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a b s t  r  a c t  

Collagen brils, which are the lowest level brillar unit of organization of collagen, are thus of primary 
interest towards understanding the mechanical behavior of load-bearing soft tissues. The deformation of 
collagen brils shows unique mechanical features; namely, their high energy dissipation is even superior 
compared to most engineering materials. Additionally, there are indications that cyclic loading can fur- 
ther improve the toughness of collagen brils. Recent experiments from Liu at al. (2018) focused on the 

response of type I collagen brils to uniaxial cyclic loading, revealing some interesting results regarding 
their rate-dependent and inelastic response. In this work, we aim to develop a model that allows inter- 
preting the complex nonlinear and inelastic response of collagen brils under cyclic loading. We propose 
a constitutive model that accounts for viscoelastic deformations through a decoupled strain-energy den- 
sity function (into an elastic and a viscous parts), and for plastic deformations through plastic evolution 
laws. The stress-stretch response results obtained using this constitutive law showed good agreement 
with experimental data over complex loading paths. Ultimately we use the model to gain more insights 
on how cyclic loading and rate effects control the interplay between viscoelastic and plastic deformation 
in collagen brils, and to extrapolate the results from experimental data, analyzing how complex cyclic 
load inuences energy dissipation and deformation mechanisms. 

Statement of signicance 

In this work, we develop a viscoelastic-plastic constitutive model for collagen brils with the aim of an- 
alyzing the effects of inelasticity and energy dissipation in this material, and more specically the com- 
petition between viscoelasticity and plasticity in the context of cyclic loading and overload. Experimen- 
tal and theoretical approaches so far have not fully claried the interplay between viscous and plastic 
deformations during cyclic loading of collagen brils. Here, we aim to interpret the complex nonlinear 
response of collagen brils and, ultimately, suggest predictive capabilities that can inform tissue-level re- 
sponse and injury. To validate our model, we compare our results against the stress-stretch data obtained 
from experiments of cyclic loaded single brils performed by Liu et al. (2018). 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 

1. Introduction  

Many soft biological tissues that serve a load-bearing function, 
such as tendon, ligament and cartilage, are composed of hierarchi- 
cally assembled collagen proteins. Fibrillar collagen is usually the 

main load-carrying component of these tissues and the way that 
it is connected, distributed and aligned determines the mechani- 
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cal properties of the tissues throughout length scales [1–4] . Col- 
lagen brils (up to 1 cm in length, and 500 μm in diameter [5] ) 
are the lowest level of brillar organization of collagen above the 

molecular level. They are composed by the ordered assembly of 
tropocollagen (TC) molecules (approx. 300 nm in length, and 2 nm 

in diameter) and are D-periodic with D = 67 nm , as the length of a 

TC monomer is not an exact multiple of D but L = 4.46D, creating 
gaps of 0.54D and overlaps of 0.46D [6,7] . 

The structure and the mechanics of collagen brils, in the con- 
text of monotonic and quasistatic loading, have been extensively 
studied [8–10] . Yet, understanding the cyclic response of collage- 
neous tissues throughout scales is also highly relevant for both 

https://doi.org/10.1016/j.actbio.2022.07.011 
1742-7061/© 2022 Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved. 
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physiological loading and overload-induced injury. However, even 
though signicant investigations have been performed at the tis- 
sue level [11–15] , the cyclic response at the bril level and below 

has not been explored as widely. In fact, it is known that some 
mechanical properties of collageneous tissues may vary substan- 
tially across length scales. Studies have reported that collagen b- 
rils have much smaller Young’s modulus and much larger viscosity 
than collagen molecules [16] , and that the fracture strain signi- 
cantly decreases from collagen brils to the tissue level [17] . 

Studies at different levels of tissue hierarchy (molecule, bril, 
ber, fascicle and tissue) have shown that the level of applied de- 
formation affects collagen degradation, which in turn, inuences 

the mechanical properties of the tissue [18–20] . Additionally, the 

mechanisms underlying the rate-dependent deformation of colla- 
gen brils are not clearly understood and are bound to have a sig- 
nicant effect on their degradation.Regarding the deformation of
a single collagen bril, viscoelastic [21,22] and plastic deformations 
[23] , as well as the presence of back stress [21] have been pre- 
viously identied. The elastic deformation has been attributed to 

the stretching of the collagen molecules [24] . The viscous deforma- 
tion, on the other hand, has been attributed to the rearrangement 
of collagen molecules and other mechanisms beyond the collagen 
molecule, such as the rearrangement of the water molecules inside 

the brils [21,22,25] and to the dynamics of hydrogen bonds be- 
tween molecules [22] . As a mode of plastic deformation, discrete 
plasticity has been identied in brils in an experimental setting 
[23,26–29] , pointing to the sliding of sub-bril constituents as the 

cause to inelastic deformations and energy dissipation. Some stud- 
ies suggest that the origin of plastic deformation in brils is due 

to the slip between two tropocollagen molecules with the rup- 
ture of covalent bonds [30,31] . The presence of hardening and back 
stress associated with plastic deformation has also been identied 

in some experimental studies [21,25] . 
Nevertheless, accurate modeling predictions of experimentally 

observed rate-dependent responses at the bril level are still chal- 
lenging. Coarse-grained simulations have been performed to ana- 
lyze the mechanics of collagen brils at the nanoscale level allow- 
ing sub-bril resolution [16,32] . These models were extended by 

Tang et al. [2] in a multiscale setting that employed continuum 

formulations in a rate-independent setting. There, a strain-energy 
density function was formulated to characterize the hyperelastic 
response of collagen brils, in addition to a plastic evolution law 

to characterize the permanent deformation of brils, as part of a 

multiscale informed model for collageneous tissue. They carefully 
connected the mechanisms of deformation observed at molecular 
level to the change in stiffness of brils, and selected functions for 
the model that could capture these features very well, however, 
the study was limited to monotonic loading without accounting for 
rate effects. 

Rheological models have also been largely used as a way to cre- 
ate and interpret constitutive models for elastic, viscous and plas- 
tic nature of biological [33] and other soft materials [34–37] . Some 
models are not continuous and make use of Heaviside functions 
to describe the difference between loading and unloading curves 
[33] . As it is more challenging for models that employ discontin- 
uous functions for loading and unloading to have a clear physical 
interpretation, Silberstein and Boyce [34] investigated the response 
of Naon, and introduced continuous functions to represent the 

deformation of polymers in cyclic loading. Even though the mate- 
rial system is different than collagen brils, the phenomenology of 
the response is similar, involving elastic, viscous and plastic com- 
ponents along with the presence of back-stress. 

