , and G n X n , 

we consider a 2SLS regression of Y n on H n Y n , X n , and H n X n , using as instruments H 
2 
n X n , X n , 

and H n X n . Note this means that both some regressors and some instruments are mismeasured, 

and that the measurement errors in regressors and instruments are correlated. Moreover, we do 

not impose any uncorrelation or conditional independence conditions on the measurement errors. 

Those conditions are frequently used in the literature of measurement errors. For example, we 

allow the measurement errors in H 
∗
n − G 

∗
n to be arbitrarily correlated with X n , Y n , and εn . 

We find that if the magnitude of measurement errors grows at a rate slower than 
√ 

n , then 

the 2SLS estimator remains 
√ 

n -consistent and asymptotically normal, and the usual formulas 

for inference and standard errors remain valid. As a result, under these conditions, researchers 

can safely ignore the presence of misclassified or mismeasured links, because the estimator and 

inference based on H 
∗
n instead of G 

∗
n remain consistent and valid. 

We also find that if the magnitude of measurement errors grows at a rate faster than 
√ 

n , 

but slower than n , then the 2SLS estimator is still consistent. However, in this case, the rate of 

convergence of the coefficient estimators is less than 
√ 

n (due to a bias term that shrinks at a 

slower rate than 
√ 

n ), so the usual standard error formulas would no longer apply. 

1.5. Outline 

Section 2 is a short literature re vie w. Section 3 formally presents our results for 2SLS estimation 

of mismeasured networks. Section 4 provides a few empirical examples where the order of 

measurement errors in networks are sufficiently small. This is followed by some simulation 

results (Section 5 ) and an empirical illustration (Section 6 ). Proofs are in the appendix. 

2. LITERATURE REVIEW 

Social network models typically allow an individual’s outcome to depend on his or her own char- 

acteristics, contextual influences from peers’ characteristics, and peer effects from peer outcomes. 

The traditional linear-in-means model (which assumes everyone is linked with everyone else with 

equal weights, either within groups or in the whole network) suffers from the ‘reflection problem’ 

as pointed out by Manski ( 1993 ). This identification problem can be solved in models with more 

complicated social interaction structures. Lee ( 2007 ) uses conditional maximum likelihood and 
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instrumental variable methods to estimate peer and contextual effects in a spatial autore gressiv e 

social interaction model, assuming links are perfectly observed in the data. Bramoull ́e et al. ( 2009 ) 

and Lin ( 2010 ) provide specific conditions on observed network structure in order to identify peer 

effects in social interaction models, using characteristics of friends of friends as instruments. 

Given results like these, the model described in the introduction has been widely used to 

estimate peer effects in a variety of settings. Examples include studies of peer influence on 

students’ academic performance, sport and club activities, and delinquent behaviours (Calv ́o- 

Armengol et al., 2009 ; Hauser et al., 2009 ; Lee et al., 2010 ; Lin, 2010 ; Patacchini and Zenou, 

2012 ; Boucher et al., 2014 ; Liu et al., 2014 ). These models all assume that the network structure 

is correctly measured in the data. 

Regarding selection and comparison of adjacency matrices, LeSage and Pace ( 2009 ) use 

the Bayesian posterior distribution to choose among models with different adjacency matrices. 

Empirical research may also report estimates using different link weights as robustness checks. 

These practices are feasible in, e.g., spatial econometric models, where link weights are assumed 

to be a function of observable geographic information, as in gravity models of trade. Errors in 

constructing such links would fit in our framework. There is also a small literature on identification 

and estimation of peer effects when networks are unobserved. Examples include De Paula et al. 

( 2018 ) and Lewbel et al. ( 2023 ). 

The issue of potentially misclassified links is acknowledged and discussed in Liu et al. ( 2014 ), 

Patacchini and Venanzoni ( 2014 ), and Lin ( 2015 ), among others, but these papers do not provide 

a formal analysis of the asymptotic impact of mismeasured links on the performance of standard 

estimators. Chandrasekhar and Lewis ( 2011 ) show that, even with randomly selected links, 

partial sampling can lead to nonclassical measurement errors and consequently bias in standard 

estimation methods. Griffith ( 2022 ) studies the impact on inference when misclassification in the 

adjacency matrix occurs because of binding caps on the number of self-reported links. Boucher 

and Houndetoungan ( 2022 ) estimate peer effects using partial network data when a consistent 

estimate of aggregate network statistics is available to the researcher. Our results fill a void in 

the literature by analysing how ignoring small amounts of general measurement errors in the 

adjacency matrix affects the consistency of standard estimators and the validity of inference. 2 

3. 2SLS ESTIMATION WITH MISMEASURED LINKS 

We derive the asymptotic properties of a 2SLS estimator for the model in ( 1.1 ) when the matrix 

with measurement errors H 
∗
n is used in place of the actual, unknown G 

∗
n . This means the regressors 

G n Y n , G n X n , and instruments G 
2 
n X n are replaced by H n Y n , H n X n , and H 

2 
n X n in the estimator. 

Write equation ( 1.1 ) as 

Y n = R n θ0 + εn = ̃  R n θ0 + ̃  εn , 

2 Referring to potential omission of friends, Patacchini and Venanzoni ( 2014 ) say that, ‘in the large majority of cases 

(more than 94%), students tend to nominate best friends who are students in the same school and thus are systematically 

included in the network (and in the neighborhood patterns of social interactions)’. Liu et al. ( 2014 ) report that ‘less than 

1% of the students in our sample show a list of ten best friends, less than 3% a list of five males and roughly 4% a list 

of five females. On average, they declare that they have 4.35 friends with a small dispersion around this mean value 

(standard deviation equal to 1.41), and in the large majority of cases (more than 90%) the nominated best friends are in 

the same school’. Lin ( 2015 ) says ‘this nomination constraint only affects a small portion of our sample, as less than 10% 

of the sample have listed five male or female friends. Therefore, this restriction should not have a significant impact on 

the results’. This last speculation is precisely what our first set of results establishes: consistency of the estimator will not 

be affected if the number of omitted (and hence misclassified) links is sufficiently small. 
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where R n ≡ ( ιn , G n Y n , X n , G n X n ) is the true matrix of regressors, ˜ R n ≡ ( ιn , H n Y n , X n , H n X n ) 

is its observed proxy, θ0 is the true value of θ , and ̃  εn ≡ εn − λ0 
 n Y n − 
 n X n γ0 with 
 n ≡
H n − G n . 

