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Summary: We consider peer effect estimation in social network models where some network
links are incorrectly measured. We show that if the number or magnitude of mismeasured
links does not grow too quickly with the sample size, then standard instrumental variables
estimators that ignore these measurement errors remain consistent, and standard asymptotic
inference methods remain valid. These results hold even when the link measurement errors
are correlated with regressors or with structural errors in the model. Simulations and real data
experiments confirm our results in finite samples. These findings imply that researchers can
ignore small numbers of mismeasured links in networks.
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1. INTRODUCTION

In many social and economic environments, an individual’s behaviour or outcome (such as a
consumption choice or a test score) depends, not only on his or her own characteristics, but also
on the behaviour and characteristics of other individuals. Call such dependence between two
individuals a link, and call individuals with such links friends. A social network consists of a
group of linked individuals. Each individual may have a different set of friends in the network,
and each individual may assign heterogeneous weights to his or her links. The structure of a social
network is fully characterized by a square adjacency matrix, which lists all links (with possibly
heterogeneous weights) among the individuals in the network.

Much of the econometric literature on social networks focuses on disentangling and estimat-
ing various social or network effects, based on observed outcomes and characteristics of net-
work members. These structural parameters include the effects on each individual’s outcome by
(i) the individual’s own characteristics (direct effects) and possibly group characteristics (cor-
related effects), (i1) the characteristics of the individual’s friends (contextual effects), and (iii)
the outcomes of the individual’s friends (peer effects). Standard methods of identifying and
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2 A. Lewbel et al.

estimating these structural network effect parameters assume that the adjacency matrix of links
among individuals in the sample is perfectly observed.

1.1. Our contribution

We consider the case where some network links are misclassified, or generally measured with
errors. Here we provide good news for empirical researchers, by showing that relatively small
amounts of measurement error in the network can be safely ignored in estimation. More precisely,
we show that instrumental variable estimators like Bramoullé et al. (2009), and their standard
errors, remain consistent and valid despite the presence of misclassified, unreported, or mis-
measured links, as long as the number and size of these measurement errors grow sufficiently
slowly with the sample size. Moreover, these results hold even when the measurement errors are
correlated with the regressors, or with the model errors. In Section 1.2 we give examples of how
such measurement errors arise in real applications. In Section 4 we provide detailed conditions
for these errors to grow at these sufficiently slow rates.

It may not be surprising that measurement errors growing at sufficiently slow rates are asymp-
totically negligible, but it is also not automatic. Slow measurement error rates could still lead
to substantial estimation errors if the stochastic order of quadratic terms in the errors of the
parameter estimates can not be bounded. What we show is that, in the case of two-stage least
squares (2SLS) estimators of network models, minimal and standard regularity conditions suffice
to bound these terms.

1.2. Motivation

There are many reasons why network links can be mismeasured in practice. In some data sets,
links are imputed from measures of proximity or similarity of individuals (e.g., use of distance
as a link in gravity models of trade). Such imputations are generally imperfect, resulting in
measurement errors in the magnitudes of links.

Mismeasurement may also arise because links that are observed in one context may be irrelevant
for outcomes in another context under study. For instance, two people who are observed as linked
on a social media platform may be connected there for business or political reasons, but have no
effect on each other’s personal outcomes (or vice versa). Or in a school setting, some, but not all,
reported friends may be study partners who affect academic performance.

Even in data sets where all observable links are directly relevant for observed outcomes, link
data may contain a variety of reporting or recording errors. For example, studies that focus on
links within groups, such as within classrooms or villages, may not report links across groups
(e.g., friendships with people in other schools). In this case, measurement errors are caused by
unrecorded links between the groups.

Another example is a panel data model of social networks, where a slowly evolving network
is only observed in some intermittent time periods, and is assumed to stay fixed in between those
periods. In this case, the measurement errors are due to the unobserved formation (or dissolution)
of new (or existing) links between those observation periods.

A third example is when sample-collecting surveys limit the number of links (such as the num-
ber of friends) that a respondent can report, thus leading to missing links for popular individuals.
Yet another example is when the link data collected from surveys have recall or response errors.
For instance, two individuals may report different responses to the question of whether they are
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Ignoring measurement errors in social networks 3

friends, leading to uncertainty in how an undirected link between them should be recorded. Or
more simply, surveyors may make occasional mistakes in recording responses.

The main finding of our paper is as follows: if the size of measurement errors in the reported
adjacency matrix is relatively small (i.e., grows slowly with the network size n), then asymptotic
theory that ignores these measurement errors provides a good approximation for estimation and
inference. Furthermore, in all four examples mentioned above, we provide specific, intuitive
conditions under which this ‘small error’ property holds (Section 4).

1.3. The model

With a sample of n individuals, let Y,, = (yy, ..., y,)" € R" be a vector of individual outcomes; let
tw =(1,...,1)Y and €, = (€,.1, ..., €4.n)" be n-dimensional column vectors of ones and individual
errors. Let X,, = (xy, ..., x,)’ be an n-by- K matrix consisting of n vectors of exogenous regressors

x; € RX fori < n. Let G} be an actual n-by-n adjacency matrix (a.k.a. network structure) that
lists the actual links for peer effects and contextual effects.! Let G¥ ij denote the element in row
i and column j of G};. We have G* > 0 if i and j are linked for peer effects and G, ;=0

otherwise. For each i, let G,i;=0 by convention in the literature. Note that G ;. ; can be binary,

with G}, € {0, 1} indicating the absence or presence of a link, or continuous and nonnegative,

with G ;. € Ry uniformly bounded and signifying the strength of the link.

n,ij
We assume a linear social network model:

Y, = apt, + )\-OGnYn + XnﬁO + GanVO + €n, (11)

where G, can be either the original adjacency matrix G, or a row-normalized version of G}. For

example, a row-normalized G, is defined by G,.;; = G, ;;/ (Z?,:, Ghij ) Row-normalization

is common in practice; our results hold with or without such normalization. Throughout the
paper, we maintain that min; 3-%_, Gy ;; > 0 with probability one, so the row-normalization
is well defined almost surely. This means there are no isolated individuals in the network, or
equivalently no rows of zeros in G almost surely. This condition is standard in the literature.

