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Abstract

Many organisms actively manipulate the environment in ways that feed back on their
own development, a process referred to as developmental niche construction. Yet,
the role that constructed biotic and abiotic environments play in shaping phenotypic
variation and its evolution is insufficiently understood. Here, we assess whether envi-
ronmental modifications made by developing dung beetles impact the environment-
sensitive expression of secondary sexual traits. Gazelle dung beetles both physically
modify their ontogenetic environment and structure their biotic interactions through
the vertical inheritance of microbial symbionts. By experimentally eliminating (i) phys-
ical environmental modifications and (ii) the vertical inheritance of microbes, we as-
sess the degree to which (sym)biotic and physical environmental modifications shape
the exaggeration of several traits varying in their degree and direction of sexual di-
morphism. We expected the experimental reduction of a larva's ability to shape its
environment to affect trait size and scaling, especially for traits that are sexually di-
morphic and environmentally plastic. We find that compromised developmental niche
construction indeed shapes sexual dimorphism in overall body size and the absolute
sizes of male-limited exaggerated head horns, the strongly sexually dimorphic fore
tibia length and width, as well as the weakly dimorphic elytron length and width. This
suggests that environmental modifications affect sex-specific phenotypic variation
in functional traits. However, most of these effects can be attributed to nutrition-
dependent plasticity in size and non-isometric trait scaling rather than body-size-in-
dependent effects on the developmental regulation of trait size. Our findings suggest
that the reciprocal relationship between developing organisms, their symbionts, and
their environment can have considerable impacts on sexual dimorphism and func-

tional morphology.
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1 | INTRODUCTION

The environmental variation that organisms experience during de-
velopment has major impacts on their phenotypes. Rooted in the
intrinsic context-dependency of development, such environmental
plasticity is ubiquitous and has long been recognized as a major fac-
tor in ecology and evolution (Pfennig, 2021; West-Eberhard, 2003).
However, the role of the organism and its potentially reciprocal in-
teractions with its environment in shaping this dynamic is still poorly
understood (Sultan, 2015). For example, many organisms possess
the capacity to actively manipulate the environment they them-
selves experience—and subsequently respond to—during ontogeny.
These feedbacks can arise, for instance, via physical environmen-
tal manipulations or by biasing the biotic communities organisms
encounter (Gilbert et al., 2015). Such “developmental niche con-
struction” (Stotz, 2017; Uller & Helantera, 2019) alters ontogenetic
environments and has the potential to feed back to the organism's
phenotype if its development is sensitive to the constructed environ-
ment (Clark et al., 2020; Donohue, 2005; Odling-Smee et al., 2013).
Developmental niche construction may thus drive phenotypic vari-
ation in traits that are especially sensitive to environmental condi-
tions, such as secondary sexual traits. Yet, few studies have been
able to examine these conjectures experimentally. Using an experi-
mental manipulation of organisms' ability to shape their physical and
(sym)biotic environment, we assess the degree to which the expres-
sion of secondary sexual traits depends on the interactions between
developing organisms, their symbionts, and their environment.
Sexually dimorphic (or sex-limited) morphological structures, such
as horns, antlers, or ornamental feathers, are often costly in terms
of survival and the energetic expenditure of growing and maintain-
ing them (Grafen, 1990; O'Brien et al., 2019; Rowe & Houle, 1996).
Because environmental quality is a major determinant of the relative
(or marginal) costs of producing a sexual signal, secondary sexual
trait exaggeration is often environmentally plastic (i.e., dependent
on the “phenotypic quality” Zahavi, 1977). For instance, the expres-
sion of morphological traits functioning as ornaments or weapons
in intra- and intersexual competition are often limited to males and
tied to the bearer's nutritional condition or social status (Cotton
et al.,, 2004; Emlen et al., 2012; Pryke & Andersson, 2005; Rohner
& Blanckenhorn, 2018; Ruell et al., 2013). This causes large males to
frequently develop disproportionately larger secondary sexual traits
(hyperallometry), and the degree to which trait size scales with body
size may itself be dependent on environmental quality (“allometric
plasticity” Emlen, 1997b; Rhebergen et al., 2022). If the develop-
ment of secondary sexual traits is more environment-sensitive than
that of others, their relative size may also be particularly dependent
on the way or extent to which organisms actively shape their own
ontogenetic environment. Specifically, if (adaptive) environmental

modifications increase environmental quality and thereby shape
the marginal costs of producing a sexual trait, it may afford other-
wise low-quality individuals to produce a disproportionately large
sexual signal. If so, the interactions between organisms and their
ontogenetic environments would constitute a major determinant of
variation in secondary sexual trait expression. However, the degree
to which secondary sexual traits and their scaling are affected by
these interactions remains unclear, let alone whether they are more
affected than other types of traits. We here start to explore this
relationship in dung beetles.

