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Abstract—The planning of distributed energy resources has
been challenged by the significant uncertainties and complexities
of distribution systems. To ensure system reliability, one often
employs chance-constrained programs to seek a highly likely
feasible solution while minimizing certain costs. The traditional
sample average approximation (SAA) is commonly used to
represent uncertainties and reformulate a chance-constrained
program into a deterministic optimization problem. However, the
SAA introduces additional binary variables to indicate whether a
scenario sample is satisfied and thus brings great computational
complexity to the already challenging distributed energy resource
planning problems. In this paper, we introduce a new paradigm,
i.e., the partial sample average approximation (PSAA) using real
data, to improve computational tractability. The innovation is
that we sample only a part of the random parameters and
introduce only continuous variables corresponding to the samples
in the reformulation, which is a mixed-integer convex quadratic
program. Our extensive experiments on the IEEE 33-Bus and
123-Bus systems show that the PSAA approach performs better
than the SAA because the former provides better solutions in a
shorter time in in-sample tests and provides better guaranteed
probability for system reliability in out-of-sample tests. All the
data used in the experiments are real data acquired from Pecan
Street Inc. and ERCOT. More importantly, our proposed chance-
constrained model and PSAA approach are general enough and
can be applied to solve other valuable problems in power system
planning and operations. Thus, this paper fits one of the journal
scopes: Distribution System Planning in Power System Planning
and Implementation.

Index Terms—Planning, distributed energy resources, renew-
able distributed generation, energy storage, stochastic program-
ming, chance-constrained programming, data-driven

I. NOMENCLATURE

A. Indices and Sets

n/k/r Index of buses/ renewable distributed generation

(RDG) units/ energy storage (ES) units.

π/κ/τ Index of different data samples.

N/E/Nn Set of all the buses/ all the power distribution

lines/ the buses connected to a given Bus n ∈ N ,

i.e., Nn := {m | (n,m) ∈ E}.
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B0/B1/B2 Set of buses that are connected to Bus 0/

installed with dispatchable distributed generation

(DDG) units/ installed with reactive power sources.

X Set of standard capacities of RDG units, i.e., X :=
{x̄1, . . . , x̄L}.

[K] {1, 2, . . . ,K}, for any K ∈ Z+.

B. Parameters

c0kn/d
0
rn Setup cost of placing the kth candidate RDG unit/

the rth candidate ES unit at Bus n.

c1k/c
2
k Size-based investment/ maintenance cost of the kth

candidate RDG unit.

d1r/d
2
r Size-based investment/ maintenance cost of the rth

candidate ES unit.

ctp/c
t
q Electricity price of purchasing active/reactive

power from the main grid via Bus 0.

cfn/c
e
n Fuel/emission price for the DDG units at Bus n.

ω Emission factor of the DDG units (kg/kWh).

K/R/T/N Total number of candidate RDG units to be

installed/ candidate ES units to be installed/ all

the time intervals in the planning horizon/ all the

buses.

K̄ Maximum number of RDG units to be installed.

LCmn Capacity of a power distribution line (m,n) ∈ E .

(p̄tn, p
t

n
) Active power output bounds of DDG unit n in

period t.
(q̄tn, q

t

n
) Reactive power output bounds of reactive power

source n in period t.
Rmn/Xmn Electrical resistance/reactance of line (m,n).
δn/τn Binary indicator of whether a DDG unit/ a reactive

power source is at Bus n.

v/v̄ Upper/lower bound of voltage magnitude at a bus.

ȳr/yr Maximum/minimum capacity of the rth candidate

ES unit.

e1/e2 ES charging/discharging unit cost.

η/γ/b0r Violation probability/ ES efficiency/ Initial power

level of the rth candidate ES unit.

Π1/Π2/Π3 Total number of data samples of different types.

C. Random Variables

dtpn/d
t
qn Active/reactive load at Bus n in period t.

stk Active power output efficiency of the kth candidate

RDG unit in period t.
ξt Vector of uncertainty in compact form in period t,

i.e., [dtp1, . . . , d
t
pN , d

t
q1, . . . , d

t
qN , s

t
1, . . ., s

t
k]

>.

D. Decision Variables

zkn/ukl/wrn Binary indicator of whether the kth candidate

RDG unit is located at Bus n/ of whether the

capacity of the kth candidate RDG unit is the lth
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element in X / of whether the rth candidate ES unit

is located at Bus n.

xk/yr Size of the kth candidate RDG unit/ Capacity of

the rth candidate ES unit.

f tr/g
t
r Active power that is charged/ discharged at the rth

candidate ES unit in period t.
pt0/q

t
0 Active/ reactive power purchased from the main

grid via Bus 0 in period t.
P t
mn/Q

t
mn Active/ reactive power flow from Bus m to n in

period t.
V t
n/|V

t
n|

2 Complex voltage at Bus n in period t/ its

magnitude.

Itmn/|I
t
mn|

2 Complex current from Bus m to n in period

t/ its magnitude.

ptn/q
t
n Active/ reactive power output of the DDG unit/

reactive power source at Bus n in period t.
btr Active power of the rth candidate ES unit in period

t.
LSt

1mn/LS
t
2mn Load-shedding variables.

z [zkn, ∀ k ∈ [K], n ∈ N ]>.

x, u [x1, . . . , xK ]>, [ukl, ∀ k ∈ [K], l ∈ [L]]>.

y,w [y1, . . . , yR]
>, [wrn, ∀ r ∈ [R], n ∈ N ]>.

II. INTRODUCTION

With technological development and governments’ support,

renewable energy has drawn significant attention and invest-

ment. A widely used strategy to exploit renewable energy is

to integrate renewable distributed generation (RDG) units into

existing power distribution grids. Correct installation of RDG

units can help power distribution grids provide customers with

affordable and reliable energy, while improper placement may

result in many problems, e.g., system instability and power

losses [1], due to the intermittency of renewable energy. Such

intermittency from RDG units may lead to cascading problems

such as an imbalance of electricity supply and demand and

system blackouts [2]. Therefore, proper siting (i.e., location)

and sizing (i.e., capacity) decisions of the RDG units are of

great significance to ensure the benefits of renewable energy

and maintain reliable operations of the power distribution

grids.

Besides RDG units, energy storage (ES) has also been

considered for use in power distribution grids. It is because

ES units can provide a buffer against an imbalance of supply

and demand, thereby reducing operating costs and increasing a

power distribution grid’s probability of meeting demand. Such

benefits may offset the installation and operating costs of ES

units and even lead to profits. For example, [3] adopts ES

to help support wind energy applications and [4] uses ES to

increase the penetration of more general renewable generation

by smoothing out the effects of intermittency. The positive

results from these studies indicate the necessity to integrate ES

units into a power distribution grid with RDG units. Thus, it is

important to determine the optimal siting and sizing decisions

of both the RDG and ES units.

For ease of exposition, we refer to the problem of siting and

sizing both RDG and ES units in a power distribution grid as

the planning problem thereafter. Such a problem largely relies

on accurate power flow analysis. Two mathematical models are

often considered to calculate the optimal power flow in power

grids: the direct current optimal power flow (DCOPF) and

the alternating current optimal power flow (ACOPF) models.

The DCOPF model is composed of linear constraints and

thus is easier to solve, while it oversimplifies the physical

features. In contrast, the ACOPF model is relatively accurate

by considering active and reactive power-generation limits,

demand limits, bus voltage limits, and network flow limits

[5], while it is nonlinear and nonconvex. The DCOPF model

provides a linear approximation of the ACOPF model, with

systematic errors though. Such inaccuracy is acceptable for

large-scale power networks but is often unacceptable for local

distribution grids. Therefore, this paper uses the ACOPF model

to accurately simulate a power distribution grid.

Different variants of the planning problem have recently

drawn much attention from academia and industry. The paper

[6] provides a review of related studies on the RDG planning in

the power distribution network, and [7] reviews related studies

on more general generation expansion planning. Specifically,

[8] plans the locations and capacity sizes of RDG units based

on simplified load flow calculation in a multiobjective opti-

mization model that is further solved by a genetic algorithm,

while ES units are not considered. Similarly, without ES units

included, [9] considers the siting and sizing of RDG units in

a power distribution grid in a two-stage robust optimization

model. The paper [10] makes the siting and sizing decisions

for the ES units in a power transmission grid via a three-stage

mixed-integer linear program, while the DCOPF model is

adopted. A recent work can be found in [11], which considers

only the sizing of RDG units in a two-stage distributionally

robust optimization model and makes the siting decisions via

sensitivity analyses. The above existing efforts demonstrate the

significance of siting and sizing RDG and ES units.

However, the large-scale installation of RDG units adds

significant uncertainties to a power distribution grid due to the

intermittency of renewable energy, requiring methodological

innovation to deal with the already challenging operations

of a power distribution grid. To that end, many stochastic

programming models dealing with uncertainties have been

developed to support effective distribution grid operations. For

example, [12] proposes a two-stage stochastic programming

model for the optimal planning of distributed energy sys-

tems under demand and supply uncertainties. The paper [13]

proposes a two-stage stochastic programming-based optimal

power flow model for the operation of distribution networks

with uncertainties from wind power.

