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ABSTRACT

The increasing penetration of renewable energy in power systems calls for secure and reliable system op-
erations under significant uncertainty. To that end, the chance-constrained AC optimal power flow (CC-
ACOPF) problem has been proposed. Most research in the literature of CC-ACOPF focuses on one-sided
chance constraints; however, two-sided chance constraints (TCCs), albeit more complex, provide more
accurate formulations as both upper and lower bounds of the chance constraints are enforced simul-
taneously. In this paper, we introduce a fully two-sided CC-ACOPF problem (TCC-ACOPF), in which the
active/reactive generation, voltage, and power flow all remain within their upper/lower bounds simulta-
neously with a predefined probability. Instead of applying Bonferroni approximation or scenario-based
approaches, we present an efficient second-order cone programming (SOCP) approximation of the TCCs
under Gaussian Mixture (GM) distribution via a piecewise linear (PWL) approximation. Compared to the
conventional normality assumption for forecast errors, the GM distribution adds an extra level of accu-
racy representing the uncertainties. Moreover, we show that our SOCP formulation has adjustable rates
of accuracy and its optimal value enjoys asymptotic convergence properties. Furthermore, an algorithm
is proposed to speed up the solution procedure by optimally selecting the PWL segments. Finally, we
demonstrate the effectiveness of our proposed approaches with both real historical data and synthetic
data on the IEEE 30-bus and 118-bus systems. We show that our formulations provide significantly more
robust solutions (about 60% reduction in constraint violation) compared to other state-of-art ACOPF for-

mulations.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The penetration of renewable energy such as wind and so-
lar increases rapidly in the power system. At the same time,
the uncertain output of these non-dispatchable renewable sources
prompts various issues in power system operation. In particular,
with many renewable energy sources, it is well known that supply-
and-demand balance control becomes very difficult to manage. In-
deed, the integration of the uncertain power sources increases the
risk of supply-and-demand mismatch, leading to significant chal-
lenges from voltage fluctuations to overloaded branches and can
shut down the entire or parts of the power system (De Rubira &
Hug, 2016; Filabadi & Azad, 2020; Kundur et al., 2004). Such com-
plexities raise the need for fast and reliable optimization meth-
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ods that can securely and economically schedule the power sys-
tem operation. As a solution, the optimal power flow (OPF) prob-
lem provides real-time control measures to support the system’s
stability. It guarantees the system’s secure operation by enforcing
constraints such as voltage limits, generation limits, and line ca-
pacity.

First introduced by Carpentier (1962) over half a century ago,
the OPF problem has gained great attention due to its impor-
tance in power system operations. Due to the physical complexity
in power systems, the majority of the OPF research in the litera-
ture oversimplifies the real OPF problem using direct current (DC)
and deterministic formulations (Lin, Magnago, & Alemany, 2018;
Skolfield & Escobedo, 2022). The DC formulation is an approxima-
tion of the actual nonlinear alternating current (AC) power flow
formulas and the deterministic formulation is a rough estimation
of the stochastic nature of the power system. In traditional cen-
tralized power systems, such simplifications, albeit imperfect, are
acceptable to run the system without major catastrophic problems.

Please cite this article as: A. Mohammadi Fathabad, ]. Cheng, K. Pan et al., Asymptotically tight conic approximations for chance-
constrained AC optimal power flow, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2022.06.020
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Indeed, the deterministic DC models are still being used in many
commercial and industrial applications (Stott & Alsag, 2012).

However, the large-scale integration of renewable generations
in recent years is exposing the deficiencies of the traditional OPF
formulations. In particular, the DC approximation neglects both
network losses and reactive power, which are natural components
of a power system network. Omitting these components would
lead to decisions that are not feasible to the realistic AC opti-
mal power flow (ACOPF) problem. On the other hand, as pene-
tration levels of volatile and intermittent sources, such as wind
and solar power, reach massive fractions of the total supplied
power, the risk of extreme catastrophic outcomes (e.g., power sup-
ply interruptions, power mismatch, increased power losses, and
network instability) escalates rapidly. The traditional determinis-
tic models, which rely on day-ahead or hour-ahead OPF analyses,
do not work as well as before because it is more difficult to pre-
dict the renewable power outputs as residential houses are be-
coming both the load and generation points. These uncertain fore-
cast errors can lead to insufficient or excess electricity genera-
tion, and if unaccounted for, can result in major reliability issues
and cause significant damage to the system via costly blackouts or
other catastrophic events. In fact, major power outages and the risk
for power interruptions increased rapidly in the past few decades
(Bloomenergy, 2021; NREL, 2021; WirfsBrock, 2014) as more re-
newables are integrated in the system. To account for the increas-
ing risks caused by uncertainty, stochastic ACOPF problems have
been addressed in recent years (Capitanescu, 2016).

An accurate representation of the stochastic ACOPF is achieved
using chance-constrained optimization (Bienstock, Chertkov, & Har-
nett, 2014). In particular, the ACOPF problem enforces limits on
voltage, active power, reactive power, and power flow, and a
chance-constrained ACOPF (CC-ACOPF) enforces those limit con-
straints with a certain probability. In other words, chance con-
straints restrict the feasible region so that the confidence level of
the solution is high, and thus reflect the stochastic nature of the
problem. Moreover, in a recent survey of the actual power system
operators, it was determined that using the chance-constrained
formulation to choose a predetermined level of violation for con-
straints is both an intuitive and transparent way of representing an
ACOPF problem under uncertainty (Roald & Andersson, 2017).

While the CC-ACOPF presents an intuitive way to model forecast
uncertainty, the nonlinearity of the AC power flow equations and
the probabilistic constraints render the problem computationally
intractable (Nemirovski & Shapiro, 2007; Paudyal, Canizares, &
Bhattacharya, 2011). To develop a practical method, it is necessary
to consider both an approximation of the AC power flow equa-
tions and a pertinent convex approximation of the chance con-
straints.

First, as discussed above, the underlying physical character-
istics of a power system include nonconvex and nonlinear AC
power flow equations; thus, most works in literature approximate
these nonlinear equations with an imprecise DC model to reduce
the complexity (Aigner, Clarner, Liers, & Martin, 2022; Bienstock
et al,, 2014; Overbye, Cheng, & Sun, 2004; Vrakopoulou, Katsam-
pani, Margellos, Lygeros, & Andersson, 2013; Xie & Ahmed, 2017;
Zhang, Shen, & Mathieu, 2016). Modeling the actual AC power
flow, on the other hand, allows us to accurately consider new
constraints and chance constraints on reactive power, power an-
gles, and power transmission capacity (Zohrizadeh et al., 2020).
More importantly, the ACOPF problem needs to be solved at dif-
ferent levels of the power system (e.g., transmission and distri-
bution grids) and under different stages (e.g., long-term planning
and short-term operations). Thus, a tractable and accurate formu-
lation of the ACOPF problem is highly demanded. Several different
methods for linear approximation of full CC-ACOPF are proposed
in the literature that attempt to represent the output variables
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as linear combinations of input variables. For example, Dall’Anese,
Baker, & Summers (2017) distinctly models linearized AC power
flow equations around a given voltage profile. In another effort,
Vrakopoulou et al. (2013) uses SDP relaxations for the AC power
equations; however, the resulting formulation cannot provide ro-
bust guarantees and it is computationally expensive. Others (Hojjat
& Javidi, 2015; Zhang & Li, 2011) have considered full linearization
of the responses around expected values of the random variables
using linear decision rules. In this study, similar to Fu & McCal-
ley (2001); Roald & Andersson (2017) and Lubin, Dvorkin, & Roald
(2019), we use Taylor expansion to linearize the AC power flow
equations around a predicted operating point. This predicted point
is identified by solving the deterministic ACOPF problem, and our
model approximates the impact of uncertainty as a linear function
of the uncertain power injections only around that particular oper-
ating point. Hence, it is more accurate than the other techniques as
it linearizes the system around one operating point instead of fully
linearizing the system (Roald & Andersson, 2017). This also further
allows for the development of analytical chance-constrained refor-
mulations.

Second, to facilitate the development of analytical chance-
constrained reformulations, a one-sided chance constraint (OCC)
relaxation is commonly used. In particular, most works in the liter-
ature of CC-ACOPF treat the physical bounds separately (Dall’Anese
et al., 2017; Lubin et al., 2019; Roald & Andersson, 2017), i.e., a
single chance constraint is imposed on the upper bound and an-
other chance constraint is imposed on the lower bound. While us-
ing OCCs is convenient as they can be reformulated and imple-
mented more easily (Baker, Dall’Anese, & Summers, 2016; Bien-
stock et al., 2014; Zhang & Li, 2011), the OCC relaxation provides
an inexact approximation of the OPF problem. More specifically, it
is known that active power, reactive power, and voltage at each
bus, as well as the power flow at each branch in general, have both
lower and upper bound limits. Hence, it is more accurate to rep-
resent each by a two-sided chance constraint (TCC). To the best of
our knowledge, Lubin, Bienstock, & Vielma (2015), Pena-Ordieres,
Molzahn, Roald, & Waechter (2019), and Xie & Ahmed (2017) are
the only known studies treating the lower and upper bounds si-
multaneously. Among them, the distributionally robust results in
Pena-Ordieres et al. (2019) and Xie & Ahmed (2017) depend on
inaccurate DC approximations, and the analytical results in Lubin
et al. (2015) only consider a subset of constraints with a TCC for-
mulation that is limited to a Gaussian assumption.