The parameters in equation (1.1) are as follows: Ao € R is a scalar peer effect, By € RX is a
vector of direct effects, yy € RX is a vector of contextual effects, and oy € R is the structural
intercept. If individuals are divided into groups (such as villages or classrooms), then what are
known as correlated effects can be modelled as group-level fixed effects, i.e., group membership
indicators that are included in the term of direct effects (X, 8y), but not in the term of contextual
effects (G, X, ).

Our goal is to estimate 6y = (o, Ao, By, vy)'- If Yu, X, G} (and hence G,) were perfectly
observed, the structural model would take the form of a linear regression of Y, on a constant and
the regressors G, Y,, X,,, and G, X,,. However, even if X; is uncorrelated with ¢; for all 7 and j,
making X, and G, X, strictly exogenous, this regression could not be consistently estimated by
ordinary least squares, because of the endogeneity of G, Y, . Instead, one can use an instrument-
based, 2SLS estimator using friends of friends of i to construct instruments for G, Y,,—see, e.g.,
Lee (2007) and Bramoullé et al. (2009). For example, Gﬁ X, can be instruments for G, Y,. To

! 'We can extend the results of this paper to allow the peer and contextual effects to operate through different adjacency
matrices—say, G, and C; respectively—provided one of the two conditions holds: either (a) the data contain two
distinctive noisy measures for G and C; respectively with each satisfying the condition of ‘small order’ measurement
errors (Assumption 3.1), or (b) the differences between G}, and C; are small and the data contains a single noisy network
measure with small measurement errors in the sense of Assumptlon 3.1.
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4 A. Lewbel et al.

implement this 2SLS estimator, one needs perfect measures of G, so that the regressors G, 7Y,
and G, X,,, and instruments such as G,% X, can all be constructed without errors.

1.4. Estimation with misclassified links

Instead of observing Y,,, X,,, and the true adjacency matrices G, we assume that what is observed
is ¥y, X,,, and a mismeasured adjacency matrix H,'. The differences H, — G are the measurement
errors in links. Like G, the matrix H,’ by convention has zeros on the diagonal.

For a given pair of individuals i and j, if G ;; equals zero or one, misclassification of that
link corresponds to H;; = 1 — G7;. More generally, measurement error in a link occurs whenever
H}: # G};. The measurement errors can be any combination of misclassified links and incorrectly
weighted links. Similarly, let H, be either a row-normalized version of H,*, or the noisy measure
H itself.

We investigate the asymptotic properties of 2SLS estimation of (1.1) when the mismeasured
adjacency matrix H, is observed instead of the true unknown matrices G;;. So instead of a
2SLS regression of Y, on G,Y,, X,, and G, X, using as instruments GﬁXn, X,, and G, X,,
we consider a 2SLS regression of Y,, on H,Y,, X,, and H, X, using as instruments anX,,, X,
and H, X,. Note this means that both some regressors and some instruments are mismeasured,
and that the measurement errors in regressors and instruments are correlated. Moreover, we do
not impose any uncorrelation or conditional independence conditions on the measurement errors.
Those conditions are frequently used in the literature of measurement errors. For example, we
allow the measurement errors in H* — G to be arbitrarily correlated with X,,, Y,, and ¢,,.

We find that if the magnitude of measurement errors grows at a rate slower than /7, then
the 2SLS estimator remains /n-consistent and asymptotically normal, and the usual formulas
for inference and standard errors remain valid. As a result, under these conditions, researchers
can safely ignore the presence of misclassified or mismeasured links, because the estimator and
inference based on H,; instead of G} remain consistent and valid.

We also find that if the magnitude of measurement errors grows at a rate faster than ./n,
but slower than n, then the 2SLS estimator is still consistent. However, in this case, the rate of
convergence of the coefficient estimators is less than /z (due to a bias term that shrinks at a
slower rate than 4/n), so the usual standard error formulas would no longer apply.

1.5. Outline

Section 2 is a short literature review. Section 3 formally presents our results for 2SLS estimation
of mismeasured networks. Section 4 provides a few empirical examples where the order of
measurement errors in networks are sufficiently small. This is followed by some simulation
results (Section 5) and an empirical illustration (Section 6). Proofs are in the appendix.

2. LITERATURE REVIEW

Social network models typically allow an individual’s outcome to depend on his or her own char-
acteristics, contextual influences from peers’ characteristics, and peer effects from peer outcomes.
The traditional linear-in-means model (which assumes everyone is linked with everyone else with
equal weights, either within groups or in the whole network) suffers from the ‘reflection problem’
as pointed out by Manski (1993). This identification problem can be solved in models with more
complicated social interaction structures. Lee (2007) uses conditional maximum likelihood and
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Ignoring measurement errors in social networks 5

instrumental variable methods to estimate peer and contextual effects in a spatial autoregressive
social interaction model, assuming links are perfectly observed in the data. Bramoullé et al. (2009)
and Lin (2010) provide specific conditions on observed network structure in order to identify peer
effects in social interaction models, using characteristics of friends of friends as instruments.

Given results like these, the model described in the introduction has been widely used to
estimate peer effects in a variety of settings. Examples include studies of peer influence on
students’ academic performance, sport and club activities, and delinquent behaviours (Calvé-
Armengol et al., 2009; Hauser et al., 2009; Lee et al., 2010; Lin, 2010; Patacchini and Zenou,
2012; Boucher et al., 2014; Liu et al., 2014). These models all assume that the network structure
is correctly measured in the data.

Regarding selection and comparison of adjacency matrices, LeSage and Pace (2009) use
the Bayesian posterior distribution to choose among models with different adjacency matrices.
Empirical research may also report estimates using different link weights as robustness checks.
These practices are feasible in, e.g., spatial econometric models, where link weights are assumed
to be a function of observable geographic information, as in gravity models of trade. Errors in
constructing such links would fit in our framework. There is also a small literature on identification
and estimation of peer effects when networks are unobserved. Examples include De Paula et al.
(2018) and Lewbel et al. (2023).

