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a b s t r a c t 

The increasing penetration of renewable energy in power systems calls for secure and reliable system op- 

erations under significant uncertainty. To that end, the chance-constrained AC optimal power flow (CC- 

ACOPF) problem has been proposed. Most research in the literature of CC-ACOPF focuses on one-sided 

chance constraints; however, two-sided chance constraints (TCCs), albeit more complex, provide more 

accurate formulations as both upper and lower bounds of the chance constraints are enforced simul- 

taneously. In this paper, we introduce a fully two-sided CC-ACOPF problem (TCC-ACOPF), in which the 

active/reactive generation, voltage, and power flow all remain within their upper/lower bounds simulta- 

neously with a predefined probability. Instead of applying Bonferroni approximation or scenario-based 

approaches, we present an efficient second-order cone programming (SOCP) approximation of the TCCs 

under Gaussian Mixture (GM) distribution via a piecewise linear (PWL) approximation. Compared to the 

conventional normality assumption for forecast errors, the GM distribution adds an extra level of accu- 

racy representing the uncertainties. Moreover, we show that our SOCP formulation has adjustable rates 

of accuracy and its optimal value enjoys asymptotic convergence properties. Furthermore, an algorithm 

is proposed to speed up the solution procedure by optimally selecting the PWL segments. Finally, we 

demonstrate the effectiveness of our proposed approaches with both real historical data and synthetic 

data on the IEEE 30-bus and 118-bus systems. We show that our formulations provide significantly more 

robust solutions (about 60% reduction in constraint violation) compared to other state-of-art ACOPF for- 

mulations. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

The penetration of renewable energy such as wind and so- 
lar increases rapidly in the power system. At the same time, 
the uncertain output of these non-dispatchable renewable sources 
prompts various issues in power system operation. In particular, 
with many renewable energy sources, it is well known that supply- 
and-demand balance control becomes very difficult to manage. In- 
deed, the integration of the uncertain power sources increases the 
risk of supply-and-demand mismatch, leading to significant chal- 
lenges from voltage fluctuations to overloaded branches and can 
shut down the entire or parts of the power system ( De Rubira & 

Hug, 2016; Filabadi & Azad, 2020; Kundur et al., 2004 ). Such com- 
plexities raise the need for fast and reliable optimization meth- 
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ods that can securely and economically schedule the power sys- 
tem operation. As a solution, the optimal power flow (OPF) prob- 
lem provides real-time control measures to support the system’s 
stability. It guarantees the system’s secure operation by enforcing 
constraints such as voltage limits, generation limits, and line ca- 
pacity. 

First introduced by Carpentier (1962) over half a century ago, 
the OPF problem has gained great attention due to its impor- 
tance in power system operations. Due to the physical complexity 
in power systems, the majority of the OPF research in the litera- 
ture oversimplifies the real OPF problem using direct current (DC) 
and deterministic formulations ( Lin, Magnago, & Alemany, 2018; 
Skolfield & Escobedo, 2022 ). The DC formulation is an approxima- 
tion of the actual nonlinear alternating current (AC) power flow 

formulas and the deterministic formulation is a rough estimation 
of the stochastic nature of the power system. In traditional cen- 
tralized power systems, such simplifications, albeit imperfect, are 
acceptable to run the system without major catastrophic problems. 

https://doi.org/10.1016/j.ejor.2022.06.020 
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Indeed, the deterministic DC models are still being used in many 
commercial and industrial applications ( Stott & Alsaç, 2012 ). 

However, the large-scale integration of renewable generations 
in recent years is exposing the deficiencies of the traditional OPF 
formulations. In particular, the DC approximation neglects both 
network losses and reactive power, which are natural components 
of a power system network. Omitting these components would 
lead to decisions that are not feasible to the realistic AC opti- 
mal power flow (ACOPF) problem. On the other hand, as pene- 
tration levels of volatile and intermittent sources, such as wind 
and solar power, reach massive fractions of the total supplied 
power, the risk of extreme catastrophic outcomes (e.g., power sup- 
ply interruptions, power mismatch, increased power losses, and 
network instability) escalates rapidly. The traditional determinis- 
tic models, which rely on day-ahead or hour-ahead OPF analyses, 
do not work as well as before because it is more difficult to pre- 
dict the renewable power outputs as residential houses are be- 
coming both the load and generation points. These uncertain fore- 
cast errors can lead to insufficient or excess electricity genera- 
tion, and if unaccounted for, can result in major reliability issues 
and cause significant damage to the system via costly blackouts or 
other catastrophic events. In fact, major power outages and the risk 
for power interruptions increased rapidly in the past few decades 
( Bloomenergy, 2021; NREL, 2021; WirfsBrock, 2014 ) as more re- 
newables are integrated in the system. To account for the increas- 
ing risks caused by uncertainty, stochastic ACOPF problems have 
been addressed in recent years ( Capitanescu, 2016 ). 