In this paper, we adopt chance-constrained programming

to model the planning and operational decisions under un-

certainties, including renewable generation and load uncer-

tainties, to ensure the feasibility of the distribution system

under a high probability. Specifically, we note that, due to

such uncertainties, a power distribution grid may face various

reliability issues. For instance, power outages often happen

when the power supply is insufficient, such as facing a natural

disaster like a typhoon. A load bus that is far away from the

upper stream grid may not receive the power injected from

the upper stream grid or local distributed generators because
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of distribution line capacity limit and line loss. The distribution

line contingency may also happen. Therefore, to help relieve

such pressure and ensure system reliability, we build a two-

stage chance-constrained (TCC) model (where the siting and

sizing decisions are in the first stage and operational decisions

are in the second stage) to solve the planning problem. More

importantly, considering various reliability issues, we adopt

a chance constraint to ensure all the operational constraints

in the second stage are satisfied simultaneously, rather than

ensuring load satisfaction only. As such, our proposed TCC

model becomes extremely difficult to solve, requiring further

innovation in solution approaches.

We note that the chance-constrained model is a risk-averse

decision-making tool that can help grid operators actively

control the probability of unfavorable outcomes (e.g., system

blackouts). The chance-constrained model is widely used

for power system operations. For instance, [14] solves the

chance-constrained ACOPF problems to ensure that opera-

tional constraints are satisfied with the desired probability. The

paper [15] further provides convex approximations via second-

order conic programming, and [16] provides asymptotically

tight conic approximations for the chance-constrained ACOPF

problems. Similarly, [17] studies the chance-constrained unit

commitment formulations, and [18] investigates the chance-

constrained day-ahead scheduling. Several studies use TCC

models, which are much more complex than single-stage

chance-constrained models. For instance, [19] is among the

first to propose a TCC model for the unit commitment prob-

lem, while it considers a single chance constraint to ensure

load satisfaction only. The paper [20] considers a similar TCC

model for the unit commitment problem while presenting a bi-

linear mixed-integer reformulation solved by Benders decom-

position following the study in [21]. The paper [22] formulates

the chance constraints based on the definition of conditional

value at risk in a TCC model for the unit commitment

problem and reformulates these constraints using sampling-

based approaches. The paper [23] specifically considers wind

uncertainty in the chance-constrained unit commitment model.

However, to the best of our knowledge, few studies apply the

TCC models in the planning of RDG and ES units together in

a distribution system considering the ACOPF model. More

importantly, different from the existing studies above, this

paper considers all the operational constraints simultaneously

in a difficult joint chance constraint.

Nevertheless, the TCC model is intractable in general,

specifically when the random parameters follow an underlying

continuous (yet unknown) probability distribution and are

of high dimensions, posing severe computational challenges

[24]. The existing studies primarily adopt two approximation

approaches to solve a chance-constrained model: a convex (or

tractable) approximation approach [15] and a sampling-based

approach [19]. The former is not applicable to a TCC model

because the second-stage recourse decision is a function of the

first-stage decision and random parameters and it is impossible

to algebraically characterize this function. Thus, this paper

uses the latter. Specifically, we propose two sampling tech-

niques to reformulate our TCC model: the standard sample av-

erage approximation (SAA) method and a new partial sample

average approximation (PSAA) method. Both approximations

lead to mixed-integer convex quadratic programs. However,

the SAA introduces many additional binary variables corre-

sponding to the samples, creating computational complexity to

the already challenging distributed energy resource planning

problem. In contrast, the PSAA samples only a part of the

random parameters, and we use a non-parametric estimation

method to approximate the probability distribution of the

remainder, leading to an efficient data-driven approach. We

only need to introduce additional continuous variables corre-

sponding to the samples to reformulate the model, reducing

the computational complexity. Thus, the reformulation can be

scaled up to solve large-scale instances.

The main contributions of the paper are as follows.

• We develop a novel TCC model for the distributed

energy resource planning problem that considers both

the placement and capacity of RDG and ES units under

uncertainty, combined with the ACOPF model, in a dis-

tribution grid with multiple periods. We consider all the

operational constraints in the second stage to be satisfied

simultaneously in a joint chance constraint.

• We are the first to develop the PSAA approach using

historical data to solve the above TCC model for a

significant industry problem. We extend the PSAA idea

that solves single-stage chance-constrained models.

• Our extensive experiments on the IEEE 33-Bus and

123-Bus systems using real data show that the PSAA

approach performs better than the standard SAA approach

because the former provides better solutions in a shorter

time in in-sample tests and provides better guaranteed

probability for system reliability in out-of-sample tests.

The effectiveness of ES units in reducing total costs and

improving system balance is also demonstrated.

The remainder of this paper is organized as follows. A

two-stage model and its TCC counterpart for the planning

problem are presented in Section III. The TCC model is then

approximated using the SAA and PSAA methods in Section

IV. We provide computational results and explanations in

Section V. Section VI concludes this paper.

III. MATHEMATICAL MODEL

In this section, we present a two-stage stochastic program-

ming model and its TCC counterpart for the planning problem.

A. A Two-Stage Model

We focus on a typical distribution grid topology: the radial

network. Such a network has a tree structure and connects

to a transmission network via a single bus (Bus 0). In

our distribution network, the power supply comes from four

sources: the transmission network, the traditional dispatchable

distributed generation (DDG) units and reactive sources, the

RDG units, and the ES units. The last three sources are

located in some buses of the distribution grid. While the

DDG units and reactive sources have already been placed (i.e.,

given system input data), the RDG and ES units are to be

installed (i.e., system decision variables). The operating costs

for the supply sources include the payment to the transmission
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network, the cost of power generation from the DDG units,

and the cost of charging/discharging the ES units. Here we

investigate the optimal siting and sizing of K̄ candidate RDG

units and R candidate ES units in a distribution grid with buses

N , to minimize the total cost across the planning horizon.

The cost includes deterministic investment/maintenance costs

and stochastic operating costs (due to the uncertainties in

load and renewable power generation). In the following, we

formulate the planning problem as a two-stage optimization

model and describe the corresponding first-stage and second-

stage objectives and constraints.

1) First-stage model: The first-stage objective minimizes

the total cost of building, maintaining, and operating the RDG

and ES units, with the model formulated as follows.

min
Ω1

C1

(

Ω
1
)

+ E
[

Q
(

Ω
1, ξ
)]

(1a)

s.t.
∑

n∈N

zkn ≤ 1, ∀ k ∈ [K], (1b)

K
∑

k=1

∑

n∈N

zkn ≤ K̄, (1c)

xk =

L
∑

l=1

uklx̄l, ∀ k ∈ [K], (1d)

L
∑

l=1

ukl =
∑

n∈N

zkn, ∀ k ∈ [K], (1e)

∑

n∈N

wrn ≤ 1, ∀ r ∈ [R], (1f)

∑

n∈N

wrnyr ≤ yr ≤
∑

n∈N

wrnȳr, ∀ r ∈ [R], (1g)

where Ω
1 := [z,x,u,w,y]> is the vector of first-stage

variables. The first part in the objective function (1a)

C1

(

Ω
1
)

:=

K
∑

k=1

(

∑

n∈N

c0knzkn +
(

c1k + Tc2k
)

xk

)

+

R
∑

r=1

(

∑

n∈N

d0rnwrn +
(

d1r + Td2r
)

yr

)

,

represents the total deterministic cost, including the setup

costs and the size-based investment/maintenance costs of

the RDG and ES units. Specifically, C1

(

Ω
1
)

includes

two parts: (i) the setup costs of the RDG and ES units,
∑K

k=1

(
∑

n∈N c0knzkn
)

+
∑R

r=1

(
∑

n∈N d0rnwrn

)

, and (ii)

the investment/maintenance costs of the RDG and ES units,
∑K

k=1

((

c1k + Tc2k
)

xk
)

+
∑R

r=1

((

d1r + Td2r
)

yr
)

. In part (i),

zkn is a binary variable indicating whether the kth candidate

RDG unit is located at bus n and wrn is a binary variable

indicating whether the rth candidate ES unit is located at Bus

n. In part (ii), xk and yr are continuous variables indicating

the capacities of kth candidate RDG unit and rth candidate

ES unit, respectively.

The second part in the objective function (1a), E[Q(Ω1, ξ)],
represents the expected minimum operating costs over all

T periods, which is defined explicitly in (2). Regarding the

constraints (1b) - (1g), they link the variables zkn, wrn,

xk, yr, and ukl, by which the setup costs are linked with

the investment/maintenance cost. Specifically, constraints (1b)

show that a given kth candidate RDG unit, if installed, should

be in one of the buses in N . Constraint (1c) enforces that the

total number of RDG units installed should not exceed the

limit K̄.

In constraints (1d) and (1e), ukl is a binary variable indi-

cating whether the capacity of the kth candidate RDG unit

is the lth element in X , x̄l. Thus, constraints (1d) and (1e)

ensure that if a given kth candidate RDG unit is installed,

then the capacity of this RDG unit should be one of the pre-

defined values in X . For any given kth candidate RDG unit, the

summation
∑L

l=1 ukl is equivalent to the
∑

n∈N zkn, which

may take only the value 0 or 1. Such equivalence is not related

to the locations of candidate RDG units. Constraints (1d)

and (1e) are motivated by the practice where various regions

and institutions have different regulations on the capacity of

distributed generation, and thus the capacity of RDG units vary

[25].

Similar to (1b), constraints (1f) show that a given rth

candidate ES unit, if installed, should be in one of the buses in

N . Constraints (1g) show that if a given rth candidate ES unit

is installed (i.e., wrn = 1 for a bus n), then its capacity should

be between the lower bound y
r

and the upper bound ȳr. Note

that multiple new assets (including RDG and ES units) may

be installed eventually.