The issue of potentially misclassified links is acknowledged and discussed in Liu et al. (2014),
Patacchini and Venanzoni (2014), and Lin (2015), among others, but these papers do not provide
a formal analysis of the asymptotic impact of mismeasured links on the performance of standard
estimators. Chandrasekhar and Lewis (2011) show that, even with randomly selected links,
partial sampling can lead to nonclassical measurement errors and consequently bias in standard
estimation methods. Griffith (2022) studies the impact on inference when misclassification in the
adjacency matrix occurs because of binding caps on the number of self-reported links. Boucher
and Houndetoungan (2022) estimate peer effects using partial network data when a consistent
estimate of aggregate network statistics is available to the researcher. Our results fill a void in
the literature by analysing how ignoring small amounts of general measurement errors in the
adjacency matrix affects the consistency of standard estimators and the validity of inference.?

3. 2SLS ESTIMATION WITH MISMEASURED LINKS

We derive the asymptotic properties of a 2SLS estimator for the model in (1.1) when the matrix

with measurement errors H, is used in place of the actual, unknown G?;. This means the regressors

G,Y,, G,X,, and instruments GﬁXn are replaced by H,Y,, H,X,,, and anXn in the estimator.
Write equation (1.1) as

Yn = RnGO + €, = ﬁ119() +En7

2 Referring to potential omission of friends, Patacchini and Venanzoni (2014) say that, ‘in the large majority of cases
(more than 94%), students tend to nominate best friends who are students in the same school and thus are systematically
included in the network (and in the neighborhood patterns of social interactions)’. Liu et al. (2014) report that ‘less than
1% of the students in our sample show a list of ten best friends, less than 3% a list of five males and roughly 4% a list
of five females. On average, they declare that they have 4.35 friends with a small dispersion around this mean value
(standard deviation equal to 1.41), and in the large majority of cases (more than 90%) the nominated best friends are in
the same school’. Lin (2015) says ‘this nomination constraint only affects a small portion of our sample, as less than 10%
of the sample have listed five male or female friends. Therefore, this restriction should not have a significant impact on
the results’. This last speculation is precisely what our first set of results establishes: consistency of the estimator will not
be affected if the number of omitted (and hence misclassified) links is sufficiently small.

© The Author(s) 2024.
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6 A. Lewbel et al.

where R, = (1,, G, Y., X, G, X,,) is the true matrix of regressors, IN?,, = (,, H,Y,, X,, H,X,)
is its observed proxy, 6 is the true value of 6, and €, = ¢, — A0A,Y, — A, X,y with A, =
H,—G,.

Let V,, = (1, anXn, X,, H,X,) denote an n-by-(3K + 1) matrix of instruments. This Vn is an
observable proxy for the (unknown) actual instrument V,, = (¢,, G%Xn, X,,G,X,). The 2SLS
estimator is:

o~ ~ o~~~ A~ i~ o~~~ A~ o~
0 =[RV,(V,V)"'V/R,] R, V.(V,V,) 'VY,.

We show that this estimator is consistent when the measurement errors in the adjacency matrices
are small in the following sense (where Y _; is shorthand for ) \_,):

ASSUMPTION 3.1. >, > E (‘H;J.j -G}

n,ij

) = 0On®) for some 0 < s < 1.

Assumption 3.1 requires the expected sum of absolute measurement errors in G, to increase at a
rate slower than the sample size n. This condition holds, for example, if measurement errors occur
only for a subset of individuals of order O(n*) with s < 1, and if the magnitude and expected
number of mismeasured links for each individual in the subset are bounded. See Section 4 for
more examples of how this condition holds under a variety of contexts.

Denote S, = I, — AoG,,, where I, is an n-by-n identity matrix. When S§,, is nonsingular, the
reduced form for outcomes is:

Y, = S, (cotn + XuPo + GuXuvo + €).
We maintain the following regularity conditions.

ASSUMPTION 3.2. (i) €, isindependent from X,; individual errors €, ; are independent across i,
with E(e€, ;) = 0. There exists a constant My < oo such that Pr{sup,_, E(|€,;| | H,) < Mo} =1
for all n. (ii) G}, is a sequence of pre-determined, nonstochastic matrices, and S, is nonsingular
for all n. The sequences {G*}, and {S; '} are uniformly bounded in both row and column sums.
The row and column sums in the sequence {H,} are uniformly bounded in probability. (iii) The
elements of X,, are uniformly bounded for alln; V,V, /n converges in probability to a nonsingular
matrix as n — 0o.

Part (i) of Assumption 3.2 states that X, are exogenous. Notice that we do not impose exogeneity
of H, i.e., the measurement errors H, — G can be correlated with both €, and X,,. This is in
sharp contrast to most measurement error models, which typically require measurement errors to
be independent of some observed or unobserved variables for point identification and estimation.
Part (ii) requires the row and column sums of G} and H,’ to be uniformly bounded, and that the
reduced form of outcomes is well defined. Invertibility of S, holds if Zj [AGpijl < 1 forall i.
In the special case of nonnegative elements and row-normalization in G}, |A| < 1 is sufficient
for nonsingular S,,. Part (iii) requires the matrix of actual instruments to have full column rank.
The assumptions above on the actual adjacency matrix G, are standard for linear social network
models.

PROPOSITION 3.1. Under Assumptions 3.1 and 3.2,
0 —6p= 0,2 vnh,

This proposition holds because we can establish the following relationship between the feasible
2SLS estimator, which uses the noisy measure with errors H,, and its infeasible version, which
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Ignoring measurement errors in social networks 7

uses the unobserved actual G,;:

—1 ~

~ o~ ~ o~ ~ -1 ~ ~ ~ 1 o~
5 RV (VN VR RV (VT VR
0= n n n n n n

-1
RV, (VVV,\ ' VIR, | RV, (VIV,\ ! Vi, .
_ +0,m7". G0
n n n n n n

Under the regularity conditions in Assumption 3.2, (R, V,)/n and (V,V,)/n both converge in
probability to constant matrices with full rank (2K + 2). Under the exogeneity of X,,, the term
V/e,/n is O,(n~"/?) by an application of the Chebyshev’s Inequality. Combining these results,
we conclude that the estimation error in (3.1) is 0,(n~"/2 v n*~"). Thus the 2SLS estimator 0,
which uses anX as an instrument for H,Y,,, is consistent when s < 1.

