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1. Introduction

In lots of socioeconomic environments, individual decision-makers are partitioned into well-defined groups. Members
within a group affect each other’s outcomes through the potential influence of their decisions and characteristics (also
known as peer and contextual effects respectively). In this paper we address two prominent empirical challenges in the
analysis of such models. First, the data available to a researcher does not directly measure the existence or strength of
such influence between group members. Second, such influence is generally heterogeneous across paired group members,
e.g., it depends on the characteristics of the individuals involved.

We show how to recover heterogeneous social effects, which include both peer effects and contextual effects, from binary
choices made by group members. We model these heterogeneous effects through unknown influence matrices that vary
with individual characteristics and vary across the groups in the data. Accounting for such heterogeneous social effects is
important for policy analyses. For example, consider an educator whose goal is to maximize average test scores in multiple
classes, and suppose peer effects are known to be positive and greater among students with similar demographics. Then
the practice of allocating students with similar demographics into the same class will have a different implication on the
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class averages than forming classes with greater demographic variety. Quantifying the difference in outcomes between
these alternative policies would require a precise measure of the heterogeneous social effects mentioned above.

The identification question we address is empirically motivated: how can a researcher estimate these heterogeneous
social effects when the data does not provide any measure of existence or strength of the links between group members?
To illustrate, consider a group with n members. Let G denote an n-by-n influence matrix whose (i, j)-th component
Gj € [0, 1] is a continuous measure proportional to j’s social effects on i; G varies across the groups in the data, is
common knowledge within the group, but is not reported in the data observed by researchers. Naturally, G; may derive
from the strength of friendship; it can also incorporate other information such as the amount of time spent together in
the past. Each individual i’s outcome is a binary choice determined as follows:

V=X + Y GiXiy +p D GEMi, . X, ©) — i 2 0], (1)

j=n j=n

where 1{-} is a logical operator that returns one when the argument is true and zero otherwise; X; is a row vector of
i’s characteristics commonly known within the group (with 8 and y being column vectors of parameters); ¢; is a scalar
shock known to i only; the conditional expectation of Y; in the inequality denotes i's equilibrium belief about j’s decision
(defined later). Then j’s social effects on i consist of a contextual effect G;iXjy and a peer effect pG;E(Y;|X1, ..., Xa, G). Our
goal is to recover the parameters (8, y, p) and G.

We treat utility shocks in Eq. (1) as private types in a simultaneous game with incomplete information, and characterize
the endogenous beliefs under the solution concept of Bayesian-Nash equilibria. We impose conditions on the model
primitives to guarantee the existence and uniqueness of equilibrium conditional on individual characteristics.

Our identification strategy is original in that it exploits a key insight: the latent influence matrix determines the
reduced-form effects of all characteristics in the same fashion. The strategy requires an exclusion restriction that certain
characteristics are known to be excluded from the influence matrix. We take several steps to identify the model elements.
First, invert the vector of conditional choice probabilities to obtain latent expected utility indexes, and recover the
reduced-form coefficients of all characteristics from these indexes. By construction, these reduced-form coefficients are
functions of the structural parameters and certain moments of the latent random influence matrix. Next, we recover the
structural parameters utilizing a linear relation between the reduced-form coefficients for different regressors implied by
the model structure. This relation allows us to construct a linear system for identifying the structural parameters, aided
with exclusion restrictions such as no contextual effect for a known characteristic.

Based on this identification argument, we propose a nested fixed-point maximum-likelihood estimator for social
effects, and show that it is root-n consistent and asymptotically normally distributed. We investigate its finite sample
performance in Monte Carlo experiments. Our simulation exercises illustrate excellent performance of the estimator in
terms of average bias and mean-squared error; it converges at a root-n rate given moderate sample sizes of 200, 400, and
800.

We apply our method to study heterogeneous social effects in volunteering decisions by college students, using a new
dataset we collected from a university in China. In this setting, the dormitory rooms correspond to the groups in our
model. We document substantial differences in social effects across individuals and groups. Our estimates suggest that
the social effects are significantly stronger between individuals with similar characteristics. This pattern is consistent with
homophily. Our counterfactual analysis shows that allocating similar individuals to the same dormitory room overall leads
to more volunteering activities than total random assignments.

The rest of the paper unfolds as follows. In Section 2, we discuss related literature. Section 3 introduces a binary choice
model with heterogeneous social effects. Section 4 presents a constructive identification method. We propose a nested
fixed-point maximum-likelihood estimator for a parametrized model in Section 5 and establish its asymptotic property.
We demonstrate the finite sample performance of this estimator through Monte Carlo experiments in Section 6, and
conduct an empirical study of college students’ volunteering choices in Section 7. Section 8 concludes the paper.

2. Related literature

Our paper is related to the literature on social interaction. Manski (1993) provided non-identification results in social
interaction models where individual outcomes are continuous and linear in group means. He showed that peer and
contextual effects cannot be separated in this model due to a “reflection problem”. Graham and Hahn (2005) dealt with
this issue using an assumption that some characteristics have no contextual effects. Graham (2008) used second-moment
restrictions and variation in group sizes to identify linear-in-means social interaction models. Brock and Durlauf (2001,
2007) established identification for binary choices in social interaction models where each group member’s decision is
influenced by a rational expectation of the average choice in the group; and Lee et al. (2014) achieved identification and
provided maximum likelihood estimation for a general network model with heterogenous rational expectations. None of
the specifications in these papers nests ours, which allows heterogeneous social effects and unobserved influence matrix.

Bajari et al. (2010) estimated static games of incomplete information with multiple equilibria. Florens and Sbai
(2010) provided general criteria for local identification in games of incomplete information. Aradillas-Lopez (2010, 2012)
estimated semiparametric games of incomplete information. De Paula and Tang (2012) proposed a test for multiple
equilibria and signs of interaction effects in static games with incomplete information. Wan and Xu (2014) showed
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identification in semiparametric games of incomplete information with correlated private signals. In comparison, we study
social networks with simultaneous binary choices and private information, where the latent network structure leads to
heterogeneous social effects. Our identification strategy is original and exploits structural links between the reduced-form
partial effects and the latent social effects. Such links are distinctive features of the social network models we study.

Since the seminal work of Bresnahan and Reiss (1991), there has been a growing literature on empirical games with
complete information. A challenge in such models is to deal with the model incompleteness and identification under
multiple equilibria. Tamer (2003) estimated binary games with complete information, building on robust implications
under multiple equilibria. Krauth (2006) and Soetevent and Kooreman (2007) proposed simulated maximum likelihood
estimation for complete-information models with peer effects. Li and Zhao (2016) estimated discrete games with
complete information on large networks. They adopted a partial identification approach and proposed feasible estimation,
which introduced a novel way to use the inequalities implied by lower-dimensional subnetworks.