Let ̃  V n ≡ ( ιn , H 
2 
n X n , X n , H n X n ) denote an n -by- (3 K + 1) matrix of instruments. This ̃  V n is an 

observable proxy for the (unknown) actual instrument V n ≡ ( ιn , G 
2 
n X n , X n , G n X n ) . The 2SLS 

estimator is: 

̂ θ = 

[˜ R 
′ 
n ̃

 V n ( ̃  V 
′ 
n ̃

 V n ) 
−1 ̃  V 

′ 
n ̃

 R n 

]−1 ˜ R 
′ 
n ̃

 V n ( ̃  V 
′ 
n ̃

 V n ) 
−1 ̃  V 

′ 
n Y n . 

We show that this estimator is consistent when the measurement errors in the adjacency matrices 

are small in the following sense (where 
∑ 

i is shorthand for 
∑ n 

i= 1 ): 

ASSUMPTION 3.1. 
∑ 

i 

∑ 

j E 

(∣∣∣H 
∗
n,ij − G 

∗
n,ij 

∣∣∣
)

= O( n 
s ) for some 0 < s < 1 . 

Assumption 3.1 requires the expected sum of absolute measurement errors in G 
∗
n to increase at a 

rate slower than the sample size n . This condition holds, for example, if measurement errors occur 

only for a subset of individuals of order O( n 
s ) with s < 1 , and if the magnitude and expected 

number of mismeasured links for each individual in the subset are bounded. See Section 4 for 

more examples of how this condition holds under a variety of contexts. 

Denote S n ≡ I n − λ0 G n , where I n is an n-by-n identity matrix. When S n is nonsingular, the 

reduced form for outcomes is: 

Y n = S 
−1 
n ( α0 ιn + X n β0 + G n X n γ0 + εn ) . 

We maintain the following regularity conditions. 

ASSUMPTION 3.2. (i) εn is independent from X n ; individual errors εn,i are independent across i, 

with E( εn,i ) = 0 . There exists a constant M 0 < ∞ such that Pr { sup i≤n E( | εn,i | | H n ) ≤ M 0 } = 1 

for all n . (ii) G 
∗
n is a sequence of pre-determined, nonstochastic matrices, and S n is nonsingular 

for all n . The sequences { G 
∗
n } , and { S 

−1 
n } are uniformly bounded in both row and column sums. 

The row and column sums in the sequence { H 
∗
n } are uniformly bounded in probability. (iii) The 

elements of X n are uniformly bounded for all n ; V 
′ 
n V n /n converges in probability to a nonsingular 

matrix as n → ∞ . 

Part (i) of Assumption 3.2 states that X n are exogenous. Notice that we do not impose exogeneity 

of H 
∗
n , i.e., the measurement errors H 

∗
n − G 

∗
n can be correlated with both εn and X n . This is in 

sharp contrast to most measurement error models, which typically require measurement errors to 

be independent of some observed or unobserved variables for point identification and estimation. 

Part (ii) requires the row and column sums of G 
∗
n and H 

∗
n to be uniformly bounded, and that the 

reduced form of outcomes is well defined. Invertibility of S n holds if 
∑ 

j | λG n,ij | < 1 for all i. 

In the special case of nonne gativ e elements and row-normalization in G 
∗
n , | λ| < 1 is sufficient 

for nonsingular S n . Part (iii) requires the matrix of actual instruments to have full column rank. 

The assumptions abo v e on the actual adjacency matrix G n are standard for linear social network 

models. 

PROPOSITION 3.1. Under Assumptions 3.1 and 3.2, 

̂ θ − θ0 = O p ( n 
−1 / 2 ∨ n 

s−1 ) . 

This proposition holds because we can establish the following relationship between the feasible 

2SLS estimator, which uses the noisy measure with errors H n , and its infeasible version, which 
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uses the unobserved actual G n : 

̂ θ − θ0 = 

[ 
˜ R 

′ 
n ̃

 V n 

n 

(˜ V 
′ 
n ̃

 V n 

n 

)−1 ˜ V 
′ 
n ̃

 R n 

n 

] −1 ˜ R 
′ 
n ̃

 V n 

n 

(˜ V 
′ 
n ̃

 V n 

n 

)−1 ˜ V 
′ 
n ̃  εn 

n 

= 

[ 

R 
′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n R n 

n 

] −1 
R 

′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n εn 

n 
+ O p ( n 

s−1 ) . (3.1) 

Under the regularity conditions in Assumption 3.2, ( R 
′ 
n V n ) /n and ( V 

′ 
n V n ) /n both converge in 

probability to constant matrices with full rank (2 K + 2) . Under the exogeneity of X n , the term 

V 
′ 
n εn /n is O p ( n 

−1 / 2 ) by an application of the Chebyshev’s Inequality. Combining these results, 

we conclude that the estimation error in ( 3.1 ) is O p ( n 
−1 / 2 ∨ n 

s−1 ) . Thus the 2SLS estimator ̂  θ , 

which uses H 
2 
n X n as an instrument for H n Y n , is consistent when s < 1 . 

Furthermore, if s < 1 / 2 , the effect of measurement errors vanishes fast enough so that it does 

not affect the 
√ 

n -rate of convergence or the asymptotic distribution of the 2SLS estimator. This 

is formalized in the next proposition. 

PROPOSITION 3.2. Under Assumptions 3.1 and 3.2, if s < 1 / 2 then 

√ 
n ( ̂  θ − θ0 ) 

d → N (0 , �) , 

where � is the asymptotic variance of the 2SLS estimator using the actual adjacency ma- 

trix G n ; and � can be consistently estimated by ̂ A 
−1 ̂  B ̂  A 

−1 , where ̂ A ≡ 1 
n ̃

 R 
′ 
n P n ̃

 R n and 

ˆ B ≡ 1 
n ̃

 R 
′ 
n P n ̂

 � n P n ̃
 R n , with P n ≡ ˜ V n 

(˜ V 
′ 
n ̃

 V n 

)−1 ˜ V 
′ 
n and ̂ � n being a diagonal n -by- n matrix whose 

i-th diagonal entry is the square of the i-th residual in Y n − ˜ R n ̂
 θ . 

