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ABSTRACT

We conducted a spectral analysis of the turbulence kinetic energy (TKE) budget in a bubble plume using particle image velocimetry with
fluorescent particles. Our findings confirmed the hypothesis of an inverse energy cascade in the bubble plume, where TKE is transferred
from small to large eddies. This is attributed to direct injection of TKE by bubble passages across a wide range of scales, in contrast to
canonical shear production of TKE in large scales. Turbulence dissipation was identified as the primary sink of the bubble-produced TKE
and occurred at all scales. The decomposition of velocities using the critical length scale of inter-scale energy transfer allowed us to distin-
guish between large- and small-scale motions in the bubble plume. The large-scale turbulent fluctuations exhibited a skewed distribution and
were likely associated with the return flow after bubble passage and the velocities induced by the bubble wake. The small-scale turbulent fluc-
tuations followed a Gaussian distribution relatively well. The large-scale motions contributed to over half of the Reynolds stresses, while there
were significant small-scale contributions to the normal stresses near the plume center but not to the shear stress. The large-scale motions in
the vorticity field induced a street of vertically elongated vortex pairs, while the small-scale vortices exhibited similar sizes in both horizontal
and vertical directions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0151046

I. INTRODUCTION

Bubbly flows are natural phenomena and widely used engineer-
ing applications, including marine hydrocarbon seeps (Wang et al.,
2016; Razaz et al., 2020; and Wang et al., 2020), lake aeration for des-
tratifying lakes and reservoirs (W€uest et al., 1992; McGinnis et al.,
2006), and prevention of ice formation (Bulson, 1968). Although the
mean flow structures and integral behaviors of bubble plumes have
been well characterized through experiments, modeling, and theory
development (e.g., Mcdougall, 1978; Milgram, 1983; Asaeda and
Imberger, 1993; Bryant et al., 2009; Dissanayake et al., 2018; and
Wang et al., 2019), the understanding of turbulence in bubble plumes,
particularly the mechanisms of turbulence kinetic energy (TKE) trans-
port across eddy scales, remains incomplete.

The challenges in understanding bubble-induced turbulence arise
from its multi-scale and nonlinear dynamics that involve the charac-
teristics of two fluid phases. In Richardson’s concept of energy cascade,
single-phase turbulence is composed of eddies of varying sizes.
Although the term “eddy” lacks a precise definition, it generally refers
to turbulent motions that occupy a certain area and exhibit moderate

correlations (Pope, 2000). According to the Kolmogorov–Richardson
phenomenology, in single-phase turbulent flows, TKE is generated at
large scales of motion through interactions between shear stress and
mean velocity gradient and then successively transferred to smaller
scales until it is dissipated by molecular viscosity (Mizuno, 2016;
Wang et al., 2021a). In contrast, bubble-induced turbulence is primar-
ily driven by the work of bubble buoyancy rather than shear stress,
resulting in an unconventional TKE budget (Lai and Socolofsky, 2019;
Wu et al., 2021). In the presence of bubbles of similar sizes, the
bubble-induced TKE production is likely associated with a scale rele-
vant to the bubble size. Hence, this bubble-relevant scale in the TKE
budget may give rise to a different mechanism of energy cascade. To
elucidate this mechanism, we propose a scale-by-scale analysis of the
TKE budget as a quantitative description of the energy cascade, which
could provide insight into how TKE is generated, transported, and dis-
sipated across different eddy scales.

Twomethods have been commonly used for scale-by-scale analysis.
Taking homogeneous isotropic turbulence (HIT) as an example, the
two dominant processes in the energy cascade are inter-scale energy
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transfer and the turbulence dissipation (Pope, 2000). The energy cas-
cade in HIT is precisely characterized by the Karman–Howarth equa-
tion, which is derived from the Navier–Stokes equation. Based on
Kolmogorov’s second hypothesis, the Karman–Howarth equation can
be reduced to the Kolmogorov 4/5 law, which neglects the unsteady
and viscous terms in the inertial subrange. The Kolmogorov 4/5 law
characterizes the energy cascade by equating the third-order structure
function, which represents the nonlinear energy transfer, to the turbu-
lence dissipation. However, for flows with insufficient scale separation,
where heterogeneity and anisotropy are present, the Karman–
Howarth–Monin–Hill (KHMH) equation, a generalized form of the
Karman–Howarth equation, must be used to include terms associated
with flow heterogeneity and anisotropy, i.e., spatial diffusion, produc-
tion, and advection (Lai et al., 2018a). The KHMH equation is consid-
ered the rigorous approach for analyzing the energy cascade process in
heterogeneous and anisotropic turbulence. For example, Alves Portela
et al. (2017) applied the KHMH equation to direct numerical simula-
tion (DNS) data and investigated the energy cascade in the near wake
of a square prism. They confirmed the forward energy cascade and
found that the inter-scale energy transfer is equal to the dissipation
rate, validating Richardson’s perspective on the energy cascade. Lai
et al. (2018a) used the KHMH equation to analyze the energy cascade
process in variable density turbulence and confirmed the forward
energy cascade. They also observed negative production, in which they
attributed to the deformation of small turbulent eddies into larger ones.
It is worth noting that the application of the KHMH equation requires
a substantially large velocity field to ensure sufficient scale separation in
the flow. In experimental studies, this requirement can be met by mea-
suring velocity data at various streamwise locations (Lai et al., 2018a).

