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Abstract—The planning of distributed energy resources has
been challenged by the significant uncertainties and complexities
of distribution systems. To ensure system reliability, one often
employs chance-constrained programs to seek a highly likely
feasible solution while minimizing certain costs. The traditional
sample average approximation (SAA) is commonly used to
represent uncertainties and reformulate a chance-constrained
program into a deterministic optimization problem. However, the
SAA introduces additional binary variables to indicate whether a
scenario sample is satisfied and thus brings great computational
complexity to the already challenging distributed energy resource
planning problems. In this paper, we introduce a new paradigm,
i.e., the partial sample average approximation (PSAA) using real
data, to improve computational tractability. The innovation is
that we sample only a part of the random parameters and
introduce only continuous variables corresponding to the samples
in the reformulation, which is a mixed-integer convex quadratic
program. Our extensive experiments on the IEEE 33-Bus and
123-Bus systems show that the PSAA approach performs better
than the SAA because the former provides better solutions in a
shorter time in in-sample tests and provides better guaranteed
probability for system reliability in out-of-sample tests. All the
data used in the experiments are real data acquired from Pecan
Street Inc. and ERCOT. More importantly, our proposed chance-
constrained model and PSAA approach are general enough and
can be applied to solve other valuable problems in power system
planning and operations. Thus, this paper fits one of the journal
scopes: Distribution System Planning in Power System Planning
and Implementation.

Index Terms—Planning, distributed energy resources, renew-
able distributed generation, energy storage, stochastic program-
ming, chance-constrained programming, data-driven

I. NOMENCLATURE

A. Indices and Sets

n/k/r Index of buses/ renewable distributed generation
(RDG) units/ energy storage (ES) units.

7w/k/7 Index of different data samples.

N/EJN,, Set of all the buses/ all the power distribution
lines/ the buses connected to a given Bus n € N,
ie, Ny i={m| (n,m) € &£}
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Bo/B1/Bs Set of buses that are connected to Bus 0/
installed with dispatchable distributed generation
(DDG) units/ installed with reactive power sources.

X Set of standard capacities of RDG units, i.e., X :=
{fl, - ,i’L}.

[K] {1,2,...,K}, forany K € Z.

B. Parameters

. /dC, Setup cost of placing the k*" candidate RDG unit/

the r*" candidate ES unit at Bus n.

ck/c?  Size-based investment/ maintenance cost of the k"
candidate RDG unit.
dl/d?>  Size-based investment/ maintenance cost of the "

candidate ES unit.

c;', / cg Electricity price of purchasing active/reactive
power from the main grid via Bus 0.

cf /¢S Fuellemission price for the DDG units at Bus 7.

w Emission factor of the DDG units (kg/kWh).

K/R/T/N Total number of candidate RDG units to be
installed/ candidate ES units to be installed/ all
the time intervals in the planning horizon/ all the
buses.

K Maximum number of RDG units to be installed.

LC,,, Capacity of a power distribution line (m,n) € £.

(pfl,p;) Active power output bounds of DDG unit n in

~ period t.

(@, q ) Reactive power output bounds of reactive power
source n in period ¢.

Rmn/Xmn Electrical resistance/reactance of line (m,n).

0n/Tn ~ Binary indicator of whether a DDG unit/ a reactive
power source is at Bus n.

v/ Upper/lower bound of voltage magnitude at a bus.

Ur/ y,  Maximum/minimum capacity of the rt" candidate
ES unit.

e1/ea  ES charging/discharging unit cost.

n/v/b0 Violation probability/ ES efficiency/ Initial power
level of the r*" candidate ES unit.

I1; /115 /TI5 Total number of data samples of different types.

C Random Variables

pn /d Active/reactive load at Bus n in period ¢.

st Active power output efficiency of the k*" candidate
RDG unit in period t.

¢t Vector of uncertainty in compact form in period £,
ie, [d,.. de,dql, . qu, sty st]T.

D. Decision Variables

Zkn Uk /Wy, Binary indicator of whether the k¥ candidate
RDG unit is located at Bus n/ of whether the
capacity of the k" candidate RDG unit is the [*"
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element in X'/ of whether the 7" candidate ES unit

is located at Bus n.

x1/y, Size of the k' candidate RDG unit/ Capacity of
the 7" candidate ES unit.

ft/gt  Active power that is charged/ discharged at the 7"
candidate ES unit in period ¢.

ph/qb  Active/ reactive power purchased from the main

grid via Bus 0 in period ¢.

Pt JQt... Active/ reactive power flow from Bus m to n in
period t.

VE/|VE?  Complex voltage at Bus n in period #/ its
magnitude.

It /It .|* Complex current from Bus m to n in period
t/ its magnitude.

pl/ql,  Active/ reactive power output of the DDG unit/
reactive power source at Bus n in period t.

bt Active power of the r*" candidate ES unit in period
t.

LSt /LSS, .. Load-shedding variables.

z [2kn, Yk € [K],n € N]T

x, u [ri,...,2x]", [ug,VE € [K],l€[L]]T

Yy, w [yla”-yyﬂ}—r’ [wrruvre [RLTLGMT.

II. INTRODUCTION

With technological development and governments’ support,
renewable energy has drawn significant attention and invest-
ment. A widely used strategy to exploit renewable energy is
to integrate renewable distributed generation (RDG) units into
existing power distribution grids. Correct installation of RDG
units can help power distribution grids provide customers with
affordable and reliable energy, while improper placement may
result in many problems, e.g., system instability and power
losses [1], due to the intermittency of renewable energy. Such
intermittency from RDG units may lead to cascading problems
such as an imbalance of electricity supply and demand and
system blackouts [2]. Therefore, proper siting (i.e., location)
and sizing (i.e., capacity) decisions of the RDG units are of
great significance to ensure the benefits of renewable energy
and maintain reliable operations of the power distribution
grids.

Besides RDG units, energy storage (ES) has also been
considered for use in power distribution grids. It is because
ES units can provide a buffer against an imbalance of supply
and demand, thereby reducing operating costs and increasing a
power distribution grid’s probability of meeting demand. Such
benefits may offset the installation and operating costs of ES
units and even lead to profits. For example, [3] adopts ES
to help support wind energy applications and [4] uses ES to
increase the penetration of more general renewable generation
by smoothing out the effects of intermittency. The positive
results from these studies indicate the necessity to integrate ES
units into a power distribution grid with RDG units. Thus, it is
important to determine the optimal siting and sizing decisions
of both the RDG and ES units.

For ease of exposition, we refer to the problem of siting and
sizing both RDG and ES units in a power distribution grid as
the planning problem thereafter. Such a problem largely relies
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on accurate power flow analysis. Two mathematical models are
often considered to calculate the optimal power flow in power
grids: the direct current optimal power flow (DCOPF) and
the alternating current optimal power flow (ACOPF) models.
The DCOPF model is composed of linear constraints and
thus is easier to solve, while it oversimplifies the physical
features. In contrast, the ACOPF model is relatively accurate
by considering active and reactive power-generation limits,
demand limits, bus voltage limits, and network flow limits
[5], while it is nonlinear and nonconvex. The DCOPF model
provides a linear approximation of the ACOPF model, with
systematic errors though. Such inaccuracy is acceptable for
large-scale power networks but is often unacceptable for local
distribution grids. Therefore, this paper uses the ACOPF model
to accurately simulate a power distribution grid.

Different variants of the planning problem have recently
drawn much attention from academia and industry. The paper
[6] provides a review of related studies on the RDG planning in
the power distribution network, and [7] reviews related studies
on more general generation expansion planning. Specifically,
[8] plans the locations and capacity sizes of RDG units based
on simplified load flow calculation in a multiobjective opti-
mization model that is further solved by a genetic algorithm,
while ES units are not considered. Similarly, without ES units
included, [9] considers the siting and sizing of RDG units in
a power distribution grid in a two-stage robust optimization
model. The paper [10] makes the siting and sizing decisions
for the ES units in a power transmission grid via a three-stage
mixed-integer linear program, while the DCOPF model is
adopted. A recent work can be found in [11], which considers
only the sizing of RDG units in a two-stage distributionally
robust optimization model and makes the siting decisions via
sensitivity analyses. The above existing efforts demonstrate the
significance of siting and sizing RDG and ES units.

However, the large-scale installation of RDG units adds
significant uncertainties to a power distribution grid due to the
intermittency of renewable energy, requiring methodological
innovation to deal with the already challenging operations
of a power distribution grid. To that end, many stochastic
programming models dealing with uncertainties have been
developed to support effective distribution grid operations. For
example, [12] proposes a two-stage stochastic programming
model for the optimal planning of distributed energy sys-
tems under demand and supply uncertainties. The paper [13]
proposes a two-stage stochastic programming-based optimal
power flow model for the operation of distribution networks
with uncertainties from wind power.