In fact, many papers in the literature that study closed-form
analytical reformulations of CC-ACOPF simply model the forecast
errors through Gaussian distribution (Bienstock et al., 2014; Li,
Vrakopoulou, & Mathieu, 2017; Lubin et al., 2015; Lubin et al,
2019; Roald & Andersson, 2017). This Gaussian assumption is of-
ten criticized in the literature as it may lead to further inaccura-
cies that can cause cascading shutdowns and power interruptions
in the grid. To be more specific, recent statistical analyses of re-
newable forecast errors have shown that the forecast error distri-
bution differs greatly from the commonly assumed normal distri-
bution (Hodge & Milligan, 2011; Lange, 2005). In particular, the
large-scale availability of historical data on renewable generation
and forecast can be analyzed to obtain data on renewable forecast
errors. This forecast data then can be analyzed to obtain an esti-
mation of the forecast error distribution. For example, Hodge et al.
(2012) study historical wind generation data from multiple coun-
tries to analyze the underlying probability distributions of forecast
errors, and the results show that forecast error distributions are
skewed in many cases. They further show that the simple Gaussian
distribution performs poorly when skewness is present. In view of
this, in our research, we have modeled the forecast error distribu-
tion through Gaussian mixture (GM) modeling. With the GM mod-
eling approach, the forecast error distribution can be modeled as a
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convex combination of multiple normal distributions with respec-
tive means and variances. Consequently, it not only encompasses
the normal distribution but also can be used to model a continu-
ous distortion of the latter, such as skewness (Bertholon, Monfort,
& Pegoraro, 2007). More importantly, any distribution can be ap-
proximated by a GM distribution through nonparametric estima-
tion method. For instance, if we use the kernel density estimation,
a commonly used nonparametric method proposed by Rosenblatt
(1956) and Parzen (1962), to estimate the distribution, then the
well-known normal kernel density estimator (Dattatreya & Kanal,
1990; Reynolds, 2009; Zhuang, Huang, Palaniappan, & Zhao, 1996)
becomes a GM distribution. Hence, we can approximate the dis-
tribution of any uncertainty using a GM distribution. Furthermore,
GM is stable by convolution and easy to simulate. Therefore, em-
ploying the GM distribution helps us represent the forecast er-
ror uncertainties more accurately and develop OPF solutions that
are significantly robust against such uncertainties, thereby adding
great accuracy and flexibility to our proposed chance-constrained
model.

The resulting two-sided chance-constrained ACOPF (TCC-ACOPF)
problem under the GM distribution, however, relies on noncon-
vex and nonlinear TCCs that need to be convexly approximated.
In this paper, we present a tractable approximation methodology
for the TCC-ACOPF to provide an accurate solution for the problem
in a timely manner. We first provide a convex approximation of
the TCC under a GM distribution. Furthermore, we show that our
approximation is exact for the case of simple Gaussian and some
special GM distributions, so it generalizes the convexity results in
Lubin et al. (2015). In spite of being convex, this approximation
is nonlinear, which makes it less efficient for large-scale appli-
cations. The source of nonlinearity, i.e., the Gaussian cumulative
distribution function (CDF), is then approximated by a piecewise
linear (PWL) function, which is often used in the existing studies
(see, e.g., Ardestani-Jaafari & Delage, 2016 and Kuryatnikova, Ghad-
dar, & Molzahn, 2021) for the tractability purpose. The resulting
final formulation is a series of linear and second-order conic (SOC)
constraints, which can be solved efficiently by many commercial
solvers.

The quality of our final SOC approximation of the TCC is ad-
justable depending on the quality of the PWL approximation of
the Gaussian CDF. Intuitively, the more linear pieces we have, the
more accurate the approximation is. However, a PWL approxima-
tion with more pieces also leads to more constraints in our final
SOC formulation, which means a higher computational cost. Hence,
it is of our interest to choose an optimal PWL approximation that
guarantees a given accuracy threshold with the minimum number
of segments.

Several studies have investigated the idea of finding the optimal
PWL fit to a uni-variate function. For example, Hamann & Chen
(1994) finds the optimal locations of segments based on a root-
mean-square error tolerance. Tomek (1974) develops two heuristics
to minimize the number of approximating segments subject to an
error limit. More recently, Rebennack & Krasko (2020) and Kong
& Maravelias (2020) developed algorithms that use mixed-integer
techniques for finding segments that incite the exact amount of
error required; however, their methodology is only applicable to
bounded functions. In this paper, to choose an optimal PWL func-
tion, we introduce an algorithm based on the linear interpolation
error. Our methodology relies on the monotonicity and concavity
of the target function, and it avoids introducing mixed-integer vari-
ables. Moreover, it can be generalized to approximate any strictly
monotone concave or convex function that is bounded from at
least one side. In our theoretical results, we prove that our algo-
rithm provides the best fit, and in our numerical results, we com-
pare this algorithm with the uni-distance algorithm that is com-
monly used to obtain a PWL approximation. We show that our
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method can achieve similar accuracy with significantly fewer lin-
ear segments (e.g., 40% reduction in number of piece when the
error tolerance is 0.05%). Hence, employing our algorithm speeds
up the computational time for our SOC approximation of the TCCs
significantly.

In summary, the main contributions of this paper are the fol-
lowing:

* We present a TCC-ACOPF to model the stochastic ACOPF prob-
lem, which models the forecast error uncertainty more accu-
rately using the GM distribution. In particular, the GM distri-
bution addresses non-normalities such as skewness in power
forecast data, which are not captured by the common normal
distribution.

We present a convex inner approximation of a TCC on a GM
distribution with K components, and we show that our convex
formulation is exact under an easily verifiable condition. As this
intermediate convex formulation may be expensive to solve on
large-scale applications, we introduce a tractable SOC approx-
imation of it based on a PWL approximation of the standard
normal CDF.

Moreover, the quality of our SOC approximation depends on the
quality of the PWL approximation, which can be improved by
increasing the number of well-positioned PWL segments. We
prove that our SOC approximation enjoys asymptotic conver-
gence properties. As higher number of PWL segments lead to
a higher computational cost, we propose an algorithm that ob-
tains the minimum number of segments (and their optimal po-
sitioning) required for a PWL function to speed up the compu-
tation.

We report computational results with both synthetic and real-
world datasets, which show that TCC-ACOPF can be solved effi-
ciently (in a similar timeframe) as compared to the state-of-art
OCC-ACOPF and deterministic ACOPF. Our results show that the
TCC-ACOPF approach significantly improves the robustness and
feasibility of solutions.

The remainder of the paper is organized as follows.
Section 2 introduces the ACOPF problem and the TCC-ACOPF
problem. Section 3 shows how to reformulate the TCC-ACOPF into
a convex problem and then approximate it by a second-order
cone program. An algorithm to speed up the computation is also
proposed in this Section. Section 4 numerically illustrates the
strengths of the proposed model. Section 5 concludes the paper.

2. Mathematical model

In this section, we introduce mathematical formulations
for deterministic ACOPF and TCC-ACOPF, in the following
Sections 2.1 and 2.2, respectively. We use boldface and normal
symbols to represent vectors and scalars, respectively, throughout
the paper.

2.1. Deterministic ACOPF

We use B, G, and R to denote the set of all buses, thermal gen-
erators, and renewable generators respectively. For each bus i € B,
we use G; (resp. R;) to denote the set of thermal generators (resp.
renewable generators) at this bus, and ¥; (resp. v;) to denote the
upper (resp. lower) bound on nodal voltage magnitude at this bus.
For each bus i € B and bus j € B, we use £ to denote the set of tu-
ples (i, j) such that there is a branch between bus i and bus j, and
I_,vj to denote this branch’s apparent power flow limit. For each ther-
mal generator g € G, we use Pg (resp. Py) to denote its maximum
(resp. minimum) active power generation amount, and Qg (resp.
gg) to denote its maximum (resp. minimum) reactive power gen-
eration amount. To define decision variables, we let pg (resp. qg)
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represent the active (resp. reactive) power output of each thermal
generator g € G, eg (resp. eg) represent the active (resp. reactive)
power flow of each tuple (i, j) € £, and v; (resp. 6;) represent the
nodal voltage magnitude (resp. angle) at each bus i € B. Therefore,
the ACOPF model can be described as follows:

min, > cg(pe) (1a)
ep.eq geg

st. Py < pg < P, Vgeg. (1b)
Q, =0s= Qs Vged, (1¢)
VSV <, VieB, (1d)
@2+ (eh? < (@2, Vet (1e)
¢(p.q.v,0) =0, (1f)
Oref = 0. (1g)

In the objective function (1a), cg(pg) represents the power pro-
duction cost of generator g and it is typically a convex quadratic
function (Wood, Wollenberg, & Sheblé, 2013). Constraints (1b) and
(1c) restrict the active and reactive generation amount of each unit,
respectively. Constraints (1d) set the upper/lower bounds of the
nodal voltage magnitude at each bus i € B. The capacity of each
branch is bounded by (1e) and the voltage angle at the reference
bus is set to zero by (1g). The set of active and reactive power bal-
ance equations from the Kirchhoff's current and voltage laws are
enforced by (1f). Specifically, the active and reactive power flows
are functions of the voltage magnitudes v and voltage angles 6, as
illustrated in the following line power flow equations:

6‘5 = U,‘Uj(Gij COS(Gf - 9]) + Bi]’ sin(@i - 0]‘)), V(l, ]) eL, (28)

eg = ViVj (GU Sin(@,’ - 6}) - Bjj COS(@,’ - 91)), V(l, ]) eL, (Zb)

where parameters G;; and Bj; represent the real and imaginary
parts of network admittance for each tuple (i, j) € £, respectively.
It follows that the nodal power flow equations can be represented
by as follows:

X:pg—DlpJr ng =ViGi+ Y eg, VieB, (3a)
geGi 8eR; J:i.jeL

Yge-DI+ > rd=-v2Bi+ 3 el Vies (3b)
geGi 8€R; Jj:G.j)ec

which shows that the net active (resp. reactive) power injection at
each bus i e B is equal to the active (resp. reactive) power flow
leaving this bus. In (3), Dlp (resp. qu) denotes the active (resp.
reactive) power demand at each bus i € B, R; denotes the set of
renewable generators at each bus i € B, and rg (resp. rg) denotes
the forecast active (resp. reactive) power injections from a given
renewable generator g € R. Note that since for any (i, j) € £, if v;,
vj, 6;, and 6; are given, then eg and efjl. are uniquely determined.
Thus, eP and ed are not involved in the function ¢(p, q,v,0) =0
as arguments in (1f).
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From (3), we can see that there are more variables than equa-
tions, which implies that some variables can be chosen indepen-
dently and the others will be implicitly determined. In fact, cer-
tain physical structure settings of the power systems enable us to
choose such variables independently, thereby controlling the bal-
ance in (3). Specifically, to that end, three bus types are considered
in power system operations, i.e., pv buses, pq buses, and a vf bus.
The pv buses (referred to as “generation buses” and collected in set
Bpy) maintain constant values of active power generation and volt-
age magnitude; the pq buses (referred to as “load buses” or “buses
without generation or load” and collected in set Bpq) maintain con-
stant active and reactive power outputs; the vf bus (referred to as
“reference bus” and collected in singleton B,y ) is unique and main-
tains constant values of the voltage magnitude and angle (Kothari
& Nagrath, 2003; Roald, 2016).