Furthermore, if s < 1/2, the effect of measurement errors vanishes fast enough so that it does
not affect the /n-rate of convergence or the asymptotic distribution of the 2SLS estimator. This
is formalized in the next proposition.

PROPOSITION 3.2. Under Assumptions 3.1 and 3.2, if s < 1/2 then

Vi@ — 60) 5 N, Q),

where €2 is the asymptotic variance of the 2SLS estimator using the actual adjacency ma-
trix G,; and 2 can be consistently estlmated by A-'BA- U where A= R/ P, R and

B = %R; P, E,, P, Rn, with P, = Vn (Vn V,,) Vn’ and En benig/c\l diagonal n-by-n matrix whose
i-th diagonal entry is the square of the i-th residual in Y,, — R,0.

As noted in the introduction, even slowly growing measurement errors could asymptotically
corrupt 0 if the stochastic order of quadratic terms in 6 — 6, isn’t bounded. The closed form
of the 2SLS estimator plays a key role in deriving our results. In our proofs, this closed form
allows us to use Cauchy—Schwartz inequalities to bound the stochastic order of these errors. Key
conditions we use for this are boundedness of S, 'and X,. Without those, the estimation errors
do not obey the stochastic orders we derive.

4. EXAMPLES

This section provides several examples of how Assumption 3.1, which requires a slow rate of
growth in link measurement errors, may hold in a range of empirical contexts.

EXAMPLE 4.1 (PARTITIONING GROUPS). Suppose the sample consists of individual units
from many known, mutually exclusive groups (e.g., individual households from many villages,
or individual students from many schools). Sometimes, data on links within each group is
collected (e.g., kinship relationships between households within each village, or friendships
between students within each school), while information about links that might exist between
individual units from different groups is not collected. In such cases, all nonzero cross-group
links are misclassified as zeros.

In this setting, Assumption 3.1 holds under intuitive conditions. A sufficient condition for
Assumption 3.1 would be that the probability of a nonzero link across groups diminishes faster
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8 A. Lewbel et al.

than some rate as the number of groups in the sample (denoted by M) increases. As we show
below, the rate at which the probability for cross-group links diminishes that is sufficient for
Assumption 3.1 depends on whether group sizes grow with the sample size or not. If group sizes
grow, then the faster they grow, the slower is the required rate of decrease in the probability for
cross-group links.

First, consider a scenario where there are M groups, and each group m contains a finite,
constant number of members n,,, which for simplicity is assumed to be the same for all groups,
so n,, = c € N, for all m, and the sample size by construction is n = ¢M.? In this case, the
asymptotic experiment lets M — oo with n,, fixed at ¢ for all m. Let the probability of friendship
(i.e., a nonzero link) between individuals from two groups be g, = O(n~%") for §; > 0. Suppose
the sample correctly reports all links within groups, but fails to report any information about
links that may exist across groups. The order of the expected number of misclassified links in
this sample is then M x (M — 1) x g, = O(M?*~°"). Therefore, Assumption 3.1 holds as long as
81 € (1, 2), i.e., the probability of cross-group friendships diminishes fast enough as the number
of groups increases.

Next, consider an alternative scenario where the asymptotic experiment allows the group
size to increase as the number of groups M — oo. Let the size of each group grow at an
order of O(M¢) for ¢ > 0 so that the order of the sample size n is O(M'*%). As before, let
the probability of a link between individuals from different groups be g, = O(n~%). Again,
suppose the sample correctly reports all links within each group, but misses all links between
different groups. The order of the expected number of misclassified links in the sample is
then M x (M — 1) x O(M?) x g, = O(M?*T¢~(1+9%) Hence, Assumption 3.1 holds as long as
= (ﬁ, 1+ ﬁ).

EXAMPLE 4.2 (PANEL DATA). Suppose the sample consists of L cross-sectional individual
units, each of which is observed for T time periods. The sample size is n = LT. For example,
the sample could report weekly test scores of L students over the course of 7" weeks. Let the
structural social effects 6y be fixed over time t = 1,2, ..., T and assume the structural errors
€;, are i.i.d. across i < L and ¢. The panel data model fits in the structural form in (1.1), with
Y, = (Y,iql, Yn/,Z’ er’T)’ where each Y, , is a column vector that stacks L individual outcomes
at time ¢. The other arrays X, and €, are defined in a conformable manner. In this case, G, is a
block-diagonal matrix, with the #-th diagonal block G, ; being an L-by-L adjacency matrix that
contains all links in the network at time .

Measurement errors in G, occur if the adjacency matrices G, evolve over time, but the
researcher only gets to observe them occasionally, i.e., over a strict subset of time periods 7,5 C
{1,2,..., T}, and assumes the network structure remains constant between those intermittent
periods of observation. For example, 7,,; = {1} means that the researcher only measures the
adjacency matrix correctly once, as G, i, in the first period, but then (incorrectly) assumes it
stays constant at G, , = G, for all t =2, ..., T. In this case, the magnitude of measurement
errors is determined by the number of existing friendships that are dissolved, by the changes in
the strength of existing links, or by new links that are created in the subsequent periods ¢ > 2.
For another example, consider the case of weekly test scores above. Suppose the network is only
observed once per semester. Then 7,,, only contains the number of semesters of observations,

3 The result here can be immediately extended to allow for heterogeneous group sizes, provided n,, < ¢ is uniformly
bounded by a finite constant ¢ for all m. In that case, the sample sizeisn = ), n,, < cM = O(M).
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Ignoring measurement errors in social networks 9

while T is the number of weeks for which we observe test scores, and measurement error arises
because G, ; is held fixed for all weeks within each semester.