In this paper, we adopt chance-constrained programming
to model the planning and operational decisions under un-
certainties, including renewable generation and load uncer-
tainties, to ensure the feasibility of the distribution system
under a high probability. Specifically, we note that, due to
such uncertainties, a power distribution grid may face various
reliability issues. For instance, power outages often happen
when the power supply is insufficient, such as facing a natural
disaster like a typhoon. A load bus that is far away from the
upper stream grid may not receive the power injected from
the upper stream grid or local distributed generators because
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of distribution line capacity limit and line loss. The distribution
line contingency may also happen. Therefore, to help relieve
such pressure and ensure system reliability, we build a two-
stage chance-constrained (TCC) model (where the siting and
sizing decisions are in the first stage and operational decisions
are in the second stage) to solve the planning problem. More
importantly, considering various reliability issues, we adopt
a chance constraint to ensure all the operational constraints
in the second stage are satisfied simultaneously, rather than
ensuring load satisfaction only. As such, our proposed TCC
model becomes extremely difficult to solve, requiring further
innovation in solution approaches.

We note that the chance-constrained model is a risk-averse
decision-making tool that can help grid operators actively
control the probability of unfavorable outcomes (e.g., system
blackouts). The chance-constrained model is widely used
for power system operations. For instance, [14] solves the
chance-constrained ACOPF problems to ensure that opera-
tional constraints are satisfied with the desired probability. The
paper [15] further provides convex approximations via second-
order conic programming, and [16] provides asymptotically
tight conic approximations for the chance-constrained ACOPF
problems. Similarly, [17] studies the chance-constrained unit
commitment formulations, and [18] investigates the chance-
constrained day-ahead scheduling. Several studies use TCC
models, which are much more complex than single-stage
chance-constrained models. For instance, [19] is among the
first to propose a TCC model for the unit commitment prob-
lem, while it considers a single chance constraint to ensure
load satisfaction only. The paper [20] considers a similar TCC
model for the unit commitment problem while presenting a bi-
linear mixed-integer reformulation solved by Benders decom-
position following the study in [21]. The paper [22] formulates
the chance constraints based on the definition of conditional
value at risk in a TCC model for the unit commitment
problem and reformulates these constraints using sampling-
based approaches. The paper [23] specifically considers wind
uncertainty in the chance-constrained unit commitment model.
However, to the best of our knowledge, few studies apply the
TCC models in the planning of RDG and ES units together in
a distribution system considering the ACOPF model. More
importantly, different from the existing studies above, this
paper considers all the operational constraints simultaneously
in a difficult joint chance constraint.

Nevertheless, the TCC model is intractable in general,
specifically when the random parameters follow an underlying
continuous (yet unknown) probability distribution and are
of high dimensions, posing severe computational challenges
[24]. The existing studies primarily adopt two approximation
approaches to solve a chance-constrained model: a convex (or
tractable) approximation approach [15] and a sampling-based
approach [19]. The former is not applicable to a TCC model
because the second-stage recourse decision is a function of the
first-stage decision and random parameters and it is impossible
to algebraically characterize this function. Thus, this paper
uses the latter. Specifically, we propose two sampling tech-
niques to reformulate our TCC model: the standard sample av-
erage approximation (SAA) method and a new partial sample
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average approximation (PSAA) method. Both approximations
lead to mixed-integer convex quadratic programs. However,
the SAA introduces many additional binary variables corre-
sponding to the samples, creating computational complexity to
the already challenging distributed energy resource planning
problem. In contrast, the PSAA samples only a part of the
random parameters, and we use a non-parametric estimation
method to approximate the probability distribution of the
remainder, leading to an efficient data-driven approach. We
only need to introduce additional continuous variables corre-
sponding to the samples to reformulate the model, reducing
the computational complexity. Thus, the reformulation can be
scaled up to solve large-scale instances.

The main contributions of the paper are as follows.

e We develop a novel TCC model for the distributed
energy resource planning problem that considers both
the placement and capacity of RDG and ES units under
uncertainty, combined with the ACOPF model, in a dis-
tribution grid with multiple periods. We consider all the
operational constraints in the second stage to be satisfied
simultaneously in a joint chance constraint.

o« We are the first to develop the PSAA approach using
historical data to solve the above TCC model for a
significant industry problem. We extend the PSAA idea
that solves single-stage chance-constrained models.

e Our extensive experiments on the IEEE 33-Bus and
123-Bus systems using real data show that the PSAA
approach performs better than the standard SAA approach
because the former provides better solutions in a shorter
time in in-sample tests and provides better guaranteed
probability for system reliability in out-of-sample tests.
The effectiveness of ES units in reducing total costs and
improving system balance is also demonstrated.

The remainder of this paper is organized as follows. A
two-stage model and its TCC counterpart for the planning
problem are presented in Section III. The TCC model is then
approximated using the SAA and PSAA methods in Section
IV. We provide computational results and explanations in
Section V. Section VI concludes this paper.

III. MATHEMATICAL MODEL

In this section, we present a two-stage stochastic program-
ming model and its TCC counterpart for the planning problem.

A. A Two-Stage Model

We focus on a typical distribution grid topology: the radial
network. Such a network has a tree structure and connects
to a transmission network via a single bus (Bus 0). In
our distribution network, the power supply comes from four
sources: the transmission network, the traditional dispatchable
distributed generation (DDG) units and reactive sources, the
RDG units, and the ES units. The last three sources are
located in some buses of the distribution grid. While the
DDG units and reactive sources have already been placed (i.e.,
given system input data), the RDG and ES units are to be
installed (i.e., system decision variables). The operating costs
for the supply sources include the payment to the transmission

ublications/ri

I
ebruary 24,2023 at 22:22:01 UTC from IIngE Xplore. l-gtestrlctlons apply.

hts/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3230676

network, the cost of power generation from the DDG units,
and the cost of charging/discharging the ES units. Here we
investigate the optimal siting and sizing of K candidate RDG
units and R candidate ES units in a distribution grid with buses
N, to minimize the total cost across the planning horizon.
The cost includes deterministic investment/maintenance costs
and stochastic operating costs (due to the uncertainties in
load and renewable power generation). In the following, we
formulate the planning problem as a two-stage optimization
model and describe the corresponding first-stage and second-
stage objectives and constraints.

1) First-stage model: The first-stage objective minimizes
the total cost of building, maintaining, and operating the RDG
and ES units, with the model formulated as follows.

min €y (2) +E[Q (2,€)] (1a)
>z <1, Vk € [K], (1b)
neN
K
> <K, (o)
k=1neN
L
xkzzukli’l; Vk e [K], (1d)
=1
L
> u =Y zkm, Vk € [K], (le)
=1 neN
> wm <1, VrelR], (1f)
neN
> weny <yr <> wende, Yr € [R], (1)
neN neN

where Q! := [z, z,u,w,y]" is the vector of first-stage
variables. The first part in the objective function (1a)

D= EK: (Z nzin + (cp +TcR) xk>

k=1 \ne~N

R
+y (Z % wyp + (dE+ Td?) y )

r=1 \neN
represents the total deterministic cost, including the setup
costs and the size-based investment/maintenance costs of
the RDG and ES units. Specifically, Cj (') includes
two parts: (i) the setup costs of the RDG and ES units,
Zf:l (ZHEN C%nzk") + Zf:l (Zne./\/' dgan")’ and (11)
the investment/maintenance costs of the RDG and ES units,
e (e +Té) x) + S ((dE +Td2) y,). In part (),
Zkn 18 a binary variable indicating whether the kth candidate
RDG unit is located at bus n and w,, is a binary variable
indicating whether the rth candidate ES unit is located at Bus
n. In part (ii), z; and y, are continuous variables indicating
the capacities of kth candidate RDG unit and rth candidate
ES unit, respectively.

The second part in the objective function (1a), E[Q(2!, &)],
represents the expected minimum operating costs over all
T periods, which is defined explicitly in (2). Regarding the
constraints (1b) - (1g), they link the variables zy,, Wyn,
Tk, Yr, and ug;, by which the setup costs are linked with

(92
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the investment/maintenance cost. Specifically, constraints (1b)
show that a given kth candidate RDG unit, if installed, should
be in one of the buses in N . Constraint (I1c) enforces that the
total number of RDG units installed should not exceed the
limit K.

In constraints (1d) and (le), ug; is a binary variable indi-
cating whether the capacity of the kth candidate RDG unit
is the [th element in X, Z;. Thus, constraints (1d) and (le)
ensure that if a given kth candidate RDG unit is installed,
then the capacity of this RDG unit should be one of the pre-
defined values in X'. For any given kth candidate RDG unit, the
summation Zlel ug; is equivalent to the )\ zkn, Which
may take only the value O or 1. Such equivalence is not related
to the locations of candidate RDG units. Constraints (1d)
and (le) are motivated by the practice where various regions
and institutions have different regulations on the capacity of
distributed generation, and thus the capacity of RDG units vary
[25].