The deterministic ACOPF (1) assumes that the renewable gener-
ation outputs (i.e., rg and rg for each i € B) are known exactly;
that is, the forecast values are exact. However, due to the in-
termittent nature (e.g., wind fluctuates and solar relies on sunny
weather), renewable energy actually creates huge uncertainties to
power system operations, thereby requesting advanced decision
making approaches under uncertainty for the ACOPF problem.

Remark 1. The deterministic ACOPF (1) is solved to support the
power system operations at different levels and stages. For in-
stance, at the transmission level, the transmission grid operator
may solve the day-ahead unit commitment and economic dispatch
problems with the ACOPF formulation incorporated to perform
market clearing. The operator may also solve the ACOPF (1) in the
real-time market to evaluate the imbalances of power supply and
demand and thus activate the ancillary services, thereby ensur-
ing the system stability. Note that the ACOPF formulation becomes
more crucial than before at the transmission level because the high
penetration of renewable energy leads to significant uncertainties
in the system and a more accurate OPF formulation can help the
grid operator make a decision that can better hedge against the
uncertainties. In addition, at the distribution level, the distribution
grid operator may solve the ACOPF formulation in various stages,
such as generation expansion planning and short-term operations.
Specifically, as a distribution grid is usually represented as a radial
network, the generic ACOPF formulation (1) can be equivalently re-
formulated as an SOC formulation (Farivar & Low, 2013) by using
the special radial network structure. Note that our proposed ap-
proach in the remainder of this paper also works for this equiva-
lent ACOPF formulation.

Remark 2. Note that the non-dispatchable renewable generation
may have a large impact on the overall cost of the power sys-
tem. Besides adjusting the generation outputs of the existing dis-
patchable thermal generators in the system, the system imbalances
due to the renewable generation uncertainty may also be com-
pensated by other market tools, such as ancillary services. These
services could range from energy storage devices and immediate
power purchase strategies, to reactive power generation devices.
These services can be implemented at different levels and stages of
the power system (as mentioned in Remark 1), including transmis-
sion and distribution levels, to balance the network. Thus, a direct
cost component for each service can be considered in the objective
function of model (1), and we leave this for the future research.

2.2. TCC-ACOPF

To account for the uncertainty due to renewable generation,
we introduce a TCC-ACOPF that ensures a secure system opera-
tion under uncertainty. In particular, for a given renewable gener-
ator g € R, we denote this generator’s uncertain active power gen-
eration amount by rg &)= rg + &g, where rg denotes the forecast
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active power generation amount of generator g, & denotes a ran-
dom variable representing the real-time deviation of this generator
from the forecast value rg , and & denotes the vector of &'s with
any g € R. Facing the active power generation variation of each re-
newable generator g € R, the power system has to respond to the
variation by adjusting the values of other decision variables, i.e.,
13 (&) for any g e R, pg(&) for any g G, qg(§) for any g G, v;(§)
for any i e B, and 6;(§) for any i e B, thereby controlling system
balance and stability in the real-time operations. Technically, such
responses maintain the ACOPF model (1) to be feasible. To track
such adjustments and avoid high complexities, system operators
often adopt a family of affine response control policies for prac-
tical purpose (Jaleeli, VanSlyck, Ewart, Fink, & Hoffmann, 1992). In
this paper the response policies are selected as follows. First, the
reactive power output of a renewable generator g changes follow-
ing the active power output variations of this renewable generator
according to

re (&) = yary (€). Vge R, 4)

where y; is a decision variable that depends on operational re-
quirements (Cabrera-Tobar, Bullich-Massagué, Aragiiés-Pefialba, &
Gomis-Bellmunt, 2019; Roald, 2016). Second, according to the au-
tomatic generation control (AGC) policy (Borkowska, 1974; Ven-
zke, Halilbasic, Markovic, Hug, & Chatzivasileiadis, 2017), the active
power output of a thermal (dispatchable) generator under the re-
newable generation uncertainty is adjusted by the following equa-
tion:

Dg(§) = pg— g, Vge g, (5)

where oy is the participation factor of each thermal generator g € G
and E =3}, g In our model, oz will be optimized as a deci-
sion variable for any g € G, and it indicates the fraction of the total
forecast error that is compensated by thermal generator g. Third,
a distinction between pv, pq, and v9 buses becomes important for
the reactive power balancing and voltage control. Considering com-
mon practice, we assume that the voltage is adjusted at pg buses
to keep the reactive power constant with uncertainty, however, pv
and v0 buses can adjust their reactive power to keep the voltage
magnitude constant with uncertainty.

With the uncertainty representation and response policies de-
scribed above, we then can enforce the probability that each set
of constraints of (1b)-(1e) hold with respect to the distribution of
&, leading to the following four sets of chance constraints, respec-
tively:

P(Py < pg(§) < By) > 1—ep, Vgeg, (6a)
P(Q=a:6) =0) = 1-<q. Vgeg, (6b)
Py <vi(§) <) = 1—ey, VieB, (6c)

p((eg(s))2+(eg(s))zs(1',,-)2)zl—eL, V(i j)e L. (6d)

Here, P denotes the probability of an event with respect to
the distribution of &. Constraints (6a) enforce both the upper and
lower bounds on active power generation amount of a given gen-
erator g€ G to be held simultaneously with a probability that is
no less than 1 — €p. Similarly, the probabilistic bounds on reactive
power flow, voltage magnitude, and apparent power flow are en-
forced through (6b), (6¢), and (6d), with violation probability less
than €q, €y, and €, respectively.
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Chance constraints (6a)-(6¢) are TCCs where the stochastic con-
straints are linear in the variables pg(§), qg(£), and v;(§), respec-

2 2
tively. As the stochastic constraints (e}?(é)) + (efjl.(g)) < (Iij)z

are nonlinear in the variables eg (&) and elqj (&), constraints (6d) are
more challenging to deal with. Here, we follow the approach in
Lubin et al. (2015) to inner approximate (6d) with the following
constraints

P1ef @)1 =¢f)=1-Be. Vijper  (7a)

P("?g(g)' < é‘l?) > 1- (1 — ﬂ)GL,

() + () = )"

where §l.1j) and §i§1 are auxiliary decision variables and B € (0, 1)
is a given parameter that is typically set as 0.5. The resulting con-
straints (7a) and (7b) are in the same form as (6a)-(6c¢), and (7c) is
a deterministic convex quadratic constraint.

Therefore, the mathematical formulation of TCC-ACOPF can be
described as follows:

Y (i, j) e L, (7b)

V(i j)ecl, (7¢)

min Y E[cg(pg(§))] (8a)
p.q.v.0
P eQay *°

s.t. (6a), (6b), (6¢), (7a), (7b), (7c), (1g),
P(pE).qE).vE).0)D.q.7.0)=0, VE, (8b)

where E denotes the expectation with respect to the distribution of
&, objective function (8a) minimizes the expected total operating
cost, and constraints (8b) describe the linearized version of con-
straints (2) and (3). This linearization follows the existing studies
(Fu & McCalley, 2001; Lubin et al., 2019; Roald & Andersson, 2017).
Specifically, constraints (8b) are obtained from a Taylor expansion
of (2) and (3) around a feasible solution (denoted by (P, q,7.0)) to
the deterministic ACOPF model (1). As constraints (8b) hold for all
the possible realizations of &, these constraints ensure that the so-
lution of (8) satisfies the linearized power balance equations under
all possible realizations of uncertainty. These existing studies show
that this approximation is very tight (see Lemma 1 in Lubin et al.
(2019) and the numerical results therein). Note that, (6a)-(6¢) and
(7a)-(7b) represent all the TCCs in our model, and they are nonlin-
ear and nonconvex in general. However, the inner stochastic con-
straints of the TCCs are all defined by functions which are affine
in decision variables and affine in random variables. In the follow-
ing section, a tractable approximation for such two-sided chance-
constraints is developed.

3. Reformulation techniques for TCC

In this section, we develop a tractable convex formulation of
(8) by approximating the two-sided chance constraints (6a)-(6c)
and (7a)-(7b) by a series of linear and SOC constraints. To that end,
we consider a general form of TCC as follows:

P(ly < hy(®)TE + ho(x) <up) > 1 -, (9)

where h;(x) and hg(x) are affine functions of a vector of decision
variables x, I, and uj, are lower and upper bounds of the TCC, re-
spectively, and & represents a vector of random variables. For ease
of exposition, we define h(x, &) := hy(x) "€ + hy(x), which is affine
in x.

In general, TCCs are very difficult to solve. As a result, many ex-
isting studies, including Bienstock et al. (2014), Roald & Andersson
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(2017), and Dall’Anese et al. (2017), approximate the TCC (9) by
two one-sided chance constraints as follows:

P(h(x.&) <up) > 1-¢, (10a)

P(h(x.&)>1,) = 1-¢. (10b)

When € =¢, it is clear that (10) provides an outer approxi-
mation of (9). When é = €/2, (10) provides an inner approxima-
tion for (9), which is known as the Bonferroni approximation of
TCCs (Hanasusanto, Roitch, Kuhn, & Wiesemann, 2017; Nemirovski
& Shapiro, 2007).

The approximation (10) is inexact and often very weak (Xie &
Ahmed, 2017), and it is accordingly followed by further studies
seeking better approximations. For instance, Lubin et al. (2015) de-
veloped an SOC approximation of a TCC, in which & follows Gaus-
sian distribution with known mean and covariance. In many prac-
tical settings, however, the Gaussian distribution is known to lack
accuracy in modeling uncertainty, especially when it comes to
skewness in the distribution, which though is commonly present
in power system applications (Hodge et al., 2012). In the following
Section 3.1, we provide a tight approximation for a general TCC
under a GM distribution, which allows for significantly more accu-
rate modeling of uncertainties. Our approximation has a control-
lable degree of accuracy, which is of high value as it provides an
additional degree of flexibility to the model.