Onthophagine dung beetles have received considerable at-
tention due to their diversified, condition-dependent, and often
greatly exaggerated secondary sexual traits, such as forelegs
and head and thoracic horns used in male combat or courtship
(Kotiaho, 2002; Moczek & Emlen, 2000; Rohner et al., 2021,
2023). For horns in particular, the roles of environmental condi-
tions—specifically quantity and quality of larval nutrition—in the
determination of size and degree of exaggeration are well under-
stood (Emlen, 1997c; Moczek, 1998). More recently, onthophag-
ine beetles have also attracted further attention following the
discovery of elaborate environment-modifying behaviors (Schwab
et al., 2017): larvae of various species develop in individual un-
derground brood chambers (so-called “brood balls”) constructed
by the mother (Hanski & Cambefort, 1991). Upon hatching, lar-
vae physically modify their brood ball by continuously feeding
on its content, excreting back into their brood ball, and re-eat-
ing the increasingly modified material (Estes et al., 2013; Schwab
et al.,, 2016). Preventing larvae from manipulating their brood
ball leads to smaller adult size, extended development time, and
reduced reproductive output as adult (Schwab et al., 2016), sug-
gesting that the environmental modifications made by the larva
enhance environmental quality. In addition to these physical
modifications, dung beetles also shape their biotic environment.
During oviposition, mothers place each egg onto a small amount
of their own excrement, the so-called “pedestal,” representing a
microbial inoculate that is consumed by the larva upon hatching.
In so doing, the mother's gut microbiome is transmitted vertically
to her offspring (Estes et al., 2013). As the developing larva con-
tinually defecates, works its own excrement into the brood ball,
and then re-eats the resulting composite, the maternally inher-
ited gut microbiome is spread throughout the brood ball (Schwab
et al., 2016, 2017). These vertically transmitted microbial commu-
nities have been shown to be host species and population-specific
(Parker et al., 2020) and to yield deleterious fitness consequences
if withheld, including a reduction in adult size (Parker et al., 2019,
2021; Parker & Moczek, 2020; Schwab et al., 2016). Physical
and (microbiome-mediated) biotic environmental modifications

thus seem to play major roles in determining the nutritional
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environment, the resulting growth potential of a larva, and the size
at adult eclosion, which in turn corresponds to individual quality
or condition (Bonduriansky, 2007a; Emlen et al., 2012; Rohner &
Blanckenhorn, 2018). However, whether these dynamics generally
affect secondary sexual trait exaggeration remains unclear.
Because dung beetles both possess condition-sensitive sec-
ondary sexual trait development and larvae modify the develop-
mental environment to which they themselves respond, this raises
the possibility that organism-driven environmental modifications
may also shape variation in secondary sexual trait expression.
Here, we combine a common garden design with an experimen-
tal elimination of (sym)biotic and physical environmental modi-
fications to test whether the presence of a maternally inherited
microbiome and a larva's ability to physically manipulate its en-
vironment shape secondary sexual trait expression in the gazelle
dung beetle Digitonthophagus gazella (Fabricius, 1787; Figure 1).
We do so by focusing on several traits that vary in the degree
and direction of sex-specific exaggeration: (i) exaggerated male
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head horns, a strongly nutritionally plastic weapon only present in
males (Casasa et al., 2020); (ii) the length of the fore tibia, which is
exaggerated in males and used during mating (Rohner et al., 2021);
(iii) the width of the fore tibia, which is exaggerated in females and
used to construct underground tunnels (Linz et al., 2019; Macagno
et al., 2016); and (iv) the length and width of the elytra (i.e., the
modified first pair of wings), which shows comparatively minor
differences in relative size and shape across the sexes (Figure 1). If
environmental modifications play major roles in the development
of secondary sexual trait expression, we expect individuals able
to construct their ontogenetic environment to develop dispropor-
tionately large secondary sexual traits relative to their body size
(anindex of individual condition or quality). We predict further that
this effect should be strongest for the most exaggerated and nu-
tritionally plastic traits (i.e., the male head horns, followed by the
length of the male fore tibia, and the width of the female tibia), but
absent for traits with a minimal degree of sexual dimorphism and
exaggeration (elytron length and width). We find that ontogenetic

