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Horned beetles have emerged as a powerful study system with
which to investigate the developmental mechanisms underlying
environment-responsive development and its evolution. We
begin by reviewing key advances in our understanding of the
diverse roles played by transcription factors, endocrine
regulators, and signal transduction pathways in the regulation
of horned beetle plasticity. We then explore recent efforts
aimed at understanding how such condition-specific
expression may be regulated in the first place, as well as how
the differential expression of master regulators may instruct
conditional expression of downstream target genes. Here, we
focus on the significance of chromatin remodeling as a powerful
but thus far understudied mechanism able to facilitate trait-,
sex-, and species-specific responses to environmental
conditions.
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Introduction

Developmental plasticity enables organisms to adjust
components of their phenotype in response to changes
in the environment, often in an adaptive manner [1].
Developmental (or phenotypic) plasticity is  tax-
onomically widespread and manifests on every level of
biological organization, from differential gene expression
and hormone physiology to behavior [2]. Further, de-
velopmental plasticity shapes evolutionary trajectories of

Check for

natural populations by buffering organisms against en-
vironmental perturbations, providing important targets
for selection, and biasing phenotypic variation visible to
evolutionary processes [3]. The mechanisms and con-
sequences of plasticity have received particular attention
in insects, including plasticity’s contribution to biodi-
versity (e.g. ants [4]), ecosystem services (e.g. dung
beetles [5,6]), and the impact of agricultural pests (e.g.
aphids [7], planthoppers [8]). Here, we review recent
findings on the mechanisms and evolution of develop-
mental plasticity in horned beetles in the genus Owiho-
phagus, an emerging model system in ecological and
evolutionary developmental biology, and synthesize
with findings in related taxa.

Onthophagus are true dung beetles, that is, both larvae
and adults consume dung as food sources. While
Onthophagus species have radiated onto an amazing di-
versity of dung types across all continents save
Antarctica [9], most species used for research generally
utilize the dung of large herbivorous mammals, and in
particular that of cattle, and are thus easily maintained
and reared in the laboratory [10]. Horned beetles have
attracted the attention of plasticity researchers primarily
because of their pronounced condition-dependent de-
velopment, morphology, and behavior [6]. Onthophagus
reproduces by constructing underground brood balls out
of dung into which females deposit a single egg. Larvae
hatch and sustain their entire growth and subsequent
metamorphosis from resources extracted from feeding
on this brood ball. Because of natural variation in brood
ball size, quality, and ecological circumstances of ovi-
position, eclosing adults exhibit a wide range of body
sizes [5,10,11]. Male adults compete aggressively with
each other over access to females, and in many species,
large males develop exaggerated horns on their head,
thorax, or both, which function as effective weapons in
male combat [12]. Smaller-sized males, however, are
inferior fighters given their size and in many species do
not invest in horns and instead engage primarily in
nonaggressive sneaking behaviors and sperm competi-
tion, including enlarged testes and ecjaculate volumes
[13]. In a subset of species, nutrition-responsive devel-
opment is especially pronounced and has given rise to
alternative major (horned) and munor (hornless) male
morphs so distinct that some have originally been de-
scribed as different species [14]. In partial contrast, fe-
male Onthophagus typically exhibit a similar range of
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adult body sizes yet very rarely develops horns. While
morphological diversity within males is driven by nu-
tritional variation during larval development, sexual di-
morphism is the result of sex-specific development
following XX/XY sex determination [15]. As described
below, however, both forms of conditional development
share important developmental and genetic me-
chanisms.