Our paper is also related to the literature of social networks with continuous outcomes. In such models, the social
effects operate through individual-specific indexes that assign heterogeneous weights to other members’ choices and
characteristics. Lee (2007) and Bramoullé et al. (2009) used instruments to disentangle contextual and peer effects,
assuming researchers observe the network structure, i.e., the influence matrices of our model. Blume et al. (2015) provided
identification results when the researcher knows which pairs of individuals have nonzero influences on each other.
Patacchini et al. (2017) allowed peer effects to be determined by observed strength of links/friendships, but required
knowledge of the network structure. Boucher and Houndetoungan (2020) estimated peer effects in social networks when
researchers know, or already have a consistently estimate of, the distribution of network structure. They provided an
original method to use this information to estimate peer effects in a linear-in-means model.

De Paula, Rasul, and Souza (2019) showed that the network structure, when unreported in the data, can be jointly
recovered with other structural parameters from continuous outcomes, provided the data contains many time periods
with a fixed network structure. Their method builds upon mathematical tools for solving systems of nonlinear equations,
and does not exploit an intrinsic structural relation between the reduced-form effects of different individual character-
istics. Lewbel et al. (2020) took advantage of such a structural relation, and introduced a new identification strategy
that only requires cross-sectional data. They treated the unobserved network structures as nuisances varying across the
groups, and focused on recovering the constant coefficients in social effects. Their identification strategy is constructive,
and conducive to a closed-form estimator for social effects. The method we propose in this paper is related to Lewbel
et al. (2020) only in the sense that it also exploits a model-implied relation between the reduced-form effects of multiple
individual characteristics. The exact form of such relation, the identification argument, and the estimator proposed in our
paper are all qualitatively different from theirs. It is worth mentioning that in our case we can also recover the latent
influence matrix (network structure) as a parameter of interest along with the other social effect parameters.

This paper fills a gap in the literature by disentangling and estimating heterogeneous peer and contextual effects
when individuals make binary decisions over unobserved influence matrices. Lin and Xu (2017) studied binary choices
on social networks where peer effect parameters are determined by individuals’ relative centrality. Lin (2020) introduced
quantile-specific peer effect parameters that vary with the level of latent variables underlying observed binary choices. Our
model differs substantially from these two papers in that we capture heterogeneous peer effects through latent influence
matrices unobserved by researchers.

3. The model
Consider a dataset of individual characteristics and choices collected from many independent groups, each consisting of

n members. To reiterate, we assume that individuals make simultaneous binary choices as in Eq. (1), which is summarized
in matrix notation as

Y =1{XB 4+ GXy + pGE(Y|X, G) — ¢ > 0}. (2)
Here, Y := (Y})i<n is an n-vector of individual binary choices/outcomes; 1{v > 0} := (1{v; > 0});<, for any n-vector
v; X = (X],...,X,) is an n-by-K matrix of commonly observed characteristics of all members (it does not include a

constant column); G is an n-by-n influence matrix, with G; = 0 for all i by convention and G; € [0, 1] for all i and j;
E(Y;IX, G) € [0, 1] is i's expectation of Y; conditional on public information within the group; and & := (&;);<n is a vector
of shocks privately observed by each member. Parameters 8 and y are K-by-1, and p is a scalar. We assume p # 0 to
rule out triviality. The influence matrix G varies across the groups. For each group, G is known to all members but not
reported in the data.

For each i < n, the vector of individual characteristics is partitioned so that X; = (W;, Z;). Denote W := (Wy, ..., W})
and Z = (Z;,...,Z;). Correspondingly, we write X = (W,Z), and let 8 = ((8"),(B*)) and y = ((y"), (y*)). We
maintain that the influence matrix is a function of W but not Z. Abusing notation, we write G = G(W). This flexible
specification allows individual characteristics to determine their social effects on each other. At the same time, it keeps
the estimation and interpretation of heterogeneous social effects feasible because the contextual and peer effects y G(W)
and pG(W) are constant conditional on W. This specification does rule out a more general case of stochastic social effects,
e.g., possibly due to unobserved individual heterogeneity in the influence matrix.
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We also assume that each ¢; is drawn independently from a known distribution (e.g., standard logistic) with a CDF F
and a PDF f that is supported on (—oo, co) and bounded above by sup, f(e) < oo; the distribution F does not depend on
(X, G).

The solution concept we use for determining Y and individual expectation is pure-strategy Bayesian-Nash equilibria
of a simultaneous game of incomplete information played within each group. Given the decision rule in Eq. (1), we define

a best response function BR : [0, 1]" — [0, 1]" so that for any n-vector p = (p1, ..., pn) € [0, 1]7,
BR(P) = F(XiB + D_ GiXiy +» Y Giy). 3)
j=n j<n

A fixed-point of BR defines an equilibrium of the game.

Assumption 1. The sample is generated from a single Bayesian-Nash equilibrium conditional on X.

Under this assumption, the equilibrium beliefs of group members are directly identified and can be consistently
estimated as the conditional choice probabilities (CCPs) given X from the sample. Without this assumption, the estimator
of CCPs from the sample would converge in probability to a mixture of different CCPs from multiple equilibria, and would
not satisfy a fixed-point characterization in Eq. (4) below.

Similar assumptions of single equilibrium in the sample are used in other papers such as Pesendorfer and Schmidt-
Dengler (2008), Bajari et al. (2010), and Lewbel and Tang (2015). In principle, the assumption of single equilibrium can
be tested using the information from the sample. De Paula and Tang (2012, 2020) provided tests for multiple equilibria
in simultaneous Bayesian games with independent and correlated private signals respectively.

It is worth mentioning that Assumption 1 is implied by a mild condition of moderate social influence (Glaeser and
Scheinkman, 2000; Horst and Scheinkman, 2006).

Assumption (MSI). There exists a constant C > 0 such that sup,, G(w) < C and |p|C < m

This condition restricts the modulus, or strength of interaction in the model, so that the best response function is
a contraction mapping. Under Assumption (MSI), the model only admits a unique equilibrium. Therefore, it implies
Assumption 1.2 Lee et al. (2014), Lin and Xu (2017), Xu (2018), Hu and Lin (2020), Liu (2020), and Jackson et al. (2020)
used similar conditions to show the uniqueness of equilibrium in Bayesian games.