As noted in the introduction, e ven slo wly gro wing measurement errors could asymptotically 

corrupt ̂  θ if the stochastic order of quadratic terms in ̂  θ − θ0 isn’t bounded. The closed form 

of the 2SLS estimator plays a key role in deriving our results. In our proofs, this closed form 

allows us to use Cauchy–Schwartz inequalities to bound the stochastic order of these errors. Key 

conditions we use for this are boundedness of S 
−1 
n and X n . Without those, the estimation errors 

do not obey the stochastic orders we derive. 

4. EXAMPLES 

This section pro vides sev eral e xamples of ho w Assumption 3.1, which requires a slo w rate of 

growth in link measurement errors, may hold in a range of empirical contexts. 

EXAMPLE 4.1 (PARTITIONING GROUPS). Suppose the sample consists of individual units 

from many known, mutually exclusive groups (e.g., individual households from many villages, 

or individual students from many schools). Sometimes, data on links within each group is 

collected (e.g., kinship relationships between households within each village, or friendships 

between students within each school), while information about links that might exist between 

individual units from different groups is not collected. In such cases, all nonzero cross-group 

links are misclassified as zeros. 

In this setting, Assumption 3.1 holds under intuiti ve conditions. A suf ficient condition for 

Assumption 3.1 would be that the probability of a nonzero link across groups diminishes faster 
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than some rate as the number of groups in the sample (denoted by M) increases. As we show 

below, the rate at which the probability for cross-group links diminishes that is sufficient for 

Assumption 3.1 depends on whether group sizes grow with the sample size or not. If group sizes 

grow, then the faster they grow, the slower is the required rate of decrease in the probability for 

cross-group links. 

First, consider a scenario where there are M groups, and each group m contains a finite, 

constant number of members n m , which for simplicity is assumed to be the same for all groups, 

so n m = c ∈ N ++ for all m , and the sample size by construction is n = cM . 3 In this case, the 

asymptotic experiment lets M → ∞ with n m fixed at c for all m . Let the probability of friendship 

(i.e., a nonzero link) between individuals from two groups be q n = O( n 
−δ1 ) for δ1 > 0 . Suppose 

the sample correctly reports all links within groups, but fails to report any information about 

links that may exist across groups. The order of the expected number of misclassified links in 

this sample is then M × ( M − 1) × q n = O( M 
2 −δ1 ) . Therefore, Assumption 3.1 holds as long as 

δ1 ∈ (1 , 2) , i.e., the probability of cross-group friendships diminishes fast enough as the number 

of groups increases. 

Next, consider an alternative scenario where the asymptotic experiment allows the group 

size to increase as the number of groups M → ∞ . Let the size of each group grow at an 

order of O( M 
ζ ) for ζ > 0 so that the order of the sample size n is O( M 

1 + ζ ) . As before, let 

the probability of a link between individuals from different groups be q n = O( n 
−δ2 ) . Again, 

suppose the sample correctly reports all links within each group, but misses all links between 

different groups. The order of the expected number of misclassified links in the sample is 

then M × ( M − 1) × O ( M 
ζ ) × q n = O ( M 

2 + ζ−(1 + ζ ) δ2 ) . Hence, Assumption 3.1 holds as long as 

δ2 ∈ ( 1 
1 + ζ

, 1 + 
1 

1 + ζ
) . 

EXAMPLE 4.2 (PANEL DATA). Suppose the sample consists of L cross-sectional individual 

units, each of which is observed for T time periods. The sample size is n = LT . F or e xample, 

the sample could report weekly test scores of L students o v er the course of T weeks. Let the 

structural social effects θ0 be fixed over time t = 1 , 2 , . . . , T and assume the structural errors 

εi,t are i.i.d. across i ≤ L and t . The panel data model fits in the structural form in ( 1.1 ), with 

Y n ≡ ( Y 
′ 
n, 1 , Y 

′ 
n, 2 , ..., Y 

′ 
n,T ) 

′ where each Y n,t is a column vector that stacks L individual outcomes 

at time t . The other arrays X n and εn are defined in a conformable manner. In this case, G n is a 

block-diagonal matrix, with the t-th diagonal block G n,t being an L -by- L adjacency matrix that 

contains all links in the network at time t . 

Measurement errors in G n occur if the adjacency matrices G n,t evolve over time, but the 

researcher only gets to observe them occasionally, i.e., o v er a strict subset of time periods T obs ⊂
{ 1 , 2 , ..., T } , and assumes the network structure remains constant between those intermittent 

periods of observation. For example, T obs = { 1 } means that the researcher only measures the 

adjacency matrix correctly once, as G n, 1 , in the first period, but then (incorrectly) assumes it 

stays constant at G n,t = G n, 1 for all t = 2 , ..., T . In this case, the magnitude of measurement 

errors is determined by the number of existing friendships that are dissolved, by the changes in 

the strength of existing links, or by new links that are created in the subsequent periods t ≥ 2 . 

F or another e xample, consider the case of weekly test scores abo v e. Suppose the network is only 

observed once per semester. Then T obs only contains the number of semesters of observations, 

3 The result here can be immediately extended to allow for heterogeneous group sizes, provided n m < c is uniformly 

bounded by a finite constant c for all m . In that case, the sample size is n = 
∑ 

m n m ≤ cM = O( M) . 
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while T is the number of weeks for which we observe test scores, and measurement error arises 

because G n,t is held fixed for all weeks within each semester. 

First, consider a large- L , small- T setting, where the asymptotic experiment lets L → ∞ 

while holding T fixed at a constant integer. In this case, n = T L = O( L ) . Suppose T obs = { 1 } , 
and suppose the probability of dissolving an existing friendship or creating a new one in each 

subsequent period t ≥ 2 is ψ n = O( n 
−δ3 ) for δ3 > 0 . The order of the expected number of 

mismeasured links is then ( T − 1) × L × ( L − 1) × ψ n = O( n 
2 −δ3 ) , and Assumption 3.1 holds 

if δ3 ∈ (1 , 2) . 