Diverse developmental mechanisms facilitate
conditional development in horned beetles

A key pathway in coordinating nutrition-dependent growth
across vertebrate and invertebrate taxa is the insulin/IGF
signaling (IIS) pathway. Work across a number of species
also documents the prominent role this pathway plays in
regulating nutritional plasticity in horned beetles, yet at the
same time highlights the evolutionary lability of pathway
components in trait development. For example, RNAi-
mediated downregulation of Forkhead-box O (Foxo), a
transcription factor best known as a growth inhibitor in low-
nutrition conditions, demonstrated FoxoRNAi modestly
increased male horn length in the horn-polyphenic O. #i-
griventris, especially under high-nutrition conditions [16].
Subsequent work in O. faurus (17| and Digitonthophagus ga-
zella [18] also documented an increase in horn length fol-
lowing FoxoRINAI, but did so in low-nutrition males only,
whereas high-nutrition males exhibited a modest horn
length reduction, thereby effectively linearizing the nor-
mally sigmoidal body size-horn length allometry in both
species. In contrast, knockdown of the insulin receptors
InR1 and InR2 separately or in combination failed to affect
horn size in either O. zaurus or D. gazella. Interesting patterns
were also observed for other morphological traits. For ex-
ample, FoxoRNAI increased male copulatory organ size in
O. nmigriventris [16] and D. gazella [18] but decreased it in O.
taurus [17). Likewise, RNAi targeting InR1 and InR2
yielded partly divergent effects on genitalia scaling in O.
taurus and D. gazella [17,18]. Taken together, these results
suggest that while the IIS pathway has maintained a general
function in linking larval nutrition to growth in horned
beetles, different pathway components may diverge rapidly
in their specific function across different body regions and
species. In contrast, the potential functional roles played by
insulin-like peptides (ILPs), the receptor-binding ligands of
the IIS pathway, have yet to be investigated in Onthophagus,
but work emerging in Drosophila indicates that different
ILPs may functionally diverge to differentially regulate
body regions and developmental processes in response to
both nutrition and immune challenges [19,20], indicating a
promising avenue for future research on the regulation and
evolution of plasticity in beetles.

Important additional insights emerged from investiga-
tions of the /Aedgehiog (Hh) signaling pathway [21], another
highly conserved pathway best understood for its role in
patterning anterior/posterior (A/P) polarity of diverse

traits. Work to date has targeted the Hh ligand — a
diffusible morphogen required for activation of the
pathway, Patched (p7c) — the membrane-bound Hh re-
ceptor, and Smoothened (sm0) — a membrane protein
that is bound and sequestered by Ptc until the receptor
instead binds Hh, leaving Smo to activate downstream
intracellular signaling. RNAi phenotypes for these genes
demonstrated on one side that interactions among
pathway members are conserved in O. faurus develop-
ment, including the regulation of A/P polarity in ap-
pendages. However, the same work documented a novel
role of Hh signaling in the regulation of nutrition-re-
sponsive horn formation: inhibition of Hh signaling by
MENA or smo®NA led to development of large horns
even in low-nutrition males, whereas constitutive acti-
vation of the pathway by prR™ eliminated horn for-
mation even in the largest males. Combined, these
findings indicate that at least in O. faurus, Hh signaling
selectively suppresses horn formation in low-nutrition
males only, however, the function of Hh signaling in
other horned beetle taxa remains to be investigated [21].