We write the fixed-point of BR as p(X) := E(Y|X, G(W)) = E(Y|X), which is a column vector of expected probability
in the equilibrium. From Eq. (3), we obtain

pi(X) = F<Xi.3 +Y GiXiy +p) GUPJ(X))v (4)
j=n j=n

where p;(X) is the jth component of p(X). Invert Eq. (4) to get

q(X) == (F'(piX))izn = 8(W) 4+ ZB* + GIW)Zy* + pG(W)p(X), (5)

where §(W) = WBY 4+ G(W)Wy"™ denotes direct and contextual effects attributable to W. With knowledge of F, the
left-hand side of Eq. (5) is identified from the data. In what follows, we suppress W in G(W) and §(W) to simplify notation.

4. Identification

We first illustrate our identification strategy using a simple case where W; € R and Z; € R%. Let % = (%, B5) and
v: = (vEvE). Let uV = B + y2G, u® = B + y#G, and u» = pG denote n-by-n matrices of reduced-form
coefficients.

For any matrix M, denote its ith row and jth column respectively by M,; and M. Write Eq. (5) for each i as

FTUDiX)) = 8 + 1 Zer + 157 Zea + i pX).

Define V := (1, Z/,, Z,, p(X)'). We maintain the following rank condition.

Assumption 2. E(V'V|W) is non-singular for all W.

Assumption 2 is a regularity condition that rules out pathological cases where the equilibrium choice probability p(X)
is linearly dependent with the covariates in Z. Recall that p(X) solves a nonlinear fixed-point equation in Eq. (4). Hence
p(X) is generally nonlinear in Z conditional on W. Bajari et al. (2010, Theorem 1) and Aguirregabiria and Mira (2019,
Proposition 3) both used similar rank conditions on equilibrium choice probabilities for identification.

2 This modulus condition is not directly testable unless one maintains Assumption 1. In that case, one can estimate the model under Assumption 1
and then use the estimate and (standard error) for p to verify the modulus condition. In our application, we follow these steps to test and verify
the modulus condition.
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Under Assumption 2, variation in Z and non-linearity of p(-) in X help us to recover the reduced-form parameters ,ug?)
1!, ', and ; from F~'(p;(X)) at any W for each i < n. Hence, u(®, u(V, 1®), and § are identified at all values of W. The
idea of using nonlinearity in p(-) to identify binary choices under social interaction was introduced in Brock and Durlauf
(2007). In our case, such nonlinearity helps us to recover the reduced-form parameters in this preliminary step. Our rank
condition is analogous to the identifying condition in the probit selection model in Heckman (1976), where there are no
excluded instruments in the auxiliary/selection equation.

Our first step is to identify p, 87, and y7, using a structural relation between @, 1V, and 1 revealed in Lemma 1
below. As noted earlier, we suppress the argument W in G(-) and p®)(-) to simplify notation.

Lemma 1. [f the 2-by-2 matrix (8%, y*) is non-singular, then the linear system
au® + bu® = ;,© (6)

admits a unique solution

(2)=(5%)"(2)

The lemma uses a key insight that the reduced-form effects of both characteristics 1" and x® depend on the same
influence matrix G and respective structural coefficients p, B, and y4 in the same way. Thus one can exploit this structure
to recover a linear relation between these reduced-form effects. Lemma 1 establishes that the weights in this linear
relation are a known function of structural coefficients. We relegate the proofs to the appendix. For the rest of this section,
we assume non-singularity of (8%, y?).

Lemma 1 implies two linear restrictions on the vector (p, 8%, y*). In addition, it is clear from Eq. (2) that a scale
normalization is needed for joint identification of p, y, and G. Thus, we normalize the sum of the first row in G(-) at a
specific value W = W* to one. For k = 1, 2, let my denote the sum of the first row in ¥ at W*, which is equal to B +vi.
Combine these two equations with the implication of Lemma 1 to get

0 a b 00 L 0

-1 0 0 a b 1l 0

0 1010 2 || m

0 01 0 1 41 m,
¢

The rank of the coefficient matrix is full because a = b = 0 is ruled out by non-singular (8%, y*) and nonzero p.

Given these four linear restrictions, an additional restriction is needed for point identification of p, 8%, and y*. We
maintain that y; = 0, that is, the second characteristic in Z has no contextual effect. Such exclusion restriction has been
used in the literature for identifying linear-in-means models of social interactions, e.g., in Graham and Hahn (2005). The
choice of excluded characteristics depends on institutional details in the specific empirical contexts considered.

Next, with p identified, we recover G(-) from «(9(-) at all values of W. Then, with &(-) and G(-) known for all W, we
identify 8* and y* from §(-) under a mild support condition that is congruent with nonlinearity of G(-).

Assumption 3. The support of [W,;, G4(W)W] is not included in a proper linear subspace of R? at least for some i < n.

We summarize the identification results in the following theorem, whose proof is already presented in the text above.

Theorem 1. If the exclusion restriction (y; = 0) and Assumptions 1, 2, and 3 hold, then p, B, y, and G(-) are identified.

It is straightforward to generalize this identification strategy to higher dimensions with W; € R and Z; € R% for
K; > 3 and K,, > 2. In such cases, Lemma 1 holds for {u®};—1, k1 and u!?) with a, b, € R given by

(7 ) (5 )=(2)
Vi Y be ] 7\ 0o )"

One can construct 2(K, — 1) 4 K, equations in (p, 7, y?) € R +1;

Ok, —1)x1 A 0k, —1)xK, Jo 0, —1)x1
—1,—1)x1 O, —1)xk, A B ) =1 Ow,—1)x1 |-
O, x1 I I & m

Here, I is a K, x K, identity matrix; A := [diag(ay, ..., ax,—1), (b1, ba, ..., bx,—1)] is a (K, — 1)-by-K, matrix; and
m = (my, my, ..., mg,), where each my is the sum of the first row in w®) at the fixed value W* by which the scale
normalization is introduced. By construction, the coefficient matrix has rank 2K, generically. With an additional exclusion

3 See Wooldridge (2010, page 806) for details.
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restriction such as y7 = 0 for a known k, the augmented linear system has full rank to point identify the structural
coefficients p, 8%, and y*.

With such exclusion restrictions and K, > 3, the system generally over-identifies the structural coefficients. This is
because there exist multiple ways for taking 2K, + 1 out of the 2(K, — 1)+ K, 4+ 1 equality restrictions that have sufficient
ranks for point identification. One may also append the linear system with further equations constructed from any linear
constraints or additional exclusion restrictions that are acceptable in the context. (See Section 5.4 in Lewbel et al. (2020)
for details about the use of additional exclusion restrictions.) This over-identifying power can be exploited for improving
estimation efficiency in a likelihood-based or two-step GMM estimation.