(a)

(b)

FIGURE 1 Sexually dimorphic morphology in Digitonthophagus gazella. Panels (a) and (b) show the overall morphology of females and
males, respectively. While females have relatively stout, short, and more heavily toothed fore tibiae (c), male fore tibiae are strongly
elongated, much narrower, and possess smaller teeth (d). Head horns (e) are used in male-male combat and are only expressed in males.
Scale bar=1mm. The position of the second tibial tooth is indicated with an asterisk.
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environmental modifications indeed shape secondary sexual trait
expression and do so variably for different trait classes. Yet, we
also show that most of this impact can be explained by allome-
try, that is, effects on overall body size coupled with trait-specific
non-isometric scaling. However, we posit that regardless of the
precise mechanisms, developmental niche construction-mediated
shifts in the absolute size of secondary sexual traits are neverthe-
less expected to have functional consequences in this and likely

many other species.

2 | MATERIALS AND METHODS

2.1 | General laboratory rearing and experimental
manipulation

Digitonthophagus gazella (Fabricius, 1787) were collected in March
2021 near Pretoria, South Africa, and sent to Indiana University,
Bloomington, USA, where they were kept under standard labo-
ratory conditions. To obtain laboratory-reared F1 individuals,
we repeatedly transferred 4-6 wild-caught (FO) females from
the laboratory colony into rectangular oviposition containers
(27x17x28cm) filled with a sterilized sand-soil mixture and
topped off with ca. 800g of defrosted cow dung. After 5days,
brood balls were sifted from the soil and kept in plastic containers
filled with soil at a constant 29°C.

Newly emerged F1 offspring were kept in single-sex containers
at 26°C for at least 7 days. Thereafter, 30 half-sib families consisting
of three females (dams) and one male (sire) were housed in separate
containers equipped with soil and defrosted cow dung for at least
4days. Females were then transferred into individual oviposition
containers (27x8x8cm) filled with a sterilized sand-soil mixture
and 200g of defrosted cow dung (see Rohner & Moczek, 2020) and
kept at 29°C. After 5days, all the brood balls produced were col-
lected and opened. F2 offspring were reared in standardized, artifi-
cial brood balls as described previously (Shafiei et al., 2001). In brief,
we opened all natural brood balls and transferred eggs individually
into the wells of standard 12-well tissue culture plates. Each well
was provisioned with 2.9 (+0.1) grams of defrosted, thoroughly ho-
mogenized cow dung. We only used dung from hay-fed cows, which
represents a more challenging diet compared to the dung from
grass-fed cows (Rohner & Moczek, 2021). Plates were kept at 29°C
and checked every 24 h for hatching. All F2 were subjected to two
fully factorial manipulations of a larva's ability to shape its biotic and

physical ontogenetic environment:

2.1.1 | Microbiome manipulation

To manipulate the vertical transmission of microbial symbionts, we
surface sterilized half of all eggs with 200uL of a 1% bleach and
0.1% Triton-X 100 solution, followed by two rinses with deionized
water (see Macagno & Moczek, 2022; Parker et al., 2019; Schwab

et al., 2016). Eggs in the control treatment were rinsed with deion-
ized water only. Eggs were then placed in an artificial, standardized
brood ball, either with (“intact microbiome transmission”) or with-
out (“disrupted microbiome transmission”) the extracted maternal
pedestal.