From the above constraints, we can observe that zkn impacts

xk and wrn impacts yr, i.e., the binary variables indicating

the location of new assets have an impact on the invest-

ment/maintenance cost.

2) Second-stage model: Given a first-stage decision Ω
1 and

a realization ξ of the uncertain load and renewable generation,

the second-stage objective minimizes the distribution grid’s

operating costs Q(Ω1, ξ), where ξ := [ξ1, . . . , ξT ]>, while

respecting a set of physical constraints such as the ACOPF

constraints. The operating costs include the cost of purchasing

active/reactive energy via Bus 0, the cost of fuel used and

emissions created in generating active power in the DDG units,

and the cost of charging and discharging the stored energy.

The operating costs also include the load-shedding variables

LSt
1mn, LSt

2mn, and a penalty factor p to account for any

unsatisfied load. Let Ω
2 be the vector of all second-stage

variables and let

C2

(

Ω
2
)

:=

T
∑

t=1

(

ctpp
t
0 + ctqq

t
0 +

∑

n∈B1

cfnp
t
n +

∑

n∈B1

cenωp
t
n

+

R
∑

r=1

e1f
t
r +

R
∑

r=1

e2g
t
r +

∑

(m,n)∈E

p
(

LSt
1mn + LSt

2mn

)





be the total operating costs in the second stage. The second-
stage problem, whose optimal value is denoted by Q(Ω1, ξ),
can be formulated as follows. (For ease of exposition, all
constraints with a superscript t hold for all t ∈ [T ].)

min
Ω2

C2

(

Ω
2
)

(2a)

s.t. p
¯

t

n
≤ ptn ≤ p̄tn, ∀n ∈ B1, (2b)

q
¯

t

n
≤ qtn ≤ q̄tn, ∀n ∈ B2, (2c)

v ≤
∣

∣V t
n

∣

∣

2

≤ v̄, ∀n ∈ N \ {0}, (2d)
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pt0 =
∑

n∈B0

P t
0n, qt0 =

∑

n∈B0

Qt
0n, (2e)

P t
mn −Rmn

∣

∣Itmn

∣

∣

2

+ LSt
1mn = dtpn −

K
∑

k=1

zkns
t
kxk

− δnp
t
n +

∑

l∈Nn

P t
nl +

R
∑

r=1

wrn

(

f t
r − gtr

)

,

∀ (m,n) ∈ E , (2f)

Qt
mn − Xmn

∣

∣Itmn

∣

∣

2

+ LSt
2mn = dtqn − τnq

t
n

+
∑

l∈Nn

Qt
nl, ∀ (m,n) ∈ E , (2g)

b0r = 0, ∀ r ∈ [R], (2h)

0 ≤ btr ≤ yr, ∀ r ∈ [R], (2i)

btr − bt−1

r = γf t
r − gtr/γ, ∀ r ∈ [R], (2j)

∣

∣V t
m

∣

∣

2

−
∣

∣V t
n

∣

∣

2

= 2RmnP
t
mn + 2XmnQ

t
mn

−
(

R
2

mn + X
2

mn

)
∣

∣Itmn

∣

∣

2

, ∀ (m,n) ∈ E , (2k)
∥

∥

∥

[

2P t
mn, 2Q

t
mn,

∣

∣V t
m

∣

∣

2

−
∣

∣Itmn

∣

∣

2
]
∥

∥

∥

2

≤
∣

∣V t
m

∣

∣

2

+
∣

∣Itmn

∣

∣

2

∀ (m,n) ∈ E , (2l)
(

P t
mn

)2

+
(

Qt
mn

)2

≤ (LCmn)
2, ∀ (m,n) ∈ E , (2m)

pt0 ≥ 0, qt0 ≥ 0, (2n)

LSt
1mn ≥ 0, LSt

2mn ≥ 0, ∀ (m,n) ∈ E . (2o)

Here, Ω2 consists of pt0, q
t
0 for t ∈ [T ], ptn, q

t
n, V

t
n, P

t
0n, Q

t
0n

for n ∈ N , t ∈ [T ], f tr , g
t
r, b

t
r for r ∈ [R], t ∈ [T ], P t

nl, Q
t
nl

for n such that (m,n) ∈ E for some m, l ∈ Nn, t ∈ [T ], and

P t
mn, Q

t
mn, I

t
mn, LS

t
1mn, LS

t
2mn for (m,n) ∈ E , t ∈ [T ].

We explain all the constraints in the model (2) as follows.

The power generated by the DDG units and the reactive

sources is bounded by (2b) and (2c), respectively. Constraint

(2d) sets the bounds on the voltage of each bus. Constraint

(2e) represents the active and reactive balance equations at

Bus 0. Constraints (2f) and (2g) are active and reactive power

balance equations from Kirchhoff’s current law. The following

Fig. 1 illustrates the active power flow balance for each

distribution line (m,n) ∈ E . The balance of power in storage

m n
P t
mn + LSt

1mn

Rmn

∣

∣Itmn

∣

∣

2

dtpn

∑K
k=1

zkns
t
k
xk + δnp

t
n

∑

l∈Nn

P t
nl

∑R
r=1

wrng
t
r

∑R
r=1

wrnf
t
r

Fig. 1. Power Flow Blance

is initialized by (2h) and bounded by (2i). ES balance between

two consecutive periods is shown in (2j), considering ES

charging/discharging efficiency. Constraint (2k) represents the

voltage drop on each line. Constraint (2l) is the branch power-

flow constraint, and the capacity of each distribution line is

limited by (2m). Nonnegativity constraints are listed in (2n)

and (2o).

Note that the load-shedding variables LSt
1mn and LSt

2mn

are defined over each distribution line (m,n) ∈ E . Once the

model is solved, one can also compute the load-shedding val-

ues at each bus easily. We also note that the branch flow model

is applied here to formulate the ACOPF constraints in (2f) –

(2g) and (2k) – (2m), where (2l) includes a set of a second-

order conic (SOC) constraints. These constraints represent the

ACOPF constraints via convex relaxation following the study

in [26]. Specifically, [26] removes the voltage and current

angles while introducing squared voltage and current mag-

nitudes, and relaxes the nonconvex quadratic constraints with

convex SOC constraints. More importantly, [26] shows that

the obtained convex relaxation is exact when the distribution

network is radial. As most practical distribution networks are

radial grids [26], we also consider a radial network in this

paper. Therefore, the constraints (2f) – (2g) and (2k) – (2m)

form an exact reformulation of the ACOPF constraints. As

such, we obtain a second-order conic programming (SOCP)

formulation in (2), which enables large-scale applications due

to the computational efficiency of SOCP formulations. We note

that there are also other types of approximations to formulate

the ACOPF constraints, such as linearized distribution flow

(LinDistFlow) [27], where voltage drop and line power flows

are approximately linearly related to power injections.

We summarize the two-stage stochastic programming model

of the planning problem as

min
Ω1,Ω2

C1

(

Ω
1
)

+ E
[

C2

(

Ω
2
)]

(3)

s.t. (1b) − (1g), (2b) − (2o).

Note that Ω
2 and constraints (2b) – (2o) are dependent on

ξ. As the first-stage problem (1) is an integer program and

the second-stage problem (2) is an SOCP, the entire two-stage

problem (3) is a mixed-integer SOCP.

B. A TCC Model

Chance constraints perfectly fit power system operators’

decision-making requirements because the operators often

need controlled reliability with minimized operating costs. In

our model, the distribution grid reliability is measured as the

probability of load satisfaction. In the second-stage model, the

load is satisfied over all time periods for (Ω1, ξ,Ω2) if and

only if all the constraints in (2) are satisfied, such that

LSt
1mn = LSt

2mn = 0, ∀ (m,n) ∈ E , t ∈ [T ]. (4)

Thus, to maintain a high probability of load satisfaction, we

add the following joint chance constraint

P
(

Ω
2 in (2) satisfies (4) |Ω1

)

≥ 1− η (5)

to the two-stage model (3) to strengthen the problem, where

P is a probability function. Different from some existing

studies on two-stage chance-constrained programming, our

chance constraint (5) consider all the constraints (2b) – (2o)
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in the second-stage problem (2) as the nominal constraints.

For instance, in [19], the authors consider a single demand

satisfaction constraint in their chance constraints, see con-

straints (20) – (22) in [19]. In contrast, our chance constraint

(5) requires that (4) is satisfied by any Ω
2 that is feasible

to all the constraints in the second-stage model (2). That is,

we ensure the entire system (rather than the load satisfaction

constraints only) is feasible under a high probability, which can

practically incorporate many possible reliability issues such as

the distribution line capacity limit and loss. As a result, the

TCC model can be formulated as:

min
Ω1,Ω2

C1

(

Ω
1
)

+ E
[

C2

(

Ω
2
)]

(6)

s.t. (1b) − (1g), (2b) − (2o), (5).

However, the above problem (6) is difficult to solve. Specif-

ically, constraint (5) is nonconvex and thus problem (6)

becomes intractable. Next, we introduce two approximation

methods to address this challenge.

IV. SOLUTION APPROACHES

In this section, we describe two approximation methods for

solving the problem (6): the SAA and PSAA methods.

A. The SAA Formulation

The SAA is a classic sampling technique that is widely

used in chance-constrained problems. It approximates the

expectation of random variables using their sample means.