Similarly significant was the implication of the sex-de-
termination factor doublesex (dsx) in regulating not only
the sex-limited expression of horns, but also their nu-
tritional plasticity [15]: specifically, dsx®N was found to
eliminate both the sex-specificity of horn induction and
the dramatic polyphenism in these horns by simulta-
neously promoting the growth of small horns in females
of all body sizes while inhibiting the growth of ex-
aggerated horns in large males, yielding sexually mono-
morphic individuals regardless of sex and body size. The
resulting sexual monomorphism was mirrored in other
normally dimorphic body regions, including foretibiae
and genitalia, but the effect on allometry was both sur-
prising and unique to horns. These findings have now
been replicated in a second species, D. gazella [22]. Ki-
jimoto et al. [15] also investigated the potential diver-
gence in dsx function across species by performing
additional knockdowns in O. sagittarius, an unusual
species in which females produce exaggerated posterior
head and prothoracic horns, whereas males only develop
a pair of modest, anterior head horns. dsx®™ in female
O. sagittarius reduced prothoracic horn size, induced
ectopic paired anterior head horns, and led to the
striking formation of a branching posterior head horn.
dsx®NM in males promoted growth of both an ectopic
prothoracic horn and induced a branching posterior head
horn, but had no effect on anterior head horns, again
leading to the production of sexually monomorphic in-
dividuals. Combined, these results indicate that rapid
evolution of dsx function in dung beetles underlies the
diversification of morphological development condi-
tional upon sex and nutrition, including the evolution of
both exaggerated polyphenisms and reversed sexual di-
morphism. Recent work now suggests that at least some
of this evolutionary lability may be enabled by DSX
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Molecular mechanisms of conditional development in horned dung beetles. (a) Representative nutritionally plastic and sexually dimorphic horn
phenotypes in three species in the tribe Onthophagini. (b) RNAi phenotypes implicating signaling pathways in the regulation of horn expression: sex
determination — dsx [15,22], insulin (IIS) signaling — Foxo [17], and Hh signaling — smo, ptc [21]. (c) Proposed model for the regulation of nutritionally
plastic and sexually dimorphic development of horns in Onthophagus taurus. Diverse pathways contribute to the nutrition-dependent expression of
alternate male morphs and link the regulation of sex determination to nutritional plasticity. Current data suggest that the Hh signaling pathway
negatively regulates horn growth in low-nutrition males. This process is also potentially regulated by the IIS pathway, which appears to repress horn
growth in low nutrition conditions via activation of the growth inhibitor Foxo. Horn growth under high-nutrition conditions in turn is promoted by the
male-specific isoform of the sex-determination factor dsx, while the female-specific isoform(s) repress horn formation in female O. taurus. Data from
Dsx-binding site analyses and RNA sequencing [24] suggest the possibility that Dsx may negatively regulate smo in head horn tissue from large males
while positively regulating its own locus, suggesting a potential link between these two pathways.

isoform-specific target gene repertoires, which may di-
verge further as a function of trait and likely species
[23-25]. More generally, these results can now be used
to develop models and motivate future investigations
regarding how different regulators of conditional devel-
opment may interact, and how conditional development
may diversify (Figure 1).

Many of the plasticity regulators identified in
Onthophagus have now also been implicated in condition-
dependent development in other insect taxa. For ex-
ample, sex-specific splicing of dsx isoforms has been
found to facilitate sex-specific mandible growth in the
stag beetle, Cyclommatus metallifer [26] and sex-specific
head and thoracic horn growth in the rhinoceros beetle
Trypoxylus dichotomus [27,28]. Aside from IIS signaling
being repeatedly co-opted during the independent
evolution of eusociality in bees, wasps, ants, and ter-
mites — another rich example of polyphenism in insects
[29] — the insulin receptor InR has also been implicated
in the regulation of plasticity of male horns in the rhino
beetle [30]. In addition, early hormone application stu-
dies using the juvenile hormone (JH) analog metho-
prene also supported a role for JH in the regulation of
horn development and plasticity in beetles [31-34], and
more recent work on mandible exaggeration in stag
beetles [26] and Gnrathoceros flour beetles [35] using the

same topical application approach raised the possibility
that JH may promote trait exaggeration more broadly.
However, as discussed in detail in Zera (2007) [36], to-
pical hormone applications are — especially if used as
the sole mode of investigation — prone to generate
misleading outcomes, for instance, through the cross-
stimulation of other pathways due to excessive dosages
[36]. It is worth noting here that methoprene-treated
Onthophagus generally failed to survive high-dosage
treatment and instead nearly invariably died during the
larval-to-pupal molt, consistent with the possibility that
the observed phenotypes may simply reflect artifactual
nontarget outcomes [31-33]. Importantly, no additional
work has been carried out in Onthophagus beetles or other
taxa that would independently support a functional role
of JH in horn polyphenism. Interestingly, this lack of
support parallels the direction of discoveries in other
insect plasticity contexts, including wing polyphenisms
in hemimetabola (solitary/winged gregarious morphs in
crickets [37], winged dispersal morphs in aphids and
planthoppers [8,38]).