2.1.2 | Manipulation of larval
environment-modifying behavior

The capacity of larvae to manipulate their brood ball was experimen-
tally hampered by relocating individuals into a new artificial brood
ball 4, 7, 10, and 13days after eggs were initially transferred using
featherweight forceps (see Dury et al., 2020; Schwab et al., 2017).
This procedure exposes the developing larvae repeatedly to new,
unprocessed cow dung and prevents the accumulation of physical
modifications applied to the brood ball (“disrupted brood ball modi-
fication”; note that Schwab et al., 2017 relocated larvae every 48h
throughout larval development, starting 24 h after hatching; given
our sample size of 1228 individuals, this procedure was logisti-
cally unfeasible). The respective ages at which brood balls were ex-
changed were chosen to cover the developmental time where larvae
grow most (Rohner & Moczek, 2021). Our approach also ensured
that each individual was exposed to the same number of manipula-
tions, irrespective of development time. In the control treatment,
larvae were allowed to complete their development in their origi-
nal well. To account for the potential stress induced by repeatedly
relocating larvae into new wells, larvae were removed from their
brood ball, held with featherweight forceps for approximately 3s,
and placed back in their original well 4, 7, 10, and 13 days after eggs
were transferred into a new plate (“intact brood ball modification”).

Individuals were checked daily until their emergence as adults.
Once the adult cuticle was fully hardened, individuals were sacri-
ficed and stored in ethanol. We imaged the adult thorax, abdomen,
and foreleg using a Scion camera mounted on a Leica MZ 16 ste-
reomicroscope. We measured pronotum width as an estimate for
body size (see Rohner, 2021), tibia length, as well as elytra length
using the linear distance between defined landmarks using tpsDig2
(Rohlf, 2009; see Figure S1 for the location of landmarks used for
measurements). As a measure of the width of the fore tibia, we mea-
sured the height of the second tibial tooth as indicated in Figure S1.
This tooth is the largest of all four tibial teeth and is much longer
and broader in females compared to males (see Figure 1). Male
head horns were photographed using a Pixelink PL-D797CU-T cam-
era mounted on a Leica MZ 16 stereomicroscope and measured as
the length of the outline between the eye and the tip of the horn
(Rohner et al., 2020; also see Figure S1). Occasionally, prepupae
position themselves in such a way that the development of one of
the horns is impeded during pupal development, leading to charac-
teristic deformations and asymmetries in horn morphology. When
the left and right horns of the same individual differed in length, we
only measured the longer horn. If both horns were damaged or mal-
formed, individuals were excluded from the analysis.
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2.2 | Statistical analysis

To test for effects on secondary sexual trait exaggeration in tibia
and elytron length and width, we fitted log trait size as a function
of log body size, the experimental treatments, sex, and all interac-
tions using the R packages ImerTest (Kuznetsova et al., 2017) and
Ime4 (Bates et al., 2015) in R version 4.2.2 (R Core Team, 2021). Sire,
dam nested within sire, as well as the 12-well plate individuals were
reared in, were added as random effects. Non-significant interac-
tions were removed except for the interactions between the experi-
mental treatments and sex, as these were of a priori interest. We
calculated partial R? values as effect sizes for fixed effects. Partial R?
for main effects was estimated using models excluding interaction
effects. The variances explained by the interactions were estimated
in separate models (see Stoffel et al., 2021). We only included indi-
viduals for which measurements for all traits (apart from male-lim-
ited horns) were available (n=903). To visualize variation in relative
size, we extracted residual trait size from an ordinary linear regres-
sion of log trait size against log body size, combining both sexes and
all treatments in all cases. Residuals were then averaged by sex and
sire and plotted by treatment.

Next, we assessed whether our experimental manipulations af-
fected horn length and its scaling with overall body size. Because
horn length shows a non-linear relationship with body size, we fit-
ted and compared two separate four-parameter log-logistic models
in the R package drc (Ritz et al., 2015). The first model included a
single curve for all individuals (i.e., a common allometry for all treat-
ments), while in the second model we fitted separate curves for all
four treatment combinations. We chose the best-fitting model based
on Akaike's Information Criterion (AIC). In addition, we extracted re-

sidual horn length and fitted it as a function of our experimental
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treatments using sire, dam nested within sire, as well as plate as
random effects. The total sample size for this male-limited trait was
n=453.

3 | RESULTS

3.1 | Bodysize

In agreement with previous studies, we find that body size, as
measured by the width of the pronotum, was reduced when pre-
venting larvae from manipulating their brood ball (;(2(1)=246.49,
p=<.001, partial R%=.23) or when maternal microbes were withheld
(;(2(1):61.64, p=<.001, partial R>=.03; see Figure 2). Preventing
larvae from physically manipulating their environment also reduced
sexual size dimorphism in the adult stage (sex-by-brood ball modifi-
cation interaction: 5 ;,=22.31, p=<.001, partial R*=.01). This was
driven primarily by a stronger reduction in male size in response to

the treatments.