First, consider a large-L, small-7" setting, where the asymptotic experiment lets L — oo
while holding T fixed at a constant integer. In this case, n = TL = O(L). Suppose Tops = {1},
and suppose the probability of dissolving an existing friendship or creating a new one in each
subsequent period ¢ > 2 is ¥, = O(n~%) for 83 > 0. The order of the expected number of
mismeasured links is then (T — 1) x L x (L — 1) x ¥, = O(n>~%), and Assumption 3.1 holds
if 63 € (1, 2).

Next, consider an alternative large-L, large-T setting, where the asymptotic experiment lets
L — oo and T — oo simultaneously. Suppose the number of time periods with no network
measurement, i.e., T — #(Tops), grows at rate O(T¢") for & e (0, 1). This means the adjacent
matrix is correctly measured with high frequency in the sense that the number of time periods with
incorrectly imputed network measures grows more slowly than 7'. Let us characterize the relative
order of individual units as L = O(T#) for & > 0 so thatn = LT = O(T'*%). As before, let
the probability for dissolving existing friendships or creating new ones during the periods with no
network measurement, i.e., t € T\ Tops, be ¥, = O(n~%) for 8, > 0. In this case, the order of the
expected number of misclassified links in the full sample is then L x (L — 1) x O(T%') x ,,.

It then follows that Assumption 3.1 holds if & + & > 1 and §4 € (%, %).4 That is,

Assumption 3.1 holds if the probability of link changes over time is sufficiently low, while the
cross-sectional dimension in the panel data grows fast enough relative to the number of time
periods.’

EXAMPLE 4.3 (CAPS ON SELF-REPORTED LINKS FROM SURVEYS). Suppose the sample
consists of n individuals in a single, large network. Researchers who collect link information
through survey responses sometimes specify a cap on the number of links that may be reported
by each individual. For example, a questionnaire may ask each student in a class to name up to
five friends. In this case, link measurement errors are caused by censoring due to the cap when
it is binding. That is, a student who had seven friends, but could only report five would result in
two links that are mismeasured as zero. The order of these errors depends on whether (and how
fast) the cap increases with the sample size, as well as the link formation probability.

Let d,; denote the degree (the total number of friends) an individual i actually has in the
sample (which may be more than the number reported). Assume there exists a finite integer d
such that P{d,; < 3} = 1 for all i and n. That is, the total number of friends an individual may
actually have is bounded, regardless of the sample size. This reflects the reality that link formation
and maintenance are costly in terms of individual time and energy. Furthermore, let «,, denote a
sequence of specified caps on the maximum number of reported links in the sample-collecting
survey; this sequence of caps increases with the sample size n, possibly at a very slow rate such
as O(logn). For each individual i, the number of missing links due to the binding cap is then
(dn.i — kn)+, where (-); = max{-, 0}. Under the specified conditions, E[(d,; — kn)+] = o(1).
It then follows that Assumption 3.1 is satisfied, because the expected magnitude of overall
measurement errors grows at a rate slower than the sample size n.°

4 To see this, note that O(L?) x O(T&1) x i, = O(T*2181-%048)) — o (n2&2+60/(0+82)-04) Tmposing inequalities
to ensure this order is O(n*) for s € (0, 1) implies the range of conformable 4.

5 Our benchmark analysis assumes i.i.d. time-varying errors, which is restrictive in a panel data setting. However, our
results generalize to allow some degree of error dependence in the usual way, since the estimator takes the form of linear
two-stage least squares.

© Assumption 3.1 can also be satisfied under weaker conditions, provided the right-tail probability mass of d, ;
diminishes sufficiently fast relative to the sample size and to the cap on self-reported links. In a model of dyadic
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EXAMPLE 4.4 (RECALL OR CODING ERRORS IN SURVEY RESPONSES). Samples collected
from survey responses are sometimes subject to recall errors (i.e., respondents have incorrect
memory of past events or status) or coding errors (i.e., data analysts make mistakes while coding
or processing raw responses). These measurement errors may grow at a slow rate relative to the
sample size, especially if there are economies of scale in the quality control of data collection, or
if the survey provides multiple noisy, proxy measures of the same links.

To illustrate, consider a sample network G, of n members, where the probability of forming a
friendship between any two members is 77, = O(n~%) with 85 > 0. Suppose the survey responses
provide two independent measures of G, (e.g., two responses about the same undirected link),
denoted as H, and W, respectively, and that each of these two noisy measures misses each
actual, existing link in G, independently at a rate of ¢, = O(n™") for v > 0. Suppose the
data analyst records the (i, j)-th entry of the network as max{H, ;;, W, ;;}. Then the order of
the expected measurement errors, i.e., the total number of nonzero links recorded as zero, is
given by n x (n — 1) x m, x ¢? = O(n*~%~2"). Therefore, Assumption 3.1 holds as long as
85 € (1 —2v,2—2v).

5. SIMULATION

We investigate the performance of the 2SLS estimator with mismeasured links using simulated
data. The structural equation in our data-generating process (DGP) is (1.1), where x; consists of
two regressors: the first is independently drawn from {—1, 1, 2} with equal probability, and the
second is from N (O, 1). The error terms ¢, ; are i.i.d. from N(0, 1). Links in G}, are independent
draws from a Bernoulli distribution with success probability p,, = u/n for some constant u© < 0.
By this construction, the expected number of friends for each individual is u. Let G, be a row-
normalization of G7,.

We generate misclassified links using H,',; = G, ;; - eri + (1 — G}, ;) - ex; for i # j, where
e;; and ey are Bernoulli random variables with success probabilities 1 — 7;; and 1y re-
spectively. Therefore, 7; = Pr{H,:"l.j = OIGj;’l.j =1},and rp; = Pr{Hj,ij = 11G, ;; = 0}. We set
71 = ppin* "' and To; = 100p, ;n* =2, where p,; = (Z'}zl G;ij/u + |&,.i1)/3. For each individ-
ual i, the misclassification rate increases in the number of i’s friends Z'}zl Gj;‘l.j, and in the
magnitude of i’s unobserved error g, ;|. This construction makes the measurement errors both
endogenous (correlated with the model errors) and correlated with the actual row-normalized G ,,.