Remark 1. Lewbel et al. (2020) established a result similar to Lemma 1 in linear social networks where the dependent
variable (outcome) is continuous and the influence matrices G are latent (not reported in data) and vary across the groups.
They regressed individual outcomes on the characteristics of group members to obtain reduced-form coefficients, which
depend on some moments of the latent G and the structural coefficients in social effects. Their goal is to identify and
infer these structural coefficients while leaving the distribution of G as a nuisance parameter. In contrast, the dependent
variable in our model is binary, and the latent influence matrix, after controlling for W, is fixed and treated as a parameter
of interest to be recovered together with the structural coefficients.

Remark 2. It is worth noting that we can extend our method to identify a more general model where p(-), 8*(-), and
y%(-) are unknown functions of W with p(W) # 0 for all W. In this case, one needs to normalize the sum of the first row
in G(W) to 1 for each W. This is without loss of generality, because the scale of p(W) and G(W) cannot be pinned down
for each W in Eq. (2).

To identify this model, we first recover the reduced-form coefficients x®(-), £(®(-), and 8(-) conditional on each W as
above. Then, apply Lemma 1 and the subsequent argument conditional on W to identify p(-), %(-), and y*(-) for each W,
maintaining appropriate rank and exclusion restrictions. Lastly, with p(-) identified, we recover G(W) = uO(W)/p(W)
for each W.

Alternatively, one can identify p(W) as the sum of the first row in u(¥(W) for each W. In the next step, the linear
system derived from Lemma 1 and the normalization would only treat 8%(W) and y*(W) as unknown parameters. One
still needs an additional restriction to point identify 8#(W) and y*(W) because the rank of the coefficient matrix of these
2K, parameters is 2K, — 1 generically.

Remark 3. If the private shocks (&)<, are correlated across group members conditional on X, then each member i’s
expectation of others’ choices E[Y;|X, G, ] must also depend on i’'s own shock non-trivially (because Y; is a function of
gj, which is correlated with ¢; conditional on X). In this case, the definition of Bayesian-Nash equilibrium is different, and
our identification method does not apply even with full parametrization of the joint distribution of shocks.

When private shocks are correlated, a pure strategy of a group member i is defined by S;(x), which is a subset of the
support of private shock &; given X = x, such that i chooses 1 if and only if ¢; € Sj(x). In equilibrium, member beliefs
about others are consistent with the choice probabilities implied by these sets {Si(x)}i<n,. With additional assumptions on
model primitives, one can establish the existence of monotone pure-strategy equilibria, where each member i follows a
threshold-crossing strategy to choose 1 whenever &; crosses a threshold t;(x).* In matrix notation, the vector of equilibrium
thresholds (t;(X))i<s in this case solves the fixed-point problem for each X:

XiB + GXiy + pGE[1{e < t}|X, G, & =t;] =

for all i < n, where X; and G; denote the ith rows in X and G respectively, and 1{¢ < t} is shorthand for the n-vector
(Hei < ti})izn.

Suppose we know that the sample is generated from a single monotone pure-strategy equilibrium, and that the
joint distribution of (&;)i<, is from a parametric family with non-zero correlation; and normalize its marginals to a
known distribution. Then we can invert the CCPs conditional on X to recover t;(X) for all i, but the interim beliefs
E[Y|X, G, & = t;(X)] are not directly identifiable from the data-generating process, because we cannot condition on private
shocks in & when estimating the CCPs. This means we cannot recover the reduced-form coefficients {u®},—o 1 » in the
first step by inverting the CCPs, because the structural link in Eq. (4) would now involve the unidentified expectations
E[Y;IX, G, & = t;(X)]. With full parametrization, one can write down the likelihood, which requires solving a nested
fixed-point problem for each trial parameter value. Nevertheless, even if we adopt such a parametric approach, global
identification would require a different approach than the one we use in this paper.

Remark 4. Our model assumes peer and contextual effects share the same influence matrix. This specification is
commonly used in the literature of social networks (see Lee, 2007; Bramoullé et al., 2009; De Paula et al., 2020, for
example). We capitalize on this specification in Lemma 1 to derive a linear system of equations for identifying the
structural coefficients.

4 A sufficient condition for existence of monotone pure strategy Bayesian-Nash equilibria is that the interim payoff for each member satisfies
the single-crossing condition defined in Athey (2001).
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One can generalize our method to allow for different influence matrices in peer and contextual effects. That is, the
binary outcomes are now given by

Y=1{x,3+GXy+pGE(Y|x,G, &)—e zo}, 7)

where G and G are distinct influence matrices for peer and contextual effects respectively. Characterization of equilibrium
is similar to Eq. (4), except that the contextual influence matrix in front of Xy is replaced by G. As before, we maintain
that influence matrices are functions of W but not Z, and suppress W in notation for simplicity.

We illustrate the identification of this generalized model using a case where W; € R, Z; € R?, % := (B3, B3, B5), and
y? = (v, vZ, vZ), with (8%, yZ) # (0,0). Let u® = BZI 4 y7G for k = 1,2, 3; and let u® := pG denote the n-by-n
matrices of reduced-form coefficients.

First, under the same rank condition in Assumption 2, one can recover the reduced-form parameters {14¥};_o 123 by
inverting the CCPs p(X) and using the variation of V conditional on W at any W. With a scale normalization that the first
row in G sums up to one at a reference value W*, we identify p as the sum of the first row in u® at W*.

Next, under the condition that (83, 5), (v7, y4)) has full rank, we can use the same argument as in the proof of
Lemma 1 to show that the equation

aﬂ(l) 4 bM(z) — M(3) (8)

admits a unique solution

(a>:<ﬂi ﬂ§>1<ﬂ§>
b v: i vi )’

Eq. (8) contrasts Lemma 1, which establishes a similar linear relation for ©(", 4, and 4® when peer and contextual
effects are based on the same latent influence matrix. In Eq. (8), the linear relation only involves reduced-form coefficients
of characteristics in X, which all depend on G alone. The other coefficients in (%) are used earlier for recovering the peer
coefficient p and the influence matrix G. Eq. (8) allows us to construct a linear system of five equations in 8% and y*

a b -1 0 0 O 2
(oo 0 ab—1><ﬂz>:<°>, 9)
y m
I I

where I is a 3-by-3 identity matrix, 0 is a 2-by-1 vector of zeros, and m is a 3-by-1 vector m := (my, my, ms) with my
being the sum of the first row in uX) at W*. By construction, the rank of the coefficient matrix in this system of five
equations is four generically. To see this, note that the sum of the first two rows in the coefficient matrix in Eq. (9) is a
linear combination of the last three rows. More generally, with Z; € R, we can recover a linear relation for {M(")}k:OJMK
similar to Eq. (8), and use it to construct a system of | := 2(K — 2) 4+ K equations for 2K unknown parameters in 8¢ and
%, similar to Eq. (9).° Because of the linear dependence noted above, the rank of coefficient matrix in such a system is
J — (K — 2) = 2K — 2 generically. For point identification, one can append additional exclusion restrictions to the linear
system to increase the rank to 2K. For example, y, = 0 for a pair of known covariates, or exploit exogenous variation in
group sizes that does not affect some of the structural coefficients. See Lewbel et al. (2020) for detailed discussion about
the types of additional exclusion restrictions that can be used to estimate structural coefficients from such linear systems.