Similar to (1b), constraints (1f) show that a given rth
candidate ES unit, if installed, should be in one of the buses in
N Constraints (1g) show that if a given rth candidate ES unit
is installed (i.e., w,,, = 1 for a bus n), then its capacity should
be between the lower bound Y, and the upper bound ¥,.. Note
that multiple new assets (mcludmg RDG and ES units) may
be installed eventually.

From the above constraints, we can observe that z,, impacts
zy and w,, impacts y,, i.e., the binary variables indicating
the location of new assets have an impact on the invest-
ment/maintenance cost.

2) Second-stage model: Given a first-stage decision 2! and
a realization & of the uncertain load and renewable generation,
the second-stage objective minimizes the distribution grid’s
operating costs Q(2',¢), where & := [¢',...,€T]T, while
respecting a set of physical constraints such as the ACOPF
constraints. The operating costs include the cost of purchasing
active/reactive energy via Bus 0, the cost of fuel used and
emissions created in generating active power in the DDG units,
and the cost of charging and discharging the stored energy.
The operating costs also include the load-shedding variables
LSt, .., LSS, . and a penalty factor p to account for any
unsatisfied load. Let Q2 be the vector of all second-stage
variables and let

T
Cs (%) = Z (c;pé + chah + Z crpt + Z cCwpl,

t=1 neB; neBy

+Ze1f +Zegg, + Z

(m,n)e€

LSlmn + LSerL)

be the total operating costs in the second stage. The second-
stage problem, whose optimal value is denoted by Q(£2!,¢),
can be formulated as follows. (For ease of exposition, all
constraints with a superscript ¢ hold for all ¢ € [T].)

1}1zi2n Cs (Q2) (2a)
st. p <pn <P, Vn € B, (2b)
9, < qn < qn, V1 € Ba, (2¢)
v <|Vi|* <, Vne N\ {0}, (2d)
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po= D Pons 6= ) Qon (2¢)
n€Bg ne€By
K
_5npn+ anl+zwrn r 'r 5
leN,
Y (m,n) € 8, (2f)
Q:nn - xﬂln ‘I'rtnn‘2 + LSémn - df]n anfL
+ Y Qu, V(m,n) €E, (2¢)
leEN,
b =0, Vr e [R], (2h)
0<b,. <y, Vrel[R] (2i)
b — bt =~ff— g1/, Vr € [R], (2j)
[ViL|* = V] = 2% Phan + 2% mnQlnn
= (R + Xn) | L], Y (mym) €€, 2K)

| [2P5n 2t [V 7 = (28] |, < VP + 2
V(m,n)e&, (2l

(Pon)? + (Qhn)’ < (LCmn)?, V(m,ym) €€, (2m)

po >0, g5 >0, (2n)

LS. >0, LSS, >0, V(m,n) €. (20)

Here, Q2 consists of pf, ¢ for t € [T], pt,, ¢, V! On,QOn

forn € N, t € [T)], fL,gt,b. for r € [R],t € [T] PtQY
for n such that (m,n) € € for some m, | € N, t € [T], and

777.717 an’ mn? LSlm.rm LSémn fOI' (m n) 6 g’t 6 [T]'

We explain all the constraints in the model (2) as follows.
The power generated by the DDG units and the reactive
sources is bounded by (2b) and (2c), respectively. Constraint
(2d) sets the bounds on the voltage of each bus. Constraint
(2e) represents the active and reactive balance equations at
Bus 0. Constraints (2f) and (2g) are active and reactive power
balance equations from Kirchhoff’s current law. The following
Fig. 1 illustrates the active power flow balance for each
distribution line (m,n) € £. The balance of power in storage

i Ll

K t t
Zk:l ZknSpTk + 577«pn

At
t

\ Pt + LSt .
T m n —— >en, P
R [T | \
Z'}r%:l w'r‘nfﬁ
dk,,

Fig. 1. Power Flow Blance

is initialized by (2h) and bounded by (2i). ES balance between
two consecutive periods is shown in (2j), considering ES
charging/discharging efficiency. Constraint (2k) represents the
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voltage drop on each line. Constraint (21) is the branch power-
flow constraint, and the capacity of each distribution line is
limited by (2m). Nonnegativity constraints are listed in (2n)
and (20).

Note that the load-shedding variables LS%, . and LS5 .
are defined over each distribution line (m,n) € £. Once the
model is solved, one can also compute the load-shedding val-
ues at each bus easily. We also note that the branch flow model
is applied here to formulate the ACOPF constraints in (2f) —
(2g) and (2k) — (2m), where (21) includes a set of a second-
order conic (SOC) constraints. These constraints represent the
ACOPF constraints via convex relaxation following the study
in [26]. Specifically, [26] removes the voltage and current
angles while introducing squared voltage and current mag-
nitudes, and relaxes the nonconvex quadratic constraints with
convex SOC constraints. More importantly, [26] shows that
the obtained convex relaxation is exact when the distribution
network is radial. As most practical distribution networks are
radial grids [26], we also consider a radial network in this
paper. Therefore, the constraints (2f) — (2g) and (2k) — (2m)
form an exact reformulation of the ACOPF constraints. As
such, we obtain a second-order conic programming (SOCP)
formulation in (2), which enables large-scale applications due
to the computational efficiency of SOCP formulations. We note
that there are also other types of approximations to formulate
the ACOPF constraints, such as linearized distribution flow
(LinDistFlow) [27], where voltage drop and line power flows
are approximately linearly related to power injections.

We summarize the two-stage stochastic programming model
of the planning problem as

Juin, Gy Q) +E[C: (927)] 3)

s.t. (1b) —(1g),(2b) — (20).

Note that Q2 and constraints (2b) — (20) are dependent on
&. As the first-stage problem (1) is an integer program and
the second-stage problem (2) is an SOCP, the entire two-stage
problem (3) is a mixed-integer SOCP.

B. A TCC Model

Chance constraints perfectly fit power system operators’
decision-making requirements because the operators often
need controlled reliability with minimized operating costs. In
our model, the distribution grid reliability is measured as the
probability of load satisfaction. In the second-stage model, the
load is satisfied over all time periods for (Q*, &, Q?) if and
only if all the constraints in (2) are satisfied, such that

LSt = LS5, =0, ¥V(m,n) € €, t €[T). 4)

Thus, to maintain a high probability of load satisfaction, we
add the following joint chance constraint

P (92 in (2) satisfies (4) | Q') >1—1p (5)

to the two-stage model (3) to strengthen the problem, where
P is a probability function. Different from some existing
studies on two-stage chance-constrained programming, our
chance constraint (5) consider all the constraints (2b) — (20)
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in the second-stage problem (2) as the nominal constraints.
For instance, in [19], the authors consider a single demand
satisfaction constraint in their chance constraints, see con-
straints (20) — (22) in [19]. In contrast, our chance constraint
(5) requires that (4) is satisfied by any Q2 that is feasible
to all the constraints in the second-stage model (2). That is,
we ensure the entire system (rather than the load satisfaction
constraints only) is feasible under a high probability, which can
practically incorporate many possible reliability issues such as
the distribution line capacity limit and loss. As a result, the
TCC model can be formulated as:

min, Gy Q) +E[Cs (927)] (6)

s.t. (Ib) — (1g),(2b) — (20), (5).

However, the above problem (6) is difficult to solve. Specif-
ically, constraint (5) is nonconvex and thus problem (6)
becomes intractable. Next, we introduce two approximation
methods to address this challenge.

IV. SOLUTION APPROACHES

In this section, we describe two approximation methods for
solving the problem (6): the SAA and PSAA methods.