To better understand how collagen brils respond to cyclic 
loading and at the same time be able to predict more complex 
loading paths, a constitutive model has to be formulated that can 

capture the complex interaction of viscoelastic and plastic defor- 

mation mechanisms present in this type of material. In this work 

we propose a constitutive formulation that aims to capture the 

rate-dependent response of collagen brils. More specically, we 

intend to connect how cycling at different strain levels impacts 
the apparent stiffness, inelastic deformations and energy dissipa- 
tion in collagen brils. To the best of our knowledge, no constitu- 
tive model has been developed that can capture both viscoelastic 
and elastoplastic effects in the response of collagen brils to non- 
monotonic loading. We use the experimental data provided in the 

work by Liu et al. [38] to validate our model. 
This paper is divided as follows. In Section 2 , we survey the 

mechanical response of type I collagen brils subjected to cyclic 
uniaxial tensile load as observed from experiments. We postulate 
that a viscoelastic-plastic model is sucient to capture the ob- 
served responses. In Section 3 , we specify the components of our 
constitutive model.We rst review the kinematics of elastoplastic
deformation, and outline the strain-energy density function which 

characterizes the viscoelastic behavior of the material. Next, we 

specify the elastic and the viscoelastic models. Finally, we spec- 
ify the models for rate-independent plasticity, which include the 

plastic ow  rule, yield criterion as well as isotropic and kinematic 
hardening. In Section 4 , we rst calibrate the constitutive model 
against the experimental data from the work by Liu et al. [38] . 
Then, we use the constitutive model to uncover the relationship 
between cyclic loading and so-called overload. In Appendix A , we 

outline the equations used to calculate the stress for the specic 
constitutive model in this work, and in Appendix B , we detail the 

numerical integration of the viscoelastic and plastic equations. In 

Appendix C we show results for an alternative set of parameters. 

2. Collagen bril response under cyclic load 

The response of collagen brils to uniaxial tension is highly 

nonlinear. Undeformed collagen brils are usually found in a 

crimped (wavy) state, deviating from a perfectly straight cong- 
uration. Because of that, the brils carry little load in the ini-  

tial bending-dominated regime of the deformation. As the crimped 
brils approach a straight conguration the deformation becomes 
stretching-dominated. Following the nomenclature from the work 

by Liu et al. [38] , this initial stiffening process is denominated 
“regime I”. The next stage, “regime II”, is characterized by a soften- 
ing in the material. Finally, the last stage, “post-regime II” denes 
the region in which the material has a secondary stiffening, pre- 
ceding failure. 

When the collagen bril is subjected to cyclic loading, the 

stress-strain response becomes signicantly more complex. The 

unloading of the material is nonlinear, as we can verify in Fig. 2 in 

Liu et al. [38] . In that work, Liu et al. investigate the response of re- 
constituted collagen brils to cyclic loading. The brils, composed 
of type-I collagen, are extracted from calf skin under partially hy- 
drated conditions of 60% humidity. They subjected the brils indi- 

vidually to a rst series of cyclic uniaxial tests within the limits 

of each regime –“regime I”, “regime II”, “post-regime II”– (termed 

series-1), let the material rest for 60 minutes and repeated the 

load for each regime after the recovery time (termed series-2). 
The reloading curves of the cycles evolve showing some possible 
ratcheting effect as the average strain increases with cycles until it 

reaches a stable value [39] . This equilibration is evident as curves 
that belong to the nal cycles of the same series are overlapping. 
Additionally, we note that the inelastic strain is partially recovered 
as the brils are allowed to rest, showing evidence of viscoelastic 
deformation. However, part of the inelastic strain is not recovered 
which point to plastic deformation. We can observe that in Fig. 3 in 

Liu et al. [38] , as the rst cycle of series 1 does not overlap with 

the rst cycle of series 2. 
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Fig. 1. Engineering stress-stretch curve obtained from experiments on four distinct collagen brils subjected to uniaxial stress load, for monotonic loading and for a number 
N c of cycles of loading at different strain levels (regime I, II and post-regime II), where N c = 10 for regime I and post-regime II, and N c = 20 for regime II. For regimes with 
N c = 10 , only curves 1, 9 and 10 are shown, and for regimes with N c = 20 , only curves 1, 2, 8 and 10 are shown, reporting the available experimental data, which was 
provided by Liu et al. [38] . Each bril is only subjected to one level of loading. (a) shows the original stress-stretch data found in [38] . (b) shows the stress-stretch curves 
from the data adjusted for the updated values of diameters of the brils. The curve for regime II is the reference curve and the diameters of the brils for the other curves 
were multiplied by the following factors: f d = 0 . 89 for the monotonic curve, f d = 0 . 91 for Regime I and f d = 1 . 14 for Post-Regime II. 

In Fig. 1 a, we show data from four separate experiments, each 
corresponding to a distinct collagen bril specimen, as presented 
in the work by Liu et al. [38] . These data points correspond to 

series-1 cyclic loading from regime I, regime II, post-regime II, and 

a monotonic uniaxial tension experiments. In this order, each cyclic 
regime corresponds to an increasing value of maximum applied 

stretch in the loading direction. To clarify, each of the four b- 
rils was tested only on one regime. The bril diameters are very 

small and each measurement of the diameter from imaging data 
comes with signicant uncertainty. This uncertainty in the mea- 
surement of the diameter, when squared to calculate the stress 
values from the measured force, has a signicant effect on the 

stress values, and, consequently, we hypothesize that it may have 
resulted in the lack of overlap between the curves in Fig. 1 a. The 

authors of [38] provided us with measurements from imaging data 
that showed that there were uncertainties with the measurements 
from the collagen bril diameters corresponding to the specimens 
used in the monotonic, regime I and post-regime II experiments. 
Adjusting in line with the updated imaging measurements and cal- 
culating from the raw data of the measured force that the au- 
thors of [38] provided (updating the bril diameters), we obtain 

the stress-stretch response for these four separate tests that we 

compile in Fig. 1 b. The curve for regime II is taken as the ref- 
erence curve, since the specimen tested in this regime had the 

most accurately reported diameter. Indeed, this hypothesis is vali- 
dated as,after adjusting the brildiameters,we observe a signi-
cant overlap of the stress-stretch curves for the monotonic tensile 
loading portion of the four experiments. We note that the slight 
deviation of the initial portions of the four curves could be due 

to experimental setup leading to different initial curvatures of the 

brils. 
With all these features in mind, we seek for a constitu- 

tive model that captures the stretch-stress response of type I 
collagen brils under uniaxial tensile load, for monotonic load 

as well as cyclic load within all three regimes of deforma- 
tion. Thus, we formulate a phenomenological model which ac- 
counts for viscoelastic and elastoplastic response at nite deforma- 
tions. 

3. A viscoelastic-plastic constitutive model for collagen brils 

In this section, we present a brief discussion on kinematics, fol- 
lowed by the description of our choices of models for the elas- 
tic, viscous and plastic response of collagen brils based on the 

observations from cyclic loading of collagen brils discussed in 

Section 2 . 

3.1. Kinematics 

Consider a homogeneous body with reference conguration 0 
at some xed time t 0 . Let X be the position vector of a material 
point in 0 and x be the position vector of a material point in the 

current conguration  at time t . The deformation of the material 
from 0 to  is dened by the motion 

x = χ(X , t) = X + u ( X , t ) , (1) 

where u corresponds to the displacement of the material point. 
The deformation gradient in 0 is dened as 

F = ∇  X x = 
∂ χ(X ,t) 

∂X , (2) 

with components F i j = ∂ χi /∂ X j , where ∇  X (•) = ∂ (•) /  ∂ X is the 

gradient operator in the reference conguration. In the context of 
elastoplasticity, we assume a standard multiplicative decomposi- 
tion of the deformation gradient [40] , i.e. 