5. Nested fixed point estimation

We define a nested fixed-point maximum likelihood estimator (Rust, 1987) in a model where the dependence of
G on W is parametrized for tractability. Suppose the sample contains S groups, each with n members. Abusing notation,
we let Yy = (Yor, ..., You), Xs == (X{1, ..., X)), W = (W[, ..., W), and & = (&5, ..., &), where the subscript s
indexes groups. Let G; := G(W;; ), where A is a finite-dimensional parameter fixed across groups. We make the following

parametric assumption on private shocks.

Assumption 4. The private shocks {ei}s<s i<n are independent across individuals and groups, and follow the standard
Logistic distribution.

Let 6 := (p, B', y’, 1) denote the vector of all structural parameters, and 6, denote the true parameter that generates
the sample. We also need the following condition.

Assumption 5. 6, is in the interior of a compact parameter space ®; the support of X; is bounded. For all A, G(W; 1) is

nonnegative and bounded from above by a constant C > 0 such that sup,, G(w; A) < C and [p|C < m for all p.

5 The number of equations is 2(K — 2) 4+ K because the analog to Lemma 1 would only imply K — 2 free restrictions on 7 and y* respectively,
and there are K restrictions from the sum of the first row in u® for k=1,2,...,K.

965



Z. Lin, X. Tang and N.N. Yu Journal of Econometrics 222 (2021) 959-973

The first two conditions in this assumption are standard for asymptotic theory. Under the third condition, the model
admits a unique equilibrium for all values of A and p in the parameter space.

Write 0(0) := (0;(0), . .., 04(0)) = E(Ys|X; 6), which is well-defined and can be calculated as a fixed point in Eq. (4)
for each X; and 6 given knowledge of the shock distribution and uniqueness of equilibrium. The log-likelihood function

is(6) = = 3 1L(6) (10)

where [;(0) .= % Zf:][Ysi logof(0) + (1 — Y5) log(1 — 05(6))]. Let 6 = argmax ig(@) be the nested fixed-point maximum

fe®
likelihood estimator. Denote the probability limit of the objective functionE as Lo(0) == E[L,(0)].

Assumption 6. 6) uniquely maximizes Ly(6).

Assumption 7. 2(6y) :=E [% X %] exists and is non-singular.

Assumption 6 summarizes the identification condition. Section 4 already provided primitive conditions (Assump-
tions 1-3) for the nonparametric identification of p, 8, ¥, and G(W). Thus Assumption 6 holds if, in addition, G(-; A) #
G(+; 1) for all A # A. Assumption 7 is a typical rank condition needed for deriving the limit distribution of the estimator.

Under these assumptions, a nested fixed-point maximume-likelihood estimator is root-n consistent and asymptotically
normally distributed.

Theorem 2. Under Assumptions 4-6, we have RN 6. If in addition Assumption 7 holds,

VS(6 — 60) = N(0, 2(60)7").

In some contexts, the groups in the sample have different sizes. As far as identification is concerned, this does not
pose any challenge, because the arguments in Section 4 remain valid conditional on any fixed group size n. Furthermore,
group size variation is accommodated in our estimation. Specifically, if the structural coefficients do not vary with group
sizes, the likelihood in Eq. (10) simply sums over groups with different sizes. If the structural coefficients do vary with
group sizes, then the likelihood for each group depends on size-specific coefficients, and we can estimate all size-specific
coefficients jointly using the nested fixed point MLE, as long as the sample pools sufficiently many observations for each
group size.

6. Monte Carlo experiments

This section demonstrates the finite sample performance of the estimator in Section 5 through Monte Carlo experi-
ments.

Consistent with our model setup, the vector of individual characteristics X; = (W;, Z;) is partitioned into W; = (W;;, Wi,)
and Z; = (Zy, Zp), with the latter excluded from the influence matrix G(W). Let (Wj;, Wiz, Z;;) be mutually independent
and follow the standard normal distribution; let Z; be Bernoulli with expectation % The latter is intended to mimic
empirical situations where instruments have a small, discrete support.

Each individual makes a binary decision following an equilibrium strategy in our model. Let A(t) := 1f:et denote the
CDF of the standard logistic distribution, and A := (A1, A,) be parameters in the social influence matrix G. For i # j,
Giji(W) = A(M|Wir — Wji| 4 2, |Wpp — sz|).6 As noted earlier, we normalize the sum of the first row in G to 1. Random
utility shocks &; are drawn independently from the standard logistic distribution.

Our experiments follow a 2-by-3-by-3 factorial design: we consider different group sizes n = 4 and 6; different
sample sizes S = 200, 400, and 800; and different true peer effect parameters py = 1, 2, and 4, while keeping other
parameters constant with (g, 0, A0) = (1,—1,1,—1;1,0,1, —=1; —1, —1).” For each experimental design, we draw
individual characteristics and random utility shocks, calculate influence matrices and simulate decisions in equilibria in
samples. We then use the simulated samples to estimate parameters using the nested fixed point maximum likelihood
method. We replicate each process for 1000 times, and report the average bias and mean squared errors of our estimators
in Table 1 (for n = 4) and Table 2 (for n = 6).

In all experimental designs, our estimators recover the true parameters quite well. Consistently, as sample sizes (the
numbers of groups) increase, the mean squared errors converge roughly at the root-n rate. Also, when we compare the
two tables, we see evidence of bigger group sizes markedly improving the performance of our estimator.