Analyzing the TKE budget equation in the spectral domain is an
effective method for studying the energy cascade in homogeneous tur-
bulence fields without the requirement of isotropy (Mizuno, 2016;
Wang et al., 2021a; 2021b). This method is derived from the spectral
form of the Navier–Stokes equation (Bolotnov et al., 2010). For
instance, Mizuno (2016) used the spectral TKE budget equation to
investigate the contribution of upward and downward energy fluxes in
the wavenumber space in a channel flow. They observed that the
upward turbulent transport term removes energy from large scales
and provides energy to small scales. The energy removed from large
scales is transported upward to the channel center and downward to
the vicinity of the wall. Wang et al. (2021a) applied the spectral TKE
method using DNS data in a turbulent channel flow and found that
negative and positive inter-scale TKE transfers are associated with
small-scale and large-scale motions, respectively. These energy cascade
processes are related to the flow structure with large-scale motions
characterized by streaks and quasi-streamwise vortices, while small-
scale motions are characterized by hairpin-like vortical structures.

In contrast to applications in single-phase turbulence fields, there
are limited attempts for scale-by-scale analyses in multi-phase flows.
For instance, Lance and Bataille (1991) performed a simplified version
of the spectral TKE budget analysis and argued that bubbles inject
energy at small scales, which is immediately dissipated, resulting in a
–3 power law in the energy spectrum of bubble-induced turbulence.
By studying the time evolution of the energy spectrum in bubbly flows,
Mazzitelli and Lohse (2009) found that the energy input on small
scales is transferred to large scales, suggesting an inverse energy cas-
cade in bubbly flows. Lai et al. (2018b) used the KHMH equation to

perform a scale-by-scale analysis in a bubble swarm, focusing only on
the nonlinear inter-scale energy transfer term, and concluded an
inverse energy cascade in bubbly flows. Using the derivative of the
third-order structure function, Ma et al. (2022) found an inverse
energy cascade in the vertical direction and a forward energy cascade
in the horizontal direction. However, a complete spectral budget anal-
ysis is still lacking, as the response of other budget terms, such as
production, advection, diffusion, and dissipation, to the nonlinear inter-
scale transfer of TKE remains unclear. Therefore, this work is designed
to fill this knowledge gap by analyzing all terms in the spectral TKE bud-
get equation in a bubble plume. The main objective of this study is to
understand the spectral distribution of all terms in the TKE budget, elu-
cidating the mechanisms governing TKE production, redistribution,
and dissipation across various eddies scales in bubble plumes.

In addition, scale-by-scale analysis can be used to identify a
critical length scale of turbulent eddies that separates large- and small-
scale motions (Wang et al., 2021b). In canonical turbulent flows,
including pipe flows and zero-pressure gradient boundary layer flows
(Guala et al., 2006; Balakumar and Adrian, 2007), large-scale motions
are anisotropic and carry a substantial portion of TKE and shear stress,
whereas small-scale motions are statistically isotropic and contribute
comparatively less to Reynolds shear stress. However, the applicability
of the conventional Kolmogorov hypothesis in the context of two-
phase phenomenon remains uncertain, given the unconventional TKE
injection and dissipation mechanisms directly associated with bubbles
(Lance and Bataille, 1991; Wu et al., 2021). To address this issue, we
will perform a scale-based velocity decomposition to examine the con-
tribution of motions at various scales to TKE and Reynolds shear
stress. This paper is organized as follows: In Sec. II, we describe the
measurements and data processing of the bubble plume experiment.
The derivation of the spectral energy budget equation is given in
Sec. III. Results and discussion of the energy cascade, spectrum of TKE
budget terms, velocity statistics, and flow decomposition are presented
in Sec. IV. Finally, Sec. V summarizes the conclusions drawn from the
study.

II. EXPERIMENT
A. Experimental setup

The laboratory experiment was conducted in the Environmental
Fluid Dynamics Laboratory at the University of Missouri. The bubble
plume was generated by releasing air bubbles from an airstone diffuser
into a quiescent and unstratified water tank. The tank had dimensions
of approximately 1� 1� 1m3, with a water depth of 0.87m. The dif-
fuser was a cylinder-shaped aerator, measuring 2.5 cm in height and
1.5 cm in diameter. The diffuser was positioned at the center of the
tank bottom, and the flow rate was precisely controlled at 1 l/min
using a calibrated mass flow controller (SmartTrak 100, Sierra
Instruments) (Li et al., 2020; Wu et al., 2021). The experimental setup
is shown in Fig. 1.

B. PIV measurement

The particle image velocimetry (PIV) technique was employed to
obtain the instantaneous velocity fields within the bubble plume,
which were later used for spectral analysis of the TKE budget. A 10-W
diode-pumped solid-state (DPSS) laser (LRS-0532, Laserglow) served
as the light source for PIV. The laser beam was expanded into a sheet
using a cylindrical lens. PIV images were captured using a high-speed
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camera (Phantom VEO 440, Vision Research) at a frame rate of
300Hz. The field of view (FOV) was 14.8� 9.3 cm2 and was centered
at a height of 0.46m above the diffuser. The images had an optical
magnification of 0.058mm/pixel and a full frame size of 2560
� 1600 pixel2.