An accurate representation of the stochastic ACOPF is achieved 
using chance-constrained optimization ( Bienstock, Chertkov, & Har- 
nett, 2014 ). In particular, the ACOPF problem enforces limits on 
voltage, active power, reactive power, and power flow, and a 
chance-constrained ACOPF (CC-ACOPF) enforces those limit con- 
straints with a certain probability. In other words, chance con- 
straints restrict the feasible region so that the confidence level of 
the solution is high, and thus reflect the stochastic nature of the 
problem. Moreover, in a recent survey of the actual power system 

operators, it was determined that using the chance-constrained 
formulation to choose a predetermined level of violation for con- 
straints is both an intuitive and transparent way of representing an 
ACOPF problem under uncertainty ( Roald & Andersson, 2017 ). 

While the CC-ACOPF presents an intuitive way to model forecast 
uncertainty, the nonlinearity of the AC power flow equations and 
the probabilistic constraints render the problem computationally 
intractable ( Nemirovski & Shapiro, 2007; Paudyal, Canizares, & 

Bhattacharya, 2011 ). To develop a practical method, it is necessary 
to consider both an approximation of the AC power flow equa- 
tions and a pertinent convex approximation of the chance con- 
straints. 

First, as discussed above, the underlying physical character- 
istics of a power system include nonconvex and nonlinear AC 
power flow equations; thus, most works in literature approximate 
these nonlinear equations with an imprecise DC model to reduce 
the complexity ( Aigner, Clarner, Liers, & Martin, 2022; Bienstock 
et al., 2014; Overbye, Cheng, & Sun, 2004; Vrakopoulou, Katsam- 
pani, Margellos, Lygeros, & Andersson, 2013; Xie & Ahmed, 2017; 
Zhang, Shen, & Mathieu, 2016 ). Modeling the actual AC power 
flow, on the other hand, allows us to accurately consider new 

constraints and chance constraints on reactive power, power an- 
gles, and power transmission capacity ( Zohrizadeh et al., 2020 ). 
More importantly, the ACOPF problem needs to be solved at dif- 
ferent levels of the power system (e.g., transmission and distri- 
bution grids) and under different stages (e.g., long-term planning 
and short-term operations). Thus, a tractable and accurate formu- 
lation of the ACOPF problem is highly demanded. Several different 
methods for linear approximation of full CC-ACOPF are proposed 
in the literature that attempt to represent the output variables 

as linear combinations of input variables. For example, Dall’Anese, 
Baker, & Summers (2017) distinctly models linearized AC power 
flow equations around a given voltage profile. In another effort, 
Vrakopoulou et al. (2013) uses SDP relaxations for the AC power 
equations; however, the resulting formulation cannot provide ro- 
bust guarantees and it is computationally expensive. Others ( Hojjat 
& Javidi, 2015; Zhang & Li, 2011 ) have considered full linearization 
of the responses around expected values of the random variables 
using linear decision rules. In this study, similar to Fu & McCal- 
ley (2001) ; Roald & Andersson (2017) and Lubin, Dvorkin, & Roald 
(2019) , we use Taylor expansion to linearize the AC power flow 

equations around a predicted operating point. This predicted point 
is identified by solving the deterministic ACOPF problem, and our 
model approximates the impact of uncertainty as a linear function 
of the uncertain power injections only around that particular oper- 
ating point. Hence, it is more accurate than the other techniques as 
it linearizes the system around one operating point instead of fully 
linearizing the system ( Roald & Andersson, 2017 ). This also further 
allows for the development of analytical chance-constrained refor- 
mulations. 