We set the model parameters to be « =1, A =0.4, 8 =(1.5,2) and y = (0.9,0.6)". Let
=20, and experiment with the rates in measurement errors s = 0.1, 0.3, 0.5, and 0.7. We
experiment with sample sizes n = 200, 500, and 1,000. For each value of s and n, we sim-
ulate 7 = 200 samples, calculate the mean squared error, the bias, the standard deviation of
the 2SLS estimator using its empirical distribution across these 7" = 200 samples, and report the
average standard error of the estimator from these samples. We also report the average number
of misclassified links over these 7 = 200 simulated samples.

Results are summarized in Table 1. We observe several patterns:

1. The 2SLS estimates of all parameters converge at ,/n rate. The mean squared errors decrease
proportionately as the sample size increases.

link formation, establishing this result formally would require characterizing the magnitude of errors in the normal
approximation of a binomial distribution.

© The Author(s) 2024.
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Table 1. 2SLS estimators with misclassified links.

n =200 n =500 n = 1000

m.s.e. bias std a.s.e. m.s.e. bias std a.s.e. m.s.e. bias std a.s.e.
True G, Mis.# 0 0 0
o 3880 —0.114 1971 2.197 1.519 0.031 1.235 1.310  0.762 0.065 0.873  0.887
A 0.336 0.025  0.581 0.654  0.131 —0.010 0362 038  0.068 —0.019 0260 0.264
Bi 0.003 0.005 0.058 0.058 0.001 —0.003 0.036  0.036  0.001 —0.000 0.027  0.026
B2 0.005 0.008 0.072  0.073  0.002 0.001 0.048  0.045  0.001 —0.000 0.032  0.032
Y1 0.802 —0.029 0.898 1.006  0.301 0.019  0.549 0597  0.165 0.030 0406 0410
Y2 1.571  —0.040 1.256 1.348  0.561 0.020  0.750  0.796  0.278 0.032  0.528  0.545
s =0.1 Mis.# 105 124 134
o 4.100 —0.058 2.029 2.254 1.576 0.033 1.258 1.325  0.780 0.070  0.883  0.894
A 0.365 0.008 0.605 0.672  0.135 0.010  0.368  0.391 0.070 —0.020 0.263  0.266
Bi 0.003 0.004 0.058 0.058 0.001 —0.003 0.036  0.036  0.001 —0.000 0.027  0.026
B 0.005 0.008 0.072  0.073  0.002 0.001 0.048  0.045  0.001 —0.000 0.032  0.032
Y1 0877 —0.015 0.938 1.033  0.307 0.015 0.556  0.604  0.168 0.030 0410 0413
V2 1.610 —0.012 1.272 1382  0.574 0.019  0.760 0.805  0.284 0.033 0.533  0.549
s =03 Mis.# 304 428 534
« 4.599 0.058 2.149  2.388 1.678 0.014 1.299 1.367  0.833 0.083 0911 0.912
A 0405 —0.023 0638 0.712 0.144 —0.002 0380 0403 0.074 —0.023 0.271 0.272
Bi 0.004 0.003  0.059 0.059 0.001 —0.003 0.035  0.037  0.001 —0.000 0.027  0.026
B 0.005 0.009 0.073 0.074  0.002 0.001 0.048  0.046  0.001 —0.000 0.032  0.032
71 0.949 0.018  0.977 1.094 0334 —0.005 0.579  0.622  0.179 0.031 0423 0421
V2 1.756 0.041  1.328 1.461 0.598  —0.005 0.775  0.830  0.305 0.035  0.552 0.560
s=0.5 Mis.# 882 1,486 2,139
« 5.620 0.136 2373  2.773 1.995 0.067 1414 1.519 1.060 0.133  1.023  0.982
A 0498 —0.032 0706 0.828 0.172 —0.012 0416 0449 0.093 —0.035 0303 0.293
Bi 0.004 0.001  0.062  0.060 0.001 —0.003 0.036  0.037  0.001 —0.000 0.028  0.026
B2 0.005 0.011 0.073 0.075 0.002 0.001 0.049  0.046  0.001 —0.000 0.033  0.032
Vi 1.174  —0.022  1.086 1.272 0408 —0.015 0.640  0.691 0.218 0.032 0467 0453
V2 2.157 0.021  1.472 1.691 0.732  —0.021 0.857  0.921 0.376 0.041 0.614  0.602
s =0.7 Mis.# 2,549 5,152 8,513
[ 17.93 0433 4223 4212 4581 0.253 2.131 2.075 1.812 0.157  1.340 1.291
A 1.549 —0.095 1.244 1.252 0395 —0.0470 0.628 0.613 0.158 —0.025 0398 0.385
Bi 0.004 0.002 0.066 0.064 0.002 —0.004 0.038 0.039 0.001 —0.001 0.028  0.027
B 0.006 0.009 0.076  0.081 0.003 —0.001 0.052  0.048  0.001 0.001  0.033  0.033
Vi 3.643 —0.050 1913 1.898  0.894 —0.058 0946 0934 0374 —0.069 0.610 0.589
2 6.452 0.011 2547  2.533 1.545  —0.047 1.245 1.250 0.649 —0.056 0.806 0.786

Note: m.s.e. (mean squared error), bias, std (standard deviation) are calculated using the empirical distribution of 200 estimates; ‘a.s.e.” is
the average of standard errors in 7 = 200 samples.

2. Consistent with our asymptotic theory, the 2SLS estimator using the misclassified adjacency
matrix H, works almost as well as its infeasible analogue using the actual G, when the
measurement error rate is s < 0.5. This suggests that the sample sizes we consider are large
enough for the asymptotic approximations to apply. Note that with our DGP the estimates
in Table 1 with s < 0.5 have error rates where the expected number of misclassified links
is less than n.

3. For all values of s, the average standard errors are close to the standard deviation of the
2SLS estimators calculated from the 7 = 200 samples. This conforms with our asymptotic
theory, because the problem with inference for larger values of s is that the bias in the
estimator shrinks at rate n°~!. Similarly, with s > 0.5, the parameter estimates deteriorate
primarily due to the bias rather than the variance.
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4. With both the true and mismeasured adjacency matrices, the mean squared errors are much
smaller for the direct effects § than for the peer and contextual effects A and y. The mean
squared errors are also much lower for the discrete regressor effects B and y; than for the
continuous regressor effects 8, and y,.