Fluorescent orange polyethylene microspheres were used as seed-
ing particles in the experiment. These particles had a median diameter
(dsp) of approximately 20lm and a density (qsp) of 1000 kg/m

3, ren-
dering them neutrally buoyant in freshwater at room temperature.
The Stokes number (St) was estimated to be on the order of 10�1, cal-
culated as St ¼ qspdspUf =18l, where Uf ¼ 0:1m/s is the characteris-
tic flow velocity and l ¼ 10�3 Pas is the dynamic viscosity of water in
the experiment. The small Stokes number satisfied the requirement for
the particles to act as tracers for flow following. The fluorescent par-
ticles had a peak emission wavelength of 606 nm when excited at
577nm. To filter out the scattered light by bubbles in the PIV images,
a high-pass filter with a cutoff wavelength of 590nm was used. This
ensured that only seeding particles were observed in the PIV images,
without any “contamination” from bubbles, allowing for accurate
measurement of water velocity (Wu et al., 2021).

The PIV images were directly saved to the camera memory and
then transferred to the solid-state drive (SSD) of the operational com-
puter. A continuous dataset of 40 s duration was saved for later analy-
sis. The selection of a 40 s duration was intentional, as it was
sufficiently long so that the converged turbulence statistics can be
recorded; it was also short enough to minimize the meandering of
bubble plume in the dataset. This resulted in a nearly homogeneous
turbulence field in the vertical direction, which met the requirement
for spectral analysis of the TKE budget.

An anti-aliased PIV interrogation algorithm (Liao and Cowen,
2005) was used to obtain the instantaneous velocity fields in the bubble
plume. A prediction-correction method was employed with a final
interrogation window size of 24� 24 pixel2, which was equivalent to
1.4� 1.4mm2. The two-dimensional instantaneous velocities (uinst
and winst) were decomposed into the mean velocity (U and W)
and turbulent fluctuation (u and w) using Reynolds decomposition:
uinst ¼ U þ u and winst ¼ W þ w. The Reynolds-averaged turbulent
parameters were calculated from the decomposed u and w, e.g.,
Reynolds normal stresses huui; hwwi, and Reynolds shear stress
�huwi, where the h�i operation denotes time averaging. TKE was cal-
culated using TKE¼ 0:5ðhwwi þ 2huuiÞ.

C. Measurement uncertainty

The PIV measured instantaneous flow velocity uinst is determined
from the particle displacement DX between a consecutive image pair
at the time interval Dt (Adrian andWesterweel, 2011),

uinst ¼
Dx
Dt

¼ DX
MDt

; (1)

whereM is the optical magnification, which converts the displacement
in the image DX to that in the physical place Dx. The uncertainty in
the PIV measured velocity (Euinst ) can be determined using the error
propagation formula (Coleman and Steele, 2018),

Euinst ¼ uinst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EDX
DX

� �2

þ EM
M

� �2

þ EDt
Dt

� �2
s

; (2)

where EDX , EM, and EDt represent the measurement error in DX, M,
and Dt, respectively. Among the three error sources, EDt is negligible
when compared to Dt ¼ 0.0033 s, because the error in the camera
clock is on the order of 1 ns; EM is also insignificant when appropriate
calibration is performed (Sciacchitano, 2019). Therefore, Euinst is
mainly contributed by the EDX . Hence, Eq. (2) can be simplified as
Euinst ¼ uinst

EDX
DX ¼ EDX

MDt. EDX is estimated as 0.02 pixel according to the
PIV algorithm (Liao and Cowen, 2005). ConsideringM¼ 17.2pixel/mm
and Dt ¼ 0:0033 s, Euinst can be determined to be 0.35mm/s. Given the
mean velocity range of 0.015–0.18m/s across the plume radial direction,
the estimated relative errors in velocities fall within the range of
0.2%–2.3%.

III. SPECTRAL ENERGY BUDGET EQUATION

The spectral budget equation is derived by multiplying the
Navier–Stokes equation in the Fourier space by the complex conjugate
of the corresponding Fourier coefficients of the velocity (Mizuno,
2016; Flores et al., 2017). The Fourier modes of the velocity and pres-
sure fluctuations are denoted as buðk; rÞ; bwðk; rÞ, and bpðk; rÞ. Here, u,
w, and p are fluctuating components obtained from the Reynolds
decomposition of their instantaneous values; k is the wavenumber in
the vertical direction, and r is the radial location from the centerline of
the bubble plume. The operation cð�Þdenotes the Fourier transform of
each parameter along the vertical direction. Taking the velocity as an
example, we have

buiðk; rÞ ¼ ð1
�1

uiðz; rÞe�ikzdz; (3)

FIG. 1. Sketch of the fluorescent PIV setup.
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where the subscript i takes 1 and 3 in the resolved two-dimensional
plane (Fig. 1) with u1 ¼ u and u3 ¼ w.

The spectral TKE budget equation in bubble plumes can be
adapted from that of turbulent channel flows (Bolotnov et al., 2010).
Note that the advection term is retained in the bubble plume due to
radial heterogeneity, and an additional “bubble production” term
should be added (Wu et al., 2021), which gives

1
2
@hbui bui �i

@t|fflfflfflfflfflffl{zfflfflfflfflfflffl}eAt

¼�Uk
@hbui bui �i
@xk|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}eA

�Re h buk bui �i� � @Ui

@xk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eP
�Re

�
@hduiuk bui �i

@xk

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eT

�Re
1
q
@hbpbui �i
@xi

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}eTP

þ �
@2hbui bui �i

@x2k|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}eT�

��



@ bui
@xk

@bui �
@xk

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}ee

þ ePb :
(4)

The physical representation of each term is as follows:

(1) eAt ¼ 1
2
@hbuibui �i

@t is the unsteady term in the spectral space, where
the superscript � denotes a complex conjugate. This term is
neglected since the turbulence in bubble plumes can be
regarded as quasi-steady (Lai and Socolofsky, 2019).