Next, consider an alternative lar ge- L , lar ge- T setting, where the asymptotic experiment lets 

L → ∞ and T → ∞ simultaneously. Suppose the number of time periods with no network 

measurement, i.e., T − #( T obs ) , grows at rate O( T 
ξ1 ) for ξ1 ∈ (0 , 1) . This means the adjacent 

matrix is correctly measured with high frequency in the sense that the number of time periods with 

incorrectly imputed network measures grows more slowly than T . Let us characterize the relative 

order of individual units as L = O( T 
ξ2 ) for ξ2 > 0 so that n = LT = O( T 

1 + ξ2 ) . As before, let 

the probability for dissolving existing friendships or creating new ones during the periods with no 

network measurement, i.e., t ∈ T \ T obs , be ψ n = O( n 
−δ4 ) for δ4 > 0 . In this case, the order of the 

expected number of misclassified links in the full sample is then L × ( L − 1) × O( T 
ξ1 ) × ψ n . 

It then follows that Assumption 3.1 holds if ξ1 + ξ2 > 1 and δ4 ∈ 

(
ξ1 + ξ2 −1 

1 + ξ2 
, 

ξ1 + 2 ξ2 
1 + ξ2 

)
. 4 That is, 

Assumption 3.1 holds if the probability of link changes o v er time is suf ficiently lo w, while the 

cross-sectional dimension in the panel data grows fast enough relative to the number of time 

periods. 5 

EXAMPLE 4.3 (CAPS ON SELF-REPORTED LINKS FROM SURVEYS). Suppose the sample 

consists of n individuals in a single, large network. Researchers who collect link information 

through surv e y responses sometimes specify a cap on the number of links that may be reported 

by each individual. For example, a questionnaire may ask each student in a class to name up to 

five friends. In this case, link measurement errors are caused by censoring due to the cap when 

it is binding. That is, a student who had seven friends, but could only report five would result in 

two links that are mismeasured as zero. The order of these errors depends on whether (and how 

fast) the cap increases with the sample size, as well as the link formation probability. 

Let d n,i denote the degree (the total number of friends) an individual i actually has in the 

sample (which may be more than the number reported). Assume there exists a finite integer d 

such that P { d n,i ≤ d } = 1 for all i and n . That is, the total number of friends an individual may 

actually have is bounded, regardless of the sample size. This reflects the reality that link formation 

and maintenance are costly in terms of individual time and energy. Furthermore, let κn denote a 

sequence of specified caps on the maximum number of reported links in the sample-collecting 

surv e y; this sequence of caps increases with the sample size n , possibly at a very slow rate such 

as O( log n ) . For each individual i, the number of missing links due to the binding cap is then 

( d n,i − κn ) + , where ( ·) + ≡ max{·, 0 } . Under the specified conditions, E[( d n,i − κn ) + ] = o(1) . 

It then follows that Assumption 3.1 is satisfied, because the expected magnitude of o v erall 

measurement errors grows at a rate slower than the sample size n . 6 

4 To see this, note that O( L 2 ) × O( T ξ1 ) × ψ n = O( T 2 ξ2 + ξ1 −δ4 (1 + ξ2 ) ) = O( n (2 ξ2 + ξ1 ) / (1 + ξ2 ) −δ4 ) . Imposing inequalities 

to ensure this order is O( n s ) for s ∈ (0 , 1) implies the range of conformable δ4 . 
5 Our benchmark analysis assumes i.i.d. time-varying errors, which is restrictive in a panel data setting. Ho we ver, our 

results generalize to allow some degree of error dependence in the usual way, since the estimator takes the form of linear 

two-stage least squares. 
6 Assumption 3.1 can also be satisfied under weaker conditions, provided the right-tail probability mass of d n,i 

diminishes sufficiently fast relative to the sample size and to the cap on self-reported links. In a model of dyadic 
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EXAMPLE 4.4 (RECALL OR CODING ERRORS IN SURVEY RESPONSES). Samples collected 

from surv e y responses are sometimes subject to recall errors (i.e., respondents have incorrect 

memory of past events or status) or coding errors (i.e., data analysts make mistakes while coding 

or processing raw responses). These measurement errors may grow at a slow rate relative to the 

sample size, especially if there are economies of scale in the quality control of data collection, or 

if the surv e y pro vides multiple noisy, proxy measures of the same links. 

To illustrate, consider a sample network G n of n members, where the probability of forming a 

friendship between any two members is πn = O( n 
−δ5 ) with δ5 > 0 . Suppose the surv e y responses 

provide two independent measures of G n (e.g., two responses about the same undirected link), 

denoted as H n and W n respectively, and that each of these two noisy measures misses each 

actual, existing link in G n independently at a rate of φn = O( n 
−ν) for ν > 0 . Suppose the 

data analyst records the ( i, j ) -th entry of the network as max{ H n,ij , W n,ij } . Then the order of 

the expected measurement errors, i.e., the total number of nonzero links recorded as zero, is 

given by n × ( n − 1) × πn × φ2 
n = O( n 

2 −δ5 −2 ν) . Therefore, Assumption 3.1 holds as long as 

δ5 ∈ (1 − 2 ν, 2 − 2 ν) . 

5. SIMULATION 

We investigate the performance of the 2SLS estimator with mismeasured links using simulated 

data. The structural equation in our data-generating process (DGP) is ( 1.1 ), where x i consists of 

two regressors: the first is independently drawn from {−1 , 1 , 2 } with equal probability, and the 

second is from N (0 , 1) . The error terms ε n,i are i.i.d. from N (0 , 1) . Links in G 
∗
n are independent 

draws from a Bernoulli distribution with success probability p n = μ/n for some constant μ < ∞ . 

By this construction, the expected number of friends for each individual is μ. Let G n be a row- 

normalization of G 
∗
n . 

We generate misclassified links using H 
∗
n,ij = G 

∗
n,ij · e 1 i + (1 − G 

∗
n,ij ) · e 2 i for i �= j, where 

e 1 i and e 2 i are Bernoulli random variables with success probabilities 1 − τ1 i and τ2 i re- 

spectively. Therefore, τ1 i = Pr { H 
∗
n,ij = 0 | G 

∗
n,ij = 1 } , and τ2 i = Pr { H 

∗
n,ij = 1 | G 

∗
n,ij = 0 } . We set 

τ1 i = ρn,i n 
s−1 and τ2 i = 100 ρn,i n 

s−2 , where ρn,i = ( 
∑ n 

j= 1 G 
∗
n,ij /μ + | ε n,i | ) / 3 . For each individ- 

ual i, the misclassification rate increases in the number of i’s friends 
∑ n 

j= 1 G 
∗
n,ij , and in the 

magnitude of i’s unobserved error | ε n,i | . This construction makes the measurement errors both 

endogenous (correlated with the model errors) and correlated with the actual row-normalized G n . 