F = F e F p , (3) 

where F e and F p represent the elastic and plastic parts of the de- 
formation gradient, respectively. Note that we make J = J e , with J ≡
det F and J e ≡ det F e , which follows from the assumption of plastic 
incompressibility of the material, i.e. J p ≡ det (F p ) = 1 . The decom- 
position in (3) introduces an intermediate conguration, which we 

denote as i . The plastic part of the deformation gradient maps 
the material point from 0 to the i , and the elastic part maps 
the material point from i to . We take the intermediate cong- 
uration to be isoclinic [41] , so as the symmetry axis of the material 
in i coincides at all times with the initial symmetry axis in 0 . 
Because of the decomposition of F in (3) , we can dene elastic and 

plastic strain measures separately in terms of F e and F p , respec- 
tively. Here, we use the elastic Green strain tensor 

E e = 
1 

2 
( C e − I ) , (4) 

where C e = F eT F e is the elastic Cauchy-Green deformation tensor, 
and I is the second-order identity tensor. 

Finally, we dene the rates of deformation of the material. 
The velocity gradient tensor in  is dened as L = ∂ v /∂ x , where 

v =  ̇χ(X , t) is the velocity eld. We note that hereon a dot over a 

tensor denotes the material time derivative of the tensor. In what 
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follows, the velocity gradient takes the form L =  ̇F F −1 , and by em- 
ploying the decomposition in (3) , it is also expressed as 

L = F e −1  ̇F e + F e L 
p 
i F e −1 , L 

p 
i =  ̇F p F p−1 , (5) 

where L 
p 
i is the velocity gradient in the intermediate conguration. 

3.2. Strain energy density considerations 

Considering the nanostructure of collagen brils [7,8,10] , known 

mechanisms for inelastic deformations [21,22,25,30] , and features 
of the response of cyclically loaded collagen brils discussed in 

Section 2 , we choose to model this material in the context of cou- 
pled viscoelasticity and elastoplasticity at nite deformations. 

We consider that the viscoelastic constitutive behavior of the 

material can follow a specied strain energy density function 
that accounts for the preferential direction of alignment of the mi- 
crostructure of collagen brils, in the direction of the bril itself 
[7,8,30,42] . We assume that the energy-function can be addi- 
tively decomposed into an elastic part e that considers the equi- 
librium response and a viscoelastic part v that accounts for rate- 
dependence, as follows 

= e + v . (6) 

The elastoplastic response of the material is formulated assum- 
ing a rate-independent approach; we effectively assume that all 
rate effects are accounted for by viscoelasticity. The yield surface 
is dened from a yield function  considering isotropic and kine- 
matic hardening, and the direction of the plastic ow  is dened 
based on an associative ow  rule. 

3.2.1. Elastic equilibrium response 
The elastic equilibrium response of the material, dened with 

respect to the isoclinic intermediate conguration, is assumed to 

comply with a strain-energy density function (E e ) =  (C e ) . It 

follows that the symmetric (second) Piola-Kirchoff stress is 

S = 
∂
∂E e 

. (7) 

In this work, we assume that the strain-energy density function 
 e characterizing the purely elastic deformation is a transversely 
isotropic invariant of C e , with symmetry axis a 0, which is the unit 
vector in the reference conguration that represents the axial di- 

rection of the collagen brils. Thus, we can write the function  e 

in the form Ericksen and Rivlin [43] , Spencer [44] 

 e (C e ) = e 
(I 1 , I 2 , I 3 , I 4 , I 5 ) , (8) 

where I 1 = tr C e , I 2 = 

( tr C e ) 2 − tr (C e ) 2 


, I 3 = det C e , I 4 = a 0 · C

e a 0 , 

and I 5 = a 0 · (C e ) 2 a 0 are the set of principal scalar invariants of 
C e and pseudo-invariants of C e and a 0  a 0 , where the symbol 
 represents the dyadic product between tensors of any order. 
Consequently, to nd the elastic equilibrium part of stress in 

the brils, we use (7) and (8) and calculate S e = ∂ e (E e ) /∂ E e ≡
2 ∂  ̂e (C e ) /∂C e . 

We choose a specic energy-function for (8) to characterize the 

purely elastic equilibrium deformation of the material, which we 

denote as e . We select a function that is able to capture the 

main aspects of the recoverable rate-independent deformation of 
the collagen brils, as described in Section 2 . Following the work 

by Tang et al. [2] , we use a Neo-Hookean model with the shear 
modulus depending on the axial direction of the brils a 0 through 
the fourth invariant I 4 . Here we take the compressible form of the 

Neo-Hookean model as follows 

e 
= 

μ(I 4 ) 
2 (I 1 − 3 − 2 ln J) + 

β
2 (J − 1) 2 , (9) 

where μ = μ0 f ( I 4 ) is the varying shear modulus, μ0 is a constant 
and J = det F . The parameter β represents the bulk modulus, which 

is assigned to a large value ( β >> μ0 ) in this work, in order to 

approach incompressibility. The function f(I 4 ) is dened as 

f ( I 4 ) = a 1 tanh [ a 2 ( I 4 − 1 ) ] + a 3 exp [ a 4 ( I 4 − I 0 ) ] , (10) 

where a 1 , a 2 , a 3 and a 4 are material constants to be tted, and I 0 is 

a material constant that represents the secondary stiffness of the 

bril in the stage of deformation preceding failure. The hyperbolic 
function in f captures the evolution of the stiffness as the brils 

are stretched from the crimped state, characterizing the “toe” re- 
gion [2] . 

We note that the formulation of the elastic equilibrium part of 
the stress S e, calculated using the energy-function in (9) can be 

found in Appendix A . 

3.2.2. Non-equilibrium response 
The model for the viscoelastic response of the material, similar 

to the model for the elastic equilibrium response, is dened with 

respect to the isoclinic intermediate conguration through a strain- 
energy density function v based on the decomposition from (6) . 
We follow the work by Linder et al. [45] and Wang et al. [46] and 

adopt a viscoelastic model rst introduced for rubber-like materi- 
als. We take a strain-energy density function of the type  v (C e , A ) , 
where we include an internal variable A to account for the dissipa- 
tive viscous overstress related to the viscoelastic deformations. The 

specic viscoelastic strain-energy density function is given by 

 v = 
1 

2 
μv 

 
(A : C 

e 
− 3) − ln ( det A ) 

 
, (11) 

where A is a symmetric tensorial quantity [45] . Here, the bar over 
the tensor C e denotes that we are using the volume-preserving 
(distortional) part of the elastic right Cauchy-Green tensor, which 

is given by C 
e 

= F 
eT 

F 
e 
, where F 

e 
= J e −1 /  3 F e . 

The evolution of tensor A in (11) is given by 

 ̇A = 
1 

τ
( C 

e −1 
− A ) , A ( X , t 0 ) = I , (12) 

with τ being a single relaxation timescale and I is the second- 
order identity tensor. When C e −1 = A , the system is expected to 

reach equilibrium and be fully relaxed. We note that the viscous 
overstress S v can also be calculated using (7) , along with (11) , 
i.e. S v = ∂ v (E e , A ) /∂ E e ≡ 2 ∂  ̂v (C e , A ) /∂ C e . This calculation can 

be found in the Appendix A . 