6. APPLICATION

Lin and Lee (2010) model teenage pregnancy rates in the United States using the following model
(where the subscript of sample size n is suppressed):

Teen; = A Zn 1 GijTeen; + o + Edu; B1 + Inco; B, + FHH,; B3
j:

-+ Black; B4 + Phy;Bs + ¢,

where Teen; is the teenage pregnancy rate in county i, which is the percentage of pregnancies
among females who were 12—17 years old, and G;; is the (i, j)-th entry in the row-normalization
of an original adjacency matrix G*, where G}; = 1 if counties i and j are neighbouring counties.
Edu; is the education service expenditure (in units of $100), Inco; is median household income
(divided by $1,000), FHH; is the percentage of female-headed households, Black; is the proportion
of black population and Phy; is the number of physicians per 1,000 population, all at a county-level
for county i.”

The sample size isn = 761. Among all the 761 x 760 = 578, 360 entries (diagonal are zero) in
the original network G, there are 4,606 nonzero links. We treat the adjacency matrix reported in
the sample as the true network, artificially introduce misclassified links, and then evaluate how this
affects the 2SLS estimates. We generate misclassified links using H;j‘. = Gj‘j ce+ (1 — G;.“j) .
ez, where ej; and e,; are Bernoulli with success probabilities 7); = pin® "' and ty; = 100p;1n° 2
respectively. We set p; = min{(y; /¥)?, 0.8}, so that for each individual i misclassification is more
likely to happen the larger the magnitude of the observed outcome y;.

We report 2SLS estimates using H X and H>X as instruments. Unlike our model, Lin and Lee
(2010) assume there are no contextual effects, i.e., y = 0 in equation (1.1) so that GX does not
appear as regressors. In their case, one may just use GX as instruments for Gy estimation. In
comparison, our model has nonzero contextual effects, so we use HX and H 2X as instruments
in 2SLS estimation.

Table 2 reports results based on 7 = 1,000 Monte Carlo replications for each value of s.
Results are reported where the model is estimated both with and without row-normalization.

Consistent with our propositions, when the misclassification rate is low (s < 0.5), the 2SLS
estimates and standard errors using the mismeasured H,, are very similar to those based on G,,.
The same is true for estimation based on matrices H,’ and G that are not row-normalized. When
s increases, the bias and inaccuracy of the estimators increase, as expected. In particular, the
parameter estimates (especially 1) become quite biased when s > 0.5 (which, by our theory, is
when bias shrinks at a slower rate than variance).

7 The data are collected from 761 counties in Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, North
Dakota, South Dakota, and Wyoming. See Lin and Lee (2010) for further details about the data.
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Table 2. Estimation results with different misclassification rates.

A a 1008, B2 B3 B Bs Mis. #
Row-normalization: Gy = G,/ (3, G, ). Hyy = H;/ (X, H;)

True 0.4813 6.1911 —0.9824 —0.1871 0.7347 0.1267 —0.4956 0
(0.079) (1.469) (0.651) (0.040) (0.063) (0.057) (0.188)

s =0.1 0.4897 6.1085 —0.9910 —0.1878 0.7355 0.1289 —0.4980 125
(0.081)  (1.480) (0.651) 0.040)  (0.063)  (0.057) (0.188)

s =03 0.5132 5.8759 — 1.0086 —0.1895 0.7375 0.1341 —0.5049 472
(0.085) (1.512) (0.652) (0.040) (0.063) (0.057) (0.188)

s =0.5 0.6017 4.9578 — 1.0542 —0.1943 0.7422 0.1465 —0.5227 1,783
(0.099) (1.626) (0.654) (0.040) (0.063) (0.057) (0.189)

s =0.7 0.8138 2.7629 —1.1726 —0.2092 0.7589 0.1683 —0.5535 6,720
(0.139)  (1.985) (0.660) (0.040)  (0.064)  (0.057) (0.191)

No row-normalization: G;; = G,’fj, Hi; = H[j.

True 0.0239 10.840 —1.5244 —0.2348 0.8151 0.2061 —0.5731 0
(0.009) (1.261) (0.669) (0.041) (0.064) (0.058) (0.194)

s =0.1 0.0275 10.491 —1.5290 —0.2317 0.8087 0.2069 —0.5658 125
0.009)  (1.248) (0.666) 0.040)  (0.064)  (0.057) (0.193)

s =03 0.0356 9.6492 —1.5361 —0.2239 0.7916 0.2079 —0.5463 472
0.008)  (1.216) (0.659) 0.040)  (0.063)  (0.057) (0.191)

s=0.5 0.0486 7.5887 —1.5473 —0.2039 0.7351 0.2058 —0.4813 1,783
(0.005) (1.130) (0.633) (0.038) (0.061) (0.055) (0.184)

s =07 0.0442 4.9575 —1.5211 —0.1749 0.6170 0.1858 —0.3396 6,720
0.003)  (0.984) (0.571) 0.034)  (0.055)  (0.049) (0.166)

Note: The table reports average estimates and average standard errors (in parentheses) from 1,000 simulated samples.

7. CONCLUSIONS

We show that in 2SLS estimation of linear social network models, measurement errors in the
network can have no impact on estimation and inference of structural parameters if the magnitude
of measurement errors in the adjacency matrix grows sufficiently slowly with the sample size.
These results hold even if the measurement errors are correlated with model errors, covariates,
and outcomes. A useful agenda for future work is to investigate whether similar results hold for
more general network models.
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APPENDIX A: PROOFS OF RESULTS

For a generic matrix A, let A, Ay denote its i-th row and k-th column respectively, and A;; denote its
(i, j)-th component, so that A is the sum of the i-throw in A. Let A} = H* — G;.