A. The SAA Formulation

The SAA is a classic sampling technique that is widely
used in chance-constrained problems. It approximates the
expectation of random variables using their sample means.
The probability of an event E can be reformulated as an
expectation as follows:

P(E) =E[I(E)],

where I(-) is an indicator function that takes a value of 1 when
the event happens and 0 otherwise. Let II; be the total number
of samples of the random vector £ and [IT;] be the set of all
the samples, and let &, be a specific sample for any 7 € [I1].
The SAA approximates P {Q? in (2) satisfies (4) | Q'} in (5)
with

Ly I (922 satisfies (4)| '

ng (27 satisfies (4) | Q')
where €22 is a copy of the second-stage variables €22 cor-
responding to &, for each = € [II;]. Let (2b),, — (20), be
constraints (2b) — (20) with & replaced by &, and Q2 replaced
by Q2. The SAA approximation of (6) thus becomes:

1 &
1 - C 92
e
Iy

1
s.t. W ZH (922 satisfies (4) | Q') > 1 —1. (7

min
Q1, Q2 Vre(llL]

=1

(Ib) — (1g), (2b)

We further introduce a binary variable 6, € {0,1} for
each sample 7 € [II;]. When 0, = 0, it indicates that
I(22 satisfies (4)|2') = 1, i.e., all the constraints in the

—(20),, V7 € [II4].
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second-stage model (2) are satisfied; when 6, = 1, it indi-
cates (02 satisfies (4)| Q1) = 0, i.e., all the constraints in
the second-stage model (2) are not satisfied. Therefore, we
can reformulate (7) as the following mixed-integer quadratic
program:

1 &
. 1 = 2
n%ﬂ?}?e[m] 4 (Q ) + 0, 7; s (QW) (8a)
s.t. (1b) — (1g), (8b)
(2b), — (20),,, Vm € [I14], (8¢)

LSlﬂ'mn S 0 M Lsérrmn S GWMTH

YV (m,n) € E,Vr e [I14], (8d)
II;
Z 0, <In, (8e)
=1
0. € {0,1}, V m € [I14], (8)

where M is a sufficiently large number for any 7 € [II].
Specifically, with constraints (8d) and (8e), we ensure that
all but a few number (i.e., nIl;) of samples in [II;] satisfy
the constraints in the second-stage model (2). That is, with
the probability of 1 — 7, the constraints in the second-stage
model (2) are satisfied. Moreover, [28] shows that the objective
value difference between model (8) (i.e., model (7)) and model
(6) converges to zero with probability one when II; goes
to infinity. In addition, as in the second-stage model (2), all
constraints in (8) with a superscript ¢ hold for all ¢ € [T7].

All of the constraints in (8) are convex except for (2f),, 7 €
[IT,]. Specifically, constraints (8b) are from the first-stage
model, and all of them are linear constraints. Constraints (8d)
- (8f) are also linear constraints. Constraints (8c), i.e., (2b),. —
(20),, Vm € [}, are from the second-stage model, and
they are either linear or second-order conic (SOC) constraints
when the first-stage decision variables are given. However, as
problem (8) needs to optimize both the first-stage and second-
stage decision variables, constraints (2f)., 7 € [II;] include
bilinear terms (2, ux; and w,., ffw), by which these constraints
are nonconvex. Specifically, after substituting x;, with (1d), we
achieve bilinear terms zj,ug; for k € [K],n € Nl € [L]. The
bilinear terms can be linearized using McCormick inequalities.

McCormick inequalities are commonly used to linearize a
bilinear term, say w = xy with 2l < 2 < 2V and yL <
y < yY, in (mixed-integer) nonlinear programming [29]. The
general form of McCormick inequalities for w = xy can be
written as:

_nyUa
_ nyL’ w < ny +xLy _ xLyU.

w > 2Py + oyt — 2Pyt w > Yy + ay?

w < ny —|—xyL

When z and y are both continuous variables, the above
four McCormick inequalities provide convex and concave
envelopes of the bilinear term xy. When at least one of x
and y is binary, w = xy can be implied by the above four
McCormick inequalities, resulting in an equivalent mixed-
integer linear reformulation of the bilinear expression.
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Thus, for all k € [K],n € N,l € [L], we replace zy,ug
with By, and add the following constraints

Bint > 0, Brni > Zgn +up — 1,

Brnt < ugt, and Brpr < 2kn,
to enforce Bin; = zkn Uk, Where both zp,, and wug; are binary.
Using the same technique, for all r € [R],n € Nt € [T], 7 €

[II;], we denote ff . := wymfL,, where w,, is binary, and
add the following constraints:

—t

f7rr7

—t
- and f;'rn < Wen frps

Trn > wrnf . f7trrn > f7trr + w'r‘nfwr -

ft r T wrnf iﬂ.

TTrn —

where ft and f . are the lower and upper bounds of f£, . The
bilinear term wmgw can be managed similarly. As a result,
the SAA formulation (8) is transformed into a mixed-integer
convex quadratic program.

B. The PSAA Formulation

The SAA is relatively accurate when there are sufficient
samples. However, more samples lead to more binary auxiliary
variables (i.e., 0), greatly increasing the computational bur-
den. Thus, we use partial sampling to reduce the computational
difficulty and improve the solution quality. We extend the
preliminary studies on partial sampling in [30] to approximate
our proposed TCC model, which is more complicated than the
single-stage chance-constrained model considered in [30], as
evidenced in [31]. This leads to an extended PSAA model,
referred to as the PSAA model for simplicity. It samples a
part of the random parameters and estimates the probability
distribution of the remainder. We first present the basic PSAA
idea and then detail our PSAA model.

We consider a general chance constraint

where € = (£1,&) and & is independent of &.
Clearly, P{g(.€) > 0} = E[l(9(z,&) > 0) -
E51752 [H(Q(CC,&,&) > 0)] = EElEEQ [H(g(ma€17€2) > O)]?
where the third equation is because of the independence
between &1 and &;. The PSAA idea then reformulates one of
the above two expectations (i.e., £, and E¢,) by its sample
mean. For instance, if we replace the inner expectation E¢, by
a sample mean of N independent samples of & (denoted by
&, ..., &), then the PSAA formulation of (9) is as follows:

7ZE51
N

Z

(z 51,52))}

213 51762 >O}>1_na

which is further equivalent to the following
P{g(x, &1, €5) > 0} > yx, Vk € [N],
N
k=1 Yk
N

(10)

>1—mn, yp > 0,VEk € [N]. an
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In contrast to constraints (8d) - (8f) (SAA formulation),
constraints (10)-(11) (PSAA formulation) introduce only con-
tinuous variable yj, while /N new chance constraints are added.
In our proposed PSAA model, We will show that (10) has a
convex approximation for the planning problem in this paper,
which contributes to the existing literature.

To apply the above PSAA idea, we need to have the sampled
random parameters independent of the unsampled ones. We
first convert the random vector £ into an uncorrelated random
vector £ using an affine transformation, thereby approximat-
ing the independence requirement. Specifically, let > be the
covariance matrix of £ and p be the mean vector of £. Suppose
that ¥ = UAU " is an eigenvalue decomposition of ¥, where
U is an orthogonal matrix and A is a diagonal matrix with the
eigenvalues of X on the diagonal. Without loss of generality,
we assume that Aq; is the largest eigenvalue of . Let

& =A3UT(¢—p), orequivalently, & =UAZE +p.
It is straightforward to see that &’ is an uncorrelated random
vector with a mean of 0.

We partition & as (£, &5), where £ is the first component
of & and &) is the vector of the other components. Note that
when £ is sampled, £ is the first principal component. The
PSAA then considers IT; Monte Carlo samples &, , k € [II5]
of &, and approximates the probability of an event E as

I
Pie; gp)(E) ~ H% > Py (E|&,)-
k=1
In our PSAA model, we retain the objective function of (7)
and constraints (1b) —(1g) and (2b), —(20)... We also develop
a different approximation of the chance constraint using the
PSAA. To be compatible with the PSAA framework, given the
first-stage variables 2!, instead of requiring (2b) — (20) and
(4) to be satisfied with a high probability by a specified £22,
we relax the chance constraint (5) to require the consistency of
(2b) — (20) and (4). That is, we consider the following chance
constraint:

P (3 a solution satisfying (2b) — (20), (4) | Ql) >1-n. (12)
Let (2b),. — (20),. and (4),, be a copy of (2b) — (20) and (4),
with & replaced by (&1,&),.) for any x € [II5]. The PSAA
approximates (12) with

1 &
2P (6 A (@) 210
where A(2, k) := {¢&] | (2b),,-(20),,, (4),, are consistent with
Q'}. For a given 2! and k, A(Q!, k) is a convex set of &].
That is, if & < &, are both in A(Q, %), then & € A(Q, k)
for all & € [£],€]]. Let U(-) be the cumulative distribution
function (CDF) of £]. Then,

Pg (€€ A(2r))

= sup {W(Z) -

U(Z1) | Z1,Z2 € A(QK) }.
Z1,Z>
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Therefore, our PSAA model is as follows.

I
1
min Cy (Ql) + o ;Cz (er)

s.t. (1b) — (1g), (13a)
(2b), — (20),., V7 € [I14], (13b)
(Q', Q2 satisfies (2b),, — (20),., (4),, (130)

with (Zlnaéén)7 Vi€ [H2]’ ¢
1 2 : _
(Q',93,) sa.tlsﬁes (2b)/,€ (20)5, (4, (13d)
with (Za, &5,.), VK € [Io],
U(Z2w) = V(Z1x) 2 ey Vi € [Il],  (13e)
115}
> e > Ta(1—1), (13h)
=1
Ne >0, Vi € [ILy]. (13g)

Here, the decision variables are ', Q2 for any 7 € [II;], and
O3, Q3,., 214, Zow, s for any k € [[g).