3.2.3. Plastic response 
We choose a rate-independent plasticity model based on the 

idea that the slip systems in the collagen brils lie on the direction 

of the symmetry axis a 0 [47] of the nanostructure of the brils, 
following observations of discrete plasticity from experiments and 

coarse-grained simulations, as discussed in the introduction. Thus, 
the yield function is dened as the deviatoric part of the elastic 
Mandel stress ( = C e S e ) projected onto the slip direction a 0 

( , p ) = a −y (p ) = 0 , 
a = a 0 · ( − β) d a 0 , 

(13) 

where the superscript d denotes the deviatoric part of the ten- 
sor to which it refers. The tensor β is the back-stress, which is 

included by means of a kinematic hardening law, and y is the 

yield stress given as a function of the accumulated plastic strain 

p (isotropic hardening). We assume that the material obeys the 

associative ow  rule 

L 
p 
i =  ̇M 

p 
i , M  

p 
i = ∂

∂ = (a 0  a 0 ) d , (14) 

where  ̇ ≥ 0 is the plastic multiplier. 
We add isotropic and kinematic hardening models in order to 

account for a possible evolution of the yield surface. As discussed 
in Section 2 , the unloading of the bril becomes signicantly non- 
linear as it approaches a stress-free state. This can be caused by 
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a back-stress, which is accumulated by the pile-up of dislocations 
during plastic deformation [48] , and which assists the deformation 
of the bril in the reverse direction during unloading [34] . Con- 
sequently, the yield stress is reduced in the reverse deformation, 
what is known as the Bauschinger effect. In the context of collagen 
brils, dislocations can be interpreted as sliding defects between 
sub-bril blocks [30,49] . 

To characterize the evolution of the back-stress, we use the 

kinematic hardening Armstrong-Frederick model [50] 

β̊ =  ̇  ̂β

, β, p 


,  ̂β = 


H(p ) M  

p 
i − b β


, (15) 

where b is a material constant. We select this model because it is 

nonlinear, and nonlinear kinematic hardening laws can allow cap- 
turing ratcheting effects during cyclic loading. The term b β in the 

above equation is there to account for the saturation of the back 
stress, and ˚( •) represents the Jaumann rate of a tensor, which is 

an objective rate dened as 

β̊ =  ̇β −e β+ βe , (16) 

for the back-stress, where e =  ̇R 
e 
R e T and R e is the rotation ten- 

sor resulting from the polar decomposition of the elastic deforma- 
tion gradient, i.e. F e = R e U e . We choose the following function for 
H(p ) 

H = H 0 + k L p + kE exp (k P p ) , (17) 

where H 0 , k L , k E and k P are parameters to be tted. 
In what follows, we choose to model the isotropic harden- 

ing with a linear-exponential function proposed by Gasser and 

Holzapfel [47] 

y = 0 + h L p − h E exp 

−

p 
0 

, (18) 

where 0 is the initial yielding stress, h L , h E and 0 are other ma- 
terial parameters. The addition of an isotropic hardening model, 
such as (18) , to the plasticity model may be very important to the 

constitutive model as it helps balance the amount of ratcheting in- 

duced by the kinematic hardening throughout the cycles, until it 

possibly reaches a constant value. 
We note that the evolution of the plastic strain p is given by 

 ̇p =  ̇ where the plastic multiplier  ̇ is assumed to follow the  

Karush-Kuhn-Tucker loading/unloading conditions and the consis- 
tency condition, given the irreversibility of the plastic ow  [47]. 
For more details on the plasticity model, refer to [47] . 

4. Results and discussions 

In this section, using the constitutive model developed in the 

previous section, we rst t the experimental data by Liu et al. 
[38] corresponding to cyclic loading at different loading regimes. 
Second, we use the constitutive model, with the calibrated mate- 
rial parameters, to investigate the response of collagen brils sub- 
ject to more complex loading paths. This exercise is performed 
as a means to provide insights into the interplay between plastic 
and viscoelastic deformations as bril loading transitions between 
physiological cyclic loading to overload. 

4.1. Model calibration 

To calibrate the proposed material model we utilized the data 
from Liu et al. [38] with the adjustments discussed in Section 2 . 
The data that we used in the optimization consists of four distinct 
experiments - as we discuss in Section 2 -, namely 

• monotonic loading, 
• series 1 in regime I (20 cycles), 
• series 1 in regime II (10 cycles), 
• series 1 in post-regime II (10 cycles), 

presented in Figs. 1 a, 2 b (or 3 b), 4 b and 5 b, respectively in Liu 

et al. [38] . Note that not all cycles are shown in these plots; e.g. 
when there are 10 cycles only the rst, ninth and tenth cycles 
are shown; this choice is to showcase the level of cyclic loading 

where the response has almost stabilized. Here we choose to work 

only with data from “series 1” (following the nomenclature from 

Liu et al. [38] ), to avoid experimental errors of manually stopping 
and restarting the loading which was necessary for obtaining “se- 
ries 2” cycles. We note that the brils are assumed to reach an 

equilibrated unloaded state after series 1 loading cycles, and prior 
to initializing loading cycles for series 2. This loading scenario is 

similar to what we will  examine in the next section. 
The details on the stress calculations for the proposed constitu- 

tive model, and necessary for the optimization procedure, are in- 

cluded in the Appendix A . The parameters of the model were op- 
timized using the fminsearch function on Matlab.The fminsearch
function is based on an algorithm that follows the Nelder-Mead 
method for function minimization [51] . This method calculates the 

values of a function of n variables at n + 1 edges of a simplex and 

replaces the highest value [52] . The inputs for fminsearch are the 

function to be optimized ( fun ) and the initial guess for the param- 
eters ( x 0 ). We dene fun as a function of a vector containing the 

error between the values of the rst Piola-Kirchhoff stress ( P , as 
dened in Eq. (A.5) ) obtained from the data points and the values 
of the rst Piola-Kirchhoff stress calculated from the constitutive 
model. More specically, we take fun to be a weighted sum of the 

Maximum Difference and Mean Square Error (MSE), i.e. the maxi- 
mum value in the error vector and the square root of the average 
value of the squared entries of the error vector, respectively. The 

initial guess for the parameters is selected by following a multi- 
start procedure manually. 

We rst dene ranges where we expect to nd the most funda- 
mental parameters being optimized. For instance, the shear moduli 
( μ0 and μv , respectively) were expected to be inside an interval 
between zero and the initial Young’s moduli ( E 1 ) reported in [38] , 
and the initial yielding stress ( 0 ) was expected to be between 
zero and the maximum stress in the data in the direction dened 
in the yield criterion. Other additional parameters in the model, 
such as constants in the hardening laws, were dened in ranges 
near zero. We then select different sets of values of x 0 within the 

ranges dened and calculate the initial error that each of these 
sets yields. Next, we take the set that yields the smallest error 
to initialize the optimization procedure with fminsearch . We per- 
formed a sensitivity analysis on a subset of the parameters ( H 0 , 
k L , k E , k P , h L , h E , 0 ) that allowed us to identify some parameters 
that could be removed from the model without signicantly inu-  

encing the error. Finally, we run the optimization process again for 
this smaller set of parameters and determined the nal values of 
the parameters. 