(2) eA ¼ �Uk
@hbuibui �i

@xk
� �U @hbuibui �i

@r is the advection term in the spec-
tral space. The analyzed data in this study span a duration of
40 s and cover a vertical distance of 10 cm, where the turbulence
can be treated as nearly homogeneous in the vertical direction
(Sec. IV). Thus, the vertical term is neglected, and only the hori-
zontal term is retained.

(3) eP ¼ �Re h buk bui �i� �
@Ui
@xk

¼ �Re hbubw�i
� �

@W
@r � Re hbubu�i

� �
@U
@r is

the shear production term,
where Ref�g denotes the real part of a complex variable.

(4) The nonlinear term eT ¼ �Ref@hcuiukbui �i@xk
g includes the inter-scale

transfer fTk and the diffusion in the spectral space fT? , wherefTk ¼ �Ref@h bwwbw�
i

@z g � 2Ref@hbuwbu�
i

@z g with an assumption of

Ref@hbuwbu�
i

@z g ¼ Ref@hbvwbv�i@z g; fT? ¼ �Ref@hbwubw�
i

@r g � 2Ref@hbuubu�
i

@r g

with an assumption of Ref@hbuubu�
i

@r g ¼ Ref@hbvubv�i@r g. All gradients
on the y-direction are neglected.

(5) eTp ¼ �Ref1q
@hbpbui �i

@xi
g represents the pressure–velocity correla-

tion term in the spectral space.

(6) fT� ¼ � @2hbuibui �i
@x2

k
represents the viscous diffusion term in the

spectral space.

(7) ee ¼ ��h@bui@xk
@bui �
@xk

i represents the turbulence dissipation term in
the spectral space.

(8) ePb is the bubble production term in the spectral space.

IV. RESULTS AND DISCUSSION
A. Validation of methodology in homogeneous and
isotropic turbulence

The spectral analysis of the TKE budget is first validated using
HIT data generated by grid-stirring using a pair of grids (Wu et al.,
2023). The data of flow field with the turbulence velocity scale of
0.014m/s and turbulence dissipation rate of 3:3� 10�5 m2/s3 are used
in this analysis. Due to the absence of mean flow, no advection or
shear production is present in the turbulence. Turbulent diffusion of
TKE is also negligible due to the homogeneity among all directions.
Thus, the original spectral TKE budget equation can be simplified as
(Hamba, 2015)

@EðkÞ
@t

¼ �ee þ gTðkÞ þ gFðkÞ: (5)

The unsteady term on the left-hand side can be neglected in the
quasi-stationary flow. Therefore, in the spectral energy budget of HIT,
only three terms appear on the right-hand side: the dissipation termee,
inter-scale energy transfer term eT , and external forcing term eF . These
three spectral budget terms are plotted in Fig. 2, along with a compari-
son to those obtained from a numerical simulation (Hamba, 2015).

In Fig. 2(a), the dissipation term and the inter-scale transfer term
are directly calculated from the experimental data [Eq. (4)]. The exter-
nal forcing term eF is obtained as the closing term. The normalized
wavenumber k� ¼ kg using the Kolmogorov length scale g elucidates
the length scale of each term in the budget equation. The profile of the
inter-scale transfer term eT elucidates the mechanism of TKE transport
in the spectral space: TKEs of large eddies are primarily transferred to
small scales, as evidenced by the negative values of eT at large wave-
numbers and positive values at small wavenumbers. The dissipation
termee sinks TKE at all wavenumbers, while the forcing term eF occurs
at large scales, i.e., small wavenumbers. The zero-crossing of eF is found
at k� � 0:2 rad, which corresponds to a length scale of 1.6 cm, similar
to the mesh size of the grid. This suggests that the production of turbu-
lence due to grid-stirred forcing occurs at scales larger than the mesh

FIG. 2. Spectral TKE budget in homoge-
neous isotropic turbulence: (a) experimen-
tal data and (b) numerical simulation data.
Panel (b) is reproduced from Hamba
(2015). Wavenumber k is normalized by
the Kolmogorov length scale g: k� ¼ kg
with a unit of radians. The unit of spectral
terms is m3/(s3rad).
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size of the grid. Subsequently, the inter-scale energy transfer term
transfers the TKE from large scales to small scales, and turbulence dis-
sipation takes place across all scales. The mechanism revealed by the
spectral analysis of the TKE budget is consistent with the classical
Richardson energy cascade (Pope, 2000). Similar results are shown in
numerical simulation data [Fig. 2(b)], where the forcing is generated
within an idealized range of length scales, resulting in a step-shaped
profile in the spectral space (Hamba, 2015).