3.1. Tight approximation

In this section, we show that TCC (9) under GM distributions
can be inner approximated by a set of convex constraints. A suf-
ficient condition is also provided under which the approximation
becomes exact. Moreover, the resulting convex constraints can be
efficiently approximated by a set of linear and SOC constraints,
which converges to the feasibility set of the original TCC (9). For
notational brevity, we define [n] = {1,2,...,n} for any positive in-
teger number n. We make the following assumption throughout
this paper.

Assumption 1. The random variable & follows a GM distribution
with K components as follows:

K

£~ WN (B X, (11)
k=1

where component k € [K] is a Gaussian distribution with mean
W, positive definite covariance 7, %, and weight w;, > 0 such that

K
Zk:] Wy = 1

We use F to denote the CDF of & and accordingly have F(§) =
Zf; wy F.(§), where F, denotes the corresponding CDF of each
component k € [K]. Note that the covariance of each component is
a positive multiple of ¥ > 0, which is the covariance matrix base
for all components. Moreover, if the distribution of & only consists
of one Gaussian distribution, i.e., K = 1, the uncertainty distribu-
tion simplifies to the Gaussian distribution.

Using the GM distribution to represent the uncertainty, the fol-
lowing proposition, in which we develop a convex reformulation of
the TCC, is key to our main results. Our results are related to the
perspective function of the standard normal CDF &(.). In particu-
lar, the perspective function of ®, see Combettes (2016), is defined
as

x = . JADP(z/A), ifA>0
®:Rx[0,00) > R, <I>(Z,)»)._{0’ i1 —0.
Since ® is a bounded continuous function, it is clear that & is
also continuous. Also, since ® is a continuous concave function
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on [0, c0), ® is concave on [0, c0) x [0, 0c0) (Combettes, 2016). For
ease of exposition, we assume 0-®(z/0) =0 for all ze R with-
out mentioning the perspective function. We also define /L;{(X) =
hi ()T +ho(x) and /(%) := /h;(x)T X hy(x) for the rest of the
paper.

Proposition 1. Under Assumption 1, the two-sided chance constraint
(9) can be inner approximated by the following convex constraints in

(%, 1):
Up — 14 %) 1 (%) 7'LW’ > A2 —
VTIich ) q)( VA ))) 222 -e),

(B (el

(12a)
Iy < pp(®) < up, YkelK], (12b)
2/ (x) < A, (12¢)

where ®(-) is the standard normal CDF and A € R is a nonnega-
tive auxiliary variable. Moreover, if € < (1/2) min{wy, ..., wy}, then
the approximation is exact; that is, x satisfies (9) if and only if there
exists A € R such that (x, A) satisfies (12).

Proof. First, we show the convexity of constraints (12). Note that
®(-) is concave in the restricted domain [0, co), which is enforced
by (12b). As discussed above, its perspective function ®(z, 1) is
concave over [0, co) x [0, 0o). Since affine substitution and nonneg-
ative weighted summation maintain concavity, (12a) is a convex
constraint in (x, A). It is easy to see that (12b) and (12c) are affine
and SOC constraints, respectively, and thus are convex.

Next, we show that (12) is an inner approximation of the TCC
(9). We consider two possible cases: ¥/(x) =0 and X/(x) > 0. (i)
When X’(x) =0, we have h;(x) =0 because X > 0 and accord-
ingly (9) is reduced to (12b). (ii) When X’(x) > 0, under Assump-
tion 1, we have

Pe(lp < h(x, &) < up)

K
= > wiPg (I < h(x.§) < up)

k=1

— &) < h(x,§) — M, () up— g (x)
= ZWkPFk(fE’(x) TSR S S @)

M (%) Iy — i (%)
‘Z ((rz(x)) q’(mmx)))
M (%) me@®) =L\
‘ZW"( (fz (x))”(ﬁx/(x))) "

where the last equation holds because ®(x) =1 — ®(—x). As a re-
sult, (9) can be recast as

K / /
up — U (%) (%) — Iy
wi| ® + o >2—¢€. 13
2 "( (mmx) T ) (1)
Consider (x,A) that satisfies constraints (12). Because ®(-) is an
increasing function, [, < ), (x) <u, and A > ¥'(x) > 0, we con-

clude that
up = (X \ o (b= K ) (%) =1y
q’(mmx)) = ‘D< Tk ) and q’(mmx))

o 1y
o100

which, together with (12a), implies (13). Thus, for any (x, A) that
satisfies constraints (12) under both the above two cases, the x sat-
isfies (9).
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Finally, we show the equivalence between (12) and (9) when
€ < (1/2) min{wy, ..., wg}. (i) Suppose that x satisfies constraint
(9) with hy(x) =0. Then, %/(x) =0 and h(x,§) = ho(x) = 11}, (%)
for all k € [K]. By setting A =0, we see that constraints (12) are
satisfied by (x,A). (ii) Suppose that x satisfies constraint (9) with
h;(x) # 0. Then (13) is satisfied by x. We claim that such an x sat-
isfies (12b), that is, for all k € [K],

wy — (%) _ W@ =1l
®(m2/(x) ) >0.5 and cb(m?(x)) > 0.5.

If not, then there exists some x < [K] such that
Up — e (X) e () =1y
O —L— |+ == 1.5
(mem) e @) ) "

because both @(”b_“;((x)) and <I>< I (x)_lb> are no larger than 1

Nore)) Norae))
and one of them is less than 0.5 by contradiction. It further follows
that,

S ty — (1(%) @) ~ 1y
ZW(‘D@W()) o))
K

< Z(Zwk) +1.5w, =2 Zwk — 05w, =2 —-0.5w, <2 —¢,
k#k k=1

which contradicts (13). Therefore, for any x satisfying (13), by
setting A = ¥/(x), we see that constraints (12) are satisfied by
x A). O

Remark 3. The exactness condition in Proposition 1, ie., € <
(1/2) min{wy, ..., wg}, is always satisfied in the case of simple
Gaussian (K = 1) if € < 0.5. Hence, our proof recovers and gener-
alizes the convexity results in Lubin et al. (2015).

Remark 4. The exactness condition in Proposition 1 is usually sat-
isfied in practice where smaller values of € are of interest. For ex-
ample, in the case where w, = 1/K for each k € [K], our reformu-
lation is exact for € < 1/(2K). That means a mixture of 4 Gaus-
sians with € < 0.125 is convex and can be exactly reformulated by
Proposition 1.

Although (12) consists of convex constraints, it can be computa-
tionally expensive to solve for large-scale applications. In the rest
of this section, we discuss how to approximate (12) using linear
and SOC constraints. By Proposition 1, the domain of ®(-) can be
restricted to [0, co) in our model (12) without loss of generality, on
which ®(-) is concave. As a result, a PWL inner approximation of
®(-) on the interval [0, co) can be found by a modified linear inter-
polation. Specifically, we call a vector t = (tg, t1,--- ,ty)T € RM+1 3
valid interpolation vector if 0 =tg <ty <--- < ty. For a valid inter-
polation vector t € RM*1, we define %,(z) := min {af,z+bf,},

me[M+1]

the PWL function from [0, c0) to R with M + 1 segments such that

{alt’ntml_"bit'n:q)(tml)s Vme [M],

attm + bt = @ (tm),

iy =0, and bf; , = ®(ty), as illustrated in Fig. 1. The follow-

ing lemma about @fw() is straightforward due to the concavity of
®(-), and the proof is omitted.

Lemma 1. For any valid interpolation vector t € RM+1, @fw(-) is a

concave increasing PWL function over [0, o), and &wa(z) < ®(2) for
all z € [0, o).
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Replacing the standard normal CDF ®(-) with a PWL function
@;/,(-), we have an inner approximation of (12a):

se (U= X))\ o (I (X) — e
X(;wk<¢M< i )+<1>M< o )))_k(z €).

(14)

Let Af, 1=ty —ty_y for each m € [M], A' := max;y; AL, and

E(t) :=sup,.o{®(2) — &DRA (z)}. We are interested in the asymptotic

behavior of the approximation as E(t) — 0. To that end, we intro-
duce the following definition.

Definition 1. Let {t'}, := {t',t2, ..., } be a sequence of valid inter-
polation vectors where t" = (t].t]..... t,(,,r)T. We call {t"}; a “fine”

sequence if i),‘vr,r (z) > ®(z) as r — oo for all z € [0, 00).

In other words, the choice of valid interpolation vectors in a
“fine” sequence guarantees pointwise convergence of {&)7\;&}’ to &
on [0, o). The following lemma shows that a “fine” sequence con-
verges not only pointwisely but also uniformly.

Lemma 2. Let f:[a,00) — [b,c) be an increasing surjective func-
tion. For each r > 0, let f; : [a, o0) — [b, c) be an increasing function
such that f-(z) < f(z) for all z € [a, 00). If lim;_ fr(z) = f(2) for
every z € [a, 00), then f. converges to f uniformly. That is, for any
€ > 0, there exists R > 0 such that |f;(z) — f(z)| < € for all r > R and
z € [a, ).

Proof. For any € >0, let M:=[2(c—b)/e] —1. Since f is an
increasing surjective function, f(a) =b and f is invertible. Let
si:=f"1(b+i€/2) for i=0,...,M. Then, f(si,1)— f(s;) = €/2 for
i=0,...,M-1, and f(sy) >c—¢€/2. For each i=0,..., M, since
lim— o fr(s;) = f(s;), there exists R; > 0 such that f(s;) — fr(s;) <
€/2 for all r > R;. Due to the monotonicity of f and f, for any z >
a=Ssg, if ze[s;,si;1] for some i=0,...,M—1, then for all r > R;,

f@) = fr(@) < f(si) = fr(si) = (f(si01) = f(s0))
+ (&)= fils) <5+ 5 =€
if z € [sy, 00), then for all r > Ry,

f@) = fr(@) < c— fism) = (€= f(sm)) + (f(sm) — fr(sm))

<E+E—€
2277

rzRandze[a,oé). O

With Lemma 1 and Lemma 2, it is clear that a sequence of valid
interpolation vectors {t"}, is “fine” if and only if E(t") — 0 as r —
Q.