For the model to be practical, we need to estimate the
CDF U(:) of &]. Two types of methods are primarily used
for estimating distributions: parametric and nonparametric
estimation methods. Parametric estimation methods assume
that the sample data conform to a parametrized family of
probability distributions, and the sample data are used to
find the best-fitting parameters. In contrast, nonparametric
estimation methods do not depend on any prior assumption of
the distribution family, and they fit the distribution according to
the characteristics and properties of the data. Here we make no
assumptions on the distribution of ¢{ and estimate ¥(-) using
the kernel density estimation, a commonly used nonparametric
method proposed by Rosenblatt [32] and Parzen [33].

Let II3 be the total number of samples of &7, and &/, be a
specific sample for any T € [II3]. The kernel density estimation
of the probability density function ¢ of £} can be written as

1 113 el
P(&1) ~ ah Z¢ (glhfh> )
T=1

where h is a user-specified bandwidth parameter and ¢ is a
kernel function. Among the popular choices, we choose the
standard normal density function as the kernel function for
our estimation. Thus, the CDF of ¢{ can be estimated by

II3
1 -4
~ — @ 21 >T
I0; Tzzl ( A

where ®(-) is the CDF of the standard normal distribution.
We further approximate ®(-) in (14) using the following
piecewise linear function:

(14)

H%m {acx +a.} ifx>05

D(z) & { 1A (15)
max {acr + a if x < 0.5,
CG[AQ]{ ¢ ¢t

where A; and A, are the numbers of pieces used to approxi-
mate the upper half and the lower half of ®(-), respectively. An
example of such an approximation is depicted in the following
Fig. 2.
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Fig. 2. Piecewise linear approximation of the CDF of the standard normal

distribution ®(-) (A1 = Az = 3)
When the probability level 1—1 is close to 1, @(7&’” f1z) is
usually greater than 0.5 and thus concave, while CIJ(ZI”?&“)

is usually less than 0.5 and thus convex [34]. Therefore, with
the approximation in (15), we can remove the min and max
operators in (15) and approximate constraint (13e) by the
following constraints:

Zy — €
J <1h£1> +ac, V(€ [Ag], T € [II5], k € [y,
Doy — &
o5 < ac <2h£17> +ae, Ve € [Aq], T € T3], k € [I3],
1<
H Z p27’ pl‘r) > Nk, VK€ [HQ]
T=1

Finally, the bilinear terms in (13b) — (13d) can be linearized
using McCormick inequalities, as in the SAA model. As a
result, the PSAA model (13) is simplified to a mixed-integer
convex quadratic program.

V. NUMERICAL RESULTS

We conduct two sets of experiments on the IEEE 33-
Bus system and the IEEE 123-Bus system using real data
acquired from Pecan Street Inc. and ERCOT. We first compare
the effectiveness of the SAA and PSAA models and then
investigate the potential benefits of installing ES units. We
use in-sample and out-of-sample tests to validate the quality of
the obtained solutions to the planning problem. All numerical
tests are executed on the high-performance computing (HPC)
cluster of Ieria [35] with 27 computing nodes. We allocate four
CPUs to every instance, and every CPU is allocated 4 GB of
memory. CPLEX 22.1.0, with its default setting, is used to
solve all optimization models. For ease of exposition, we use
the following flowchart in Fig. 3 to summarize the sequential
steps we follow to perform the numerical experiments in this
section.

A. IEEE 33-Bus System

We first consider the modified IEEE 33-Bus radial distribu-
tion network examined in [11] (see Fig. 4). In the network, Bus
0 is connected to the major transmission network, from which
we can purchase active and reactive power via Bus 0 if needed.
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Fig. 3. The Procedure of Numerical Experiments

Buses 1-32 are connected to Bus 0, directly or indirectly. Two
DDG units are located at Buses 15 and 29, and three reactive
power sources are located at Buses 11, 13, and 32. The reactive
power sources are of the hybrid (capacitive and inductive)
compensator type, and they can both generate and absorb
reactive power to stabilize the voltage. Nevertheless, our model
can also consider other types. With the fixed location of the
DDG units and reactive power sources, we then focus on the
location and capacity planning of candidate RDG and ES units
to be installed.

1) Data: We consider two sources of uncertainties the
weekly active/reactive load at each bus, ie., dp, /dqn,
the renewable generation efficiency of each candldate RDG
unit, ie., si € [0,1]. The active-load data are obtained
from Pecan Street Inc. and the wind generation data from
ERCOT. The reactive-load data are randomly generated based
on the bounds of the total reactive-power output. Specifically,
the reactive-power load is uniformly generated in the inter-
val [—0.01,0.019]. Here [—0.01,0.019] is an interval, which
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specifies a range of possible values of reactive-power load
that we can possibly generate. By using such a random data
generation, we obtain different values of reactive-power loads
at different buses in different periods. All data are for a range
of 4 years, leading to 208 (= 52 weeks x 4) data samples for
each specific random variable. To perform more practical tests,
we randomly generate more data samples to better demonstrate
our proposed models’ effectiveness, via in-sample and out-of-
sample tests. To that end, we first calculate the mean value
and covariance matrix using the given data samples, and then
generate 3792 data samples by following the multivariate
log-normal distribution, which has been widely adopted in
academia and industry in similar scenarios [36,37,38]. Thus,
we have 4000 data samples in total.

2) Parameters: All of the parameters used in our exper-
iments are slightly modified based on the parameters' used
in [11]. For instance, the electricity price of purchasing ac-
tive/reactive power from the main grid is mainly from ERCOT.
The detailed modification is as follows. In the first stage,
the setup costs of candidate RDG units ¢, are uniformly
generated in the interval [0.95 x 2000,1.05 x 2000]. The
size-based investment costs ¢, and maintenance costs c; of
candidate RDG units are uniformly generated in the intervals
[0.9 x 238,1.1 x 238] and [0.9 x 4, 1.1 x 4], respectively. The
setup costs of candidate ES units d?,, are uniformly generated
in the interval [0.9 x 200, 1.1 x 200]. The size-based investment
costs d! and maintenance costs d2 of candidate ES units are
both uniformly generated in the interval [0.9 x 2,1.1 x 2].
The active power purchase prices c; are uniformly generated
in the interval [0.9 x 130,1.1 x 130]. The reactive power
purchase prices cfl are uniformly generated in the interval
[0.9x4, 1.1x4]. The emission costs for the DDG units at Buses
15 and 29 are c{5 = c§9 = 630. The emission factor w of the
DDG units is 3 kg/MWh. A maximum of K = 3 out of K = 4
candidate RDG units are to be installed in this distribution
network. The maximum number of ES units to be installed is
R = 3. The active-power output bounds (p’ , p},) of both DDG
units are (0.5, 4.5). The reactive-power output bounds (¢, a,)
are (—0.1,0.2), (—0.15,0.25), and (—0.1,0.2) for the three
reactive-power sources at Buses 11, 13, and 32, respectively.
We further consider four types of RDG units (1 = 4 MW,
To =5 MW, 3 = 6 MW, and 7, = 7 MW). The maximum
capacity ¢, of an ES unit is 3 MW, and the minimum capacity
y, is 0. The initial power level b0 of a candidate ES unit is
set to 0. When an ES unit is charged, the unit cost e; is 0.1,
whereas the discharging cost es is 0.1. The energy loss factor
~ is set to 0.9.

B. IEEE 123-Bus System

We then consider the commonly used IEEE 123-Bus radial
distribution network [39,40,41] (see Fig. 5). In the network,
Bus 149 is connected to the major transmission network. Eight
DDG units are located at Buses 8, 25, 44, 57, 67, 87, 97, and
108, and twelve reactive power sources are located at Buses
7, 14, 15, 25, 47, 54, 62, 68, 80, 91, 98, and 109.

ISee https://www.dropbox.com/s/psqv9yr3atgd6bk. Accessed: Jul. 2022.
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Fig. 5. IEEE 123-Bus Distribution Network

1) Data: All the data are obtained following the same pro-
cess used for the IEEE 33-Bus system. The only difference is
the dimension of uncertainty. Here we consider the renewable
generation efficiency of each candidate RDG unit s}, uncertain
and use an estimated value for the weekly active/reactive
load at each bus, i.e., dﬁm /dgn. In particular, as the IEEE
123-Bus system is of large scale, both the SAA and PSAA
formulation become difficult to solve when the test system
is large. Thus, to better show the performance of these two
approaches, we consider the system loads are given and the
renewable generation is uncertain, by which the computational
difficulty is relatively reduced.