B. Bubble plume

1. Homogeneity in the vertical direction

To ensure a valid spectral analysis of the TKE budget, the Fourier
transform must be obtained in a direction where turbulence can be
assumed to be homogeneous (Hamba, 2015; Mizuno, 2016; andWang
et al., 2021a; 2021b). We examine the assumption of homogeneity in
the measured vertical region of the bubble plume along the centerline

(Fig. 3). The data show a reasonable homogeneity of the mean flowW
and Reynolds stresses hwwi; huui, and huwi. hwwi is approximately
five times larger than huui, indicating a strong anisotropic characteris-
tic of turbulent fluctuations. huwi is an order-of-magnitude smaller
than hwwi, because it is symmetric about the centerline and
approaches zero at the plume center.

The third-order statistical quantities play a crucial role in the
TKE transport. The data show reasonable homogeneity of the third-
order velocity correlations along the centerline of the bubble plume
(Fig. 4). hwwwi is the largest among the resolved four quantities, indi-
cating a strong vertical turbulent flux of the vertical Reynolds stress.

2. Spectrum of turbulence dissipation rate

Calculating the turbulence dissipation rate and its spectrum
requires estimation of spatial gradients of the instantaneous velocities.
Finite differences for the gradients of PIV determined velocities

FIG. 3. (a) Mean flow velocity and (b)
Reynolds stresses along the centerline of
the bubble plume.

FIG. 4. Third order turbulent kinetic
energy fluxes along the centerline of the
bubble plumes.
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require a grid size that is adequately resolved. In a previous study on
bubble plumes (Wu et al., 2021), we used a pseudo expression for tur-
bulence dissipation rate, which was scaled to obtain a reasonable esti-
mate using a one-dimensional velocity spectrum. The pseudo
turbulence dissipation rate is given by

ep ¼ �



@u
@x

� �2�
þ



@u
@y

� �2�
þ



@u
@z

� �2�"

þ



@v

@x

� �2�
þ



@v

@y

� �2�
þ



@v

@z

� �2�
þ



@w
@x

� �2�
þ



@w
@y

� �2�
þ



@w
@z

� �2�#
: (6)

From the planar PIV data, we determined @w
@z ;

@w
@x ;

@u
@z, and

@u
@x.

Using the continuity equation, we obtained @v
@y ¼ �ð@w@z þ @u

@xÞ. In addi-

tion, we estimated @u
@y ¼ @u

@x ;
@w
@y ¼ @w

@x ;
@v
@x ¼ @v

@y, and
@v
@z ¼ @u

@z. A scaling

factor f1 ¼ 3 was determined by comparing ep estimated in the plume
center with that estimated using the spectral fitting method so that
esðr ¼ 0Þ ¼ f1epðr ¼ 0Þ, where es was obtained by fitting the universal
�5=3-law of the inertial subrange in the one-dimensional velocity
spectrum,

es ¼
E33

Ck�5=3

� �3=2

; (7)

where E33 is the spectrum of the vertical velocity in the wavenumber
domain resolved in the vertical direction, i.e., k refers to as k3 or kz.
The coefficient C takes a value of 0.49 in the main flow direction
(Pope, 2000). Because the span of inertial subrange decreases toward
the plume edge, Eq. (7) is not used to estimate the turbulence dissipa-
tion rate at different radial locations. Instead, a constant factor was
determined at the plume center and uniformly applied to all radial
locations. After applying the factor f1 on the pseudo turbulence dissi-
pation rate, we denote the resulting estimate as ed ¼ 3ep.

The direct calculation of the spectrum of e requires the spectral
representation of all nine velocity gradients, similar to the calculation
of e. In this study, we computed the one-dimensional spectrum usingfe33 ¼ 2�k2E33, which can be later scaled to three dimension (Lai and
Socolofsky, 2019). The scaling rule is that the integral of the turbulence
dissipation spectrum over the wavenumber domain at each radial

location of the plume should equal the turbulence dissipation rate esti-
mated at that location, i.e., edðrÞ ¼ f2

Ð fe33ðrÞdk [Fig. 5(a)]. Therefore,
the spectrum of e can be estimated as ee ¼ f2fe33 , where f2 ¼ 6 was
determined for our data.

Figure 5(b) shows the spectrum of turbulence dissipation rate at
two radial locations. As expected, the turbulence dissipation spectrum
near the plume edge (r=b ¼ 1) is smaller than that at the plume center
(r=b ¼ 0), where b represents the half-width of the bubble plume.
This observation is consistent with previous findings that indicate
higher turbulence dissipation in the center of the plume compared to
the edge (Wu et al., 2021). Furthermore, the shapes of the spectra at
the two locations show similar wavenumbers of the spectral peak,
which aligns with the findings of Pope (2000), who reported consistent
peak locations in turbulence dissipation spectra at different Reynolds
numbers.

3. Spectrum of the inter-scale energy transfer term

The inter-scale energy transfer as shown in Fig. 6 provides
insight into the transfer of TKE across different eddy scales in bubble
plumes. The data show significant inter-scale energy transfers in the

FIG. 5. (a) Radial profile of turbulence dis-
sipation rate estimated using ed ¼ 3ep
from the resolved PIV data and the inte-
gral of turbulence dissipation rate spec-
trum; (b) profile of turbulence dissipation
rate spectrum ee at the plume center
(r¼ 0) and at the plume edge (r¼ b),
where b is the plume half-width.

FIG. 6. Spectrum of the inter-scale transfer rate in the plume center (r=b ¼ 0) and
at the plume edge (r=b ¼ 1).
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plume center with weaker transfers observed near the plume edge.