First, we optimized the material parameters using all four ex- 
perimental datasets (corresponding to series-1 cycles from the four 
experiments) simultaneously. The optimized parameters for this 

case are reported in Table 1 . The strain rate is considered to be 

4 e − 3 s −1 , following the experiments in [38] , and the increment 
of the stretch imposed during loading is of λ = 1 . 5 e − 4 ; con- 
sequently, t = 0 . 375 s . The t for the stress-stretch response of 
the collagen brils from our proposed model and the experimental 
data are presented in Fig. 2 . The black dots represent the experi- 
mental data from Liu et al. [38] and the dashed orange lines repre- 
sent the values calculated using the constitutive model formulated 
in this work for the optimized parameters summarized in Table 1 . 
We observe from these plots that the optimized set of material 
parameters for the constitutive model leads to a satisfactory t to- 
wards the experimental data for all four experiments ( Fig. 2 a–d)for 
the monotonic, regime I, regime II and post-regime II cases. No- 
tably, not only the t for the rst cycle in each experiment is satis- 
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Fig. 2. Engineering stress-stretch curve of the brils subjected to uniaxial tensile load. The black circles represent the experimental data and the dashed orange line repre- 
sents the results calculated from the constitutive model developed in this work. In this set of plots, the parameters are tted for all regimes simultaneously. a) shows the 
response of the bril subjected to monotonic load with data provided in Fig. 1 in the work [38] . b) shows the response of the bril subjected to 20 cycles of uniaxial load in 
series 1 (only cycles 1, 2, 8 and 20 are plotted) in regime I, following the data provided in Fig. 2 b in the work [38] . c) shows the response of the bril subjected to 10 cycles 
of load in series 1 (only cycles 1, 9 and 10 are plotted) in regime II, following the data provided in Fig. 4 b in the work [38] . b) shows the response of the bril subjected to 
10 cycles of load in series 1 (only cycles 1, 9 and 10 are plotted) in post-regime II, following the data provided in Fig. 5 b in the work [38] . The parameters used to t this 
curve are provided in Table C.1 . 

Fig. 3. Plot of stretch ratio λ vs time (non-dimensional, normalized by 100 t) showing the general applied load in the results. The load is strain-controlled except during 
relaxation. This applied load sequence follows the applied load in the reference experiments by Liu et al. [38] . The load in this plot is shown for cycles in regime II 
( λmax = 1 . 25 ). 
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Fig. 4. Plots of plastic stretch (Fp 11 ) versus time (non-dimensional,normalized by 100t ),which show the evolution of plastic deformation throughout loading.The applied
load follows the general sequence of load: cycle series 1, relaxation, cycle series 2 and overload, as shown in Fig. 3 . The top plot shows the evolution of plastic stretch for 
cycles in regime I, the middle plot shows the evolution of plastic stretch for cycles in regime II and the bottom plot shows the evolution of plastic stretch for cycles in 
post-regime II. 

Fig. 5. Plot of stretch ratio λ vs time (non-dimensional, normalized by 100 t) for an alternative load sequence, with an extra relaxation step compared to the general load 
in Fig. 3 . The load is strain-controlled except during relaxation. The load in this plot is shown for cycles in regime II ( λmax = 1 . 25 ). 

Table 1 
Parameters used to t the experimental data of the uniaxial tension test provided in [38] to the constitutive model developed in this work. Here, 
we t all tests (monotonic, and cycles in series 1 in regime I, II and post-regime II) simultaneously. The bulk modulus is kept at β = 1 e 8 MPa. The 
parameters not specied in this table were assigned to a value of zero. 

Parameters optimized for all experiments 

H 0 b t/τ μv (MPa) μ0 (MPa) 0 (MPa) h E (MPa) 0 a 1 a 2 a 3 a 4 I 0 

1.96e4 8160.0 0.0009 980.0 1740.0 10.0 0 0.0004 1.7344 0.2106 0.4408 -3.3313 0.9993 
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factory, but also the nal cycles in Fig. 2 b–d are also approximated 
well, especially considering the character of the response at that 
state, given that viscoelasticity dominates and leads to the hystere- 
sis loop. On the other hand, yielding is not observed during the - 

nal cycles. We note that the value of the Young’s modulus of the 

brils calculated from the shear moduli in the constitutive model 
(assuming incompressibility, E ≈ 2 ∗(μv + μ0 )(1 + 0 . 5) ≈ 8 GPa) is 

consistent with the data [38] and ranges reported in the litera- 
ture [9] . However, we observe that, at the same time, the yielding 

stress parameter 0 is low relative to the maximum stress in all 
the regimes, indicating that yielding starts early on and the elas- 
tic deformation happens for only a small range of stretch values 
during loading in the rst cycle. This observation does not apply 

for later cycles because as the yield surface evolves, following the 

hardening laws.
Nevertheless,the data of each experiment is collected from

different bril specimens, and we expect to encounter variability 
in some properties between brils such as the cross-link density 
and defect distribution [25,53] , that can inuence the deforma- 
tion mechanisms described and eventually the optimized model 
parameters. For this reason, we also tted each of the experiments 
individually and report the results in Appendix C . The optimized 

parameters in this case are outlined in Table C.1 and the stress- 
stretch plots are shown in Fig. C.1 . The t is slightly improved for 
this case, but considering that we have four distinct sets of param- 
eters, this approach is not useful for predictive calculations. Thus, 
we will  proceed with the former option of calibrating all available 
data concurrently, leading to one set of parameters, which as dis- 
cussed previously yielded acceptable results. We note that as we 

optimize the model parameters and calibrate on the adjusted data 
of all experiments, it is straightforward to obtain the set of param- 
eters that correspond to the original experimental curves simply by 

normalizing the stress-valued parameters of the model according 
to the adjusted ber cross-sectional areas (as reported in Fig. 1 ).

4.2. Physiological loading and overload response 

Overload of load-bearing orthopedic soft tissues such as ten- 
don and ligament, commonly results from athletic activity [54,55] , 
but the load sharing, dissipation and deformation, at different lev- 
els of hierarchy below the tissue level is not as transparent. Prob- 
ing the tissue to cyclic loading does not directly provide informa- 
tion about deformation mechanisms and damage at lower scales. 
In this section we probe the effect of overload on the deformation 
mechanisms of collagen brils. Here, we dene overload as an in- 

creased applied stretch following physiological activity (cyclic load- 
ing at a signicantly lower maximum applied stretch). The consti- 
tutive model formulated in Section 3 allows us to assess results 
on the inelastic deformation for the overload response of colla- 
gen brils subjected to cyclic load in the three different regimes 
of deformation (regime I, II and post-regime II as described in 

Section 2 ). We discuss the contribution of plasticity and viscoelas- 
ticity to the inelastic deformation of brils, how plastic deforma- 
tion evolves throughout the load cycles and how this evolution 
changes in different regimes. Additionally, we discuss the general 
aspects of overload of the brils, and how the overload response is 

inuenced by the prior sequence of load applied. 
Following the experiment in Liu et al. [38] , we apply uniaxial 

tension in the axial direction of the brils. In these results, we 

take the direction e 1 to coincide with the axial direction of the 

brils ( e 1 ≡ a 0 ). We impose the load by controlling the component 
of the deformation gradient in the direction e 1  e 1 , i.e. F 11 := λ. 
The general form of the sequence of load cycles applied, as inves- 
tigated in this section, is shown in Fig. 3 , following the nomen- 
clature introduced by Liu et al. [38] . The rst sequence of loading 

cycles is denoted here as series 1. For the rst cycle in series 1, we 

start from the undeformed conguration F = I , and incrementally 
increase λ to a maximum λmax , then we decrease λ until we reach 
a stress-free conguration ( S 11 = 0 ). We repeat this procedure un- 
til we complete 10 cycles. After 10 cycles in series 1, we start the 

relaxation process, in which we switch to a load-controlled setup. 
We keep the material at a stress-free state and calculate the cor- 
responding stretch. As we impose a stress-free state, the stretch λ
starts decreasing due to viscoelastic recovery, until we eventually 
no longer observe a signicant change in the stretch value. Fol- 
lowing, we impose the next sequence of loading cycles, referred 
to as series 2, which consists of 10 strain-controlled loading cycles 
applied similar to those in series 1. After the 10 cycles in series 
2, we apply the so-called overload by incrementally increasing the 

stretch until we reach λ = 1 . 4 . The maximum stretch in series 1 

and 2 is λmax = 1 . 10 for cycles in regime I, λmax = 1 . 25 in regime 
II and λmax = 1.30 in post-regime II. This choice of the overload
stretch value λ = 1 . 4 is just taken to recapitulate an acute loading 

that follows cyclic loading activity that the tissue would experience 
(e.g. tendon or ligament). 