We set the model parameters to be α = 1 , λ = 0 . 4 , β = (1 . 5 , 2) ′ and γ = (0 . 9 , 0 . 6) ′ . Let 

μ = 20 , and experiment with the rates in measurement errors s = 0 . 1 , 0.3, 0.5, and 0.7. We 

experiment with sample sizes n = 200 , 500, and 1,000. For each value of s and n , we sim- 

ulate T = 200 samples, calculate the mean squared error, the bias, the standard deviation of 

the 2SLS estimator using its empirical distribution across these T = 200 samples, and report the 

average standard error of the estimator from these samples. We also report the average number 

of misclassified links o v er these T = 200 simulated samples. 

Results are summarized in Table 1 . We observe several patterns: 

1. The 2SLS estimates of all parameters converge at 
√ 

n rate. The mean squared errors decrease 

proportionately as the sample size increases. 

link formation, establishing this result formally would require characterizing the magnitude of errors in the normal 

approximation of a binomial distribution. 
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Ignoring measurement errors in social networks 11 

Table 1. 2SLS estimators with misclassified links. 

n = 200 n = 500 n = 1000 

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. 

True G n Mis.# 0 0 0 

α 3 .880 − 0 .114 1 .971 2 .197 1 .519 0 .031 1 .235 1 .310 0 .762 0 .065 0 .873 0 .887 

λ 0 .336 0 .025 0 .581 0 .654 0 .131 − 0 .010 0 .362 0 .386 0 .068 − 0 .019 0 .260 0 .264 

β1 0 .003 0 .005 0 .058 0 .058 0 .001 − 0 .003 0 .036 0 .036 0 .001 − 0 .000 0 .027 0 .026 

β2 0 .005 0 .008 0 .072 0 .073 0 .002 0 .001 0 .048 0 .045 0 .001 − 0 .000 0 .032 0 .032 

γ1 0 .802 − 0 .029 0 .898 1 .006 0 .301 0 .019 0 .549 0 .597 0 .165 0 .030 0 .406 0 .410 

γ2 1 .571 − 0 .040 1 .256 1 .348 0 .561 0 .020 0 .750 0 .796 0 .278 0 .032 0 .528 0 .545 

s = 0 . 1 Mis.# 105 124 134 

α 4 .100 − 0 .058 2 .029 2 .254 1 .576 0 .033 1 .258 1 .325 0 .780 0 .070 0 .883 0 .894 

λ 0 .365 0 .008 0 .605 0 .672 0 .135 0 .010 0 .368 0 .391 0 .070 − 0 .020 0 .263 0 .266 

β1 0 .003 0 .004 0 .058 0 .058 0 .001 − 0 .003 0 .036 0 .036 0 .001 − 0 .000 0 .027 0 .026 

β2 0 .005 0 .008 0 .072 0 .073 0 .002 0 .001 0 .048 0 .045 0 .001 − 0 .000 0 .032 0 .032 

γ1 0 .877 − 0 .015 0 .938 1 .033 0 .307 0 .015 0 .556 0 .604 0 .168 0 .030 0 .410 0 .413 

γ2 1 .610 − 0 .012 1 .272 1 .382 0 .574 0 .019 0 .760 0 .805 0 .284 0 .033 0 .533 0 .549 

s = 0 . 3 Mis.# 304 428 534 

α 4 .599 0 .058 2 .149 2 .388 1 .678 0 .014 1 .299 1 .367 0 .833 0 .083 0 .911 0 .912 

λ 0 .405 − 0 .023 0 .638 0 .712 0 .144 − 0 .002 0 .380 0 .403 0 .074 − 0 .023 0 .271 0 .272 

β1 0 .004 0 .003 0 .059 0 .059 0 .001 − 0 .003 0 .035 0 .037 0 .001 − 0 .000 0 .027 0 .026 

β2 0 .005 0 .009 0 .073 0 .074 0 .002 0 .001 0 .048 0 .046 0 .001 − 0 .000 0 .032 0 .032 

γ1 0 .949 0 .018 0 .977 1 .094 0 .334 − 0 .005 0 .579 0 .622 0 .179 0 .031 0 .423 0 .421 

γ2 1 .756 0 .041 1 .328 1 .461 0 .598 − 0 .005 0 .775 0 .830 0 .305 0 .035 0 .552 0 .560 

s = 0 . 5 Mis.# 882 1,486 2,139 

α 5 .620 0 .136 2 .373 2 .773 1 .995 0 .067 1 .414 1 .519 1 .060 0 .133 1 .023 0 .982 

λ 0 .498 − 0 .032 0 .706 0 .828 0 .172 − 0 .012 0 .416 0 .449 0 .093 − 0 .035 0 .303 0 .293 

β1 0 .004 0 .001 0 .062 0 .060 0 .001 − 0 .003 0 .036 0 .037 0 .001 − 0 .000 0 .028 0 .026 

β2 0 .005 0 .011 0 .073 0 .075 0 .002 0 .001 0 .049 0 .046 0 .001 − 0 .000 0 .033 0 .032 

γ1 1 .174 − 0 .022 1 .086 1 .272 0 .408 − 0 .015 0 .640 0 .691 0 .218 0 .032 0 .467 0 .453 

γ2 2 .157 0 .021 1 .472 1 .691 0 .732 − 0 .021 0 .857 0 .921 0 .376 0 .041 0 .614 0 .602 

s = 0 . 7 Mis.# 2,549 5,152 8,513 

α 17 .93 0 .433 4 .223 4 .212 4 .581 0 .253 2 .131 2 .075 1 .812 0 .157 1 .340 1 .291 

λ 1 .549 − 0 .095 1 .244 1 .252 0 .395 − 0 .0470 0 .628 0 .613 0 .158 − 0 .025 0 .398 0 .385 

β1 0 .004 0 .002 0 .066 0 .064 0 .002 − 0 .004 0 .038 0 .039 0 .001 − 0 .001 0 .028 0 .027 

β2 0 .006 0 .009 0 .076 0 .081 0 .003 − 0 .001 0 .052 0 .048 0 .001 0 .001 0 .033 0 .033 

γ1 3 .643 − 0 .050 1 .913 1 .898 0 .894 − 0 .058 0 .946 0 .934 0 .374 − 0 .069 0 .610 0 .589 

γ2 6 .452 0 .011 2 .547 2 .533 1 .545 − 0 .047 1 .245 1 .250 0 .649 − 0 .056 0 .806 0 .786 

Note: m.s.e. (mean squared error), bias, std (standard deviation) are calculated using the empirical distribution of 200 estimates; ‘a.s.e.’ is 

the average of standard errors in T = 200 samples. 