Both profiles exhibit a region of the TKE recipient (i.e., positive fT jj ) in
large scales (i.e., small wavenumbers) and a region of the TKE donor

(i.e., negative fT jj ) in small scales (i.e., large wavenumbers). This behav-
ior can be interpreted as an inverse energy cascade, where the inter-
scale energy transfer moves TKE from small eddies to large eddies,
contrary to the classical energy cascade where TKE is transferred from
large to small scales (as seen in the HIT profile in Fig. 2). Similar find-
ings of an inverse energy cascade were reported by Lai et al. (2018b) in
a DNS study of bubble swarm using structure function calculations,
and by Mazzitelli and Lohse (2009) who observed a build-up of spec-
tral energy density at high wavenumbers in the instantaneous energy
spectrum due to bubble injected energy, followed by a shift toward
lower wavenumbers due to the inverse energy cascade.

A representative critical wavenumber kc can be defined as the
zero-crossing point in the spectrum of the inter-scale energy transfer
rate, allowing for the examination of a characteristic length scale
that distinguishes between large and small motions relevant to TKE
sources (Wang et al., 2021b). We will later use kc for decomposing
the velocity field in the bubble plume (Sec. IVB 6). The data show a
smaller kc, corresponding to a larger critical length scale, in the
plume center compared to the plume edge (Fig. 6). This disparity in
the critical wavenumber can be associated with the Taylor Reynolds
number Rek ¼ u0k

� , where k is the Taylor micro-scale and u0 is the
root mean square of turbulent fluctuations (Pope, 2000). As Rek
increases toward the plume center, the range of the energy cascade
extends to the low wavenumber region, implying that more large-
scale motions are involved in the process of inverse energy cascade
as the TKE donor.

4. Spectrum of shear production, advection, and
diffusion terms

As detailed in Sec. III, the spectral TKE budget equation requires
the resolution of additional terms for a complete balance. These terms
include a shear production term, a horizontal advection term, and a
horizontal diffusion term. The pressure–velocity correlation term,
which is a minor contributor to the overall TKE budget (Lai and
Socolofsky, 2019), is neglected. The spectra of these terms are com-
puted both in the plume center and near the plume edge, as illustrated
in Fig. 7.

The shear production is found to be larger at r=b ¼ 1 compared
to r=b ¼ 0, which is attributed to the strong shear present at the
plume edge, where the shear stress reaches its maximum value (Wu
et al., 2021). The shear production term is positive at all wavenumbers,
and its magnitude monotonically decreases with increasing wavenum-
ber, as shown in Fig. 7(a). This indicates that shear production is pri-
marily influenced by the large-scale motions within the bubble plume.

The horizontal advection term eA is nearly zero at r=b ¼ 0 but
becomes negative at r=b ¼ 1. This behavior is attributed to the prod-
uct of the horizontal mean velocity and the horizontal gradient of the
Reynolds stress, which determines the magnitude of eA. In the plume
center, both the gradient of the Reynolds stress and the horizontal
mean flow are close to zero, resulting in a diminished advection term.
At r=b ¼ 1, we observed that eA acts as a TKE sink, which is consistent
with our previous findings on negative horizontal TKE advection in
air-stone bubble plumes for r > 0:6b (Wu et al., 2021). Spectral analy-
sis reveals that the advection term is distributed across all wavenum-
bers with a decreasing contribution from large to small scale motions,
leading to a monotonically decreasing trend of eA with increasing

FIG. 7. Shear production spectral term
(a), advection spectral term (b), and hori-
zontal diffusion spectral term (c) in the
bubble plume.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 063301 (2023); doi: 10.1063/5.0151046 35, 063301-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0151046/17925412/063301_1_5.0151046.pdf

pubs.aip.org/aip/phf


wavenumber, as shown in Fig. 7(b). This is in agreement with the rec-
ognition of the mean velocity as a characteristic velocity scale for the
large eddies in the flow (Pope, 2000).

The spectrum of horizontal diffusion term fT? acts as a loss term
at the plume center, but as a gain term at r=b ¼ 1. This behavior is
consistent with the typical diffusion process of redistributing TKE in
the radial direction, where higher TKE is moved from the plume cen-
ter toward the low TKE region far away from the center (Wu et al.,
2021). Spectral analysis reveals that the large-scale motions, corre-
sponding to the low wavenumber region, make a stronger contribution
to the horizontal diffusion term [Fig. 7(c)]. This is because the majority
of turbulent diffusion is determined by the turbulent fluctuations that
are comparable to the mean flow (Pope, 2000).

5. Spectral TKE budget

The spectral terms of the TKE budget are shown in Fig. 8 with
the TKE injected by bubble passages, referred to as “bubble
production,” calculated as the closure term in the spectral TKE budget.
At the center of the plume, the main contributors to the TKE budget
are bubble production ( ePb ), turbulence dissipation (ee), and inter-scale

TKE transfer (fTk ) [Fig. 8(a)]. Bubble production occurs primarily in
the small-scale region (k > kc), where kc is the critical wavenumber
that separates large and small-scale motions in the inter-scale energy
transfer. Most of the injected TKE is immediately dissipated at local
scales, but a considerable fraction of bubble-generated TKE is trans-
ferred to the large-scale motions through the inverse energy cascade
with the critical wavenumber corresponding to a length scale of
1.6 cm.