The probability of an event E can be reformulated as an

expectation as follows:

P(E) = E [I(E)] ,

where I(·) is an indicator function that takes a value of 1 when

the event happens and 0 otherwise. Let Π1 be the total number

of samples of the random vector ξ and [Π1] be the set of all

the samples, and let ξπ be a specific sample for any π ∈ [Π1].
The SAA approximates P

{

Ω
2 in (2) satisfies (4) |Ω1

}

in (5)

with

1

Π1

Π1
∑

π=1

I
(

Ω
2
π satisfies (4) |Ω1

)

,

where Ω
2
π is a copy of the second-stage variables Ω

2 cor-

responding to ξπ for each π ∈ [Π1]. Let (2b)π – (2o)π be

constraints (2b) – (2o) with ξ replaced by ξπ and Ω
2 replaced

by Ω
2
π . The SAA approximation of (6) thus becomes:

min
Ω1,Ω2

π
,∀π∈[Π1]

C1

(

Ω
1
)

+
1

Π1

Π1
∑

π=1

C2

(

Ω
2
π

)

s.t.
1

Π1

Π1
∑

π=1

I
(

Ω
2
π satisfies (4) |Ω1

)

≥ 1− η. (7)

(1b) − (1g), (2b)π − (2o)π, ∀π ∈ [Π1].

We further introduce a binary variable θπ ∈ {0, 1} for

each sample π ∈ [Π1]. When θπ = 0, it indicates that

I(Ω2
π satisfies (4) |Ω1) = 1, i.e., all the constraints in the

second-stage model (2) are satisfied; when θπ = 1, it indi-

cates I(Ω2
π satisfies (4) |Ω1) = 0, i.e., all the constraints in

the second-stage model (2) are not satisfied. Therefore, we

can reformulate (7) as the following mixed-integer quadratic

program:

min
Ω1,Ω2

π
,π∈[Π1]

C1

(

Ω
1
)

+
1

Π1

Π1
∑

π=1

C2

(

Ω
2
π

)

(8a)

s.t. (1b) − (1g), (8b)

(2b)π − (2o)π, ∀π ∈ [Π1], (8c)

LSt
1πmn ≤ θπMπ, LS

t
2πmn ≤ θπMπ,

∀ (m,n) ∈ E , ∀π ∈ [Π1], (8d)
Π1
∑

π=1

θπ ≤ Π1η, (8e)

θπ ∈ {0, 1}, ∀ π ∈ [Π1], (8f)

where Mπ is a sufficiently large number for any π ∈ [Π1].
Specifically, with constraints (8d) and (8e), we ensure that

all but a few number (i.e., ηΠ1) of samples in [Π1] satisfy

the constraints in the second-stage model (2). That is, with

the probability of 1 − η, the constraints in the second-stage

model (2) are satisfied. Moreover, [28] shows that the objective

value difference between model (8) (i.e., model (7)) and model

(6) converges to zero with probability one when Π1 goes

to infinity. In addition, as in the second-stage model (2), all

constraints in (8) with a superscript t hold for all t ∈ [T ].

All of the constraints in (8) are convex except for (2f)π, π ∈
[Π1]. Specifically, constraints (8b) are from the first-stage

model, and all of them are linear constraints. Constraints (8d)

- (8f) are also linear constraints. Constraints (8c), i.e., (2b)π−
(2o)π, ∀π ∈ [Π1], are from the second-stage model, and

they are either linear or second-order conic (SOC) constraints

when the first-stage decision variables are given. However, as

problem (8) needs to optimize both the first-stage and second-

stage decision variables, constraints (2f)π, π ∈ [Π1] include

bilinear terms (zknukl and wrnf
t
πr), by which these constraints

are nonconvex. Specifically, after substituting xk with (1d), we

achieve bilinear terms zknukl for k ∈ [K], n ∈ N , l ∈ [L]. The

bilinear terms can be linearized using McCormick inequalities.

McCormick inequalities are commonly used to linearize a

bilinear term, say w = xy with xL ≤ x ≤ xU and yL ≤
y ≤ yU , in (mixed-integer) nonlinear programming [29]. The

general form of McCormick inequalities for w = xy can be

written as:

w ≥ xLy + xyL − xLyL, w ≥ xUy + xyU − xUyU ,

w ≤ xUy + xyL − xUyL, w ≤ xyU + xLy − xLyU .

When x and y are both continuous variables, the above

four McCormick inequalities provide convex and concave

envelopes of the bilinear term xy. When at least one of x
and y is binary, w = xy can be implied by the above four

McCormick inequalities, resulting in an equivalent mixed-

integer linear reformulation of the bilinear expression.
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Thus, for all k ∈ [K], n ∈ N , l ∈ [L], we replace zknukl
with βknl, and add the following constraints

βknl ≥ 0, βknl ≥ zkn + ukl − 1,

βknl ≤ ukl, and βknl ≤ zkn,

to enforce βknl = zknukl, where both zkn and ukl are binary.

Using the same technique, for all r ∈ [R], n ∈ N , t ∈ [T ], π ∈
[Π1], we denote f̂ tπrn := wrnf

t
πr, where wrn is binary, and

add the following constraints:

f̂ tπrn ≥ wrnf
t

πr
, f̂ tπrn ≥ f tπr + wrnf

t

πr − f
t

πr,

f̂ tπrn ≤ f tπr + wrnf
t

πr
− f t

πr
, and f̂ tπrn ≤ wrnf

t

πr,

where f
t

πr and f t
πr

are the lower and upper bounds of f tπr. The

bilinear term wrng
t
πr can be managed similarly. As a result,

the SAA formulation (8) is transformed into a mixed-integer

convex quadratic program.

B. The PSAA Formulation

The SAA is relatively accurate when there are sufficient

samples. However, more samples lead to more binary auxiliary

variables (i.e., θπ), greatly increasing the computational bur-

den. Thus, we use partial sampling to reduce the computational

difficulty and improve the solution quality. We extend the

preliminary studies on partial sampling in [30] to approximate

our proposed TCC model, which is more complicated than the

single-stage chance-constrained model considered in [30], as

evidenced in [31]. This leads to an extended PSAA model,

referred to as the PSAA model for simplicity. It samples a

part of the random parameters and estimates the probability

distribution of the remainder. We first present the basic PSAA

idea and then detail our PSAA model.

We consider a general chance constraint

P{g(x, ξ) ≥ 0} ≥ 1− η, (9)

where ξ = (ξ1, ξ2) and ξ1 is independent of ξ2.

Clearly, P{g(x, ξ) ≥ 0} = E[I(g(x, ξ) ≥ 0)] =
Eξ1,ξ2

[I(g(x, ξ1, ξ2) ≥ 0)] = Eξ1
Eξ2

[I(g(x, ξ1, ξ2) ≥ 0)],
where the third equation is because of the independence

between ξ1 and ξ2. The PSAA idea then reformulates one of

the above two expectations (i.e., Eξ1
and Eξ2

) by its sample

mean. For instance, if we replace the inner expectation Eξ2
by

a sample mean of N independent samples of ξ2 (denoted by

ξ̂12, . . . , ξ̂
N
2 ), then the PSAA formulation of (9) is as follows:

1

N

N
∑

k=1

Eξ1
[I(g(x, ξ1, ξ̂

k
2 ))]

=
1

N

N
∑

k=1

P{g(x, ξ1, ξ̂
k
2 ) ≥ 0} ≥ 1− η,

which is further equivalent to the following

P{g(x, ξ1, ξ̂
k
2 ) ≥ 0} ≥ yk, ∀k ∈ [N ], (10)

∑N

k=1 yk
N

≥ 1− η, yk ≥ 0, ∀k ∈ [N ]. (11)

In contrast to constraints (8d) - (8f) (SAA formulation),

constraints (10)-(11) (PSAA formulation) introduce only con-

tinuous variable yk, while N new chance constraints are added.

In our proposed PSAA model, We will show that (10) has a

convex approximation for the planning problem in this paper,

which contributes to the existing literature.

To apply the above PSAA idea, we need to have the sampled

random parameters independent of the unsampled ones. We

first convert the random vector ξ into an uncorrelated random

vector ξ′ using an affine transformation, thereby approximat-

ing the independence requirement. Specifically, let Σ be the

covariance matrix of ξ and µ be the mean vector of ξ. Suppose

that Σ = UΛU> is an eigenvalue decomposition of Σ, where

U is an orthogonal matrix and Λ is a diagonal matrix with the

eigenvalues of Σ on the diagonal. Without loss of generality,

we assume that Λ11 is the largest eigenvalue of Σ. Let

ξ′ = Λ− 1

2U>(ξ−µ), or equivalently, ξ = UΛ
1

2 ξ′ +µ.

It is straightforward to see that ξ′ is an uncorrelated random

vector with a mean of 0.

We partition ξ′ as (ξ′1, ξ
′
2), where ξ′1 is the first component

of ξ′ and ξ′2 is the vector of the other components. Note that

when ξ is sampled, ξ′1 is the first principal component. The

PSAA then considers Π2 Monte Carlo samples ξ′2κ, κ ∈ [Π2]
of ξ′2 and approximates the probability of an event E as

P(ξ′
1
,ξ′

2
)(E) ≈

1

Π2

Π2
∑

κ=1

Pξ′
1
(E | ξ′2κ) .