2. Consistent with our asymptotic theory, the 2SLS estimator using the misclassified adjacency 

matrix H n works almost as well as its infeasible analogue using the actual G n when the 

measurement error rate is s < 0 . 5 . This suggests that the sample sizes we consider are large 

enough for the asymptotic approximations to apply. Note that with our DGP the estimates 

in Table 1 with s < 0 . 5 have error rates where the expected number of misclassified links 

is less than n . 

3. For all values of s, the average standard errors are close to the standard deviation of the 

2SLS estimators calculated from the T = 200 samples. This conforms with our asymptotic 

theory, because the problem with inference for larger values of s is that the bias in the 

estimator shrinks at rate n 
s−1 . Similarly, with s ≥ 0 . 5 , the parameter estimates deteriorate 

primarily due to the bias rather than the variance. 
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4. With both the true and mismeasured adjacency matrices, the mean squared errors are much 

smaller for the direct effects β than for the peer and contextual effects λ and γ . The mean 

squared errors are also much lower for the discrete regressor effects β1 and γ1 than for the 

continuous regressor effects β2 and γ2 . 

6. APPLICATION 

Lin and Lee ( 2010 ) model teenage pre gnanc y rates in the United States using the following model 

(where the subscript of sample size n is suppressed): 

Teen i = λ
∑ n 

j= 1 
G ij Teen j + α + Edu i β1 + Inco i β2 + FHH i β3 

+ Black i β4 + Phy i β5 + ε i , 

where Teen i is the teenage pre gnanc y rate in county i, which is the percentage of pregnancies 

among females who were 12–17 years old, and G ij is the ( i, j ) -th entry in the row-normalization 

of an original adjacency matrix G 
∗, where G 

∗
ij = 1 if counties i and j are neighbouring counties. 

Edu i is the education service expenditure (in units of $100), Inco i is median household income 

(divided by $1,000), FHH i is the percentage of female-headed households, Black i is the proportion 

of black population and Phy i is the number of physicians per 1,000 population, all at a county-level 

for county i. 7 

The sample size is n = 761 . Among all the 761 × 760 = 578 , 360 entries (diagonal are zero) in 

the original network G 
∗
n , there are 4,606 nonzero links. We treat the adjacency matrix reported in 

the sample as the true network, artificially introduce misclassified links, and then e v aluate ho w this 

affects the 2SLS estimates. We generate misclassified links using H 
∗
ij = G 

∗
ij · e 1 i + (1 − G 

∗
ij ) ·

e 2 i , where e 1 i and e 2 i are Bernoulli with success probabilities τ1 i = ρi n 
s−1 and τ2 i = 100 ρi n 

s−2 

respectively. We set ρi = min { ( y i / y ) 2 , 0 . 8 } , so that for each individual i misclassification is more 

likely to happen the larger the magnitude of the observed outcome y i . 

We report 2SLS estimates using H X and H 
2 X as instruments. Unlike our model, Lin and Lee 

( 2010 ) assume there are no contextual effects, i.e., γ = 0 in equation ( 1.1 ) so that GX does not 

appear as regressors. In their case, one may just use GX as instruments for Gy estimation. In 

comparison, our model has nonzero contextual effects, so we use H X and H 
2 X as instruments 

in 2SLS estimation. 

Table 2 reports results based on T = 1 , 000 Monte Carlo replications for each value of s. 

Results are reported where the model is estimated both with and without row-normalization. 

Consistent with our propositions, when the misclassification rate is low ( s < 0 . 5) , the 2SLS 

estimates and standard errors using the mismeasured H n are very similar to those based on G n . 

The same is true for estimation based on matrices H 
∗
n and G 

∗
n that are not row-normalized. When 

s increases, the bias and inaccuracy of the estimators increase, as expected. In particular, the 

parameter estimates (especially λ) become quite biased when s ≥ 0 . 5 (which, by our theory, is 

when bias shrinks at a slower rate than variance). 

7 The data are collected from 761 counties in Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, North 

Dakota, South Dakota, and Wyoming. See Lin and Lee ( 2010 ) for further details about the data. 
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Table 2. Estimation results with different misclassification rates. 

λ α 100 β1 β2 β3 β4 β5 Mis. # 

Row-normalization: G ij = G ∗ij / 
(∑ 

j G ∗ij 

)
, H ij = H ∗ij / 

(∑ 
j H ∗ij 

)

True 0 .4813 6 .1911 − 0 .9824 − 0 .1871 0 .7347 0 .1267 − 0 .4956 0 

(0 .079) (1 .469) (0 .651) (0 .040) (0 .063) (0 .057) (0 .188) 

s = 0 . 1 0 .4897 6 .1085 − 0 .9910 − 0 .1878 0 .7355 0 .1289 − 0 .4980 125 

(0 .081) (1 .480) (0 .651) (0 .040) (0 .063) (0 .057) (0 .188) 

s = 0 . 3 0 .5132 5 .8759 − 1 .0086 − 0 .1895 0 .7375 0 .1341 − 0 .5049 472 

(0 .085) (1 .512) (0 .652) (0 .040) (0 .063) (0 .057) (0 .188) 

s = 0 . 5 0 .6017 4 .9578 − 1 .0542 − 0 .1943 0 .7422 0 .1465 − 0 .5227 1,783 

(0 .099) (1 .626) (0 .654) (0 .040) (0 .063) (0 .057) (0 .189) 

s = 0 . 7 0 .8138 2 .7629 − 1 .1726 − 0 .2092 0 .7589 0 .1683 − 0 .5535 6,720 

(0 .139) (1 .985) (0 .660) (0 .040) (0 .064) (0 .057) (0 .191) 

No row-normalization: G ij = G ∗ij , H ij = H ∗ij 
True 0 .0239 10 .840 − 1 .5244 − 0 .2348 0 .8151 0 .2061 − 0 .5731 0 