Note that it may be inconvenient to check the convergence of
a sequence to determine whether it is “fine.” The following lemma
provides an easy-to-check sufficient condition.

Lemma 3. A sequence of valid interpolation points {t"}, is “fine” if
A" - 0 and tf;, — oo as 1 — oc.

Proof. For any valid interpolation vector t € RM*1, note that
E(t) < max{max{@(tm) —D(tp_1)}, 1 - CD(tM)}.
me[M]

For any small 0 <€ < % since t,{/,r — 00 as T — oo, there is 7> 0
such that tK/Ir > ®-1(1—¢) for all r > 7. That is,

1-®(ty) <k, Vr>r.

Also, since A — 0 as r— oo, there is #> 0 such that Al <
€/®'(0) = e+/2m for all r > 7, where ®’(.) is the derivative func-
tion of ®(.). Due to the concavity and monotonicity of & over
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Fig. 1. An example of PWL fitting of the standard normal CDF (M = 4).

[0, 00), for all r > 7,
O(tr) —P(th ) < Ot —th_1)
<P 0)AY < Vme[M]

Consequently, E(t") < € for all r > max{f, f}, which completes the
proof. O

As an example, the sequence {t"},, where t"=
0,1,2 ... 2)Terr+l  js a “fine” sequence. An-
other example of a “fine” sequence is {t'};, where t" =

0, 1), @-1(552), -, @ 1(Z:1))T e R". Both of the exam-
ples can be checked easily using Lemma 3. We remark here that
Lemma 3 is not a necessary condition. For example, the sequence
{t'}, where t"' = (0. 1. 1 + L. L+ 4+ T4 DT e R,
is a “fine” sequence by the definition — we leave the details to the
readers — however, At =1 for all r > 0, which does not satisfy
the condition in Lemma 3.

When {t"}; is a “fine” sequence, constraint (14) converges to
(12a) in the following sense.

Proposition 2. Suppose that f(-,-) is a continuous function of (x, A).
Let (x*, A*) be an optimal solution of

inf{f(x, 1)|(x, 1) satisfies (12)}, (15)
and let (x§, A}) be an optimal solution of
inf{ f(x, L)|(x, A) satisfies (14), (12b), (12c)}. (16)

Then, we have f(x;,A;) > f(x*,A*) for any valid interpolation
vector t. Moreover, if there exists (X, A) such that (12) are satisfied
and (12a) is strictly satisfied, then

Ag) = f(x, A7)

for any “fine” sequence {t"};.

H £
Jim 5.

The proof of Proposition 2 relies on the following technical
lemma.

Lemma 4. Let X C R" be a nonempty convex set, ¥ : R" — R be a
concave function over X, and f:R" — R be a continuous function.
Suppose that {V;}; is a sequence of functions from R" to R such that
forany y e X,

V@) =¥ () ).

Let y* be an optimal solution of inf{f(y)|¥(y) >0,y € X}, and let
y; be an optimal solution of inf{f(y)|¥;(y) > 0, y € X}. If there ex-
ists ¥ € X such that W (y) > O, then f(y;) > f(y*) for all r > 0, and
lim,—c f}) = F¥").

and rlim V. (y) =

Proof. For any € > 0, since f(-) is continuous, there exists o €

(0, [ly —y*Il) such that [f(y) — f(¥*)| < € whenever |y —y*| < o1.
Let

y-y 01 ,
e R e A O e )
which represents a convex combination of y and y*. It follows that
|y —y*|l <oy, implying f(¥) — f(¥*) < € due to the continuity of
f(.), and that y € X due to the convexity of X. Moreover, by the
concavity of W (-) over X, we have

YO = 5o yllw(yH( y- y*ll)w(y)>0

Since lim;. o Yr(¥y) = V() > 0, there exists R>0 such that
W, () > 0 for any r > R. It follows that y is a feasible solution to
the minimization problem inf{f(y)|V;(y) >0,y X} for any r >
R, and accordingly f(¥}) < f(¥). Therefore, we can conclude that
fop) - fo*) < f@ — f(y*) <€ for any r > R. That is, we have

lilrnstlpf(}'?‘) = fy). (17)
In addition, for any r > 0, since W, (y) < W(y) for any y € X, we

have inf{f(y)|¥ () >0, y € X} is a relaxation of inf{f(y)|¥,(y) >
0, y € X}. Therefore, we conclude that for any r > 0,

fo) - fo) =0.

By combining (17) and (18), we complete the proof. O

yi=

(18)

Lemma 4 shows that for an optimization problem under the
setting mentioned therein, its inner approximations converge to
one formulation that has the same optimal value of the origi-
nal problem. We prove this conclusion by creating a sequence
of feasible regions (represented based on {W;},) contained in the
original feasible region (represented based on W), where this se-
quence converges to one that produces the optimal value of the
original problem. With this lemma, we are now ready to prove
Proposition 2.

Proof of Proposition. 2.. For any valid interpolation vector t,
Lemma 1 implies that (16) is an inner approximation of (15).
Therefore, f(xf, ;) > f(x*, A*) for any valid interpolation vector t.
Now consider a “fine” sequence {t"};. Let

)) +€— 2),

_ y — 4], (%) 1 () 1y
W(x,A) = A( zk Wk<¢(7nk)» ) + (D(iﬂk)»
)) +€ —2),

s (B o (10
W (x, 1) :=A or | =2 or (2
) (;M(M( T >+M< i
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and X := {(x, 1)|(x, A) satisfies (12b), (12c)}. By Proposition 1 and
the existence of (%, 1), we have that X is a nonempty convex set,
W (., .) is a concave function over X, and there exists (¥, 1) € X
such that W(&, 1) > 0. Moreover, by Lemma 1 and Definition 1, it
is easy to check that

U, (x,A) <W(x,A) and rlim U (x,A) =V (X A)
for all (x, A) € X. Therefore, the proof is completed by a direct ap-
plication of Lemma 4. O

Remark 5. The assumption about the existence of (% A) in
Proposition 2 is easy to satisfy in practice. In particular, if there
exists ¥ such that P(l, < h(%,£) <u,) >1—€ and X'(¥) > 0, then
under Assumption 1, (13) is satisfied strictly at X, and thus

(®, v/h1 (®)T X hy (X)) satisfies (12) and satisfies (12a) strictly.

In summary, constraints (14), (12b), and (12c) provide an in-
ner approximation of constraints (12), and more importantly, they
guarantee asymptotic convergence in terms of optimal values. In
the following proposition, we show that the set defined by (14) is
in fact polyhedral.

Proposition 3. Consider (x,A) that satisfies (12b) and (12c). Then,
(x, 1) satisfies (14) if and only if there exists w € R* such that
(x, A, ) satisfies the following linear constraints:

{a (U = 1 0) + Do/ 2 VTt e M4 1), Y ke [K],

0l (14}, (3) — 1) + by JTA = /T .

(19a)
K
> Wi + mh2) = A2 —€). (19b)
k=1

Proof. First, if (x, A, 7r) satisfies (19) for some 7 € R2K, then

2t Up — I’L;( (X) _ . t up — /’L;< (X) ¢
MDM( T ) =hamin, fan| = )+

—L min {ab, (uy — 113, (R)) + bl /Tiich }

Mk me[M+1]
Z Tk 1s (20)

where the inequality holds due to (19a). With similar arguments,
we have

s X)) =1y
Aq’;”(km\ > o (21)
Combining (19b) and (20)-(21), we see that (14) is satisfied by
(x, 7).

Next, if (x, 1) satisfies (14), then we can set

o p [ Up — Ui (X) ap ) =1
= q)t R i and T q)t [l S
M( T]kk ) k2 * M( T]k)x

for ke [K] if A >0.1f A =0, we can set m; ;:=0 for ke [K], je
{1, 2}. It follows in both cases that (x, A, ) satisfies (19). O

For any continuous function f(-) and any valid in-

terpolation vector t, let f*:=inf{f(x)|x satisfies (9)} and
fi = inf{f(x)|x satisfies (19), (12b), (12c) with some A, 7 }.
Note that (12c) is an SOC constraint as it is equivalent to
I=12h; (x)|| < A, where £'/2 is a symmetric positive definite
matrix such that 1212 — 3, We summarize our results in this
section in the following theorem.

Theorem 1. Under Assumption 1, TCC (9) can be inner approximated
by the set of linear constraints (19), (12b) and SOC constraint (12c).
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In addition, if € < (1/2) min{wy, ..., wg} and (9) is strictly satisfied
by some X, the inner approximation converges to (9) in the sense that
o+ — f* as r— oo for any “fine” sequence {t"}.

Using the results from Theorem 1, one can provide an SOCP ap-
proximation of the TCC-ACOPF (8), where each of the TCCs (6a) -
(6¢) and (7a) - (7b) can be replaced with its counterpart as in (19),
(12b), and (12c).

3.2. Selection of interpolation points

The quality of our SOCP approximation in Section 3.1 is
related to the choice of the valid interpolation vector t =
(to.....ty)". Loosely speaking, a smaller maximum error E(t) =
MaX,c(g o) {P(2) — @fw(z)} is likely to lead to a better SOCP ap-
proximation. The maximum error E(t) depends on two factors:
the number of interpolation points and where the interpolation
points are positioned. Intuitively, more interpolation points (i.e., a
larger M) often lead to more accurate approximation. Neverthe-
less, a larger M results in more constraints in (19) and thus a
higher computational cost. For a given §, we are interested in how
to choose the minimum number of interpolation points such that
E(t) < 4. First, we provide the following lemma to help character-
ize the maximum error of a linear interpolation.

Lemma 5. Given two interpolation points b>a >0,
be the linear interpolation of ®(-) such that &Da,b(a) =

let ®qp()
®(a) and

@a'b(b) = ®(b). The maximum error of the linear interpolation on
la, b] is

max [0@2) - Dop(2)} = <1><‘/—ln(27r52))

Ze|a

—s(‘/—ln(Znsz) _ a) —®@). (22)

®(a))/(b - a). Moreover, define two functions
®.5@)}.

where s = (®(b) —
Eq(b) = Ey(a) := max {®@) -

Then, Eq(-) is an increasing continuous function on (a,co) and Ej(-)
is a decreasing continuous function on (—oo, b).