3.2 | Fore tibialength

As expected, males had much longer fore tibiae compared to females
(;(2(1):9537.42, p=<.001, partial R%=.87; see Figure 3; Figure S2).
Absolute tibia length decreased when larvae were limited in their
ability to manipulate their brood ball (;(2(1)= 149.60, p=<.001, partial
R2=.O2) or when maternal microbiota were withheld (;(2(1)=31.18,
p=<.001, partial R?=<.01). The response to the disruption of brood
ball modifications was stronger in males, leading to decreased sex-
ual dimorphism (;(2(1):61.31, p=<.001, partial R?=<.01). However,

-
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indicated the direction and strength of dimorphism (where values larger than O indicate male-biased sexual dimorphism).

fore tibia length shows strong sex-specific deviations from isometry
(allometric slopes in males: 1.46 [1.42, 1.49] 95% confidence limit;
females: 0.83 [0.79, 0.87]). When taking body size into account by
adding log pronotum width as a covariate (including its interaction
with sex), we find that sexual dimorphism in relative tibia length is
unaffected by either treatment (see Table S2). These findings con-
trast to the results of a previous study with a smaller sample size
(control and treatment groups combined: 37 males and 33 females)
that showed strong sex-specific effects of developmental niche
construction on tibia length in a different population of this species
(Schwab et al., 2017). However, a significant main effect of the dis-
ruption of brood ball modification on relative tibia length persisted
(#°y=51.82, p=<.001, partial R?=<.01), indicating that environ-
mental modifications may be involved in the developmental regula-

tion of leg length.

3.3 | Fore tibia width

In contrast to fore tibia length, sexual dimorphism in relative tibia
width was strongly female biased (;(2(1):1617.68, p=<.001, par-
tial R2=.35; Figure 2). Absolute tibia width decreased when larvae
were limited in their ability to physically structure their brood ball
(¥’ y=135.15, p=<.001, partial R*=.09) and when maternal mi-
crobes were removed (7% ;,=36.07, p=<.001, partial R”=.02). The
effect of removing brood ball modifications was stronger in males,
leading to an increase in sexual dimorphism ()(2(1):12.32, p=<.001,
partial R?=<.01). When adding body size as a covariate, the effect
of brood ball modifications on sexual dimorphism became non-
significant, although a weak main effect on relative tibia width

persisted (;°;,=10.01, p=.002, partial R*=<.01). Interestingly, we
find that sexual dimorphism in relative tibia width was reduced when
maternal microbiota were withheld, although this effect was small
(#°y=446, p=.035, partial R?=<.01).

3.4 | Elytronlength

In the control treatment, males had larger elytra compared to fe-
males (see Figure 2). Absolute elytron length decreased consider-
ably when brood ball manipulations were disrupted (;(2(1)=89.32,
p=<.001, partial R?=.12). This effect was stronger in males, lead-
ing to a reversal of sexual dimorphism from male biased (in the
control treatment) to female biased (;(2(1):21.53, p=<.001, partial
R%=.02). Removal of maternal microbiomes also affected elytron
length (;°,,=40.22, p=<.001, partial R”=.02), but this effect did
not differ between the sexes (see Table S1). When taking body size
into account, these microbiome-mediated effects on relative elytron
length disappeared (Table S2). Females generally had longer elytra
relative to body size compared to males in the control treatment,
and this sexual dimorphism increased (i.e., became even more fe-
male biased) when larvae were prevented from manipulating their
brood ball (see Figure S3; sex-by-brood ball modification interaction
1’ y=4-40, p=.036, partial R*=<.01).

3.5 | Elytron width

Females had slightly wider elytra relative to body size compared to
males (% ;,=127.31, p=<.001, partial R?=.05; Figure 3, Figure S2).
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Absolute elytron width was reduced when microbiota were with-
held (;(2(1):22.44, p=<.001, partial R%?=.01) and brood ball ma-
nipulations were curtailed (;(2(1)=96.24, p=<.001, partial R?=.15).
The response to the absence of brood ball manipulations was again
stronger in males, leading to an increase in sexual dimorphism
(#y=7.36, p=.007, partial R”=.01). However, all these effects dis-

appeared when size was accounted for (see Table S2).