In our PSAA model, we retain the objective function of (7)

and constraints (1b)−(1g) and (2b)π−(2o)π . We also develop

a different approximation of the chance constraint using the

PSAA. To be compatible with the PSAA framework, given the

first-stage variables Ω
1, instead of requiring (2b) – (2o) and

(4) to be satisfied with a high probability by a specified Ω
2,

we relax the chance constraint (5) to require the consistency of

(2b) – (2o) and (4). That is, we consider the following chance

constraint:

P
(

∃ a solution satisfying (2b) − (2o), (4) |Ω1
)

≥ 1−η. (12)

Let (2b)κ − (2o)κ and (4)κ be a copy of (2b) – (2o) and (4),

with ξ replaced by (ξ′1, ξ
′
2κ) for any κ ∈ [Π2]. The PSAA

approximates (12) with

1

Π2

Π2
∑

κ=1

Pξ′
1

(

ξ′1 ∈ A
(

Ω
1, κ
))

≥ 1− η,

where A(Ω1, κ) := {ξ′1 | (2b)κ-(2o)κ, (4)κ are consistent with

Ω
1}. For a given Ω

1 and κ, A(Ω1, κ) is a convex set of ξ′1.

That is, if ξ̂′1 < ξ̄′1 are both in A(Ω1, κ), then ξ′1 ∈ A(Ω1, κ)
for all ξ′1 ∈ [ξ̂′1, ξ̄

′
1]. Let Ψ(·) be the cumulative distribution

function (CDF) of ξ′1. Then,

Pξ′
1

(

ξ′1 ∈ A
(

Ω
1, κ
))

= sup
Z1,Z2

{

Ψ(Z2)−Ψ(Z1) | Z1, Z2 ∈ A
(

Ω
1, κ
)}

.
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Therefore, our PSAA model is as follows.

min C1

(

Ω
1
)

+
1

Π1

Π1
∑

π=1

C2

(

Ω
2
π

)

s.t. (1b) − (1g), (13a)

(2b)π − (2o)π, ∀π ∈ [Π1], (13b)

(Ω1,Ω2
1κ) satisfies (2b)κ − (2o)κ, (4)κ

with (Z1κ, ξ
′
2κ), ∀κ ∈ [Π2],

(13c)

(Ω1,Ω2
2κ) satisfies (2b)κ − (2o)κ, (4)κ

with (Z2κ, ξ
′
2κ), ∀κ ∈ [Π2],

(13d)

Ψ(Z2κ)−Ψ(Z1κ) ≥ ηκ, ∀κ ∈ [Π2], (13e)
Π2
∑

κ=1

ηκ ≥ Π2(1− η), (13f)

ηκ ≥ 0, ∀κ ∈ [Π2]. (13g)

Here, the decision variables are Ω
1, Ω2

π for any π ∈ [Π1], and

Ω
2
1κ,Ω

2
2κ, Z1κ, Z2κ, ηκ for any κ ∈ [Π2].

For the model to be practical, we need to estimate the

CDF Ψ(·) of ξ′1. Two types of methods are primarily used

for estimating distributions: parametric and nonparametric

estimation methods. Parametric estimation methods assume

that the sample data conform to a parametrized family of

probability distributions, and the sample data are used to

find the best-fitting parameters. In contrast, nonparametric

estimation methods do not depend on any prior assumption of

the distribution family, and they fit the distribution according to

the characteristics and properties of the data. Here we make no

assumptions on the distribution of ξ′1 and estimate Ψ(·) using

the kernel density estimation, a commonly used nonparametric

method proposed by Rosenblatt [32] and Parzen [33].

Let Π3 be the total number of samples of ξ′1, and ξ′1τ be a

specific sample for any τ ∈ [Π3]. The kernel density estimation

of the probability density function ψ of ξ′1 can be written as

ψ(ξ′1) ≈
1

Π3h

Π3
∑

τ=1

φ

(

ξ′1 − ξ′1τ
h

)

,

where h is a user-specified bandwidth parameter and φ is a

kernel function. Among the popular choices, we choose the

standard normal density function as the kernel function for

our estimation. Thus, the CDF of ξ′1 can be estimated by

Ψ(ξ′1) ≈
1

Π3

Π3
∑

τ=1

Φ

(

ξ′1 − ξ′1τ
h

)

, (14)

where Φ(·) is the CDF of the standard normal distribution.

We further approximate Φ(·) in (14) using the following

piecewise linear function:

Φ(x) ≈







min
ε∈[∆1]

{aεx+ αε} if x ≥ 0.5

max
ζ∈[∆2]

{aζx+ αζ} if x < 0.5,
(15)

where ∆1 and ∆2 are the numbers of pieces used to approxi-

mate the upper half and the lower half of Φ(·), respectively. An

example of such an approximation is depicted in the following

Fig. 2.

Fig. 2. Piecewise linear approximation of the CDF of the standard normal
distribution Φ(·) (∆1 = ∆2 = 3)

When the probability level 1−η is close to 1, Φ(
Z2κ−ξ′

1τ

h
) is

usually greater than 0.5 and thus concave, while Φ(
Z1κ−ξ′

1τ

h
)

is usually less than 0.5 and thus convex [34]. Therefore, with

the approximation in (15), we can remove the min and max

operators in (15) and approximate constraint (13e) by the

following constraints:

ρκ1τ ≥ aζ

(

Z1κ − ξ′1τ
h

)

+ αζ , ∀ ζ ∈ [∆2], τ ∈ [Π3], κ ∈ [Π2],

ρκ2τ ≤ aε

(

Z2κ − ξ′1τ
h

)

+ αε, ∀ ε ∈ [∆1], τ ∈ [Π3], κ ∈ [Π2],

1

Π3

Π3
∑

τ=1

(ρκ2τ − ρκ1τ ) ≥ ηκ, ∀κ ∈ [Π2].

Finally, the bilinear terms in (13b) – (13d) can be linearized

using McCormick inequalities, as in the SAA model. As a

result, the PSAA model (13) is simplified to a mixed-integer

convex quadratic program.

V. NUMERICAL RESULTS

We conduct two sets of experiments on the IEEE 33-

Bus system and the IEEE 123-Bus system using real data

acquired from Pecan Street Inc. and ERCOT. We first compare

the effectiveness of the SAA and PSAA models and then

investigate the potential benefits of installing ES units. We

use in-sample and out-of-sample tests to validate the quality of

the obtained solutions to the planning problem. All numerical

tests are executed on the high-performance computing (HPC)

cluster of Ieria [35] with 27 computing nodes. We allocate four

CPUs to every instance, and every CPU is allocated 4 GB of

memory. CPLEX 22.1.0, with its default setting, is used to

solve all optimization models. For ease of exposition, we use

the following flowchart in Fig. 3 to summarize the sequential

steps we follow to perform the numerical experiments in this

section.

A. IEEE 33-Bus System

We first consider the modified IEEE 33-Bus radial distribu-

tion network examined in [11] (see Fig. 4). In the network, Bus

0 is connected to the major transmission network, from which

we can purchase active and reactive power via Bus 0 if needed.
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Determine the

structure and parameters

of the distribution system

Build the TCC model

Determine

the solution

approach

Obtain the

SAA/PSAA Formulation

Solve

the model

by solver

Obtain the siting and sizing plan

Out-of-sample test

Evaluate the quality of the plan

In-sample

data

Out-of-sample

data

Collect the

real industrial data

Data splitting

Fig. 3. The Procedure of Numerical Experiments

Buses 1–32 are connected to Bus 0, directly or indirectly. Two

DDG units are located at Buses 15 and 29, and three reactive

power sources are located at Buses 11, 13, and 32. The reactive

power sources are of the hybrid (capacitive and inductive)

compensator type, and they can both generate and absorb

reactive power to stabilize the voltage. Nevertheless, our model

can also consider other types. With the fixed location of the

DDG units and reactive power sources, we then focus on the

location and capacity planning of candidate RDG and ES units

to be installed.

1) Data: We consider two sources of uncertainties: the

weekly active/reactive load at each bus, i.e., dtpn/d
t
qn, and

the renewable generation efficiency of each candidate RDG

unit, i.e., stk ∈ [0, 1]. The active-load data are obtained

from Pecan Street Inc. and the wind generation data from

ERCOT. The reactive-load data are randomly generated based

on the bounds of the total reactive-power output. Specifically,

the reactive-power load is uniformly generated in the inter-

val [−0.01, 0.019]. Here [−0.01, 0.019] is an interval, which

specifies a range of possible values of reactive-power load

that we can possibly generate. By using such a random data

generation, we obtain different values of reactive-power loads

at different buses in different periods. All data are for a range

of 4 years, leading to 208 (= 52 weeks× 4) data samples for

each specific random variable. To perform more practical tests,

we randomly generate more data samples to better demonstrate

our proposed models’ effectiveness, via in-sample and out-of-

sample tests. To that end, we first calculate the mean value

and covariance matrix using the given data samples, and then

generate 3792 data samples by following the multivariate

log-normal distribution, which has been widely adopted in

academia and industry in similar scenarios [36, 37, 38]. Thus,

we have 4000 data samples in total.

2) Parameters: All of the parameters used in our exper-

iments are slightly modified based on the parameters1 used

in [11]. For instance, the electricity price of purchasing ac-

tive/reactive power from the main grid is mainly from ERCOT.