At the edge of the plume, the magnitudes of the spectral TKE
budget terms are approximately four times smaller compared to those

at the plume center. In addition to fTk ; ePb , and ee, shear production
(eP) and horizontal advection (eA) terms are observed to be important
at large scales in redistributing TKE. We hypothesize that shear pro-
duction drives the forward energy cascade, but the overall energy cas-
cade is still dominated by the inverse cascade, as the primary TKE
production is through the direct injection from bubble motions. In
contrast to the plume center, a significant portion of bubble produc-
tion occurs at large scales near the plume edge. The large-scale energy
generated by bubble production and shear production is not entirely
dissipated at local scales. Instead, the excess TKE is balanced by the
mean horizontal advection.

6. Scale-based velocity decomposition

The analysis of inter-scale energy transfer provides insight into
the inverse energy cascade process in the bubble plume, as discussed
in Sec. IVB3. Additionally, we have identified the critical wavenumber
kc that serves as a threshold between the recipient and donor regions
of TKE in the spectral space during the inverse energy cascade.
Therefore, the length scale associated with kc can be used as a charac-
teristic eddy scale that distinguishes large and small scales of turbulent
motions through velocity decomposition. In this section, we will pre-
sent velocity statistics, the contribution of large- and small-scale
motions to the Reynolds stresses, and the flow structure associated
with them.

We use a Fourier-transform-based scale-decomposition technique
to separate large- and small-scale motions (Kawata and Alfredsson,
2018; Wang et al., 2021a). First, we take the Fourier transform of the
fluctuating velocity u and w to obtain bu and bw. Next, an inverse
Fourier transform is used to obtain the large-scale velocity components,
which are enveloped in the wavenumber range of�kc to kc,

wL ¼
ðþkc

�kc

bwðkÞdk;
uL ¼

ðþkc

�kc

buðkÞdk: (8)

The small-scale velocity components can be calculated as wS

¼ w� wL and uS ¼ u� uL.
Prior to discussing the characteristics of the decomposed velocity

components, we examine a segment of the time series of fluctuating
velocity and its probability density function to gain a better under-
standing of the flow behavior. An example of the time series of velocity
data is presented in Fig. 9 for the plume center and at a radial location
of r ¼ 2b. In the plume center [Fig. 9(a)], stronger fluctuations are
observed in the vertical velocity component w compared to the hori-
zontal velocity component u. However, at r ¼ 2b [Fig. 9(b)], the mag-
nitude of fluctuations is similar between w and u. The pronounced
difference between w and u in the plume center can be attributed to
the anisotropic agitating behavior of the bubbles, where the vertical
fluctuations are “amplified” by the slip velocity of the bubbles (Wu
et al., 2021).

The probability density function (p:d:f :) of velocity fluctuations
at r¼ 0 and r ¼ 2b is given in Fig. 10, along with the ADV data
from a similar bubble plume at Qg ¼ 0:5 l/min as reported in

FIG. 8. Spectral TKE budget in the bubble
plume. (a) Plume center, r=b ¼ 0 and (b)
plume edge, r=b ¼ 1.
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Lai and Socolofsky (2019) for comparison. In the plume center, the
p:d:f : of w exhibits a negative peak and is right-skewed with a positive
tail [Fig. 10(a)]. The negative peak is attributed to the return flow of
ambient water immediately after the passage of bubbles, while the posi-
tive tail is associated with the bubble wake (Lai and Socolofsky, 2019).
At r ¼ 2b, the negative peak diminishes, as the likelihood of the bubble
passage is reduced [Fig. 10(b)]. The skewness of the distribution is also
weaker due to the reduced number of bubbles. On the other hand, the
distribution of u closely follows a Gaussian distribution [Figs. 10(c) and
10(d)]. This suggests that the effect of bubble passage primarily influen-
ces the distribution of w in the plume.

Using the scale-based velocity decomposition [Eq. (8)], we can
analyze the p:d:f : of the large- and small-scale fluctuations, as shown
in Fig. 11. The data reveal that the skewed velocity distribution in w is
primarily contributed by the large-scale motions, while the small-scale

velocities closely follow a Gaussian distribution regardless of the radial
location in the plume. As for u, both the large- and small-scale fluctua-
tions exhibit the Gaussian distribution, indicating unskewed horizon-
tal fluctuations at all length scales. This suggests that the effect of
bubbles on anisotropic turbulence is prominent in the large scales,
where the TKE is inversely cascaded from small-scale motions.

The decomposition of velocity also enables us to examine the
contributions of turbulent fluctuations at different scales to the
Reynolds stresses. Due to the orthogonal property of the Fourier
modes, we have hwSwLi ¼ 0 and huSuLi ¼ 0. As a result, the Reynolds
stresses can be decomposed into large-scale and small-scale components,
which are hwwi ¼ hwLwLi þ hwSwSi; huui ¼ huLuLi þ huSuSi, and
huwi ¼ huLwLi þhuSwSi.

The radial profiles of decomposed large-scale Reynolds stresses
are depicted in Fig. 12. The data demonstrate that the contribution

FIG. 9. Time series of the fluctuating veloc-
ities u and w. (a) r¼ 0 and (b) r ¼ 2b.