3.6 | Malehornlength

Horn length, a sex-limited trait, showed a typical sigmoidal scaling
relationship with body size (see Figure 4). The different environmen-
tal treatments strongly affected absolute horn length (brood ball
modification: 4%, =121.11, p=<.001, partial R?=.23; microbiome
treatment: ;(2(1)=10.48, p=.001, partial R?=.02), but these effects
did not persist when accounting for variation due to overall size. We
did not find any effects of microbiome or brood ball modification
treatments on residual horn length in a mixed model approach (see
Table S3). Similarly, the four-parameter log-logistic model with one

common allometric relationship had a lower AIC (AIC=-475.0) than
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a model that included separate curves for each treatment combina-
tion (AIC=-472.2). Biotic and physical environmental manipulations
thus do not have major effects on relative horn length in this species.

Taken together, limiting a larva's ability to actively shape its bi-
otic and physical environment had significant effects on sexual di-
morphism in absolute trait size. At the same time, we find limited
evidence for a general role of developmental niche construction in
the regulation of sexual dimorphic morphology beyond mere size

effects.

4 | DISCUSSION

Secondary sexual traits are recognized for their often height-
ened sensitivity to environmental conditions (but see
Bonduriansky, 2007b; Eberhard et al., 2018). In organisms that
have the capacity to shape their ontogenetic environment, devel-
opmental niche construction may be especially relevant for sec-
ondary sexual trait formation. Here, we tested whether traits that
vary in the degree and direction of sex-specific exaggeration are

affected—and to what extent—when a larva's ability to construct
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FIGURE 4 Horn length as a function of experimental treatments (averages and corresponding 95% confidence limits; n=453). The
ability of larvae to physically manipulate their brood ball has a large effect on horn length. However, this effect is mediated entirely through
changes in overall body size (pronotum width), and relative (or residual) horn size does not change across treatments.
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its ontogenetic environment is curtailed. We find that preventing
larvae from physically manipulating their brood ball and disrupting
the maternally inherited relationship with microbial communities
negatively affects body size. Similar effects were found for the
absolute size of secondary sexual traits, which often responded
in a sex-specific manner. This led to an increase or decrease in
sexual dimorphism (fore tibia length and width, respectively) and
even a reversal from female biased to male biased (elytron length),
which suggests that developmental niche construction plays di-
verse roles in shaping sexual dimorphism. However, when taking
overall body size and sex-specific non-isometric scaling into ac-
count, many of these effects disappeared or became considerably
weaker. This was especially true for the relative size of male-lim-
ited head horns, the most strongly exaggerated trait, where all
treatment effects were explained by effects on body size. Taken
together, while most effects are driven by responses in size, our
findings indicate that the reciprocal relationship between devel-
oping organisms and their environment shapes sexual dimorphism
and functional morphology in adults with potential consequences

for behavioral ecology and fitness.

4.1 | Developmental niche construction shapes the
nutritional quality of the ontogenetic environment

Animals that have adapted to grass-based diets have evolved spe-
cialized mechanisms to deal with their recalcitrant and fibrous
diets. Cattle, for instance, largely rely on their specialized multi-
chambered guts, the repeated mechanical chewing of their food,
and their symbiotic gut microbiome to digest their challenging
diet (Mackie, 2002; Xu et al., 2021). Dung beetles relying on cow
dung face the additional challenge of feeding on what remains
after a very effective ruminant digests its food. As such, it may
not be surprising that dung beetles evolved a similarly special-
ized feeding ecology. The inheritance of microbial symbionts and
the physical manipulations made to the brood balls are likely the
two most central components. Schwab et al. (2017) showed that
the microbial communities in brood balls that were inhabited by a
larva are able to break down a much greater diversity of carbon
sources, and to a greater degree, than the microbial communities
that exist in a brood ball not modified by a larva. This suggests
that larval niche construction benefits the physiological capacity
of the entire microbiome within the brood ball, which in turn ben-
efits larval growth. Our findings are consistent with this hypoth-
esis, as the experimental reduction of two distinct components of
developmental niche construction generally decreased adult size
in all traits measured. Furthermore, the stronger effect of the re-
moval of physical brood ball modifications on males corresponds
to a stronger dependence on male size on nutritional quantity
(Rohner, 2021). Niche construction thus seems to have major ef-
fects on the nutritional quality of dung, causing a series of nutri-

tionally plastic responses.