6 Recall that Gii(W) = 0 by convention. While our identification and estimation approach accommodate asymmetric influence matrices, the
Monte Carlo design here and the empirical application in the next section focus on the case with symmetric influence matrices. In these cases,
any off-diagonal G; is better thought of as originating from symmetric components of social interactions such as the strength of friendship and the
amount of time spent together, instead of asymmetric components such as status. We consider this a reasonable first-order approximation to the
institution we study in the next section.

7 Remember that, according to the model setup, the four entries of By or yy are parameters for (Wi, Wy, Zi1, Zi) respectively, and two entries
of Ap correspond to (Wi, Wi).
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Table 1
Monte Carlo experiments for group size 4.

po=T1; Bo=(1,-1,1,-1) y=(1,0,1,—1); 40 = (=1, 1)

S I B 7 73 V4 A
Average Bias
200 —0.007 0.020 —0.023 0.022 —0.014 0.052 0.071 —0.040 —0.045 —0.020
400 0.020 0.008 —0.008 0.010 —0.010 0.029 0.033 —0.029 —0.020 —0.051
800 0.005 0.006 —0.008 0.006 —0.012 0.010 0.013 0.009 —0.015 0.005
Mean Squared Error
200 0.316 0.015 0.037 0.021 0.059 0.120 0.210 0.226 0.181 0.263
400 0.122 0.006 0.018 0.009 0.028 0.051 0.090 0.104 0.059 0.119
800 0.060 0.004 0.008 0.005 0.013 0.026 0.044 0.048 0.030 0.051
po=2; Bo=(1,-1,1,-1) »=(1,0,1,-1); 20 =(-1,-1)
S P B 7 73 V4 A
Average Bias
200 0.051 0.021 —0.032 0.025 —0.018 0.042 0.057 —0.029 —0.015 —0.022
400 0.036 0.010 —0.008 0.008 —0.013 0.030 0.030 —0.024 —0.017 —0.030
800 0.019 0.007 —0.009 0.003 —0.010 0.013 0.017 0.004 —0.016 0.005
Mean Squared Error
200 0.218 0.014 0.033 0.020 0.058 0.092 0.160 0.182 0.076 0.147
400 0.096 0.006 0.017 0.009 0.030 0.044 0.071 0.092 0.035 0.074
800 0.049 0.004 0.007 0.005 0.013 0.020 0.035 0.042 0.019 0.032
po=4 Bo=(1,-1,1,-1); y=(1,0,1,=1) 1 = (=1, 1)
S P B 14| 73 V4 A
Average Bias
200 0.131 0.028 —0.033 0.021 —0.035 0.061 0.069 —0.020 —0.0160 —0.015
400 0.077 0.007 —0.010 0.006 —0.021 0.037 0.039 0.000 —0.014 —0.014
800 0.078 0.008 —0.011 0.002 —0.015 0.022 0.034 0.005 —0.024 —0.011
Mean Squared Error
200 0.241 0.016 0.027 0.019 0.060 0.067 0.103 0.162 0.028 0.045
400 0.115 0.007 0.013 0.009 0.030 0.028 0.051 0.072 0.013 0.025
800 0.065 0.004 0.006 0.004 0.013 0.017 0.023 0.035 0.007 0.012

7. Peer effects in volunteering activities

In this section we apply our method to investigate the peer effects in collegge students’ decisions to participate in
volunteering activities, using a new dataset collected from a university in China.

The exact information structure underlying students’ volunteering decisions depends on subtle details such as the
relation between roommates and the nature of incentives related to volunteering. To a large extent, these institutional
details cannot be directly inferred from the dataset alone. In some settings, an assumption of incomplete information is
used for modeling simultaneous decisions by individuals that are close to each other: e.g., among family members such as
siblings (Hiedemann and Stern, 1999) and couples (Nehring, 2004). In many aspects, college roommates in our application
are more likely to have private incentives than family members. We believe the incomplete information setting provides a
reasonable first-order approximation to the actual interaction between the roommates (see Jackson et al., 2020, for more
discussion of the merits of the incomplete information assumption).

7.1. Data description

The dataset we use includes administrative records of demographic information, dormitory room assignment, and
volunteering activities of all freshmen students enrolled at the university in 2015. These students also participated in a
survey as the class of 2019 graduates in a related survey (AEA RCT Registry number AEARCTR-0004296).° In this cohort, a
total of 3,982 freshmen were assigned to 955 rooms. As part of a reform, the administrators in charge of room assignment
were asked to maximize student diversity in each room in terms of majors of study, provinces of origin, and ethnic groups,
and otherwise randomize.'? The university did not admit any international undergraduate students. Among all students
in the cohort, 3,569 stayed in the same room throughout four years of college.

8 An agreement with the university presents us from disclosing its name.
9 The public URL for the trial is: http://www.socialscienceregistry.org/trials/4296

10 oyr preliminary analysis suggests that the data are consistent with this account given by the administrators. For example, among the 3,982
students, 3,781 were ethnic Hans, the ethnic majority in China; therefore, no two minority students were assigned to the same room. Also, for a
student, being from a province or a major predicts fewer roommates from it.
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Table 2
Monte Carlo Experiments for Group Size 6.

po=T1; Bo=(1,-1,1,-1); ¥ =(1,0,1,=1); 0 = (=1, 1)

S 14 B 71 V3 Ya A
Average Bias
200 0.016 0.016 —0.012 0.016 —0.016 0.025 0.029 —0.028 —0.017 —0.025
400 0.005 0.005 —0.009 0.010 0.005 0.016 0.011 —0.019 —0.008 —0.011
800 0.005 0.004 —0.001 0.004 —0.003 0.004 0.010 —0.011 —0.003 —0.005
Mean Squared Error
200 0.081 0.009 0.025 0.016 0.047 0.042 0.067 0.081 0.049 0.079
400 0.033 0.005 0.012 0.008 0.025 0.021 0.032 0.038 0.022 0.041
800 0.017 0.002 0.006 0.004 0.012 0.009 0.016 0.018 0.010 0.019
po=2; Bo=(1,-1,1,-1); »=(1,0,1,-1); 2 =(-1,-1)
S 14 B Y1 V3 V4 A
Average Bias
200 0.040 0.014 —0.018 0.008 —0.023 0.026 0.043 —0.014 —0.015 —0.013
400 0.022 0.006 —0.012 0.007 —0.004 0.021 0.013 —0.016 —0.009 —0.004
800 0.010 0.004 —0.002 0.003 —0.008 0.007 0.014 —0.008 —0.006 0.001
Mean Squared Error
200 0.059 0.009 0.021 0.015 0.042 0.031 0.053 0.056 0.024 0.043
400 0.030 0.005 0.011 0.007 0.025 0.016 0.024 0.030 0.012 0.024
800 0.014 0.002 0.005 0.004 0.011 0.007 0.012 0.014 0.006 0.011
po=4 Po=(1,-11,-1); p=(1,0,1,-1) 4 =(-1,-1)
S o B Y1 V3 Va4 A
Average Bias
200 0.108 0.022 —0.022 0.012 —0.006 0.066 0.084 —0.080 —0.017 —0.007
400 0.069 0.013 0.000 —0.004 0.034 0.075 0.092 —0.102 —0.020 —0.011
800 0.033 0.008 0.012 —0.009 0.054 0.075 0.088 —0.111 —0.018 —0.011
Mean Squared Error
200 0.118 0.014 0.022 0.019 0.059 0.032 0.053 0.074 0.010 0.022
400 0.064 0.006 0.010 0.009 0.032 0.020 0.032 0.047 0.006 0.011
800 0.034 0.003 0.005 0.005 0.018 0.014 0.021 0.032 0.003 0.006