We impose the general loading sequence showcased in 

Fig. 3 for all the three regimes by controlling the maximum stretch 
in the cycles ( λmax ), and use the optimized model parameters (out- 
lined in Table 1 ). We note that the relaxation time (or time to 

equilibration) following the series 1 cycles is different depending 
on the regime of loading that we are probing (for regime I, II and 

post-regime II). In Fig. 4 , we plot the F p 
11 component of the plastic 

stretch throughout the loading. The model predicts that the plas- 
tic stretch initially increases during the rst loading cycle of series 
1, and does not evolve signicantly up until the overload. Similar 
observations hold for regime II and post-regime II, but for these 
regimes, slightly larger values of plastic stretch are reached prior 
to the overload. We note that for post-regime II, there is a step- 
type response for the plastic stretch in the rst cycle of series 1 

and 2. This happens because kinematic hardening (controlled by 

parameters b, H 0 , k L , k E and k P ) shifts the yield surface of the ma- 
terial signicantly and, during reverse loading, the material starts 
yielding while it is still being unloaded. 

During cycles in series 1 and 2, the amount of plastic deforma- 
tion during loading is higher if we cycle in higher regimes, as one 

would expect. For instance, F p 
11 ≈ 1 . 006 after loading the rst cycle 

for regime I, F p 
11 ≈ 1 . 012 after loading the rst cycle for regime II, 

and F p 
11 ≈ 1 . 015 for post-regime II, as can be seen in Fig. 4 . As se- 

ries 1 loading is identical to the loading from Fig. 2 for all regimes 
equivalently, we observe that the apparent inelastic stretch (vis- 
coelastic and plastic) observed at the end of those experiments is 

signicantly larger compared to just the plastic stretch F p 
11 , high- 

lighting the signicance of the viscoelastic response. Notably, in 

Fig. 2 we observe an inelastic stretch, after the rst cycle, of ap- 
proximately 1.02 for regime I, 1.08 for regime II and 1.1 in post- 
regime II. This higher inelastic strain at higher levels of deforma- 
tion is consistent with observations that molecular sliding occurs 
more signicantly in regime II and post-regime II, and mostly in 

the rst cycle of loading [38,56] . In contrast, in regime I, most of 
the deformation in the initial cycle of loading is due to the uncoil- 
ing of tropocollagen molecules [16] , showing low levels of molec- 
ular sliding. 

It is interesting that, overload leads to lower levels of plastic 
deformation as the brils were exposed to a higher stretch level 
during cyclic loading in series 1 and 2. For instance, after over- 
load up to λ= 1.4, the plastic stretch is F p 

11 ≈ 1 . 0225 for regime I, 
F p 
11 ≈ 1 . 0217 for regime II and F p 

11 ≈ 1 . 0214 in post-regime II. We 

postulate that this is the effect of the inelastic strains due to vis- 
coelasticity, which we have already shown are not negligible and 

are increasing as higher stretch levels are obtained during cyclic 
loading in series 1 and 2. To verify this, we modify our cyclic load 

prole and introduce a relaxation step after series 2 (the load pro- 
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Fig. 6. Stress-stretch curve for a bril subjected to cycles in regime II following a) the general sequence of load (described in Fig. 3 ) and b) an alternative sequence of load 
with an extra relaxation step which follows series 2 (described in Fig. 5 ). 

Fig. 7. Overload response to the general loading ( Fig. 3 ) for stretch up to λ = 1 . 4 . a) Shows a stress-stretch plot of the overload curves for brils cycled at different regimes 
and for monotonic load. The stress at λ = 1 . 4 for each curve is: monotonic, regime I (925.3MPa), regime II, and post-regime II. b) Shows the evolution of the plastic stretch 
in the brils direction for each curve in (a). The plastic stretch at λ = 1 . 4 for each curve is: monotonic, regime I, regime II, and post-regime II. 

le is described in Fig. 5 ). From that, we can anticipate that re- 
laxation will  inuence the overload response by diminishing the 

viscoelastic contributions to the inelastic stretch. To observe this 

inuence more clearly, we plot in Fig. 6 a the stress-stretch re- 
sponse including the overload curve for a bril subjected to the 

general loading (described in Fig. 3 ), and in Fig. 6 b, the stress- 
stretch response including the overload curve for a bril subjected 
to the alternative loading with an extra relaxation step (described 
in Fig. 5 ). Both series 1 and 2 load cycles are in regime II for the 

general loading and the alternative loading prole. We note that 
the overload response following immediately series 2 cycles is dif- 
ferent than the overload response after relaxation, not only in the 

tangent modulus, here dened as the slope of the stress-stretch 
ratio curve, but also in the nal stress at λ = 1 . 4 ( P 11 ≈ 900 MPa 

in Fig. 6 a and P 11 ≈ 950 MPa in Fig. 6 b). This veries that the vis- 
coelastic contribution of the inelastic stretch has a signicant effect 
on various aspects of the material response, which are eventually 
eliminated through additional relaxation. When the value of plastic 
deformation after the cyclic loading is low, the overload curve for 
the material after relaxation is very close to the initial monotonic 
response in Fig. 2 a. 

In Fig. 7 a we plot only the stress-stretch curve for the overload 
part of the loading, for monotonic loading and the overload curves 
for the general loading (see Fig. 3 ) for cycles in each regime (con- 
sistent with the loading in Fig. 6 a). In Fig. 7 b, we plot the plastic 
stretch versus the applied stretch for just the overload portion of 
the loading in Fig. 7 a. 

We can observe that series 1 and 2 cycling in different stretch 
regimes inuence substantially the overload response and the ac- 
cumulation of plastic deformations. From Fig. 7 a, we note that if 

we cycle the material in regimes of higher deformations, such as 
in post-regime II, the nal stress values in the material will  be 

lower for the maximum overload stretch of λ = 1 . 4 . And, equiv- 
alently, from Fig. 7 b, that the nal values of plastic stretch in 

the material will  be lower for the maximum overload stretch of 
λ = 1 . 4 . 

In what follows, we analyze the overload response for the al- 
ternative applied loading (see Fig. 5 ). In Fig. 8 a we plot only the 

stress-stretch curve for the overload part of the loading, for mono- 
tonic loading and the overload curves for the alternative loading 

(consistent with the loading in Fig. 6 b). In Fig. 7 b, we plot the plas- 
tic stretch-applied stretch curve for the overload curves in Fig. 7 a. 
By comparing the plots in Fig. 7 to the plots in Fig. 8 , we note 

that the trend in the overload response in the material changes as 
we add an additional relaxation step before overload. In Fig. 8 a, 
we observe that the nal values of stress are very close for all 
curves, with cycles in higher regimes yielding slightly higher stress 
values at λ = 1 . 4 . And, in Fig. 8 b, we observe that the nal val- 
ues of plastic stretch are very close for all curves, with cycles in 

higher regimes also yielding slightly higher plastic stretch values 
at λ = 1 . 4 . 