We present the proof for the case where G,,, H, are row-normalization of G}, H respectively. The proof
for the other case with no row-normalization (i.e., G, = G and H, = H)) follows from almost identical
arguments, only with A, replaced by A in Lemmas Al and A2 below and in the proofs of Propositions 3.1
and 3.2. So, we exclude the case with no row-normalization to economize space here.

In this case with row-normalization, we can write A, as:

— 1 *
H,— G, =diag {( o T )} Ay

1 1 1 *
dia - — H*.
* g (1>"x Gyt " H Gyt Grmtn n

The following two lemmas are useful for the proofs. (In what follows, we suppress the subscript n in
H,, G,, H, G to simplify notation.)

n’

LEMMA Al. Let a,, b, be random vectors in R". Suppose there exist constants My, M, < oo such that
Pr{sup,_, la,;| < M1} =1 and Pr{sup;_, E (|b,,,j||A,,) < M} =1 for all n. Then %a,’lA,,b,, = 0[,(n“_1)
under Assumption 3.1.

Proof of Lemma Al. From the triangle inequality,
(G(*iFHJ))‘" *

BT 10al) = £ (T3 [+ gt
E[Y z( :

)

Al + W (GG = HGp) | % H,f;)]

Ok

| /\

< E[Y (a5 X o]+ o X2 [an,) ] = oo
Furthermore,
E(1a,8,b,1) = LE [sup,; E (lanibojl18,) - (3, D2 18051) | = 0.
This proves the claim in the lemma. O

LEMMA A2. Under Assumption 3.2, sup,_, |Vi,| = O(1) and sup,_, V, ,q =0() forq=1,..,K, and
there exists constant M* < oo such that Pr{sup; E(|y;||A,) < M*} =1 for all n.

Proof of Lemma A2. Note

sup ([G(Z)X[q] )5 <sup2 |G,k|) (supz |Gk,) <gupx§q) = o(1).
j=<n

i<n i<n k<n
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It follows that sup; V,> = O(1). By Liapounov’s Inequality, sup; V;; = O(1) implies sup;, |Vi,| = O(1) for
alg=1,... K.
It then follows from reduced form for Y, that

sup E(lyil|8,) = sup E (|32 (8, (o +x0+ Y, Ginxio+e7)|| &)
< sup [ (5,0 ] x sup £ (laol + ol + 3, 1G l x Lol +lej| A ).
i J
Hence, there exists some constant M* < oo with Pr{sup; E(|y;||A,) < M*} = 1. O

Proof of Proposition 3.1. Recall

~ ~ ~ 71 ~, ~ o NS -
~ RV, (VIV, ‘R, | RV, (VV, V, €
9_90:{,1 ( ) f } : ( ) (AD)
n n n

where

1 1
n = 7Vn/Rn + 7‘/,,, (O, AnYns 01 Aan)
n n

<
N

+ % (0, (G, + A,G, + A2) X,, 0, A, X,) R,

1 ) ‘
+ - (0, (GuAw + ALG, + A}) X,,0, A, X,) (0, A,Y,, 0, A, X)),

and

Y2 1 ’ 1 ’ 2
ViVa =~V + ~V, 0, (GuAy + AG, + A)) X, 0, A, X))

l

41 (0, (GuAy + MG, + A2) X,, 0, A, X,) V,

n

+ % (0, (GuAA, + A,G, + A2) X,, 0, A, X,)

x (0, (G, Ay + AG, + A) X,, 0, A, X)),

and
1

. 1 1 1
—V/E, = —Vie, — —aVIAY, — =V A X, 70
n n n n

1
+ = (0. (Gudn + AuGy + A7) X, 0, A Xo) (60 = Ao Yy = A Xop). (A2)

Due to Assumption 3.2 and Lemma A2, sup, V; V/ = O(1). Thus, Lemma A2 implies that V,, as well as
X, o satisfy the dominance conditions on @, in Lemma A1. Moreover, Lemma A2 implies Y, and €, satisty
the dominance conditions on b, in Lemma A1l. Under our maintained conditions, %‘7;1, k,, and %‘7,: ‘7,, are
both O,(1). Furthermore, the second to the fourth terms on the right-hand side (RHS) of (A2) can all be
expressed as nla;lA,,b,, in Lemma A1, and hence are O‘,,(ns_1 ). Because %Vn/e,, = Op(n‘l/z), it then follows
that 1V/2, = 0,(n~"? v '), O

Proof of Proposition 3.2. As

—1
N RV, (VVVN\' VIR, | RV, (V/V,\' Ve,
ﬁ(a—eo):[ p ( n > n } n ( n ) "4 0,(n ),

n n n n Jn

© The Author(s) 2024.
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Ignoring measurement errors in social networks 17

when s < 1/2, ﬁ(§ — 6p) has the same asymptotic distribution as the 2SLS estimator using true network
links.

Consider the asymptotic variance 2. Let X, be the diagonal matrix of the error variance, i.e., ;; = E (8?).
We have @ = A"'BA~", where

A = ptm B8 (%) " K,
3 ,

n n
N ANLANTA AW
B = plim—2* =22 VsV ) ()
n n n n n

Using Lemma A1, we can show that

and
- RV, AT
B=B+ 222 —V'E,V, -
n n

v'V,\"' V/R,
V,;z,,vn>< " ) 4 0,m .
n n

TS 17 1 ’ 1 I -1
V.2,V — 7‘/nznVn =-V (Zn - En) Vi + Op(nS )7
n n

n

and the first term on the RHS is O,(n~"/? v n*~!) because

1 o~
;Vn’ (Z, =)V,

% Z ([(Yn — Teﬁ)m]z - E(al.z)) v; vlf
i=1

1 n 1 n - .
- > vivjle} — E())] + n > 0w} (IR (60 — OF + [ ALY, + A X))
i=1 i=1

2 ~ 2 o ~
+ = v ROy — O — ~ 3 wivi[Ri( — 0) + £l (Ro Ao + An Xuv)

i=1 i=1
=0, + 0,0 —0) + 0,(n* ) = 0,(n > v '),
Together, we have A~'BA~! — A~'1BA~! = O0,(n"'2 v =) =0,(1). O

© The Author(s) 2024.
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