Our sample consists of 1964 students assigned to 491 four-person rooms.!! Interviews with students and university
administrators suggested that these roommates typically took different classes (because they had different majors) and
rarely interacted outside the dormitory setting. For these reasons and for simplicity, we maintain the assumption that the
private shocks are drawn independently from the same distribution, and rule out their correlations (e.g., resulting from
an outside person interacting with all students in the same room, or students interacting with others living on the same
floor).

At the beginning of academic year 2016-17, the university started to use a mobile phone application to keep track of
student participation in certain on-campus and off-campus activities. The goal was to collect input data for calculating
a “comprehensive performance index” for each student. The index was important for students seeking university
scholarships, because scholarship eligibility requires a minimal level of the comprehensive performance index as well as
GPA. The index is calculated on a full scale of 200 points: 100 for GPA, and 100 for a measure of “quality development”. In
an academic year, the students could obtain 5 quality development points for participation in every 20 h of volunteering
activities. These volunteering activities ranged from helping childless elders to assisting the organization of academic
conferences.

We keep track of this cohort for two academic years between 2016 and 2018. In 2016-17, 77.2% of these 1964 students
participated in at least one volunteering activity (as measured by a dummy covariate PrevYrVol); the percentage dropped
to 46.9% in 2017-2018 due to busier schedules (according to our outcome/dependent variable Volunteer): most students
started preparing for admission exams for domestic or international graduate schools, or the job market. We include four
additional covariates: Age (measured by birth year and month), Rural (whether the student was registered as a member
of an “agricultural family" in China’s nationwide household registration system), SingleChild (whether the student had
no siblings), and Science (whether the student took a science-based or liberal arts-based format of the national college
entrance examination). Table 3 reports the summary statistics.

11 Other room sizes each have less than 200 observations after deleting observations with missing records.
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Table 3
Summary statistics for the student sample.
Variable Mean Standard deviation
Age 18.533 0.650
Science 0.512 0.500
Rural 0.321 0.467
SingleChild 0.704 0.457
PrevYrVol 0.772 0.419
Volunteer 0.469 0.499
Table 4
Estimation for volunteering choices.
Estimate Standard errors
Direct Effects (8)
Age —0.092** 0.004
Science —0.050 0.041
Rural 0.299** 0.035
SingleChild —0.176** 0.026
PrevYrVol 1.718** 0.037
Contextual Effects (y)
Science —0.435** 0.072
Rural —0.336™* 0.098
SingleChild —0.195** 0.064
PrevYrVol 0.517** 0.189
Influence Matrix Parameters (1)
Science —1.078** 0.235
Rural —1.062** 0.444
SingleChild —0.680** 0.232
Peer effects (p) 0.739** 0.334

*and **: 10% and 5% significant.

7.2. Estimation and counterfactual analysis

We estimate the social effects in students’ binary decisions to participate in volunteering activities during the 2017-
2018 academic year. The social influence matrix G is parametrized as in Sections 5 and 6. We assign (Science, Rural,
SingleChild) to W;, and (Age, PrevYrVol) to Z;; so G is determined by W;s. Our choice of Z; to serve the exclusion restriction
is based on group discussions with 28 students; they suggested that Age and PrevYrVol are not significant contributors for
what they perceive as the strength of social effects. We also maintain a working assumption that Age has no contextual
effect, i.e., yaee = 0. This is plausible because the roommates in our sample were from the same cohort and it is unlikely
that small differences in birth months would have non-trivial exogenous effects.

Table 4 reports the nested fixed point maximum likelihood estimates with standard errors. The estimates for direct
effects (8) for Age, Rural, SingleChild, and PrevYrVol are all statistically significant with negative, positive, negative, and
positive signs respectively. This suggests that, absent contextual and peer effects, a younger student with a rural origin and
some siblings, and some volunteering experience in the previous year would be more inclined to volunteer than students
with other demographic features. The directions of the effects are consistent with the administrators’ impressions.

The estimates for contextual effect coefficients (y) for Science and SingleChild are both statistically significant with
negative signs; the contextual effect for PrevYrVol is statistically positive. These signs are consistent with those of direct
individual effects in 8; so for these two variables, the results indicate that a student’s exposure to an influencer who tends
to volunteer increases his/her propensity to volunteer.

In comparison, having a roommate with a rural origin appears to reduce the likelihood to volunteer, even though the
direct effect of Rural on one’s own volunteering decision is positive. One possible explanation is that a rural roommate’s
choices of activities were viewed as unfashionable and thus shunned. Summarizing contextual effect estimates, we know
that, with more roommates from science, rural, and single-child backgrounds, an individual student tends to volunteer
less.

Our point estimate of the peer effect coefficient p is 0.739, with a 95% confidence interval of [0.084, 1.394]; so it is sta-
tistically significant, confirming simultaneity and mutual influence between volunteering decisions by peers/roommates.
Also, remember that Assumption (MSI) is sufficient but not necessary for a single equilibrium in the sample

(Assumption 1). To test Assumption (MSI), note that it requires |p| < Wlupm But with n = 4, C = 1, and
sup, f(e) = i in the current specification, this upper bound is approximately 1.671, which is greater than the maximum

absolute value over the 95% confidence interval of p.
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Fig. 1. Density of the Averages of Estimated Social Influences across Different Rooms.
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Fig. 2. Density of the Standard Deviations of Estimated Social Influences across Different Rooms.