FIG. 10. Probability density function
(p:d:f :) of the fluctuating velocities. (a)
Vertical velocities at r¼ 0; (b) vertical
velocities at r ¼ 2b; (c) horizontal veloci-
ties at r¼ 0; and (d) horizontal velocities
at r ¼ 2b. “LS2019” in the legend repre-
sents the ADV data reported in Lai and
Socolofsky (2019). ru and rw are the
standard deviation of the turbulent fluctua-
tions in the horizontal and vertical direc-
tions, respectively.
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to the Reynolds stresses from the large-scale motions is predomi-
nant, accounting for more than 50% overall. The contribution of
large-scale motions to the normal stresses is suppressed close to the
plume center, resulting in a reduction from 80% to 90% at r ¼ 62b

to 60%–70% at r¼ 0 [Figs. 12(a) and 12(b)]. This is due to the sub-
stantial contribution of small-scale bubble-induced motions to the
normal stresses. On the other hand, the bubble effect is less pro-
nounced in the shear stress, where the large-scale motions contribute

FIG. 11. Probability density function
(p:d:f :) of the decomposed large- and
small-scale velocity fluctuations. (a)
Vertical velocities at r¼ 0; (b) vertical
velocities at r ¼ 2b; (c) horizontal veloci-
ties at r¼ 0; and (d) horizontal velocities
at r ¼ 2b.

FIG. 12. Radial profile of the contribution
of large-scale motions in Reynolds
stresses.
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at almost the same level, i.e., approximately 80% within jrj � 2b
[Fig. 12(c)].

Finally, we examine the vortex structures associated with the
large- and small-scale motions. For this purpose, the vorticity is
decomposed as follows:

x ¼ @uinst
@z

� @winst

@x

¼ @U
@z

� @W
@x

� �
þ @uL

@z
� @wL

@x

� �
þ @uS

@z
� @wS

@x

� �
¼ xM þ xL þ xS; (9)

where uinst and winst are the instantaneous velocities; U andW are the
mean velocities; and uL, wL, wS, and uS are the large- and small-scale
fluctuating velocities, respectively. Therefore,xM represents the vortic-
ity caused by the mean shear, while xL and xS represent the vorticity
associated with the large- and small-scale motions, respectively. In this
study, we refer to them as the large-scale vorticity and small-scale vor-
ticity, respectively.

The decomposed vorticities are illustrated in Fig. 13. For simplic-
ity, we use a constant value of kc¼ 400 rad/m throughout the flow field,
corresponding to 1.6 cm. Note that kc increases to 600 rad/m at r¼ b,
equivalent to 1.1 cm. From the vorticity distribution plot, it can be
observed that the large-scale vortex structures consist of elongated vor-
tex pairs [Fig. 13(a)], likely caused by the passage of bubbles and eddies
of return flows. These elongated vortices have a size of approximately
2 cm in the bubble rise direction and up to 1 cm in the horizontal direc-
tion, which are close to the critical value of the inter-scale energy trans-
fer, i.e., 1.1–1.6 cm within the plume region. The small-scale vortex
structures [Fig. 13(b)] are smaller in size and similar in both horizontal
and vertical directions. Additionally, a pair of weaker but larger mean
vortex structures caused by the mean shear can be observed around the
plume center. However, these very-large-scale motions contribute little
to the TKE compared to the large- and small-scale turbulent motions.

V. CONCLUSIONS

A comprehensive spectral analysis of the turbulent kinetic energy
(TKE) budget equation is conducted to elucidate the turbulent length
scales associated with TKE production, dissipation, and cascade
among turbulent eddies in classic bubble plumes. Building upon the
critical length scale identified from inter-scale energy transfer, the flow
field is further decomposed into large- and small-scale motions to ana-
lyze their contributions to the Reynolds stresses and vortex structures.

We first validated the forward energy cascade in homogeneous
isotropic turbulence (HIT) by examining the inter-scale energy trans-
fer process. In bubble plumes, we observed an inverse energy cascade,
where the TKE is transferred from small-scale to large-scale eddies.
The spectral analysis of inter-scale energy transfer is then used to iden-
tify a critical wavenumber and its associated length scale. Therefore, a
main TKE-recipient region and a TKE-donor region can be separated
in the spectral domain.

In the plume center, the TKE budget is dominated by TKE pro-
duction by bubbles, turbulence dissipation, and inter-scale energy
transfer, which occur at both large and small scales. Turbulence dissi-
pation mainly occurs at local scales where TKE is injected from bubble
passages, while the remaining TKE is transferred across eddy scales.
Away from the plume center, shear production and radial advection of
TKE become nontrivial in the TKE budget, and their contribution is
mainly at large scales. The inter-scale energy transfer still exhibits an
inverse cascade, but with an increased critical wavenumber, indicating
a decreased critical turbulent length scale.

The velocity decomposition based on the critical length scale of
inter-scale energy transfer allows visualization of the vortex structure
associated with large- and small-scale motions. Large-scale swirling
motions in the plume are visualized as a street of vertically elongated
vortex pairs. Small-scale eddies are observed as scattered vortex pairs
with similar sizes in all directions. Additionally, a pair of very-large-
scale vortex structures, caused by the mean shear flow in the bubble
plume, is present on each side of the plume center.

FIG. 13. An snapshot of the decomposed
vorticity distribution in the bubble plume:
(a) large-scale vortex structure; (b) small-
scale vortex structure; and (c) mean vor-
tex structure.
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Velocity fluctuations at large scales exhibit skewness, while small-
scale velocities follow a Gaussian distribution. Reynolds stresses in the
bubble plume are mainly contributed by the large-scale motions with
bubble effects primarily affecting the normal components. This results
in a reduction of the contribution of large-scale Reynolds normal
stresses to the total stresses.
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