(0 .009) (1 .261) (0 .669) (0 .041) (0 .064) (0 .058) (0 .194) 

s = 0 . 1 0 .0275 10 .491 − 1 .5290 − 0 .2317 0 .8087 0 .2069 − 0 .5658 125 

(0 .009) (1 .248) (0 .666) (0 .040) (0 .064) (0 .057) (0 .193) 

s = 0 . 3 0 .0356 9 .6492 − 1 .5361 − 0 .2239 0 .7916 0 .2079 − 0 .5463 472 

(0 .008) (1 .216) (0 .659) (0 .040) (0 .063) (0 .057) (0 .191) 

s = 0 . 5 0 .0486 7 .5887 − 1 .5473 − 0 .2039 0 .7351 0 .2058 − 0 .4813 1,783 

(0 .005) (1 .130) (0 .633) (0 .038) (0 .061) (0 .055) (0 .184) 

s = 0 . 7 0 .0442 4 .9575 − 1 .5211 − 0 .1749 0 .6170 0 .1858 − 0 .3396 6,720 

(0 .003) (0 .984) (0 .571) (0 .034) (0 .055) (0 .049) (0 .166) 

Note: The table reports average estimates and average standard errors (in parentheses) from 1,000 simulated samples. 

7. CONCLUSIONS 

We show that in 2SLS estimation of linear social network models, measurement errors in the 

network can have no impact on estimation and inference of structural parameters if the magnitude 

of measurement errors in the adjacency matrix grows sufficiently slowly with the sample size. 

These results hold even if the measurement errors are correlated with model errors, covariates, 

and outcomes. A useful agenda for future work is to investigate whether similar results hold for 

more general network models. 
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APPENDIX A: PROOFS OF RESULTS 

For a generic matrix A , let A ( i) , A [ k] denote its i-th row and k-th column respectively, and A ij denote its 

( i, j ) -th component, so that A ( i) ι is the sum of the i-th row in A . Let 
 
∗
n ≡ H 

∗
n − G 

∗
n . 

We present the proof for the case where G n , H n are row-normalization of G 
∗
n , H 

∗
n respectively. The proof 

for the other case with no row-normalization (i.e., G n = G 
∗
n and H n = H 

∗
n ) follows from almost identical 

arguments, only with 
 n replaced by 
 
∗
n in Lemmas A1 and A2 below and in the proofs of Propositions 3.1 

and 3.2. So, we exclude the case with no row-normalization to economize space here. 

In this case with row-normalization, we can write 
 n as: 

H n − G n = diag 
{ (

1 
G ∗

n, (1) ιn 
, ..., 1 

G ∗
n, ( n ) ιn 

)} 

 

∗
n 

+ diag 
{ (

1 
H ∗

n, (1) ιn 
− 1 

G ∗
n, (1) ιn 

, ..., 1 
H ∗

n, ( n ) ιn 
− 1 

G ∗
n, ( n ) ιn 

)} 
H 

∗
n . 

The following two lemmas are useful for the proofs. (In what follows, we suppress the subscript n in 

H n , G n , H 
∗
n , G 

∗
n to simplify notation.) 

LEMMA A1. Let a n , b n be random vectors in R 
n . Suppose there exist constants M 1 , M 2 < ∞ such that 

Pr { sup i≤n | a n,i | ≤ M 1 } = 1 and Pr { sup j≤n E 
(
| b n,j || 
 n 

)
≤ M 2 } = 1 for all n . Then 1 

n a 
′ 
n 
 n b n = O p ( n 

s−1 ) 

under Assumption 3.1. 

Proof of Lemma A1. From the triangle inequality, 

E 

(∑ 

i 

∑ 

j 

∣∣
 n,ij 

∣∣
)

= E 

(∑ 

i 

∑ 

j 

∣∣∣∣ 1 
G ∗( i) ιn 


 
∗
n,ij + 

(
G ∗( i) −H ∗( i) 

)
ιn (

G ∗( i) ιn 
)(

H ∗( i) ιn 
)H 

∗
ij 

∣∣∣∣
)

≤ E 

[∑ 

i 

∑ 

j 

(
1 

G ∗( i) ιn 

∣∣
 
∗
n,ij 

∣∣ + 
1 (

G ∗( i) ιn 
)(

H ∗( i) ιn 
)
∣∣(G 

∗
( i) − H 

∗
( i) 

)
ιn 

∣∣ × H 
∗
ij 

)]

≤ E 

[ ∑ 

i 

(
1 

G ∗( i) ιn 

∑ 

j 

∣∣
 
∗
n,ij 

∣∣ + 
1 

G ∗( i) ιn 

∑ 

j 

∣∣
 
∗
n,ij 

∣∣
)] 

= O( n s ) . 

Furthermore, 

E 
(
| 1 
n a 

′ 
n 
 n b n | 

)
≤ 1 

n E 

[ 
sup i,j E 

(
| a n,i b n,j || 
 n 

)
·
(∑ 

i 

∑ 

j 
| 
 n,ij | 

)] 
= O( n s−1 ) . 

This pro v es the claim in the lemma. �

LEMMA A2. Under Assumption 3.2, sup i≤n | V iq | = O(1) and sup i≤n V 
2 
iq = O(1) for q = 1 , ..., K , and 

there exists constant M 
∗ < ∞ such that Pr { sup i E( | y i || 
 n ) ≤ M 

∗} = 1 for all n . 

Proof of Lemma A2. Note 

sup 
i≤n 

([
G 

2 
( i) X [ q] 

]2 
)

≤
(

sup 
i≤n 

∑ 

k 
| G ik | 

)2 (
sup 
k≤n 

∑ 

j 
| G kj | 

)2 
( 

sup 
j≤n 

x 2 jq 

) 

= O(1) . 
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It follows that sup i V 
2 
iq = O(1) . By Liapounov’s Inequality, sup i V 

2 
iq = O(1) implies sup i | V iq | = O(1) for 

all q = 1 , ..., K . 