4.2 | Developmental niche construction impacts
sexual dimorphism, functional morphology, and
reproductive tactics

Manipulating a developing larva's ability to shape its ontogenetic
environment had strong effects on sexual dimorphism and second-
ary sexual trait exaggeration in the adult. This is best illustrated by
the strong reduction in male horn length when developmental niche
construction is impeded (see Figure 4). In this and many other dung
beetle species, horn length has a bimodal distribution that sepa-
rates horned “major” males that engage in dyadic fights over breed-
ing opportunities from hornless “minor” males that primarily sneak
copulations and invest in post-copulatory competition. Because
horn length and the number of simultaneously competing horn-
less sneaker males are predictors of success (at least in the related
O.taurus and O.acuminatus (Emlen, 1997a; Moczek & Emlen, 2000)),
changes in horn length may alter the social conditions experienced
by both males and females and the relative reproductive success as-
sociated with each tactic. We found that the proportion of “major”
males decreased from 0.92 [0.86, 0.96] (95% binomial confidence
limits calculated with the Wilson method in the R package binom
(Dorai-Raj, 2022)) in the control treatment to 0.85 [0.77, 0.90] when
microbial communities were manipulated, to 0.52 [0.42, 0.62] when
brood ball modifications were disrupted, and to 0.49 [0.39, 0.60]
when both treatments were applied simultaneously. Because de-
velopmental niche construction affects morph frequency, natural
populations experiencing such conditions would be expected to be
subject to an altered behavioral ecology. Similar effects could be
expected for the length of the fore tibia, which is used by a male
to hold onto the female during copulation in this species (Rohner
et al., 2021), and to drum (as part of male courtship display) on fe-
male elytra in others (Beckers et al., 2017; Kotiaho, 2002). Taken to-
gether, the resulting population-wide changes in the absolute size
of functional traits are likely to have major effects on performance,
fitness, and possibly even the intensity and form of selection indi-
viduals experience.

Sexes often differ in their degree of plasticity to environmental
conditions (Rohner et al., 2018; Stillwell et al., 2010). Our find-
ings show that this also includes environmental conditions that
are constructed by the developing larva. This may indicate that
sex-specific responses to the manipulation of a larva's ability to
manipulate its ontogenetic environment may be common. In this
context, the role of host-microbiome relationships in shaping
sexual dimorphism is particularly interesting. In our experiment,
we only manipulated the part of the microbiome that is verti-
cally transmitted from mother to offspring. Although the precise
mechanism and degree of fidelity of transmission remain poorly
understood, this suggests a role of ecological inheritance in shap-
ing heritable differences in secondary trait expression and sexual
dimorphism. Whether this is also the case in natural populations
remains to be investigated. However, at least in managed agricul-

tural settings, these effects are expected because, for instance,
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veterinary antibiotics not only affect the microbiome of cattle but
also that of beetles feeding on the dung of treated cows (Hammer
et al., 2016). Given our findings, such anthropogenic disruptions
of host-microbiome relationships are likely to cause sex-specific
changes in beetle populations with unclear consequences for their
reproductive behavior and ecological function.

4.3 | Developmental niche construction and trait
development

Developmental niche construction may impact development
through indirect plastic responses to constructed environments
or because niche construction behaviors themselves contain
or generate regulatory information (Odling-Smee et al., 2013;
Sultan, 2015). In this study, the effects of niche construction on
secondary sexual trait expression and sexual dimorphism were
overall strong yet nevertheless highly variable across traits. While
this demonstrates that ontogenetic environmental manipula-
tions affect sex-specific morphologies, this does not require en-
vironmental manipulations to play a direct regulatory role. Most
secondary sexual traits show sex-specific responses in absolute
trait size to plastic changes in body size (Eberhard et al., 2018;
Gould, 1966). Effects on sexual dimorphism may thus be driven
by indirect size effects. Indeed, when accounting for the effects
of sex-specific scaling, all treatment effects became much weaker
and partially disappeared. This was especially the case for male
head horns, where the strong treatment effects are entirely ex-
plained by effects on body size (Figure 4). This contrasts with the
findings of previous studies that demonstrate the dependence of
horn allometry on environmental variables. For instance, the horn
allometry of Onthophagus acuminatus is dependent on dung quality
(Emlen, 1997b), and in Onthophagus taurus, horn length allometry
has been shown to vary in response to the type of larval nutri-
tion and temperature (Moczek, 2002; Rohner & Moczek, 2023).
As such, the main effects of developmental niche construction
on secondary sexual trait expression seem to be mainly driven by
trait- and sex specific plastic responses to the constructed nutri-
tional environment.