Regulation and transduction of condition-
dependent expression

Condition-specific transcriptional regulation is depen-
dent first on regulatory molecule (e.g. transcription
factor) availability in the nuclear environment, as the
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binding of regulatory factors to cofactors and cis-reg-
ulatory elements (CREs) can induce gene expression
change. As highlighted above, many of these genes and
pathways whose expression underlies plasticity in
horned beetle development have now been character-
ized. However, the regulatory mechanisms establishing
such condition-specific expression in the first place are
poorly understood. Likewise, how such conditional ex-
pression — once established — is subsequently trans-
duced across developmental gene networks to generate
alternative phenotypes remains essentially unknown.
Regulatory elements are likely central to these un-
resolved questions [39], as they constitute noncoding
genomic elements that connect molecular networks via
the binding of regulatory factors, which subsequently
induces changes in gene expression. Thus, in addition to
measuring gene expression levels, characterizing the role
of regulatory elements in natural systems will afford a
more mechanistic understanding of the evolution and
development of condition-dependent trait development.

T'wo critical molecular properties that can determine the
function of regulatory elements are their sequence and
accessibility. Regulatory element sequence defines the
binding affinity of different transcription factors to the
locus, but this property is zor condition-dependent as
regulatory element sequence remains constant over an
organism’s lifetime (barring somatic mutation) and

across developmental contexts. Accessibility, on the
other hand, relates the binding capacity of transcription
factors to a regulatory element via differences in chro-
matin conformation, that is, ‘open’ chromatin permits
transcription factor binding, whereas ‘closed’ chromatin
obstructs it. Unlike its nucleotide sequence, the acces-
sibility of a regulatory element is highly context-de-
pendent and may vary over developmental time and
across cell types in response to molecular activities such
as histone modifications by chromatin-modifying en-
zymes or binding of pioneer factors [40]. Thus, reg-
ulatory elements are predicted to play an important role
in the regulation and evolution of developmental plas-
ticity (Figure 2), though their functions in natural sys-
tems are largely undescribed.

Historically, research in these areas in horned beetles
and other nontraditional model systems has been hin-
dered by a lack of high-quality genomic references,
which is essential for linking regulatory element activity
to changes in gene expression. However, recent tech-
nological advances enabling the sequencing and as-
sembly of chromosome-scale genomes are opening new
research avenues for examining regulatory mechanisms
underlying phenotypic plasticity in a wide variety of
organisms. For example, genome-wide measurements of
transcription factor binding and chromatin accessibility
using ChIP-seq [41] and ATAC-seq [42], respectively,
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Model of cis-regulatory control of condition-dependent chromatin accessibility. Variable environmental conditions induce phenotypic responses of
plastic traits via changes in gene expression. These changes in gene expression are controlled in part by differential availability and combinatorial
binding of regulatory factors to CREs, which is dependent on (among others) two molecular properties of the CRE: 1) its sequence and 2) accessibility.
In this model, alternative environmental conditions (green and purple) induce changes in chromatin accessibility of CREs regulating a nearby gene,
altering the profile of transcription factor binding at this locus, and generating downstream transcriptional changes associated with phenotypic
plasticity. High-throughput sequencing assays such as ATAC-seq, which estimates chromatin accessibility and the location of putative CREs at a
genome-wide scale, show great promise for characterizing the cis-regulatory basis for plastic gene regulatory changes in diverse insect systems.
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can quickly estimate the location (and in ATAC-seq,
accessibility) of putative regulatory elements for a cer-
tain tissue. ATAC-seq is an especially attractive option
given its relatively low tissue input amount (~50 000
cells), a consideration particularly relevant for small or
difficult-to-obtain specimens. Multi-omic approaches
(e.g. ATAC- or ChIP-seq paired with RNA-seq) can be
especially powerful for characterizing transcriptional
dynamics in a tissue type, as this combined approach can
quickly profile genome-wide regulatory mechanisms and
expression with little-to-no prior information of the
system. For example, recent work in honey bees has
demonstrated unique regulatory architectures in the
brains of queens, drones, and workers, potentially asso-
ciated with alternative behavioral phenotypes observed
across honey bee sexes and castes [43].