The detailed modification is as follows. In the first stage,

the setup costs of candidate RDG units c0kn are uniformly

generated in the interval [0.95 × 2000, 1.05 × 2000]. The

size-based investment costs c1k and maintenance costs c2k of

candidate RDG units are uniformly generated in the intervals

[0.9× 238, 1.1× 238] and [0.9× 4, 1.1× 4], respectively. The

setup costs of candidate ES units d0rn are uniformly generated

in the interval [0.9×200, 1.1×200]. The size-based investment

costs d1r and maintenance costs d2r of candidate ES units are

both uniformly generated in the interval [0.9 × 2, 1.1 × 2].
The active power purchase prices ctp are uniformly generated

in the interval [0.9 × 130, 1.1 × 130]. The reactive power

purchase prices ctq are uniformly generated in the interval

[0.9×4, 1.1×4]. The emission costs for the DDG units at Buses

15 and 29 are cf15 = cf29 = 630. The emission factor ω of the

DDG units is 3 kg/MWh. A maximum of K̄ = 3 out of K = 4
candidate RDG units are to be installed in this distribution

network. The maximum number of ES units to be installed is

R = 3. The active-power output bounds (pt
n
, p̄tn) of both DDG

units are (0.5, 4.5). The reactive-power output bounds (qt
n
, q̄tn)

are (−0.1, 0.2), (−0.15, 0.25), and (−0.1, 0.2) for the three

reactive-power sources at Buses 11, 13, and 32, respectively.

We further consider four types of RDG units (x̄1 = 4 MW,

x̄2 = 5 MW, x̄3 = 6 MW, and x̄4 = 7 MW). The maximum

capacity ȳr of an ES unit is 3 MW, and the minimum capacity

y
r

is 0. The initial power level b0r of a candidate ES unit is

set to 0. When an ES unit is charged, the unit cost e1 is 0.1,

whereas the discharging cost e2 is 0.1. The energy loss factor

γ is set to 0.9.

B. IEEE 123-Bus System

We then consider the commonly used IEEE 123-Bus radial

distribution network [39, 40, 41] (see Fig. 5). In the network,

Bus 149 is connected to the major transmission network. Eight

DDG units are located at Buses 8, 25, 44, 57, 67, 87, 97, and

108, and twelve reactive power sources are located at Buses

7, 14, 15, 25, 47, 54, 62, 68, 80, 91, 98, and 109.

1See https://www.dropbox.com/s/psqv9yr3atg46bk. Accessed: Jul. 2022.
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Fig. 4. IEEE 33-Bus Distribution Network

Fig. 5. IEEE 123-Bus Distribution Network

1) Data: All the data are obtained following the same pro-

cess used for the IEEE 33-Bus system. The only difference is

the dimension of uncertainty. Here we consider the renewable

generation efficiency of each candidate RDG unit stk uncertain

and use an estimated value for the weekly active/reactive

load at each bus, i.e., dtpn/d
t
qn. In particular, as the IEEE

123-Bus system is of large scale, both the SAA and PSAA

formulation become difficult to solve when the test system

is large. Thus, to better show the performance of these two

approaches, we consider the system loads are given and the

renewable generation is uncertain, by which the computational

difficulty is relatively reduced.

2) Parameters: We continue to use the parameters designed

for the IEEE 33-Bus system, except that some parameters are

modified as follows. First, the electrical resistance (Rmn) and

reactance (Xmn) of each line (m,n) ∈ E and the upper/lower

bound of voltage magnitude (i.e., v/v̄) at each bus are obtained

from the IEEE PES Test Feeders2. Second, we consider a

2See https://cmte.ieee.org/pes-testfeeders/resources/. Accessed: Jul. 2022.

maximum of K̄ = 6 out of K = 8 candidate RDG units

to be installed in this distribution network. We consider three

types of RDG units (x̄1 = 8 MW, x̄2 = 10 MW, and x̄3 = 12
MW). The maximum capacity ȳr of an ES unit is 6 MW.

The maximum number of candidate ES units to be installed is

R = 6. The reactive-power output bounds (qt
n
, q̄tn) are (-0.15,

0.25).

C. Decomposition Framework

To reduce the computational difficulty of solving both the

SAA and PSAA formulations, we adopt the Benders decompo-

sition algorithm [42] to improve the computational efficiency.

Specifically, we first linearize the SOCP constraints (2l) and

(2m) as [11] does by using the polyhedral ε-approximation in

[43]. With such an approximation, both the SAA formulation

(8) and PSAA formulation (13) are transformed into mixed-

integer linear programming (MILP) formulations, which can

be used practically in large-scale settings.
For each MILP formulation, we then decompose the prob-

lem into two parts: a master problem and a set of subproblems.
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The master problem includes all the integer variables and asso-

ciated constraints, and the subproblems contain the remaining

continuous variables and associated constraints. As such, we

iteratively solve the master problem and subproblems until

convergence. At each iteration, the master problem is solved

to optimality, and its optimal solution is then used to construct

the subproblems. Feasible and optimality cuts are generated

after solving the subproblems and added back to the master

problem.

Note that we have Π1 subproblems for the SAA formu-

lation, where each sample π ∈ [Π1] corresponds to one

subproblem, as shown in (8c), and these subproblems can be

solved in parallel. For the PSAA formulation, we have Π1+1
subproblems, where each sample π ∈ [Π1] corresponds to one

subproblem, as shown in (13b), and constraints (13c) – (13g)

are included in one subproblem.

D. SAA vs. PSAA

Here we analyze the performance of the SAA and PSAA

models using the data and parameters mentioned above. We

thus ignore ES units and consider T = 1. Specifically, terms

related to ES units, including wrn, yr, f tr , gtr, and btr, are

temporarily removed from the models.

We first divide the 4000 data samples into two sets for

the experiment: a training data set and a testing data set.

The former is used to obtain our planning decision in the

first stage, and the latter is used to test the effectiveness of

the obtained decision. To make full use of the real data and

better simulate real-world decision-making, we ensure that the

training data are selected from the first 208 samples, as it

is very straightforward to feed the available historical real

data into an optimization model to support decision-making.

Each data sample is used as a scenario in the SAA and

PSAA models. We solve the SAA and PSAA models using the

training data and obtain two optimal sizing/siting plans. We

then compare the performance of the plans using the testing

data. Specifically, we calculate the first-stage cost and the

average second-stage cost of all test samples for each plan. To

verify our approximation formulations and demonstrate their

ability to ensure that the demand can be satisfied with a high

probability, we also calculate the actual feasible probability of

the test samples. This probability is defined as the percentage

of the test samples for which constraints (2b) – (2o) and (4)

can be simultaneously satisfied.

The experiments are conducted using different settings for

(i) the size of the training data (i.e., Π1 = Π2), (ii) the

maximum running time (i.e., time limit) of the solver (denoted

by ϑ in hours), and (iii) the desired feasible probability of the

chance constraint (i.e., 1− η), as shown in Tables I – IV. The

training data size Π1 = Π2 ∈ {60, 100, 140} for the IEEE 33-

Bus system and Π1 = Π2 ∈ {30, 45, 60} for the IEEE 123-

Bus system. The maximum running time ϑ ∈ {4, 8, 12} for the

IEEE 33-Bus system and ϑ ∈ {10, 13, 16} for the IEEE 123-

Bus system. The desired feasible probability 1−η ∈ {0.8, 0.9}
for both systems. These settings lead to 18 = 3 × 3 × 2
combinations in total for each system. For some instances,

when both models are too large to be solved to optimality

within the given time limits, we take the incumbent solutions

returned by the solver as the optimal solutions. We also record

the relative optimality gap, (zp − zd)/zp, where zp is the

primal objective bound (i.e., the incumbent objective value)

and zd is the dual objective bound (i.e., the lower bound for

minimization problems). Intuitively, a smaller gap indicates a

better-quality incumbent solution.

We illustrate the performance of both models in Tables I –

IV. The columns in the SAA/PSAA section represent, from left

to right, the first-stage cost, the average second-stage cost of

testing samples, the average total cost, the relative optimality

gap, and the actual feasible probability.

Compared with the SAA model, the PSAA model leads

to lower first-stage costs, lower second-stage costs, and thus

lower total costs in all cases. The lower costs indicate that the

siting and sizing decisions provided by the PSAA approach

help more effectively satisfy the same required demands than

those provided by the SAA approach. Thus, compared to the

SAA solutions, the PSAA solutions require fewer RDG units

to be installed and/or the installed RDG units can be of smaller

capacity. Moreover, the effective plans made by the PSAA

approach lead to lower operating costs for the distribution

grid than the plans made by the SAA approach. A direct

comparison of the total costs is shown in Fig. 6, where the

horizontal axis represents the training-data size, the vertical

axis represents the total cost, and different colors represent

different running times. The total costs of the SAA solutions

are labeled with triangular symbols, and the total costs of the

PSAA solutions are marked with circular symbols.

Fig. 6. SAA vs. PSAA solutions in the total cost (η = 0.1)

Within the same time limits, we observe that the relative

optimality gap of the PSAA solution is always less than that of

the SAA solution in all cases. Specifically, for the cases where

the PSAA model can solve the instance to optimality (i.e.,

the optimality gap is 0) within the time limits, we report the

corresponding computational time in hours used by the PSAA

model in the column “Gap” and label it by ?. The SAA model

cannot solve any instance to optimality within the time limits.

The result clearly indicates that the PSAA model is more

computationally efficient than the SAA model. The difference

is due to how the chance constraint is dealt with in the models.