While most of the niche construction effects documented here
can be explained by effects on body size and sex-specific trait scal-
ing, we also observed several scaling-independent patterns. This
includes significant effects of physical environmental modifica-
tions on the relative length and width of the fore tibia and sexual
dimorphism in elytron length and tibia width. This suggests that
developmental niche construction does have some developmental
effects that go beyond mere effects on overall body size plasticity
and non-isometric scaling. However, while significant, most of these
effects explained comparably small amounts of variation and were
not particularly pronounced in the sex or trait that were more exag-
gerated. We thus find limited evidence for a strong and general role
of ontogenetic environmental modifications in shaping sex-specific

development.
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4.4 | Developmental niche construction and the
cost of secondary sexual trait exaggeration

We predicted strongly exaggerated traits to show the strongest re-
sponses to the presence or absence of ontogenetic environmental
modifications, while we expected little to no effect on weakly sexu-
ally dimorphic traits. As predicted, we found very strong effects for
the male-limited head horns (see above), yet effects on other traits
were mixed. For instance, changes in the length and width of the
weakly dimorphic elytron were similar in magnitude to the changes
in the strongly dimorphic fore tibia. The relationship between pat-
terns of sex-specific selection and responses to the absence of de-
velopmental niche construction may thus be more complex than
expected.

We based our initial hypothesis on the assumption that indi-
viduals adjust trait exaggeration according to environmental qual-
ity, which in turn is shaped by developmental niche construction.
Such condition-dependent signaling evolves due to adaptive plas-
ticity that resolves trade-offs (differential marginal signaling costs
for high- or low-quality individuals) or because signals are intrinsi-
cally unfakeable (i.e., they underlie inescapable constraints; Penn
& Szamado, 2020). If developmental niche construction allows in-
dividuals to attribute more resources to an unfakeable signal, it is
expected to have major effects on trait expression. The develop-
ment of horns is developmentally linked to insulin signaling, which
in turn is dependent on nutritional status and was therefore sug-
gested to represent a physiologically constrained and intrinsically
unfakeable, honest signal (Emlen et al., 2012). However, subsequent
work showed that small individuals can indeed develop exaggerated
horns, for instance, following functional genetic manipulations of
the hedgehog signaling pathway (Kijimoto & Moczek, 2016). These
results suggested that rather than not being able to form exagger-
ated horns, small, low-nutrition males are actively inhibiting their
formation (Rohner et al., 2023). Similarly, the location of the horn
threshold is both environmentally plastic (Moczek, 2002; Rohner
& Moczek, 2023) and diversifies among populations (Macagno
et al., 2021). Horn expression is thus unlikely to be shaped by hard
physiological constraints but is more likely driven by differential
marginal costs. If so, niche construction's role in trait exaggeration
may be more complex. Future work will be necessary to study the
role of developmental niche construction in shaping the fitness con-
sequences of secondary sexual trait development.

5 | CONCLUSIONS

There is a growing appreciation of organisms' abilities to shape
the environmental conditions they experience and respond to
during ontogeny. Yet, how this capacity impacts phenotypic diver-
sity and functional ecology remains contentious. We here show
that developmental niche construction has major sex-specific
effects on phenotypic variation in the size of secondary sexual
traits, including quantitative and qualitative changes in sexual
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dimorphism. However, most of these effects are driven by trait-
and sex-specific plastic responses to the constructed nutritional
environment, and not a direct involvement of niche construction
in the actual developmental regulation of secondary sexual traits.
Nevertheless, niche construction-mediated shifts in the absolute
size of functional traits are likely to have important functional eco-
logical and behavioral consequences if they occur in nature. Taken
together, our findings suggest that the interactions between de-
veloping organisms and their biotic and physical environment can
have major impacts on phenotypic variation, even if driven by in-
direct nutritional effects. Whether this is the case for other taxa
or traits remains to be documented.
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