In the work by Liu et al. [38] , they pointed out that, because 
signicant molecular sliding causes inelastic deformation in the 

brils, cycling in higher strains improves some mechanical prop- 
erties in the brils such as the tensile strength and toughness, as 
it increases the stiffness of the stress-stretch curve in regime II, 
ie. E 2 . Given that, some questions that arise from the analysis of 
the experimental data on the cyclic response of collagen brils re- 
ported in their work are: Is all the inelastic strain observed in the 

brils coming only from viscoelastic deformations? If mechanisms 
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Fig. 8. Overload response to the alternative loading ( Fig. 3 ) for stretch up to λ = 1 . 4 . a)Shows a stress-stretch plot of the overload curves for brils cycled at different regimes 
and for monotonic load. The stress at λ = 1 . 4 for each curve is: monotonic, regime I, regime II, and post-regime II. b) Shows the evolution of the plastic stretch in the brils 
direction for each curve in (a). The plastic stretch at λ = 1 . 4 for each curve is: monotonic, regime I, regime II, and post-regime II. 

of plastic deformation are also present, are they inuenced by the 

amount of viscoelastic recoverable deformation? 
As they suggest, after relaxation, the majority of the inelastic 

deformation is recovered. They imply that the hydrogen bonds bro- 
ken during the initial stage of the deformation of the brils (un- 
coiling) are partly recovered. It has to be noted that their experi- 
ment does not focus on the extent of that recovery, as the plastic 
strains at the equilibrated response are not clearly reported. How- 
ever, it is evident from the experimental data that not all of the 

inelastic strain is recovered after some relaxation time. That sug- 
gests that plastic deformation is present. In fact, from the results 
presented in our work, and more specically in Fig. 4 , we observe 
that not only the total inelastic deformation of the brils is more 

pronounced in the rst cycle of loading and in regime II and post- 
regime II, but the plastic deformation has also higher values in the 

rst loading cycle of series 1 and for cycles at higher strain lev- 
els. In addition to these remarks, the results we present in this 

paper show that the amount of viscoelastic deformation controls 
the amount of plasticity in the material. If the material undergoes 
signicant viscoelastic deformation, the plastic deformation is ex- 
pected to be smaller when the material is not allowed to relax. 
In this case, the stress values are also expected to be lower. We 

note that the calibration of the model parameters resulting from 

the optimization procedure suggested here might not be unique, 
which we further discuss. 

These observations indicate that cycling at higher stretch levels 
immediately before overload can reduce the amount of plastic de- 
formation as well as the stress levels by the end of the overload 
step. This interplay of repeated loading, relaxation, viscoelasticity 
and plasticity, can have a signicant effect on suggesting loading 

proles for exercise-based treatments for tendinitis, as one might 
wish to maximize loading while minimizing permanent deforma- 
tion mechanisms. 

In what concerns the total amount of plastic deformation in- 

duced in the material after the cyclic load, we observed that for 
regime I the plastic stretch calculated from the constitutive model 
is in line with the plastic stretch in [38] . For regime II and post- 
regime II, the amount of plastic deformation from the constitu- 
tive model is underestimated compared to the data in [38] . We 

have to note, that the referenced experimental work focused on 

the inelastic strains at the end of each cycle, and did not pro- 
vide clear data on the plastic strain upon viscoelastic equilibration 
upon unloading as that was not the focus of the study. Some data 
was provided upon the end of cycling, as stretch decreased while 

brils were stress–free, but it was not clear whether those were 

equilibrated stretch values, that could conrm the plastic strains. 
Nonetheless, it was not possible to uniquely determine plastic pa- 

rameters (yield stress, and constants in the kinematic and isotropic 
hardening models) for this constitutive model with great con- 
dence given the experimental data provided. In fact, the data ts 

well when hardening is introduced to the plastic evolution law, 
however, we observed that the curve ts equally well for differ- 
ent ratios of kinematic and isotropic hardening variables. And even 
though these different sets of parameters yield similar stretch- 
stress curves, the nal amount of plastic stretch varies signicantly. 

This challenge of determining the parameters in the plasticity 
model results from the fact that the experimental loading pro- 
les are complex and involve many consecutive cycles of loading, 
which are very helpful in determining the viscoelastic part of the 

response. Additionally, it stems from the fact that the specic se- 
ries of experiments were not designed to probe accurately the vis- 
coelastic relaxation upon removal of the applied loads. Given the 

importance of further exploring the effects of plasticity and the 

dissipation of energy in collagen brils, we suggest experimen- 
tal studies focusing on the determination of accumulation of plas- 
tic deformations without the consideration of complex cycling and 

resting loading proles, such as plots of one individual cycle fol- 
lowed by relaxation and multiple experiments of the same cate- 
gory (cycles within the same regime) to quantify the uncertainty 
by means of parameter inference. We additionally suggest experi- 
ments be performed at different strain rates to investigate the rate 

dependence of the elastoplastic deformation. 

5. Conclusion 

In this work, we develop a constitutive model for collagen b- 
rils that can recapitulate the complex response to cyclic load, con- 
sidering the combined effect of viscoelastic and plastic deforma- 
tion mechanisms. The response of collagen brils to cyclic load 

has not been explored extensively, however, this type of loading is 

prominent in several biological tissues that provide a load-bearing 
function and are subject to damage accumulation and failure. The 

suggested viscoelastic-plastic model uses the additive decompo- 
sition of the equilibrium (elastic) and the non-equilibrium (vis- 
coelastic) strain-energy density functions to dictate the elastic and 

the viscous deformation of the material. The plastic deformation is 

accounted through plastic evolution laws and includes the combi- 
nation of isotropic and kinematic hardening models. The model al- 
lows the continuous observation of the parameters associated with 

the elastic, viscous and plastic deformation mechanisms that allow 

providing more insight towards understanding the response of col- 
lagen brils including their capacity to dissipate energy. 

We optimize the parameters of our model to t the data of 
four uniaxial tension tests provided by Liu et al. [38] , which con- 

87 



F.F. Fontenele and N. Bouklas Acta Biomaterialia 163 (2023) 78–90 

sists of one stress-stretch plot for monotonic load, and three other 
stress-stretch plots for cyclic loading at different stretch levels. 
Even though we expect signicant variability in the mechanical 
properties of different specimen of collagen brils, through an op- 
timization procedure we were able to t the the monotonic and 

cyclic experiments at all regimes simultaneously, and the results 
are reported in the results and discussion section. Utilizing the op- 
timized constitutive model parameters, we studied the competi- 
tion of viscoelastic and plastic deformation throughout cycling at 
different regimes, as well as following an overload. We note that 
the plastic deformation varies throughout cycles and that relax- 
ation following cyclic loading affects how the material will  respond 
to overload. We found that, when the material is allowed to re- 
lax prior to overload, it reaches higher values of stress and plastic 
stretch for the same maximum stretch imposed during the over- 
load, implying that allowing for relaxation will likely lead to higher
accumulated plastic deformations. On the other hand, when the 

material is subjected to cyclic load immediately before the over- 
load, the amount of plastic deformation induced by overload is 

lower. 
The proposed model allows us to interpret experimental results, 

and provides further insight on the rate dependent response of 
collagen brils. But additionally, forms the fundamental building 

block on which we plan to develop a truly multiscale constitutive 
model for tendon that will  incorporate plasticity and viscoelasticity 
towards eventually studying the damage cascade that spans a hier- 
archy of features in tendon, and leads to macroscopic phenomena 
[57] such as kinking, collagen ber rupture and ultimate failure. 
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Appendix A. Stress calculations

In this Appendix, we detail the stress formulations following 

the strain-energy density functions specied in Section 3 . We use 

these expressions in the optimization algorithm to nd the model 
parameters. 