The SAA model introduces Π1 binary variables (i.e., θπ),
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whereas the PSAA model introduces Π2 continuous variables

(i.e., ηκ). Although there are more continuous variables and

more constraints in the PSAA model, the binary variables

in the SAA model are more difficult to manage. A direct

comparison of the gap is shown in Fig. 7, where the vertical

axis represents the relative optimality gap.

Fig. 7. SAA vs. PSAA solutions in the optimality gap (η = 0.1)

To further illustrate the computational improvement of the

PSAA approach compared with the SAA approach, we sum-

marize the optimality gap improvement (i.e., reduction) from

the SAA approach to the PSAA approach in Fig. 8 and Fig. 9.

In the figures, the horizontal axis represents the setting of η and

Π1. For instance, “0.1−60” means that η = 0.1 and Π1 = 60.

The vertical axis represents the optimality gap improvement

in percentage, as given by:

|the gap by PSAA − the gap by SAA|

the gap by SAA
× 100%.

From Fig. 8 and Fig. 9, we find that the improvement is mostly

above 50% and even reaches 100% when the PSAA solves an

instance to optimality.

Fig. 8. Optimality Gap Improvement (IEEE 33-Bus system)

In each of the tested cases, the actual feasible probability

of the PSAA solution is clearly higher than that of the SAA

solution and is almost equal to the desired probability. This

indicates that the PSAA performs better than the SAA as an

approximation method for the chance constraint. In fact, the

Fig. 9. Optimality Gap Improvement (IEEE 123-Bus system)

actual feasible probability of the PSAA solution is less than

1% different from the desired solution, which in practice will

give the grid decision-makers more control of the confidence

level. A direct comparison is shown in Fig. 10, where the

vertical axis represents the actual feasible probability.

Fig. 10. SAA vs. PSAA solutions in the actual feasible probability (η = 0.1)

To conclude this section, we illustrate the performance

difference between the two models with a specific example.

When Π1 = Π2 = 140, ϑ = 8, and η = 0.1 in the IEEE 33-

Bus system, the SAA solution sites (sizes) the candidate RDG

units at Buses 3 (6 MW), 9 (6 MW), and 12 (4 MW), and the

PSAA solution sits (sizes) the candidate RDG units at Buses

3 (5 MW), 8 (4 MW), and 26 (6 MW). Thus, compared to the

SAA solution, the PSAA solution results in a lower first-stage

cost, due to the smaller total capacities of the installed RDG

units. In addition, the output ptn of the DDG unit at Bus 29 in

the PSAA solution is significantly less than that in the SAA

solution for most testing data, and the load-shedding penalties

of the PSAA solution are also much less than those of the

SAA solution. The two factors above account for most of the

difference between the methods in the second-stage costs. We

know that Buses 27, 29, and 30 have higher loads and that the

DDG units have been installed at Buses 15 and 29. Thus, it is

reasonable to place a candidate RDG unit at Bus 26 to reduce

the output pressure on the DDG unit at Bus 29. In addition,

in a distribution network structure, it is likely that the power
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purchased from Bus 0 and generated by the RDG unit at Bus 3

(6 MW) or Bus 3 (5 MW) is mainly used to fulfill the loads at

Buses 1-4 and 18-24. Given the desired feasible probability of

0.9 (i.e., the power system operator expects to satisfy the load

with a confidence level of 0.9), the PSAA solution shows that

a 5 MW RDG unit is sufficient to satisfy the load, and thus a

6 MW unit (given by the SAA solution) may be excessive.

E. Storage vs. No Storage

Here we compare the experimental results to show the

effects of ES installation. From previous experiments, we ob-

serve that the PSAA model produces higher-quality solutions

than the SAA model. Thus, all subsequent experiments are

conducted using the PSAA model.

In the experiments, the maximum running time ϑ = 12
hours for the IEEE 33-Bus system and ϑ = 16 hours for the

IEEE 123-Bus system, and the planning horizon T = 3 weeks.

Note that our proposed TCC model (6) is general enough to

consider a longer-term setting because one can always set

T to be years or seasons. Here our experiments consider a

representative snapshot of the long-term future by setting T
to be a relatively small number. Correspondingly, the cost

parameters in the first stage of model (6), including the setup

costs and the size-based investment/maintenance costs of the

RDG and ES units, have also been levelized over the specific

T time periods (weeks).

To match the planning horizon, we integrate every 3 of

the 4000 weekly samples into a 3-week-long sample (without

repetition) to obtain 1333 new samples. For computational

efficiency, the size of the training data is set to Π1 = Π2 = 50
for the IEEE 33-Bus system and Π1 = Π2 = 30 for the

IEEE 123-Bus system. As the training set is relatively small

compared with the number of random variables, we use the

k-means clustering algorithm to improve the reliability of the

training samples. In particular, we randomly choose 200 of the

1333 samples and divide them into 50 groups by the k-means

algorithm. We then use the centers of the 50 groups as our

training samples. The remaining 1133 samples are used for

testing.

We modify the active-power upper bounds of the DDG units

(i.e., p̄tn) and the standard capacities in X of the RDG units to

match their designed load share in different cases. In particular,

let %1 and %2 be two nonnegative parameters, and let SUM
be the expected total active load (estimated from the real data

and invariant to t). For each of the two DDG units, the active-

power upper bound p̄tn is adjusted to %1×SUM/2 for all t ∈
[T ]. The maximum standard capacity of the RDG units x̄4 is

adjusted from 7 MW to %2×SUM/4. The other three standard

capacities in X are adjusted proportionally. For example, the

minimum standard capacity x̄1 is adjusted from 4 MW to %2×
SUM/4×4/7. We conduct two sets of experiments with η =
0.1 and η = 0.2, respectively. For each set of experiments, we

set (%1, %2) to take six different pairs of values, i.e., (0.5, 0.5),
(0.4, 0.6), (0.6, 0.4), (0.3, 0.3), (0.2, 0.4), and (0.4, 0.2). Note

that (%1, %2) does not represent an interval. When (%1, %2) =
(0.4, 0.6), it means that we set %1 = 0.4 and %2 = 0.6. The

results are shown in Tables V – VIII.

When %1 + %2 = 1.0, the solutions with ES units lead

to higher second-stage costs but lower total costs than those

without ES units. This indicates that ES installation is ben-

eficial overall, despite leading to higher operational costs.

Regarding computational efficiency, the optimality gaps for the

solutions with ES are no smaller than those without ES, but

the difference is negligible. Thus, considering ES installation

increases the problem complexity, but not significantly.

When %1 + %2 = 0.6 (i.e., the DDG and RDG units may

be insufficient to satisfy the load), ES units are more crucial.

Without ES units, we cannot find a feasible solution within

the time limit in any case. This indicates that the problems

without ES units are likely to be infeasible. However, with ES

units, feasible solutions are found within the time limit, and

the actual feasible probabilities of the solutions are very close

to the desired probabilities. This is because more active power

can be purchased or generated in advance when there are ES

units, and thus fulfill the load when the demand is high.

As an illustrative example, we consider the instance with

(%1, %2) = (0.6, 0.4) and η = 0.2 in the IEEE 33-Bus system.

Without ES units, the solution sites (sizes) candidate RDG

units at Buses 4 (7 MW), 9 (6 MW), and 28 (7 MW). With

ES units, the result shows that candidate RDG units should be

installed at Buses 3 (5 MW), 12 (3 MW), and 29 (7 MW), and

that ES units should be installed at Buses 2 (2.3 MW), 12 (1.8

MW), and 27 (2.8 MW). The latter solution agrees with our

intuition that storage units placed close to high-load buses play

an important role in balancing the supply and demand in the

power grid. We also observe that ES installation reduces the

total required capacities of RDG units. This reduction lowers

the first-stage costs so much that the total costs are reduced,

even though the operating costs increase due to the operation

of storage units.

Finally, all the above numerical results demonstrate that our

proposed TCC model and PSAA approach can effectively deal

with the RDG and ES planning problem under significant un-

certainties. We note that, although we focus on such a planning

problem in this paper, the proposed model and approach can

also be applied to other practical problems under uncertainty

in the industry. For instance, we can apply the PSAA approach

to solve the chance-constrained unit commitment problems in

[19] and chance-constrained optimal power flow problems in

[14], thereby reducing computational challenge. In general,

many practical problems that consider two-stage decision-

making under uncertainty may be formulated as a TCC model

and solved by the PSAA approach. In addition, our proposed

PSAA approach is a data-driven approach because (i) we use

historical data to represent the possible scenarios of uncertain

parameters and accordingly characterize chance constraints

in our model; (ii) we use historical data to estimate the

cumulative distribution function of a single random parameter

ξ′1 by a non-parametric estimation technique; and (iii) once we

obtain the first-stage solution of our model, we use real data to

test the effectiveness of the obtained solution, simulating real

practices. Such an approach can be applied to a wider range

of practical problems.
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TABLE I
IEEE 33-BUS SYSTEM: SAA VS. PSAA (η = 0.1)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

60

4 10674.5 1692.8 12367.3 0.40 0.85 10226.3 1639.2 11865.5 0.08 0.90
8 10510.0 1679.4 12189.4 0.36 0.85 10184.6 1645.8 11830.4 7.33? 0.89
12 10510.0 1679.4 12189.4 0.34 0.84 10184.6 1645.8 11830.4 7.33? 0.89