2) Parameters: We continue to use the parameters designed
for the IEEE 33-Bus system, except that some parameters are
modified as follows. First, the electrical resistance (R,,,,,) and
reactance (X,,,) of each line (m,n) € £ and the upper/lower
bound of voltage magnitude (i.e., v / ¥) at each bus are obtained
from the IEEE PES Test Feeders’. Second, we consider a

2See https://cmte.ieee.org/pes-testfeeders/resources/. Accessed: Jul. 2022.
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maximum of K = 6 out of K = 8 candidate RDG units
to be installed in this distribution network. We consider three
types of RDG units (1 = 8 MW, Zo = 10 MW, and Z3 = 12
MW). The maximum capacity ¢, of an ES unit is 6 MW.
The maximum number of candidate ES units to be installed is
R = 6. The reactive-power output bounds (¢’ ,g;,) are (-0.15,
0.25).

C. Decomposition Framework

To reduce the computational difficulty of solving both the
SAA and PSAA formulations, we adopt the Benders decompo-
sition algorithm [42] to improve the computational efficiency.
Specifically, we first linearize the SOCP constraints (21) and
(2m) as [11] does by using the polyhedral e-approximation in
[43]. With such an approximation, both the SAA formulation
(8) and PSAA formulation (13) are transformed into mixed-
integer linear programming (MILP) formulations, which can
be used practically in large-scale settings.

For each MILP formulation, we then decompose the prob-
lem into two parts: a master problem and a set of subproblems.
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The master problem includes all the integer variables and asso-
ciated constraints, and the subproblems contain the remaining
continuous variables and associated constraints. As such, we
iteratively solve the master problem and subproblems until
convergence. At each iteration, the master problem is solved
to optimality, and its optimal solution is then used to construct
the subproblems. Feasible and optimality cuts are generated
after solving the subproblems and added back to the master
problem.

Note that we have II; subproblems for the SAA formu-
lation, where each sample m € [II] corresponds to one
subproblem, as shown in (8c), and these subproblems can be
solved in parallel. For the PSAA formulation, we have II; +1
subproblems, where each sample 7 € [II;] corresponds to one
subproblem, as shown in (13b), and constraints (13c) — (13g)
are included in one subproblem.

D. SAA vs. PSAA

Here we analyze the performance of the SAA and PSAA
models using the data and parameters mentioned above. We
thus ignore ES units and consider 7" = 1. Specifically, terms
related to ES units, including wy.,, -, fL, g, and bL, are
temporarily removed from the models.

We first divide the 4000 data samples into two sets for
the experiment: a training data set and a testing data set.
The former is used to obtain our planning decision in the
first stage, and the latter is used to test the effectiveness of
the obtained decision. To make full use of the real data and
better simulate real-world decision-making, we ensure that the
training data are selected from the first 208 samples, as it
is very straightforward to feed the available historical real
data into an optimization model to support decision-making.
Each data sample is used as a scenario in the SAA and
PSAA models. We solve the SAA and PSAA models using the
training data and obtain two optimal sizing/siting plans. We
then compare the performance of the plans using the testing
data. Specifically, we calculate the first-stage cost and the
average second-stage cost of all test samples for each plan. To
verify our approximation formulations and demonstrate their
ability to ensure that the demand can be satisfied with a high
probability, we also calculate the actual feasible probability of
the test samples. This probability is defined as the percentage
of the test samples for which constraints (2b) — (20) and (4)
can be simultaneously satisfied.

The experiments are conducted using different settings for
(1) the size of the training data (i.e., II; = Ilp), (ii) the
maximum running time (i.e., time limit) of the solver (denoted
by ¢ in hours), and (iii) the desired feasible probability of the
chance constraint (i.e., 1 — 7)), as shown in Tables I — IV. The
training data size II; = Iy € {60, 100, 140} for the IEEE 33-
Bus system and II; = II, € {30, 45,60} for the IEEE 123-
Bus system. The maximum running time ¥ € {4, 8,12} for the
IEEE 33-Bus system and ¢ € {10, 13,16} for the IEEE 123-
Bus system. The desired feasible probability 1—n € {0.8,0.9}
for both systems. These settings lead to 18 = 3 x 3 x 2
combinations in total for each system. For some instances,
when both models are too large to be solved to optimality
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within the given time limits, we take the incumbent solutions
returned by the solver as the optimal solutions. We also record
the relative optimality gap, (2, — zq)/zp, Where z, is the
primal objective bound (i.e., the incumbent objective value)
and z4 is the dual objective bound (i.e., the lower bound for
minimization problems). Intuitively, a smaller gap indicates a
better-quality incumbent solution.

We illustrate the performance of both models in Tables I —
IV. The columns in the SAA/PSAA section represent, from left
to right, the first-stage cost, the average second-stage cost of
testing samples, the average total cost, the relative optimality
gap, and the actual feasible probability.

Compared with the SAA model, the PSAA model leads
to lower first-stage costs, lower second-stage costs, and thus
lower total costs in all cases. The lower costs indicate that the
siting and sizing decisions provided by the PSAA approach
help more effectively satisfy the same required demands than
those provided by the SAA approach. Thus, compared to the
SAA solutions, the PSAA solutions require fewer RDG units
to be installed and/or the installed RDG units can be of smaller
capacity. Moreover, the effective plans made by the PSAA
approach lead to lower operating costs for the distribution
grid than the plans made by the SAA approach. A direct
comparison of the total costs is shown in Fig. 6, where the
horizontal axis represents the training-data size, the vertical
axis represents the total cost, and different colors represent
different running times. The total costs of the SAA solutions
are labeled with triangular symbols, and the total costs of the
PSAA solutions are marked with circular symbols.

n=0.1
A SAAt=4 ® PSAAt=4
127001 4 saat=s e PSAAt=8
A SAAt=12 e PSAAt=12
12500 A
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H ° [ ]
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11700 - *
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Fig. 6. SAA vs. PSAA solutions in the total cost (n = 0.1)

Within the same time limits, we observe that the relative
optimality gap of the PSAA solution is always less than that of
the SAA solution in all cases. Specifically, for the cases where
the PSAA model can solve the instance to optimality (i.e.,
the optimality gap is 0) within the time limits, we report the
corresponding computational time in hours used by the PSAA
model in the column “Gap” and label it by x. The SAA model
cannot solve any instance to optimality within the time limits.
The result clearly indicates that the PSAA model is more
computationally efficient than the SAA model. The difference
is due to how the chance constraint is dealt with in the models.
The SAA model introduces II; binary variables (i.e., 0;),
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whereas the PSAA model introduces II> continuous variables
(i.e., mx). Although there are more continuous variables and
more constraints in the PSAA model, the binary variables
in the SAA model are more difficult to manage. A direct
comparison of the gap is shown in Fig. 7, where the vertical
axis represents the relative optimality gap.
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Fig. 7. SAA vs. PSAA solutions in the optimality gap (n = 0.1)

To further illustrate the computational improvement of the
PSAA approach compared with the SAA approach, we sum-
marize the optimality gap improvement (i.e., reduction) from
the SAA approach to the PSAA approach in Fig. 8 and Fig. 9.
In the figures, the horizontal axis represents the setting of 1 and
I1;. For instance, “0.1 —60” means that = 0.1 and II; = 60.
The vertical axis represents the optimality gap improvement
in percentage, as given by:

|the gap by PSAA — the gap by SAA|
the gap by SAA
From Fig. 8 and Fig. 9, we find that the improvement is mostly

above 50% and even reaches 100% when the PSAA solves an
instance to optimality.

x 100%.
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Fig. 8. Optimality Gap Improvement (IEEE 33-Bus system)

In each of the tested cases, the actual feasible probability
of the PSAA solution is clearly higher than that of the SAA
solution and is almost equal to the desired probability. This
indicates that the PSAA performs better than the SAA as an
approximation method for the chance constraint. In fact, the
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Fig. 9. Optimality Gap Improvement (IEEE 123-Bus system)

actual feasible probability of the PSAA solution is less than
1% different from the desired solution, which in practice will
give the grid decision-makers more control of the confidence
level. A direct comparison is shown in Fig. 10, where the
vertical axis represents the actual feasible probability.
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Fig. 10. SAA vs. PSAA solutions in the actual feasible probability (n = 0.1)

To conclude this section, we illustrate the performance
difference between the two models with a specific example.
When II; = II; = 140, ¥ = 8, and 7 = 0.1 in the IEEE 33-
Bus system, the SAA solution sites (sizes) the candidate RDG
units at Buses 3 (6 MW), 9 (6 MW), and 12 (4 MW), and the
PSAA solution sits (sizes) the candidate RDG units at Buses
3 (5 MW), 8 (4 MW), and 26 (6 MW). Thus, compared to the
SAA solution, the PSAA solution results in a lower first-stage
cost, due to the smaller total capacities of the installed RDG
units. In addition, the output pfl of the DDG unit at Bus 29 in
the PSAA solution is significantly less than that in the SAA
solution for most testing data, and the load-shedding penalties
of the PSAA solution are also much less than those of the
SAA solution. The two factors above account for most of the
difference between the methods in the second-stage costs. We
know that Buses 27, 29, and 30 have higher loads and that the
DDG units have been installed at Buses 15 and 29. Thus, it is
reasonable to place a candidate RDG unit at Bus 26 to reduce
the output pressure on the DDG unit at Bus 29. In addition,
in a distribution network structure, it is likely that the power
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purchased from Bus 0 and generated by the RDG unit at Bus 3
(6 MW) or Bus 3 (5 MW) is mainly used to fulfill the loads at
Buses 1-4 and 18-24. Given the desired feasible probability of
0.9 (i.e., the power system operator expects to satisfy the load
with a confidence level of 0.9), the PSAA solution shows that
a 5 MW RDG unit is sufficient to satisfy the load, and thus a
6 MW unit (given by the SAA solution) may be excessive.