Within horned beetles, early attempts to investigate the
role of histone modifications in nutrition-responsive de-
velopment have detected at least some associations be-
tween chromatin-modifying enzymes and trait plasticity.
For example, Snell-Rood and colleagues [44] reported
that methylation patterns in O. faurus vary with devel-
opmental nutrition at a subset of genomic loci. Further-
more, knockdown of histone deacetylase-3 (HDAC3)
expression via RNAI reduced horn size and altered horn
shape in the same species [45,46], likely due to changes in
downstream regulation of horn network genes. Similarly,
HDAC3RN exaggerated — while HDAC1RN reduced
— nutrition-sensitive mandible formation in Grathoceros
[47]. Overall, these results are concordant with the idea
that divergent regulatory element activity underlies the
development of plastic trait formation, as histone mod-
ifications including methylation and acetylation result in
chromatin configuration changes and by extension, vari-
able accessibility of DNA to transcription factor binding.
Recent work has therefore sought to profile genome-wide
chromatin accessibility patterns in developing beetle
horns and begun to identify distinct regulatory archi-
tectures underlying the modulation of condition-depen-
dent horn phenotypes, including an enrichment of
binding motifs of critical developmental transcription
factors at sex- and nutrition-responsive regulatory ele-
ments. Collectively, these results suggest regulatory ele-
ments play a prominent role in mediating developmental
plasticity and begin to provide a much more mechanistic
understanding of the developmental regulation and di-
versification of plasticity, in ways that may be broadly
applicable to insects and beyond.

Next frontiers: evolution of chromatin
remodeling and conditional gene regulatory
networks (GRNs)

Organisms can be thought of as mosaics of traits that vary
in the degree to which they develop in a condition-de-
pendent manner in response to external and internal

stimuli [48]. For example, as discussed above, horn
shape and size are generally highly sensitive to larval
nutrition and sex in Owthophagus, whereas wing devel-
opment is not and instead varies primarily as a function
of overall body size. This diversity of condition-depen-
dence among traits within an organism reflects adaptive
divergences in response to selection favoring different
sensitivities to developmental and/or environmental
circumstances (e.g. somatic sex, nutrition availability,
infection state, and population density) and the capacity
of plasticity to evolve given a trait’s underlying genetic
architecture [1,3,49]. Even though environment-sensi-
tive development has been studied extensively in di-
verse systems and several key regulators of condition-
dependent trait formation have been identified, our
understanding of the gene regulatory mechanisms un-
derlying condition-sensitive development, as well as
how those may diversify across traits, species, and con-
ditions, remains largely incomplete. Horned beetles are
no exception; many of the regulatory pathways im-
plicated as regulators of nutrition-sensitive development
in Onthophagus have been studied in single traits and
species only, leaving largely unaddressed how these
processes may be adjusted as a function of trait type
within the same individual organism. Similarly, how
condition-responsive development diversifies among
species or populations is largely unknown. Given O#n-
thophagus’ species richness, history of introductions as
part of biocontrol measures, and recent range expan-
sions, many opportunities exist to address these and
related questions over a range of phylogenetic dis-
tances [6,50].

Such research may also be able to shed light on funda-
mental questions regarding GRN evolution. Condition-
dependent traits such as those involved in nutrition re-
sponsiveness and sexual dimorphism are among the
fastest-evolving phenotypic classes, yet it is largely un-
known if the same gene networks involved in mediating
condition-dependence of a given trait in a single species
also mediate diversification of this trait across species or
— alternatively — whether trait formation on one side
and context responsiveness on the other are devel-
opmentally and evolutionarily decoupled. Increasing
availability and affordability of accurate, contiguous re-
ference genomes shows great promise for beginning to
tackle these questions. Regulatory element properties
such as sequence and accessibility (discussed above) can
be compared between species to identify how the
binding capacity of distinct transcription factors to reg-
ulatory elements may have evolved. Furthermore, com-
parative genomic assays can identify gains or losses of
entire regulatory elements, another way regulatory in-
teractions within GRNs can evolve. Taken together,
comparing patterns of regulatory evolution underlying
trait plasticity and development within species to those
underlying between species variation provides exciting
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opportunities to better understand the evolutionary la-
bility and pleiotropic constraints shaping gene regulation
and organismal diversification.
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