100

4 10586.3 1713.0 12299.3 0.52 0.86 10275.5 1607.6 11883.1 0.12 0.90
8 10447.2 1708.5 12155.7 0.47 0.86 10224.5 1616.2 11840.7 0.06 0.90
12 10397.4 1721.3 12118.7 0.39 0.86 10105.6 1606.5 11712.1 0.03 0.89

140

4 10800.2 1716.0 12516.2 0.60 0.86 10231.8 1629.0 11860.8 0.21 0.90
8 10749.0 1691.2 12440.2 0.54 0.87 10209.0 1632.7 11841.7 0.16 0.90
12 10723.9 1711.9 12435.8 0.49 0.86 10173.0 1625.1 11798.1 0.11 0.90

TABLE II
IEEE 33-BUS SYSTEM: SAA VS. PSAA (η = 0.2)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

60

4 9947.9 1756.2 11704.1 0.21 0.78 9536.3 1723.3 11259.6 2.55? 0.80
8 9947.9 1756.2 11704.1 0.12 0.78 9536.3 1723.3 11259.6 2.55? 0.80

12 9664.2 1742.8 11407.0 0.08 0.77 9536.3 1723.3 11259.6 2.55? 0.80

100

4 9772.3 1722.6 11494.9 0.35 0.78 9652.7 1720.1 11372.8 0.05 0.80
8 9651.9 1743.9 11395.8 0.27 0.78 9574.9 1652.2 11227.1 4.73? 0.80

12 9633.8 1739.7 11373.5 0.21 0.77 9574.9 1652.2 11227.1 4.73? 0.80

140

4 10039.0 1740.1 11779.1 0.42 0.79 9705.0 1692.1 11397.1 0.13 0.80
8 9974.3 1748.7 11723.0 0.33 0.79 9639.5 1683.0 11322.5 0.06 0.80

12 9974.3 1748.7 11723.0 0.27 0.79 9592.1 1666.8 11258.9 0.04 0.80

TABLE III
IEEE 123-BUS SYSTEM: SAA VS. PSAA (η = 0.1)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

30

10 26715.3 6422.7 33138.0 0.33 0.86 25937.3 6396.0 32333.3 0.15 0.91
13 26127.5 6248.7 32376.2 0.28 0.86 25372.6 6210.7 31583.3 0.11 0.90
16 25972.4 6255.3 32227.7 0.21 0.85 25047.2 6251.8 31299.0 0.09 0.90

45

10 27019.2 6392.3 33411.5 0.42 0.87 26252.8 6305.3 32558.1 0.21 0.90
13 26407.7 6268.9 32676.6 0.39 0.86 26043.7 6365.3 32409.0 0.13 0.90
16 26149.3 6274.3 32423.6 0.34 0.86 25392.6 6216.6 31609.2 0.10 0.89

60

10 26931.0 6561.9 33492.9 0.61 0.87 25892.4 6410.8 32303.2 0.30 0.91
13 26772.4 6347.2 33119.6 0.57 0.87 25465.3 6304.3 31769.6 0.25 0.91
16 26073.5 6403.6 32477.1 0.53 0.87 25428.0 6309.8 31737.8 0.21 0.90

TABLE IV
IEEE 123-BUS SYSTEM: SAA VS. PSAA (η = 0.2)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

30

10 25894.3 6407.1 32301.4 0.24 0.78 25283.4 6392.2 31675.6 0.14 0.80
13 25607.6 6379.2 31986.8 0.21 0.78 25076.9 6359.4 31436.3 0.11 0.80
16 25313.7 6392.4 31706.1 0.16 0.77 24764.0 6271.2 31035.2 0.07 0.79

45

10 26021.9 6307.6 32329.5 0.37 0.78 25506.3 6293.2 31799.5 0.18 0.80
13 25528.3 6517.4 32045.7 0.30 0.78 24892.6 6268.1 31160.7 0.13 0.80
16 24986.1 6492.2 31478.3 0.27 0.78 24508.3 6238.9 30747.2 0.11 0.80

60

10 26328.0 6398.2 32726.2 0.56 0.78 26017.3 6344.5 32361.8 0.26 0.81
13 26148.7 6362 32510.7 0.48 0.78 25370.4 6308.8 31679.2 0.24 0.80
16 25693.3 6417.4 32110.7 0.44 0.78 25091.2 6284.5 31375.7 0.19 0.80

TABLE V
IEEE 33-BUS SYSTEM: STORAGE VS. NO STORAGE (η = 0.1)

(%1, %2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 10592.0 5243.3 15835.3 0.24 0.89 9952.0 5501.4 15453.4 0.26 0.90
(0.4,0.6) 10464.3 5372.8 15837.1 0.23 0.90 9873.8 5427.6 15301.4 0.29 0.91
(0.6,0.4) 10726.9 5194.2 15921.1 0.27 0.89 9908.2 5462.9 15371.1 0.28 0.90
(0.3,0.3) * 10143.7 5576.1 15719.8 0.38 0.89
(0.2,0.4) * 10471.5 5560.8 16032.3 0.39 0.89
(0.4,0.2) * 10239.2 5602.5 15841.7 0.43 0.89
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TABLE VI
IEEE 33-BUS SYSTEM: STORAGE VS. NO STORAGE (η = 0.2)

(%1, %2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 10527.7 5293.7 15821.4 0.16 0.80 9903.2 5460.4 15363.6 0.22 0.82
(0.4,0.6) 10332.5 5268.3 15600.8 0.20 0.79 9764.0 5503.9 15267.9 0.26 0.80
(0.6,0.4) 10200.4 5372.9 15573.3 0.21 0.80 9672.4 5423.5 15095.9 0.23 0.81
(0.3,0.3) * 10021.3 5690.3 15711.6 0.33 0.80
(0.2,0.4) * 10206.5 5575.1 15781.6 0.40 0.80
(0.4,0.2) * 10164.8 5625.0 15789.8 0.38 0.81

TABLE VII
IEEE 123-BUS SYSTEM: STORAGE VS. NO STORAGE (η = 0.1)

(%1, %2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 28274.9 19707.3 47982.2 0.44 0.89 26922.5 20311.6 47234.1 0.46 0.90
(0.4,0.6) 27944.6 19638.2 47582.8 0.37 0.89 26327.3 20610.4 46937.7 0.46 0.91
(0.6,0.4) 27826.9 19648.2 47475.1 0.39 0.89 26281.7 20409.3 46691.0 0.49 0.90
(0.3,0.3) * 28037.3 20416.3 48453.6 0.57 0.90
(0.2,0.4) * 27614.0 20882.5 48496.5 0.54 0.89
(0.4,0.2) * 27932.4 20741.3 48673.7 0.52 0.90

TABLE VIII
IEEE 123-BUS SYSTEM: STORAGE VS. NO STORAGE (η = 0.2)

(%1, %2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 27970.4 19504.8 47475.2 0.38 0.80 26392.7 19903.2 46295.9 0.37 0.81
(0.4,0.6) 27822.6 19762.4 47585.0 0.29 0.80 27041.5 20113.4 47154.9 0.41 0.81
(0.6,0.4) 28203.0 19793.0 47996.0 0.33 0.80 26808.3 20513.6 47321.9 0.35 0.81
(0.3,0.3) 29409.4 19442.7 48852.1 0.52 0.78 27751.4 19862.4 47613.8 0.45 0.79
(0.2,0.4) 29143.6 19627.1 48770.7 0.44 0.79 27948.3 20172.3 48120.6 0.48 0.79
(0.4,0.2) 29527.1 20062.6 49589.7 0.49 0.79 27684.0 20194.0 47878.0 0.38 0.80

VI. CONCLUSIONS

Distribution grid operators face great challenges in decid-

ing the locations and capacities of RDG and ES units due

to significant uncertainties and complexities of distribution

systems (e.g., ACOPF). To support such a decision-making

problem, we develop a novel TCC model to ensure system

reliability, minimize costs, and improve renewable energy

penetration. One key feature of our model is that the chance

constraint ensures that all the operational constraints are satis-

fied simultaneously with a high probability, leading to system

reliability. We use two sampling techniques to reformulate our

developed model, leading to the standard SAA formulation and

our proposed PSAA formulation. The novelty of the PSAA

formulation is that it introduces only continuous variables

corresponding to the samples (as compared to integer variables

in the SAA formulation) and uses historical data to improve its

performance. Our extensive experiments show that the PSAA

formulation performs better than the SAA formulation. The

PSAA provides better locations and capacities of the RDG and

ES units in a shorter time with a lower total cost and achieves

a better desired probability of ensuring system feasibility than

the SAA. The PSAA also reduces the optimality gap by more

than 50% as compared to the SAA. We finally demonstrate the

significance of ES units in reducing total costs and improving

the power system balance.

This research can be extended in various directions. First,

as our proposed TCC model and PSAA approach is general

enough, it would be interesting to apply the TCC model

and PSAA approach to solve other practical problems in

power system planning and operations. Second, the PSAA

approach always finds a better solution in a shorter time than

the SAA approach in our numerical experiments, but we do

not have a theoretical proof for such results. A theoretical

study would be appealing. Third, although we consider a

radial distribution network in this paper, there can be other

types of distribution networks, e.g., meshed grids [26] and

multiphase grids [44]. One can apply various approximations

(e.g., semidefinite programming [45]) to formulate the cor-

responding ACOPF constraints. Fourth, although we adopt

Bender’s decomposition algorithms to improve computational

efficiency, more advanced algorithms can be developed. We

leave them to future research.
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