E. Storage vs. No Storage

Here we compare the experimental results to show the
effects of ES installation. From previous experiments, we ob-
serve that the PSAA model produces higher-quality solutions
than the SAA model. Thus, all subsequent experiments are
conducted using the PSAA model.

In the experiments, the maximum running time ¥ = 12
hours for the IEEE 33-Bus system and ¥ = 16 hours for the
IEEE 123-Bus system, and the planning horizon T' = 3 weeks.
Note that our proposed TCC model (6) is general enough to
consider a longer-term setting because one can always set
T to be years or seasons. Here our experiments consider a
representative snapshot of the long-term future by setting T’
to be a relatively small number. Correspondingly, the cost
parameters in the first stage of model (6), including the setup
costs and the size-based investment/maintenance costs of the
RDG and ES units, have also been levelized over the specific
T time periods (weeks).

To match the planning horizon, we integrate every 3 of
the 4000 weekly samples into a 3-week-long sample (without
repetition) to obtain 1333 new samples. For computational
efficiency, the size of the training data is set to II; = II, = 50
for the IEEE 33-Bus system and 1I; = Il = 30 for the
IEEE 123-Bus system. As the training set is relatively small
compared with the number of random variables, we use the
k-means clustering algorithm to improve the reliability of the
training samples. In particular, we randomly choose 200 of the
1333 samples and divide them into 50 groups by the k-means
algorithm. We then use the centers of the 50 groups as our
training samples. The remaining 1133 samples are used for
testing.

We modify the active-power upper bounds of the DDG units
(i.e., p) and the standard capacities in X’ of the RDG units to
match their designed load share in different cases. In particular,
let o1 and g2 be two nonnegative parameters, and let SUM
be the expected total active load (estimated from the real data
and invariant to t). For each of the two DDG units, the active-
power upper bound p¢, is adjusted to o1 x SUM /2 for all ¢ €
[T]. The maximum standard capacity of the RDG units Z4 is
adjusted from 7 MW to g3 x SUM /4. The other three standard
capacities in X are adjusted proportionally. For example, the
minimum standard capacity z; is adjusted from 4 MW to oo X
SUM /4 x 4/7. We conduct two sets of experiments with ) =
0.1 and 1 = 0.2, respectively. For each set of experiments, we
set (01, 02) to take six different pairs of values, i.e., (0.5,0.5),
(0.4,0.6), (0.6,0.4), (0.3,0.3), (0.2,0.4), and (0.4,0.2). Note
that (o1, 02) does not represent an interval. When (o1, 02) =
(0.4,0.6), it means that we set o; = 0.4 and g2 = 0.6. The
results are shown in Tables V — VIIIL.
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When 07 + 02 = 1.0, the solutions with ES units lead
to higher second-stage costs but lower total costs than those
without ES units. This indicates that ES installation is ben-
eficial overall, despite leading to higher operational costs.
Regarding computational efficiency, the optimality gaps for the
solutions with ES are no smaller than those without ES, but
the difference is negligible. Thus, considering ES installation
increases the problem complexity, but not significantly.

When 01 + 92 = 0.6 (i.e., the DDG and RDG units may
be insufficient to satisfy the load), ES units are more crucial.
Without ES units, we cannot find a feasible solution within
the time limit in any case. This indicates that the problems
without ES units are likely to be infeasible. However, with ES
units, feasible solutions are found within the time limit, and
the actual feasible probabilities of the solutions are very close
to the desired probabilities. This is because more active power
can be purchased or generated in advance when there are ES
units, and thus fulfill the load when the demand is high.

As an illustrative example, we consider the instance with
(01,02) = (0.6,0.4) and = 0.2 in the IEEE 33-Bus system.
Without ES units, the solution sites (sizes) candidate RDG
units at Buses 4 (7 MW), 9 (6 MW), and 28 (7 MW). With
ES units, the result shows that candidate RDG units should be
installed at Buses 3 (5§ MW), 12 (3 MW), and 29 (7 MW), and
that ES units should be installed at Buses 2 (2.3 MW), 12 (1.8
MW), and 27 (2.8 MW). The latter solution agrees with our
intuition that storage units placed close to high-load buses play
an important role in balancing the supply and demand in the
power grid. We also observe that ES installation reduces the
total required capacities of RDG units. This reduction lowers
the first-stage costs so much that the total costs are reduced,
even though the operating costs increase due to the operation
of storage units.