First, we calculate the symmetric Piola-Kirchhoff stress for the 

elastic deformations using (9) in (7) , which yields 

S e = μ0 f 
’ ( I 4 ) ( I 1 − 3 − 2 ln J ) a 0  a 0 + μ0 f ( I 4 ) 


I − C e −1 + βJ ( J − 1 ) C e −1 , 

(A.1) 

where 

f ’ ( I 4 ) = a 1 a 2 sech 
2 [ a2 ( I 4 − 1 ) ] + a 3 a 4 exp [ a 4 ( I 4 − I 0 ) ] . (A.2) 

Next, we calculate the second Piola-Kirchhoff stress for the vis- 
coelastic deformations, i.e. the overstress, from (11) in (7) 

S v = J −2 /  3 μv 

 
A −

1 

3 


A : C 

e 


C 
e −1 
 
. (A.3) 

Note that we also make use of the denition of the elastic Green 
strain tensor in (4) . 

Now, making use of the assumption of the additive decomposi- 
tion of the strain-energy density function in (6) , we can nd that 
the total stress in the brils can be denoted as 

S = S e + S v . (A.4) 

Nevertheless, the stress data provided by Liu et al. [38] is given 
in terms of the Engineering stress (applied force divided by the ini-  

tial area of the specimen), which we denote as P . For this reason, 
we calculate the rst Piola-Kirchoff stress in the reference cong- 
uration 0 . In the intermediate conguration i and in the refer- 
ence conguration 0 , the rst Piola-Kirchoff stress is calculated 
from 

P i = F 
e S , P = P i F 

−T 
p , (A.5) 

respectively. 

Appendix B. Numerical integration 

In this section we describe the numerical integration of the 

evolution of the internal variables representing the plastic and vis- 
coelastic deformations of the material. We use an unconditionally 
stable implicit backward-Euler integration scheme. 

First, following [50] , we denote the numerical integration of the 

back-stress as 

βn +1 = βn T 
 ̂  β( n +1 , βn +1 , p 

n +1 ) , (B.1) 

where is the incremental elastic rotation dened as 

= R 
e 
n +1 R 

e T 
n , (B.2) 

and =  ̇t is the increment of the plastic parameter. The sub- 
script n + 1 indicates that the quantity is being calculated at the 

current time step while n refers to the previous time step. 
Second, we nd an update for the elastic deformation gradient 

at the current time step. We dene an elastic deformation gradient 
trial as F e tr 

n +1 = F n +1 (F 
p 
n ) −1 . Then, we use the ow  rule in (14) to 

nd the update 

F 
e 
n +1 = F 

e tr 
n +1 


I −M  

p 
i 


. (B.3) 

We nally get to solve a system of three equations using Newton- 
Raphson integration method. The three equations consist of the 

elastic deformation gradient update, yield criterion function and 

the back-stress update, as follows 
⎧ 
⎨ 

⎩ 

Eq 1: F 
e 
n +1 − F e tr n +1 


I −M  

p 
i 


= 0 

Eq 2: ( F 
e 
n +1 , p 

n +1 , βn+1) = 0 

Eq 3: βn +1 −βn T 
−


H n +1 M  

p 
i − b βn +1 


= 0 , 

(B.4) 

respectively. We note that the accumulated plastic strain at the 

current time step is calculated as p 
n +1 = p 

n + , setting p 
t=0 = 0 . 

Lastly, we outline the integration of the internal variable A rep- 
resenting the viscoelastic mechanism [45] 

A n +1 = 
1 

1 + t/ τ


A n + 

t 
τ

C 
e −1 
n +1 


. (B.5) 

Appendix C. Alternate material parameter estimation 

procedure 

Given the variability of the properties of specimen brils, in this 

section we present the results for the constitutive model with pa- 
rameters optimized for each set of data individually. The optimized 

parameters are outlined in Table C.1 . 
In Fig. C.1 , we show the t for plots optimized individually. In 

these plots, we observe that we can better capture the later curves 
in the series of cycles, when compared to the plots optimized si- 
multaneously ( Fig. 2 ). 
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Table C.1 
Parameters used to t the experimental data of the uniaxial tension test provided in [38] to the constitutive model developed in this work. Here, we 
t each test (monotonic, cycle in regime I, II and post-regime II) one by one, allowing the parameters to vary from one test to another. The parameters 
used to t the data from Figs. 2 and 3 representing regime I are the same. The value of β is kept at β = 1 e 8 MPa. The parameters not specied in this 
table were assigned to a value of zero. 

Monotonic 

H 0 b t/τ μv (MPa) μ0 (MPa) 0 (MPa) h E (MPa) 0 a 1 a 2 a 3 a 4 I 0 
5.96e4 8.33e4 0.0010 960.0 1730.0 25.9 11.5 3.87e-4 1.7266 0.2089 0.3705 -2.7735 0.9441 

Regime I (Fig 2 and 3) 

H 0 b t/τ μv (MPa) μ0 (MPa) 0 (MPa) h E (MPa) 0 a 1 a 2 a 3 a 4 I 0 
1.02e4 1.34e4 0.0018 1130.0 1860.0 37.8 28.2 2.31e-4 1.2239 0.4129 0.4835 -1.8466 0.9144 

Regime II 

H 0 b t/τ μv (MPa) μ0 (MPa) 0 (MPa) h E (MPa) 0 a 1 a 2 a 3 a 4 I 0 
2.17e5 6.72e4 0.0012 930.0 890.0 150.0 130.0 6.33e-4 0.0106 0.4846 0.4161 0.1964 0.1411 

Post-Regime II 

H 0 b t/τ μv (MPa) μ0 (MPa) 0 (MPa) h E (MPa) 0 a 1 a 2 a 3 a 4 I 0 
5.02e4 8510.0 8.52e-4 980.0 1860.0 21.7 9.30 3.46e-4 1.5253 0.2033 0.4423 -3.9665 1.0285 

Fig. C.1. Stress-stretch curve of the brils subjected to uniaxial tensile load. The black circles represent the experimental data and the dashed orange line represents the 
results calculated from the constitutive model developed in this work. In this set of plots each regime is tted individually. a) shows the response of the bril subjected to 
monotonic load with data provided in Fig. 1 in the work [38] . b) shows the response of the bril subjected to cyclic load in regime I with data provided in Fig. 2 in the work 
[38] . c) shows the response of the bril subjected to cyclic load in regime II with data provided in Fig. 4 in the work [38] . b) shows the response of the bril subjected to 
cyclic load in post-regime II with data provided in Fig. 5 in the work [38] . The parameters used to t this curve are provided in Table C.1 . 
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