Proqf. The linear interpolation of ®(-) on [a, b] can be expressed
as @, ,(2) = ®(a) +s(z—a). Since ®(-) is strictly concave on
[0, 00), the maximum error on [a, b], i.e.,

max {®(z) —s(z—a) — P(a)},

zela,b]

occurs at z* € (a, b) such that ®'(z*) =5, ie, (1/«/5)(# =s.
Therefore, z* = /—In(27s?), and the maximum error is ®(z*) —
s(z* —a) — ®(a), which proves (22).

Now consider any 0 <a <b < c. Since ®(-) is strictly concave
on [0, c0),

d(b) — d(a) D(c) — D(a)
b—a ~ c—a ’
Therefore, for any z € (a, b],
b @) = @)+ 2O 2D gy~ 00
d(c) - P(a) N
+ ﬁ(z —a) = Py (2).
As a result,
Eq(b) = max {<I>(z) ®.2)} < max {<I>(z) ®uc(2)}
< max {@(2) - bc(2)) 5.

zela,c]
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That is, Eq(-) is an increasing function. Similarly, we can show that
Ep(-) is decreasing. By (22), it is clear that both Eq(-) and Ej(-) are
continuous. OJ

Based on Lemma 5, we propose Algorithm 1 to calculate the

Algorithm 1: Interpolation points positioning.
Data: approximation tolerance § > 0.
Result: a valid interpolation vector t = (tg, ..., ty)" such that
E(t) <6 and M is minimal.
m <0, tg < 0;
while ®(t;) <1 -6 do
use line search to find ;1 € [tm, c0) such that
Egy (tmy1) = 3;
m<«m+1;

M <~ m;

positions of interpolation points. Given a tolerance § of the max-
imum error E(t), Algorithm 1 finds a PWL approximation of &(-)
with the least interpolation points. The minimality of the number
of interpolation points is guaranteed by the following theorem.

Theorem 2. For 8§>0, let t =(ty,....tyy)" be the output of Algo-
rithm 1. Let d>;\;l,(~) be a PWL approximation of ®(-) defined by a
valid interpolation vector t' = (t;. ..., tl/w,)T. If E(t') <4, then M’ >
M.

Proof. We prove by contradiction. Suppose that M’ < M. We first

show that t/, <tm for all m e [M’]. Note that for any m e [M’],

E. 1(t,’n) =maX, ]{d>(z) - q)ztv,l’ (2)} <E(t’) < & by Lemma 5.
m— m-1°"m

As t’ is a valid interpolation vector, t} = 0. Since

Eo(t1) = Et, (t1) =8 = E(t') = E;; (t7) = Eo(t7)

and Ey(-) is increasing on (0, c0), we have t; <t;. Now suppose
that t/, < tm for some m € [M’ — 1]. Then,

Ey (tme1) = Eq,, (t) = Eiy,y (tm) = Ee, (ma1) = 8 = Eyr (E.9).

where the first inequality holds because l::[m+1 (-) is decreasing on
(=00, tmy1). Since Et,/ﬂ (+) is increasing on (t},, o), we have ¢
tmy1. By induction, t, < tp for all m e [M/].

Since M’ < M, t;,, < tyy < ty_1. Therefore, ®(ty_1) = (t;,). On

the other hand, since ®t (2) = ®(t;,,) for all z < [t],,.

/
m+1 =

00),
8> ®(2) — B (2) = D(2) — D(ty,)

Taking z — oo, we have <1>(t1(/1,) >1-46. Therefore, ®(ty_1) >
®(t,) >1-48, which contradicts the assumption that
Algorithm 1 does not terminate at M — 1. O

Y z € [tyy, 00).

It is worth noting that although our proposed PWL algorithm is
tailored for the standard normal CDF in this paper, it can be gener-
alized to approximate any other strictly monotone convex or con-
cave functions that are bounded from at least one side.

4. Computational experiments

In this section, we implement the proposed TCC-ACOPF model
and approximation from Theorem 1 on modified IEEE 30-bus and
118-bus test systems. First, in Section 4.1, we introduce the test
systems, the real historical data that we collect, and the synthetic
data that we create. Next, in Section 4.2, we present computa-
tional results to demonstrate the effectiveness of our proposed
TCC-ACOPF model in comparison to the state-of-art methods. All
computational experiments are performed on a PC with an Intel
Core i7-7700 CPU and 16 GB RAM. We use JuMP in Julia (Dunning,
Huchette, & Lubin, 2017) to implement all of the models. Ipopt
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solver (Wdchter & Biegler, 2006) is used to solve the nonlinear
deterministic ACOPF model (1), and Gurobi 9.0 solver is used for
solving the SOCP formulations.

4.1. Data setting

Our modified IEEE 118-bus system is based on the original
IEEE 118-bus system available online at MATPOWER (Zimmerman,
Murillo-Sanchez, & Thomas, 2010), which includes 118 buses, 54
thermal generators, and 186 transmission lines. The following
modifications are made: the value of P, for each ge G is reduced

by 30% and the values of sz and D,.q for each i € B are increased
by 10%. We also include 11 wind farms, which provide about 33%
of the total demand, and their forecast power outputs are listed in
Table 1. Moreover, the standard IEEE 30-bus system has 30 buses, 6
thermal generators, and 41 transmission lines, and it is also avail-
able online at Zimmerman et al. (2010). We will consider differ-
ent number of wind farms (leading to different penetration lev-
els of renewable energy) in our modified IEEE 30-bus system in
Section 4.2.3. In our computational experiments, we set the risk
control parameters €p = €q = €y = €[ in (8) and use a single risk
parameter € to denote all of them thereafter.

We consider the renewable power generation forecast errors
(i.e., &) of the wind farms in the test systems to be uncertain. The
real wind power outputs and the hour-ahead wind power fore-
casts from Wind Integration National Dataset Toolkit of National
Renewable Energy Laboratory (NREL) are analyzed to obtain histor-
ical data on forecast errors (Draxl, Hodge, Clifton, & McCaa, 2015).
Note that, the wind power forecast errors are then scaled based on
the wind power capacity. In addition to the historical data, we also
generate synthetic data that can reflect skewness in the forecast er-
ror distribution. Specifically, three synthetic datasets are generated
and they are referred to as “Left-skewed,” “Normally distributed,”
and “Right-skewed” datasets, respectively, with each of them hav-
ing a size of N = 20,000 data samples and |R| variates, where |R|
represents the cardinality of set R, i.e., the total number of renew-
able wind generators in our studied test systems. For each dataset,
we create three groups of data samples (referred to as “Group 1,”
“Group 2,” and “Group 3” data samples) and merge them to create
the entire dataset, as specified in the following:

o First, we randomly create an |R| x |R| correlation matrix p.

e Second, we create Group 1 data samples with size of N/2.
Each data sample follows a multivariate normal distribution
N(ft1,0.1p7 p), where each element of jt; (ie., fiy;, VreR)
is randomly generated within the interval [—-0.05, 0.05]. That is,
most data samples are around zero.

Third, we introduce a parameter @ < (0,1), which is used
to control the skewness of the dataset, and create Group 2
data samples with size of (N/2)zw. Each data sample follows
a multivariate normal distribution N (ft,/(1 — @), pT p), where
each element of fi, is randomly generated within the interval
[-0.15, —0.05]. That is, most data samples are below zero.
Fourth, we create Group 3 data samples with size of (N/2)(1 —
@ ). Each data sample follows a multivariate normal distribu-
tion N (fi;/@, pT p), where each element of fi5 is randomly
generated within the interval [0.05,0.15]. That is, most data
samples are above zero.

For the modified IEEE 118-bus system with |R| =11 wind
farms, we set @ to be 0.7, 0.5, and 0.3 for creating the “Left-
skewed,” “Normally distributed,” and “Right-skewed” datasets, re-
spectively.

For each of the real and synthetic datasets described above,
we can fit it with a Gaussian distribution (K = 1) and a GM dis-
tribution with two components (K = 2) separately, both of which
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Table 1

Hourly wind power forecast (MW).
Bus i 3 8 1 20 24 26 31 38 43 49 53
Yeer; rE(O) 70 147 102 105 113 84 59 250 118 76 72
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Fig. 2. Synthetic data alongside Gaussian and GM fits for forecast error of a wind farm.

are used in our computational experiments, thereby obtaining nec-
essary parameters therein. It leads to “Gaussian Fit” and “GM
Fit” correspondingly for each dataset. For the Gaussian Fit, the
mean vectors and covariance matrices are simply calculated from
the data. For the GM Fit, the weighted means and covariance
are obtained using the mvnormalmixEM package in R, which fits
a multivariate GM distribution to the data via an expectation-
maximization algorithm (Benaglia, Chauveau, Hunter, & Young,
2010). We take a renewable generator as an example, and show
the fitting results to the synthetic forecast errors of this gener-
ator based on the histogram of the data visually in Fig. 2. We
can observe that both GM and Gaussian distributions fit simi-
larly to the “Normally distributed” dataset, but the GM distribu-
tion fits much better for the “Left-skewed” and “Right-skewed”
datasets.

4.2. Results and discussions

We implement our proposed TCC-ACOPF model and approxima-
tion approaches by considering (i) a Gaussian distribution (K =1)
and (ii) a GM distribution with two components (K = 2), leading
to two specific models denoted by TCC-ACOPF-K1 and TCC-ACOPF-
K2, respectively. Our approaches are compared with the one-sided
chance-constrained model (denoted by “OCC-ACOPF”), where Lubin
et al. (2019) assume that the active power, reactive power, and
voltage limits are specified in one-sided chance constraints and
the apparent flow constraints (7a)-(7b) are approximated by a TCC
SOC formulation. The computational results are presented in the
follow sequence: (i) comparisons are presented regarding the op-
timality and violation probability of each approach, as shown in
Section 4.2.1; (ii) sensitivity analyses are performed to verify the
accuracy and computational efficiency of our proposed approach,
as shown in Section 4.2.2; (iii) the scalability of our proposed ap-
proach is discussed under various levels of renewable energy pen-
etration, as shown in Section 4.2.3; and (iv) real case studies are
provided to demonstrate the out-of-sample performance of the so-
lutions generated by our proposed model and approaches, leading
to real-world nonlinear ACOPF feasibility analyses in practice, as
shown in Section 4.2.4.