Finally, all the above numerical results demonstrate that our
proposed TCC model and PSAA approach can effectively deal
with the RDG and ES planning problem under significant un-
certainties. We note that, although we focus on such a planning
problem in this paper, the proposed model and approach can
also be applied to other practical problems under uncertainty
in the industry. For instance, we can apply the PSAA approach
to solve the chance-constrained unit commitment problems in
[19] and chance-constrained optimal power flow problems in
[14], thereby reducing computational challenge. In general,
many practical problems that consider two-stage decision-
making under uncertainty may be formulated as a TCC model
and solved by the PSAA approach. In addition, our proposed
PSAA approach is a data-driven approach because (i) we use
historical data to represent the possible scenarios of uncertain
parameters and accordingly characterize chance constraints
in our model; (ii) we use historical data to estimate the
cumulative distribution function of a single random parameter
&} by a non-parametric estimation technique; and (iii) once we
obtain the first-stage solution of our model, we use real data to
test the effectiveness of the obtained solution, simulating real
practices. Such an approach can be applied to a wider range
of practical problems.
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TABLE 1
IEEE 33-BUS SYSTEM: SAA vS. PSAA (n =10.1)
e 9 (h) SAA PSAA
Ist ($) 2nd ($) Total cost ($) Gap Prob Ist ($) 2nd ($) Total cost ($) Gap  Prob
4 10674.5 1692.8 12367.3 040 0.85 10226.3 1639.2 11865.5 0.08 0.90
60 8 10510.0 1679.4 12189.4 0.36  0.85 10184.6 1645.8 11830.4 7.33%  0.89
12 10510.0 1679.4 12189.4 034 0.84 10184.6 1645.8 11830.4 7.33%x  0.89
4 10586.3 1713.0 12299.3 0.52  0.86 10275.5 1607.6 11883.1 0.12 0.90
100 8 10447.2 1708.5 12155.7 047 0.86 10224.5 1616.2 11840.7 0.06 0.90
12 10397.4 1721.3 12118.7 0.39 0.86 10105.6 1606.5 11712.1 0.03 0.89
4 10800.2 1716.0 12516.2 0.60 0.86 10231.8 1629.0 11860.8 0.21 0.90
140 8 10749.0 1691.2 12440.2 0.54  0.87 10209.0 1632.7 11841.7 0.16 0.90
12 10723.9 1711.9 12435.8 049 0.86 10173.0 1625.1 11798.1 0.11 0.90
TABLE II
IEEE 33-BUS SYSTEM: SAA vS. PSAA (n = 0.2)
I, 9 (h) SAA PSAA
1st ($) 2nd ($) Total cost (§) Gap Prob | Ist($) 2nd ($) Total cost ($) Gap Prob
4 9947.9 1756.2 11704.1 0.21 0.78 9536.3 1723.3 11259.6 2.55«  0.80
60 8 9947.9 1756.2 11704.1 0.12  0.78 9536.3 1723.3 11259.6 255« 0.80
12 9664.2 1742.8 11407.0 0.08 0.77 9536.3 1723.3 11259.6 2.55«  0.80
4 9772.3 1722.6 11494.9 0.35  0.78 9652.7 1720.1 11372.8 0.05 0.80
100 8 9651.9 1743.9 11395.8 0.27 0.78 9574.9 1652.2 11227.1 4.73%  0.80
12 9633.8 1739.7 11373.5 0.21 0.77 9574.9 1652.2 11227.1 4.73%  0.80
4 10039.0 1740.1 11779.1 042  0.79 | 9705.0 1692.1 11397.1 0.13 0.80
140 8 9974.3 1748.7 11723.0 0.33  0.79 | 9639.5 1683.0 11322.5 0.06 0.80
12 9974.3 1748.7 11723.0 0.27 0.79 | 9592.1 1666.8 11258.9 0.04 0.80
TABLE 1T
IEEE 123-BUS SYSTEM: SAA vS. PSAA (n =0.1)
L 9(h) SAA PSAA
Ist ($) 2nd ($) Total cost (§) Gap  Prob 1st ($) 2nd ($) Total cost () Gap  Prob
10 26715.3 6422.7 33138.0 033  0.86 | 25937.3 6396.0 32333.3 0.15 091
30 13 26127.5 6248.7 32376.2 0.28 0.86 | 25372.6  6210.7 31583.3 0.11 0.90
16 259724 62553 32227.7 0.21 0.85 25047.2  6251.8 31299.0 0.09  0.90
10 27019.2  6392.3 33411.5 042 0.87 26252.8 6305.3 32558.1 0.21 0.90
45 13 26407.7 6268.9 32676.6 039 0.86 | 26043.7 6365.3 32409.0 0.13  0.90
16 26149.3 6274.3 32423.6 0.34 0.86 | 25392.6 6216.6 31609.2 0.10  0.89
10 26931.0  6561.9 33492.9 0.61 0.87 258924  6410.8 32303.2 0.30 091
60 13 267724 63472 33119.6 0.57 0.87 25465.3 6304.3 31769.6 0.25 091
16 26073.5 6403.6 32477.1 0.53 0.87 25428.0  6309.8 31737.8 0.21 0.90
TABLE IV
IEEE 123-Bus SYSTEM: SAA vS. PSAA (n =0.2)
e 9 (h) SAA PSAA
Ist ($) 2nd ($) Total cost (§) Gap  Prob Ist (§) 2nd ($) Total cost ($) Gap  Prob
10 25894.3 6407.1 32301.4 0.24  0.78 252834 63922 31675.6 0.14  0.80
30 13 25607.6  6379.2 31986.8 0.21 0.78 25076.9 6359.4 31436.3 0.11 0.80
16 25313.7 6392.4 31706.1 0.16  0.77 24764.0  6271.2 31035.2 0.07  0.79
10 260219  6307.6 32329.5 037 0.78 25506.3 6293.2 31799.5 0.18  0.80
45 13 25528.3 6517.4 32045.7 030 0.78 24892.6  6268.1 31160.7 0.13  0.80
16 24986.1 6492.2 31478.3 0.27 0.78 24508.3 6238.9 30747.2 0.11 0.80
10 26328.0 6398.2 32726.2 0.56 0.78 26017.3 6344.5 32361.8 0.26 0.81
60 13 26148.7 6362 32510.7 048 0.78 25370.4  6308.8 31679.2 0.24  0.80
16 25693.3 6417.4 32110.7 0.44  0.78 25091.2  6284.5 31375.7 0.19  0.80
TABLE V
IEEE 33-BUS SYSTEM: STORAGE VS. NO STORAGE (n = 0.1)
without energy storage with energy storage
(01, 02) Ist ($) 2nd ($) Total cost (§) Gap  Prob Ist ($) 2nd ($) Total cost (§) Gap  Prob
(0.5,0.5) 10592.0 52433 15835.3 0.24  0.89 9952.0 5501.4 15453.4 0.26  0.90
(0.4,0.6) 10464.3 5372.8 15837.1 0.23  0.90 9873.8 5427.6 15301.4 0.29 091
(0.6,0.4) 10726.9 5194.2 15921.1 0.27  0.89 9908.2 5462.9 15371.1 0.28  0.90
(0.3,0.3) * 10143.7 5576.1 15719.8 0.38 0.89
(0.2,0.4) * 10471.5 5560.8 16032.3 0.39 0.89
(0.4,0.2) * 10239.2 5602.5 15841.7 043 0.89
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TABLE VI
IEEE 33-BUS SYSTEM: STORAGE VS. NO STORAGE (n = 0.2)

without energy storage with energy storage
(e1,02) | 1y ($) 2nd($) Totalcost($) Gap Prob | 1st($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) | 10527.7  5293.7 15821.4 0.16  0.80 9903.2 5460.4 15363.6 022 0.82
(0.4,0.6) | 10332.5  5268.3 15600.8 020 0.79 9764.0 5503.9 15267.9 026 0.80
(0.6,0.4) | 102004 53729 15573.3 021  0.80 9672.4 5423.5 15095.9 023 0381
(0.3,0.3) * 10021.3  5690.3 15711.6 033 0.80
(0.2,0.4) * 10206.5  5575.1 15781.6 040 0.80
(0.4,0.2) * 10164.8  5625.0 15789.8 038 0.8l

TABLE VII

IEEE 123-BUS SYSTEM: STORAGE VS. NO STORAGE (nn = 0.1)

without energy storage with energy storage
(01, 02) Ist ($) 2nd ($) Total cost (§) Gap  Prob Ist ($) 2nd ($)  Total cost (§) Gap  Prob
(0.5,0.5) | 282749 19707.3 47982.2 044  0.89 | 269225 20311.6 47234.1 046  0.90
(0.4,0.6) | 27944.6  19638.2 47582.8 0.37 0.89 | 263273 20610.4 46937.7 046 091
(0.6,0.4) | 278269 19648.2 47475.1 0.39 0.89 | 26281.7 20409.3 46691.0 0.49  0.90
(0.3,0.3) * 28037.3  20416.3 48453.6 0.57 0.90
(0.2,0.4) ® 27614.0  20882.5 48496.5 0.54  0.89
(0.4,0.2) * 279324  20741.3 48673.7 0.52  0.90

TABLE VIII

IEEE 123-BUS SYSTEM: STORAGE VS. NO STORAGE (1 = 0.2)

without energy storage with energy storage
(01, e2) Ist ($) 2nd ($)  Total cost (§) Gap Prob st ($) 2nd ($) Total cost ($) Gap  Prob
(0.5,0.5) | 279704  19504.8 47475.2 0.38  0.80 | 26392.7 19903.2 46295.9 0.37 081
(0.4,0.6) | 27822.6 19762.4 47585.0 029 0.80 | 270415 201134 47154.9 041 0.81
(0.6,0.4) | 28203.0 19793.0 47996.0 0.33  0.80 | 26808.3 20513.6 47321.9 0.35 0.81
(0.3,0.3) | 294094  19442.7 48852.1 052 0.78 | 277514  19862.4 47613.8 045 0.79
(0.2,04) | 29143.6  19627.1 48770.7 044 079 | 279483 201723 48120.6 048  0.79
(0.4,0.2) | 29527.1 20062.6 49589.7 049 0.79 | 27684.0 20194.0 47878.0 0.38  0.80

VI. CONCLUSIONS

Distribution grid operators face great challenges in decid-
ing the locations and capacities of RDG and ES units due
to significant uncertainties and complexities of distribution
systems (e.g., ACOPF). To support such a decision-making
problem, we develop a novel TCC model to ensure system
reliability, minimize costs, and improve renewable energy
penetration. One key feature of our model is that the chance
constraint ensures that all the operational constraints are satis-
fied simultaneously with a high probability, leading to system
reliability. We use two sampling techniques to reformulate our
developed model, leading to the standard SAA formulation and
our proposed PSAA formulation. The novelty of the PSAA
formulation is that it introduces only continuous variables
corresponding to the samples (as compared to integer variables
in the SAA formulation) and uses historical data to improve its
performance. Our extensive experiments show that the PSAA
formulation performs better than the SAA formulation. The
PSAA provides better locations and capacities of the RDG and
ES units in a shorter time with a lower total cost and achieves
a better desired probability of ensuring system feasibility than
the SAA. The PSAA also reduces the optimality gap by more
than 50% as compared to the SAA. We finally demonstrate the
significance of ES units in reducing total costs and improving
the power system balance.

This research can be extended in various directions. First,
as our proposed TCC model and PSAA approach is general
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enough, it would be interesting to apply the TCC model
and PSAA approach to solve other practical problems in
power system planning and operations. Second, the PSAA
approach always finds a better solution in a shorter time than
the SAA approach in our numerical experiments, but we do
not have a theoretical proof for such results. A theoretical
study would be appealing. Third, although we consider a
radial distribution network in this paper, there can be other
types of distribution networks, e.g., meshed grids [26] and
multiphase grids [44]. One can apply various approximations
(e.g., semidefinite programming [45]) to formulate the cor-
responding ACOPF constraints. Fourth, although we adopt
Bender’s decomposition algorithms to improve computational
efficiency, more advanced algorithms can be developed. We
leave them to future research.
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