It then follows from reduced form for Y n that 

sup 
i 

E( | y i || 
 n ) = sup 
i 

E 

( ∣∣∣
∑ 

j 
( S −1 

n ) ij 

(
α0 + x ′ j β0 + 

∑ 

k 
G jk x 

′ 
k γ0 + ε j 

)∣∣∣
∣∣∣ 
 n 

)

≤ sup 
i 

[ ∑ 

j 
( S −1 

n ) ij 

] 
× sup 

j 
E 

(
| α0 | + | x ′ j β0 | + 

∑ 

k 
| G jk | × | x ′ k γ0 | + | ε j | 

∣∣∣
 n 

)
. 

Hence, there exists some constant M 
∗ < ∞ with Pr { sup i E( | y i || 
 n ) ≤ M 

∗} = 1 . �

Proof of Proposition 3.1. Recall 

̂ θ − θ0 = 

[ 
˜ R 

′ 
n ̃

 V n 

n 

(˜ V 
′ 
n ̃

 V n 

n 

)−1 ˜ V 
′ 
n ̃

 R n 

n 

] −1 ˜ R 
′ 
n ̃

 V n 

n 

(˜ V 
′ 
n ̃

 V n 

n 

)−1 ˜ V 
′ 
n ̃  εn 

n 
, (A1) 

where 

1 

n 
˜ V 

′ 
n ̃

 R n = 
1 

n 
V 

′ 
n R n + 

1 

n 
V 

′ 
n ( 0 , 
 n Y n , 0 , 
 n X n ) 

+ 
1 

n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)′ 
R n 

+ 
1 

n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)′ 
( 0 , 
 n Y n , 0 , 
 n X n ) , 

and 

1 

n 
˜ V 

′ 
n ̃

 V n = 
1 

n 
V 

′ 
n V n + 

1 

n 
V 

′ 
n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)

+ 
1 

n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)′ 
V n 

+ 
1 

n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)′ 

×
(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)
, 

and 

1 

n 
˜ V 

′ 
n ̃  εn = 

1 

n 
V 

′ 
n εn −

1 

n 
λ0 V 

′ 
n 
 n Y n −

1 

n 
V 

′ 
n 
 n X n γ0 

+ 
1 

n 

(
0 , 

(
G n 
 n + 
 n G n + 
 

2 
n 

)
X n , 0 , 
 n X n 

)′ 
( εn − λ0 
 n Y n − 
 n X n γ0 ) . (A2) 

Due to Assumption 3.2 and Lemma A2, sup i V i V 
′ 
i = O(1) . Thus, Lemma A2 implies that V n as well as 

X n γ0 satisfy the dominance conditions on a n in Lemma A1. Moreo v er, Lemma A2 implies Y n and εn satisfy 

the dominance conditions on b n in Lemma A1. Under our maintained conditions, 1 
n ̃

 V 
′ 
n ̃

 R n and 1 
n ̃

 V 
′ 
n ̃

 V n are 

both O p (1) . Furthermore, the second to the fourth terms on the right-hand side (RHS) of ( A2 ) can all be 

expressed as 1 
n a 

′ 
n 
 n b n in Lemma A1, and hence are O p ( n 

s−1 ) . Because 1 
n V 

′ 
n εn = O p ( n 

−1 / 2 ) , it then follows 

that 1 
n ̃

 V 
′ 
n ̃  εn = O p ( n 

−1 / 2 ∨ n s−1 ) . �

Proof of Proposition 3.2. As 

√ 
n ( ̂  θ − θ0 ) = 

[ 

R 
′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n R n 

n 

] −1 
R 

′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n εn √ 
n 

+ O p ( n 
s−1 / 2 ) , 
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when s < 1 / 2 , 
√ 

n ( ̂  θ − θ0 ) has the same asymptotic distribution as the 2SLS estimator using true network 

links. 

Consider the asymptotic variance �. Let � n be the diagonal matrix of the error variance, i.e., � ii = E( ε 2 i ) . 

We have � = A 
−1 BA 

−1 , where 

A = p lim 
R 

′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n R n 

n 
; 

B = p lim 
R 

′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 (
1 

n 
V 

′ 
n � n V n 

)(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n R n 

n 
. 

Using Lemma A1, we can show that 

̂ A = A + O p ( n 
s−1 ) 

and 

̂ B = B + 
R 

′ 
n V n 

n 

(
V 

′ 
n V n 

n 

)−1 (
1 

n 
˜ V 

′ 
n ̂

 � n ̃
 V n −

1 

n 
V 

′ 
n � n V n 

)(
V 

′ 
n V n 

n 

)−1 
V 

′ 
n R n 

n 
+ O p ( n 

s−1 ) . 

Then, what left is to show is that 1 
n ̃

 V 
′ 
n ̂

 � n ̃
 V n − 1 

n V 
′ 
n � n V n is o p (1) . As 

1 

n 
˜ V 

′ 
n ̂

 � n ̃
 V n −

1 

n 
V 

′ 
n � n V n = 

1 

n 
V 

′ 
n 

(̂ � n − � n 

)
V n + O p ( n 

s−1 ) , 

and the first term on the RHS is O p ( n 
−1 / 2 ∨ n s−1 ) because 

1 

n 
V 

′ 
n 

(̂ � n − � n 

)
V n 

= 
1 

n 

n ∑ 

i= 1 

([
( Y n − ˜ R n ̂  θ ) ( i) 

]2 − E( ε 2 i ) 
)

v i v 
′ 
i 

= 
1 

n 

n ∑ 

i= 1 

v i v 
′ 
i [ ε 

2 
i − E( ε 2 i )] + 

1 

n 

n ∑ 

i= 1 

v i v 
′ 
i 

(
[ ̃  R i ( θ0 −̂ θ )] 2 + [( λ0 
 n Y n + 
 n X n γ0 ) ( i) ] 

2 
)

+ 
2 

n 

n ∑ 

i= 1 

v i v 
′ 
i ̃

 R i ( θ0 −̂ θ ) ε i −
2 

n 

n ∑ 

i= 1 

v i v 
′ 
i [ ̃

 R i ( θ0 −̂ θ ) + ε i ]( λ0 
 n Y n + 
 n X n γ0 ) ( i) 

= O p ( n 
−1 / 2 ) + O p ( θ0 −̂ θ ) + O p ( n 

s−1 ) = O p ( n 
−1 / 2 ∨ n s−1 ) . 

Together, we have ̂  A 
−1 ̂  B ̂  A 

−1 − A 
−1 BA 

−1 = O p ( n 
−1 / 2 ∨ n s−1 ) = o p (1) . �
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