1

4.2.1. Optimality and violation probability

First, we compare the computational performance of OCC-
ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2 over the synthetic data.
The in-sample optimal values and out-of-sample violation proba-
bilities are evaluated on the modified 118-bus system with |R| =
11 wind farms. We set € = 0.2 and obtain 10 optimal segments via
Algorithm 1 by setting § = 0.002 when performing the PWL ap-
proximation. In addition, for each of the three synthetic datasets,
we randomly select 5,000 data samples therein to fit a Gaussian
distribution (K =1) and a GM distribution with two components
(K =2). We correspondingly solve all the three aforementioned
models, recording the solutions and reporting the optimal values
(represented by “Opt. Val. ($)” in Table 2).

Based on the solution induced by a model, we further evaluate
its quality over the remaining 15,000 data samples by calculating
the maximum violation probability (represented by “Vio. Prob.” in
Table 2) across all the nominal constraints in the model. Specif-
ically, given an uncertainty realization and the obtained solution,
we check whether each set of the nominal two-sided constraints
on active power, reactive power, voltage, and power flow is vio-
lated or not. For example, given an uncertainty realization &, an
optimal solution (p§, eg), and a generator g € G, we check whether
Py < pg(é) =05 > rer & < Py in (1b) is violated. By running eval-
uation tests over 15,000 data samples, we can obtain the corre-
sponding violation probability of this constraint (i.e., the number of
times that this constraint is violated divided by 15,000). We then
report the maximum violation probability across all of such two-
sided nominal constraints enforced by chance constraints in each
model, as shown in Table 2.

In terms of the optimal values, we can observe that there is
no significant difference (within 5%) among the three models, irre-
spective of which dataset is applied. This is mainly because there is
no direct renewable generation cost in objective function (8a), and
accordingly the effect of renewable generation uncertainty appears
to be small on the optimal cost.

In terms of the maximum violation probability, we can observe
that as compared to the other two models, the OCC-ACOPF is sub-
ject to a relatively high violation probability. It indicates that a
nominal constraint in ACOPF is likely to fail with a very high prob-
ability (e.g., 43.1%), which is much higher than the pre-set risk
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Performance on Optimality and Violation Probability with € = 0.2.

Datasets OCC-ACOPF  TCC-ACOPF-K1 ~ TCC-ACOPF-K2
Right-skewed Opt. Val. (§)  91289.2 92291.0 93003.1
Vio. Prob. 0.431 0.286 0.178
Normally distributed ~ Opt. Val. ()  89699.4 90081.2 90105.7
Vio. Prob. 0.314 0.184 0.182
Left-skewed Opt. Val. (§)  89568.1 90225.1 90282.4
Vio. Prob. 0.378 0.233 0.182
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Fig. 3. Sensitivity analyses on the maximum violation probability with respect to
€.
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Fig. 4. Sensitivity analyses on the total cost with respect to €.

control parameter € = 0.2. In addition, while TCC-ACOPF-K1 clearly
performs better than the OCC-ACOPF by ensuring less violation
probability, it does not well account for the data skewness. In fact,
the violation probabilities induced by TCC-ACOPF-K1 over the Left-
skewed and Right-skewed datasets can be up to 23.3% and 28.6%,
respectively, both of which are higher than the pre-set risk con-
trol parameter € = 0.2. Finally, we can observe that TCC-ACOPF-K2,
which considers a GM distribution with two components, signifi-
cantly outperforms the above two models by providing the most
robust solutions. The corresponding maximum violation probabili-
ties under various datasets are all less than the pre-set risk control
parameter € = 0.2.

Next, we use the Right-skewed dataset to perform sensitivity
analyses with respect to the value of €, with results illustrated
in Figs. 3-5. Figure 3 shows that the maximum violation proba-
bility guaranteed by the OCC-ACOPF model, which always exceeds
the pre-set risk control parameter ¢, is also very sensitive to €. It
indicates that the solution provided by OCC-ACOPF is not robust
and may lead to unstable operations in practice. The blue curve

12

Risk Parameter

Fig. 5. Sensitivity analyses on cost difference with respect to €.

representing TCC-ACOPF-K1 stays lower than the red curve repre-
senting OCC-ACOPF and accordingly ensure less violation probabil-
ity, but it is always above the neutral line representing the value
of €. It indicates that the solution provided by TCC-ACOPF-K1, al-
beit further incorporating the TCCs, is not robust enough. In con-
trast, the green curve representing TCC-ACOPF-K2 turns out to be
very robust with respect to the risk parameter € because the max-
imum violation probability always stays below the neutral line, re-
gardless of the specific value that € takes. In short, TCC-ACOPF-
K1 confirms the quality of our proposed TCC approach over the
OCC approach by enforcing joint probabilistic bound on two-sided
constraints, and TCC-ACOPF-K2 further confirms the advantages of
adopting GM distributions over simple Gaussian distributions by
considering skewness in the data, as illustrated in Fig. 2.

Furthermore, Fig. 4 shows the optimal total cost of the models,
while the cost difference between TCC-ACOPF-K2 and OCC-ACOPF
(in square-dotted blue) and that between TCC-ACOPF-K2 and TCC-
ACOPF-K1 (in triangle-dotted red) are shown in Fig. 5. We observe
that as the risk parameter € increases, (i) the total costs of all mod-
els decrease because each model prepares less electrical generation
to hedge against the decreasing risk; (ii) both cost differences de-
crease as well due to the same reason. Both cost differences are
relatively small (within 5%) because the renewable generation un-
certainty does not significantly affect the total generation cost, as
there is no need to include renewable generation cost in the objec-
tive function of each model. Nevertheless, as Remark 2 notes, more
cost components can be considered in the objective function of
model (1), by which the cost differences may be larger. In addition,
the consideration of renewable generation uncertainty does affect
the reliability of the obtained solutions, as shown in Table 2. Com-
bining the results from Figs. 3, 4, and 5, we can observe that, in or-
der to gain a solution with high reliability under the Right-skewed
dataset, TCC-ACOPF-K2 is preferred because it accurately captures
the possibility of electricity shortage, while inducing higher yet rel-
atively similar costs.
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Table 3
Computational Time (seconds).
Model € (%)
20 10 5 1 0.5
ACOPF 230 154 208 233 195
OCC-ACOPF 035 038 038 036 0.36
TCC-ACOPF-K1 2.19 2.82 2.42 2.52 292
TCC-ACOPF-K2 497 624 528 549 593
Table 4
Algorithm 1vs. Uni-distance: # Pieces Required.
) 0.05 0.01 0.005 0002 0.001 0.0005
Algorithm 1 3 6 7 10 14 19
Uni-distance 4 8 11 17 23 33

4.2.2. Computational efficiency

We demonstrate the computational efficiency of our proposed
models and other benchmark models using the Right-skewed
dataset on the modified IEEE-118 bus system. We first report the
computational times of the four models, i.e., deterministic ACOPF
(1), OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2, with respect
to different values of €, as shown in Table 3. We observe that all
four models can be solved very efficiently (within 10 seconds). The
slight computational time increase for TCC-ACOPF-K2 is due to the
relatively high number of linear segments in the PWL approxima-
tion, i.e., M = 10.

Next, we focus on the effect of PWL approximation accu-
racy on the efficiency of solution obtained from TCC-ACOPF-K2.
As we mentioned in Section 3.2, the PWL approximation error
is controllable through the number of interpolation points and
their positioning in the PWL approximation, and we proved that
Algorithm 1 obtains the minimum number of interpolation points
required for an approximation error § when approximating the
Gaussian CDF. To numerically demonstrate the significance of using
Algorithm 1, we compare it with the typical uni-distance algorithm
used for PWL approximation. Different from Algorithm 1, the uni-
distance algorithm positions tp, ..., ty such that t; —t; 1 =t; —tj_4
for any i, j € [M] and i # j. We first report the number of pieces
required by each algorithm to reach the approximation error §
in Table 4. We have the following observations. (i) By increasing
the approximation quality, i.e., reducing §, both algorithms ratio-
nally require more linear pieces. (ii) For given &, Algorithm 1 re-
quires significantly fewer linear pieces, as compared to the uni-
distance algorithm. For instance, when § = 0.001, Algorithm 1 re-
quires around 40% fewer pieces than the uni-distance algorithm.
The demand of fewer pieces leads to significant reduction in com-
putational time because fewer constraints are involved.

We then perform sensitivity analyses to investigate how the
approximation error & affects the optimal value (represented by
“Opt. Val. ($)” in Table 5) and computational time (represented by
“CPU (seconds)” in Table 5) of model TCC-ACOPF-K2. In Table 5,
it is clear that more accurate PWL approximations (i.e., smaller
values of §) lead to higher-quality solutions for TCC-ACOPF-K2,
while such increasing quality comes at the price of longer com-
putational times. In practice, system operators can choose an ap-
propriate value of § based on practical considerations to reach a
balance between solution quality and computational time.
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Table 6

Hourly wind power forecast (MW).
Farm g 1 2 3 4 5
P (0) 70 147 102 150 160

4.2.3. Scalability

We evaluate the scalability of our proposed approach under
various penetration levels of renewable energy. We compare the
performance of the four models mentioned above: deterministic
ACOPF (1), OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2, over the
IEEE 30-bus test system. In this system, we consider |R| = 3, 4, and
5 wind farms, respectively, leading to 20%, 30%, and 40% of renew-
able penetration levels. The forecast power outputs of all the five
wind farms are described in Table 6.