Table 4 also reports how W; affects the influence matrix through the coefficients in A. The estimated coefficients for
(Science, Rural, SingleChild) are A = (—1.078, —1.062, —0.680), all of which are statistically significant. These estimates
provide evidence for homophily among the students. That is, roommates with similar demographic features tend to have
stronger social influence on each other. Moreover, these estimates also demonstrate strong heterogeneity in social effects
between students, which would have been lost if we had assumed that the students only influenced each other in a
homogeneous fashion (e.g., G assigns equal weights for all group members as in linear-in-means social interaction models).

To highlight the degree of heterogeneity in social effects, we plot in Fig. 1 the estimated density of the averages of
off-diagonal components in the social influence matrix G across all dormitory rooms. In other words, for each room, we
calculate the average of all estimated G;; with i # j in that room; Fig. 1 is the standard kernel density plot for the 491
averages calculated. The bell-shaped pattern in the density suggests that rooms with extremely low or high average social
influences are rare.

Heterogeneity of social effects is also present within dormitories: Fig. 2 plots the density of standard deviations
between off-diagonal components of G across all rooms. That is, within each room, the standard deviation of all estimated
Gj with i # j is used, and Fig. 2 is the standard kernel density plot for all the standard deviations. This density also roughly
demonstrates a bell shape.

Our structural approach is of particular interest for policymakers, because it can be used to analyze how different
schemes of roommate assignments would affect student participation in volunteering activities. To illustrate, we conduct
counterfactual exercises which calculate the numbers of predicted volunteering activities when students are assigned to
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Table 5
Counterfactual Analysis for Volunteering Choices.

Volunteering out of 1964 Students

Mixing Segregating
Science 955 1008
Rural 972 1002
SingleChild 957 987

rooms under different schemes. We follow a 2-by-3 factorial design. Based on three different covariates Science, Rural,
and SingleChild, we either form maximally mixed dormitory rooms or maximally segregated ones, from the given pool of
students.

For example, 51.2% of our sample took a science-based format of the national college entrance examination. Therefore,
when we conduct the counterfactual analysis with regard to Science, we generate two counterfactual datasets: in the first
dataset, each room has two science students and two non-science students; in the second dataset, half of the rooms (245)
only have science students and the other half only have non-science students. The distributions of all other covariates are
the same as in the real sample. We draw utility shocks, and calculate the numbers of volunteering students in the two
datasets.

We also follow the procedure above for the other two characteristics, Rural and SingleChild. Table 5 reports the results
for all designs. Across each of the three counterfactual scenarios, mixing generally leads to marginally fewer incidences
of volunteering.'2

8. Concluding remarks

We identify and estimate heterogeneous social effects in scenarios where modeling these effects as homogeneous is
inadequate, and the extent to which a person’s choice is influenced by another (or whether it is influenced at all) is
unobserved to the researcher. We apply our method to analyze social effects in college students’ volunteering activities,
and find evidence for heterogeneity in these effects as well as homophily in social influence.

We conclude with some discussions about open questions and directions for future research. First, the inference of
information structure in social networks per se is an interesting open question. This might be possible under stronger
parametric restrictions on unobservable errors, e.g., as in Grieco (2014).

Second, our paper does not study heterogeneous social effects in complete information settings. When payoff shocks
are commonly known to all group members, the link between model elements and equilibrium outcome is different from,
and more complex than, our current setting with private shocks. This is because a model of simultaneous choices under
complete information generally admits multiple Nash equilibria. As a result, our identification method does not apply in
that case.

Third, our paper does not address multiple equilibria or unobserved group fixed effects in the sample; but they may be
appropriate modeling choices in some other empirical settings. Xiao (2018) and Aguirregabiria and Mira (2019) estimated
Bayesian games with multiple equilibria and unobserved heterogeneity at the game level. Their methods treat equilibrium
selection as a source of unobserved heterogeneity, and start with an eigenvalue decomposition that recovers the CCPs
conditional on unobserved heterogeneity and equilibrium selection. In principle, a similar first step may be useful for
accommodating multiple equilibria and unobserved heterogeneity in binary choices over a social network with private
information. This would require partitioning a group into two subsets so that an eigenvalue decomposition of the joint
distribution of choices by these subsets is feasible under appropriate rank and invertibility conditions. Once the choice
probabilities conditional on equilibrium selection and unobserved heterogeneity are recovered, we can restore Eq. (4)
with p(X) being replaced by these CCPs. Our method can then be adapted to identify and estimate the model. This is a
major departure from our model, and the aforementioned eigenvalue decomposition step has to be motivated by more
primitive conditions and implemented in estimation with further technical details. This is beyond the scope of our paper,
and could be a promising direction for future research.
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Appendix. Proofs

A.1. Proof of Lemma 1

Recall that ¥ := BZI + y#G. By construction, af? + bz = 0 and ay? + by? = p. Thus, the left-hand side of Eq. (6)
equals 0 4 pG, which is u® by definition. } 5 ;

To see the uniqueness of the solution, consider (a, b) # (a, b), and denote ¢ := ap% 4 bp3 and d := ayj + by;. Because
(B%, v*) has full rank, (c, d) # (0, p). Next, note that the diagonal entries in G and the off-diagonal entries in I are zeros.
Hence,

auV + bu® = cl + dG # pG
and Eq. (6) does not hold for such (@, b). O

A.2. Proof of Theorem 2

The proof is similar to that of Theorem 2.1 in Newey and McFadden (1994).
Under the identification condition, Lo(c) is uniquely maximized at 6p. By the definition of MLE, for any € > 0,
we have Ls(0) > Ls(6y) — %e with probability approaching one (w.p.a.1). By the law of large numbers, we have that

Lo(8) > Ls(8) — 1€ and Ls(6o) > Lo(bo) — 1e.
Therefore, w.p.a.1,

N A A 1 A 2
Lo(0) > Ls(0) — 56 > Ls(6g) — 56 > Lo(6p) — €. 11

Let A be any open subset of ® containing 6. Since ® N N° is compact, 6y uniquely maximizes Ly(6), and Ly(0) is
continuous, we have

sup  Lo(6) = Lo(67) < Lo(6o).
0eONNC
Therefore, for € = Ly(f) — SUPgeonn< Lo(f), we have w.p.a.1,

Lo(é)> sup Lo(6).
feONNC

Hence, 0 eN.

By the definition of 6, we have ols(d)

350 = 0. Taylor expansion gives us

Ls(60) ~ 8%Ls(B) »
IS0 L 9SG gy) = 0,
200 aae 0 %

where 0 is between é and 6y. Since we have independent repeated small blocks s = 1,...,S, a standard central limit
9Ls(fo) .

theorem applies to =52; by a classical information equality, we have

VS0 = 05) 5 N0, 206,)). O
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