To represent the uncertainty, we follow the process described
in Section 4.1 to generate synthetic data samples with Left-skewed
distributions, where the skewness parameter @ = 0.9. We gener-
ate 100 data instances, where each instance is generated follow-
ing the process in Section 4.1 and has N = 20,000 data samples
and |R| variates. Given one of the four models above, we follow
the experiments in Section 4.2.1 to first obtain its in-sample opti-
mal value and out-of-sample violation probability for each of the
100 data instances, and then report the average result in Table 7.
In Table 7, the column “Problem Setting” describes how the wind
farms are installed, the columns “Opt. Val. ($)” and “Vio. Prob.”
have the same meaning with those in Table 2, and the column
“CPU (seconds)” represents the average computational time for the
in-sample tests.

We have the following observations. First, as the renewable
penetration level increases, the total generation cost of the dis-
patchable thermal generators decreases for all the four models be-
cause the thermal generators need to produce less electricity when
more renewable energy is available. Second, all the models can be
efficiently solved in less than one second, and the computational
times are similar for all the models under different penetration
levels. Third, when the penetration level is fixed, the optimal ob-
jective values of the four models are similar. Fourth, with a slightly
higher generation cost and longer computational time, the model
TCC-ACOPF-K2 can generate solutions that meet the violation prob-
ability requirement (i.e., < € = 0.2) under different penetration lev-
els. Specifically, it is the only model that can do so. Meanwhile, we
observe that the model TCC-ACOPF-K2 performs better than the
model TCC-ACOPF-K1, further indicating the benefits of adopting
a GM distribution based on our proposed TCC models. Overall, the
results demonstrate the effectiveness of our proposed approach in
dealing with the increasing renewable energy penetration.

4.2.4. Real case studies

We perform case studies on the modified IEEE 118-bus test
system using existing historical data in practice to further com-
pare the computational performance of four models: deterministic
ACOPF (1), OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2. Specif-
ically, we evaluate how the solutions to the four models perform
under different uncertainty realizations. To that end, we first take
5,000 data samples from the real-world dataset for each wind farm
location, fit them to the corresponding distribution of the uncer-
tain forecast error for each model, and obtain certain parameters

Table 5

Effect of PWL Function on the Solution Quality of TCC-ACOPF-K2.
8 0.05 0.01 0.005 0.002 0.001 0.0005
Opt. Val. ($) 981203  93263.8 930182 93003.3 92956.8  92951.9
CPU (seconds) 3.8 41 4.4 4.8 8.9 14.2
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Table 7
Performance on Scalability with € =0.2.
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Problem Setting Model Numerical Results
Opt. Val. (§)  Vio. Prob. ~ CPU (seconds)
3 Farms: {1,2,3} at buses: {2, 7,30} ACOPF 484.80 — 0.14
OCC-ACOPF 484.80 0.24 0.06
TCC-ACOPF-K1 484.82 0.21 0.16
TCC-ACOPF-K2 484.82 0.19 0.42
4 Farms: {1,2,3,4} at buses: {2,7,17,30} ACOPF 413.50 — 0.14
OCC-ACOPF 413.58 0.22 0.05
TCC-ACOPF-K1 413.77 0.21 0.19
TCC-ACOPF-K2 414.15 0.19 0.52
5 Farms: {1,2,3,4,5} at buses: {2,7,17,24,30}  ACOPF 340.60 — 0.17
OCC-ACOPF 340.65 0.25 0.04
TCC-ACOPF-K1 343.47 0.24 0.24
TCC-ACOPF-K2 345.45 0.18 0.46

(e.g., mean, variance, and weighted means) of the distribution for
each model. Then, we solve the four models to obtain the opti-
mal solution to each model. Given an optimal solution obtained
from each model, denoted by (p*, q*,v*,0* a*,y*), we evaluate
the out-of-sample performance of this solution over another 2,000
data samples. Specifically, given one of the 2,000 data samples, i.e.,
a given uncertainty realization &, we perform the out-of-sample
evaluation by solving the following re-dispatch model, where the
obtained solution (p*, q*,v*,0*, a*, y*) is given as input parame-
ters, to evaluate the feasibility of this obtained solution.

min 30 S+ Y 6F+F +sd +5h 6 +5)  (23a)
(i.j)eL geG ieB

st. Py —sb < pg(§) < Py +3P, Vgeg, (23b)

Q, — st = s§) = Qe+ 57 Vgeg. (23¢)

vi—s¥ <) < +5Y, VieB, (23d)
A~ \2 ~ \2 _ L 2

(e}? (S)) + (62(5)) < (Ii,»+s‘ij) . Y (i, j) e L, (23e)

(1f), (1g)

rd@) =y ). Vge R, (23)

peE)=p; - & Vgeg, (23g)

geR

0:&) = q;. Vg €Giie By, (23h)

v(€) =y, Vie By UBy, (23i)

sP.5b. s 5.V sV s = 0. (23j)

The above re-dispatch model is essentially a modified nonlinear
ACOPF (1), in which nonnegative slack variables (§g,§£), (§§,§§),
(sY.5)), and 5_1!} are added to measure constraint violations and the
original variables in (1) are fixed to their optimal values through
the affine response control policies (see Section 2.2). Here the ob-
jective function (23a) is to minimize the total amount of viola-
tions (i.e., the summation of all slack variables). Constraints (23b),
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Table 8

Out-of-Sample Performance over Real Data.
Model Ip Iy Iy I
ACOPF 69 (312) 935 (2852) 06 (1.4) 586 (185.3)
0CC-ACOPF 21 (131) 267 (109.1) 02 (05) 155 (56.3)
TCC-ACOPF-K1 0.6 (26) 72 (337) 02 (04) 89 (37.1)
TCC-ACOPF-K2 0.2 (1.8) 6.4 (24.2) 0.1 (02) 5.1 (25.3)

(23c), (23d), and (23e) measure the violation of two-sided bounds
through slack variables. Constraints (23g), (23h), and (23i) fix the
values of the explicit decision variables at the given optimal so-
lution (p*, q*,v*,a*, y*). For instance, (23g) fixes the amount of
active power generation from each thermal generator according
to the AGC power response policy mentioned in (5). Note that,
to evaluate the solution to the deterministic ACOPF (1), which
does not have the participation factor o as decision variable, we
manually set af =U(g)/ Y ggU(g) for each ge g, where U(g) =
manx{ﬁg — Pg, P; — P,}, representing unused capacity of generator g e
g.

When the re-dispatch model leads to an optimal value at zero,
i.e, no violation, then the given solution (p*, q*,v*,0* a*, y*) is
feasible to the corresponding given uncertainty realization é’ under
the existing dispatchable resources. Otherwise, when some slack
variables take positive values, the given solution is infeasible to the
given uncertainty realization. We accordingly introduce four “im-
balance metrics” to measure the violations corresponding to each
of (10)-(11): Ip = Ygeg 5 +B), Iy = g (53 + 59, I = Licn G +
s7), and e;; =Y jic,e §§j. The results are reported in Table 8, where
we report the average value and standard deviation (i.e., the num-
ber within a parentheses) of each imbalance metric over the 2,000
data samples. From the table, we can observe that while the
chance-constrained models outperform the deterministic one and
the TCC-based models outperform the OCC-based one, the TCC-
ACOPF-K2 model based on our proposed approaches provides the
smallest values over all of the four metrics. That is, TCC-ACOPF-
K2 is exceptionally robust by providing solutions feasible to more
uncertainty realizations. Such high reliability demonstrates the sig-
nificance of our proposed model and approaches, which consider
two-sided chance constraints for the ACOPF problem under uncer-
tainty and include more accurate distributional information to rep-
resent the uncertainty by adopting GM distributions.

5. Conclusion
As higher levels of renewable electricity penetrate the power

system, the increasing uncertainty in the power system can cause
adverse power interruptions, power outages, and network instabil-
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ity. To secure the smooth operation of the power system, more
accurate attention to these uncertainties is necessary. In this pa-
per, we propose a fully two-sided chance-constrained AC optimal
power flow formulation. This TCC-ACOPF guarantees (with a pre-
defined probability) that both upper and lower bounds on ac-
tive and reactive power generations, voltage, and power flows si-
multaneously hold under uncertainty. In our formulation and to
model the effect of uncertainty, we adapt a GM distribution to
represent the forecast errors. Hence, we address the forecast er-
rors much more accurately, especially in cases where the data are
skewed and the common normality assumption fails. This novel
TCC-ACOPF problem, however, is nonlinear and nonconvex; hence,
we propose an SOC tractable approximation for it. To do so, we
first provide a convex approximation of a TCC under GM distribu-
tion, which is also exact when a sufficient condition is satisfied.
The resulting convex formulation is nonlinear; hence, it is next
efficiently approximated by a set of SOC constraints using PWL
approximation of the CDF function. We prove that the resulting
SOC formulation enjoys asymptotic convergence properties. More-
over, the resulting tractable formulation becomes more accurate
if a high number of well-positioned segments construct the PWL
function. On the other hand, a higher number of segments also
leads to computational difficulties. Therefore, to speed up our so-
lution procedure, we also provide an algorithm to optimally select
the PWL segments. A proof of optimality of the algorithm is also
included.

In case studies on modified IEEE 30-bus and IEEE 118-bus test
systems, we show that our TCC-ACOPF formulations achieve higher
quality optimal solutions compared to their OCC-ACOPF and de-
terministic OPF benchmarks. Moreover, it is shown that our for-
mulations are significantly more robust against uncertainty, espe-
cially under high penetration levels of renewable energy, while be-
ing computationally tractable. In particular, we observe that the
utilization of GM distribution with two-sided chance constraints
in TCC-ACOPF-K2 leads to maximum robustness both on synthetic
and real historical datasets. We also show that our proposed PWL
d—approximation algorithm can successfully speed up our method-
ology by the efficient selection of PWL segments, hence, making
our methodology suitable for large-scale real-world applications.

This research can be extended in different directions. First, the
objective function of our generic ACOPF model (1) includes only
the generation cost of dispatchable thermal generators. It would be
interesting to consider more cost components (e.g., ancillary ser-
vices costs) in the objective function, as additional practical cost
considerations may be included in the industry. Second, our cur-
rent experiments consider the value of K at 1 and 2. More results
that demonstrate the benefits of adopting GM distributions can be
obtained by increasing the value of K. Indeed, a larger K helps bet-
ter represent the distribution of the uncertainty. We leave these for
future research.
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