Second, to facilitate the development of analytical chance- 
constrained reformulations, a one-sided chance constraint (OCC) 
relaxation is commonly used. In particular, most works in the liter- 
ature of CC-ACOPF treat the physical bounds separately ( Dall’Anese 
et al., 2017; Lubin et al., 2019; Roald & Andersson, 2017 ), i.e., a 
single chance constraint is imposed on the upper bound and an- 
other chance constraint is imposed on the lower bound. While us- 
ing OCCs is convenient as they can be reformulated and imple- 
mented more easily ( Baker, Dall’Anese, & Summers, 2016; Bien- 
stock et al., 2014; Zhang & Li, 2011 ), the OCC relaxation provides 
an inexact approximation of the OPF problem. More specifically, it 
is known that active power, reactive power, and voltage at each 
bus, as well as the power flow at each branch in general, have both 
lower and upper bound limits. Hence, it is more accurate to rep- 
resent each by a two-sided chance constraint (TCC). To the best of 
our knowledge, Lubin, Bienstock, & Vielma (2015) , Pena-Ordieres, 
Molzahn, Roald, & Waechter (2019) , and Xie & Ahmed (2017) are 
the only known studies treating the lower and upper bounds si- 
multaneously. Among them, the distributionally robust results in 
Pena-Ordieres et al. (2019) and Xie & Ahmed (2017) depend on 
inaccurate DC approximations, and the analytical results in Lubin 
et al. (2015) only consider a subset of constraints with a TCC for- 
mulation that is limited to a Gaussian assumption. 

In fact, many papers in the literature that study closed-form 

analytical reformulations of CC-ACOPF simply model the forecast 
errors through Gaussian distribution ( Bienstock et al., 2014; Li, 
Vrakopoulou, & Mathieu, 2017; Lubin et al., 2015; Lubin et al., 
2019; Roald & Andersson, 2017 ). This Gaussian assumption is of- 
ten criticized in the literature as it may lead to further inaccura- 
cies that can cause cascading shutdowns and power interruptions 
in the grid. To be more specific, recent statistical analyses of re- 
newable forecast errors have shown that the forecast error distri- 
bution differs greatly from the commonly assumed normal distri- 
bution ( Hodge & Milligan, 2011; Lange, 2005 ). In particular, the 
large-scale availability of historical data on renewable generation 
and forecast can be analyzed to obtain data on renewable forecast 
errors. This forecast data then can be analyzed to obtain an esti- 
mation of the forecast error distribution. For example, Hodge et al. 
(2012) study historical wind generation data from multiple coun- 
tries to analyze the underlying probability distributions of forecast 
errors, and the results show that forecast error distributions are 
skewed in many cases. They further show that the simple Gaussian 
distribution performs poorly when skewness is present. In view of 
this, in our research, we have modeled the forecast error distribu- 
tion through Gaussian mixture (GM) modeling. With the GM mod- 
eling approach, the forecast error distribution can be modeled as a 
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convex combination of multiple normal distributions with respec- 
tive means and variances. Consequently, it not only encompasses 
the normal distribution but also can be used to model a continu- 
ous distortion of the latter, such as skewness ( Bertholon, Monfort, 
& Pegoraro, 2007 ). More importantly, any distribution can be ap- 
proximated by a GM distribution through nonparametric estima- 
tion method. For instance, if we use the kernel density estimation, 
a commonly used nonparametric method proposed by Rosenblatt 
(1956) and Parzen (1962) , to estimate the distribution, then the 
well-known normal kernel density estimator ( Dattatreya & Kanal, 
1990; Reynolds, 2009; Zhuang, Huang, Palaniappan, & Zhao, 1996 ) 
becomes a GM distribution. Hence, we can approximate the dis- 
tribution of any uncertainty using a GM distribution. Furthermore, 
GM is stable by convolution and easy to simulate. Therefore, em- 
ploying the GM distribution helps us represent the forecast er- 
ror uncertainties more accurately and develop OPF solutions that 
are significantly robust against such uncertainties, thereby adding 
great accuracy and flexibility to our proposed chance-constrained 
model. 

The resulting two-sided chance-constrained ACOPF (TCC-ACOPF) 
problem under the GM distribution, however, relies on noncon- 
vex and nonlinear TCCs that need to be convexly approximated. 
In this paper, we present a tractable approximation methodology 
for the TCC-ACOPF to provide an accurate solution for the problem 

in a timely manner. We first provide a convex approximation of 
the TCC under a GM distribution. Furthermore, we show that our 
approximation is exact for the case of simple Gaussian and some 
special GM distributions, so it generalizes the convexity results in 
Lubin et al. (2015) . In spite of being convex, this approximation 
is nonlinear, which makes it less efficient for large-scale appli- 
cations. The source of nonlinearity, i.e., the Gaussian cumulative 
distribution function (CDF), is then approximated by a piecewise 
linear (PWL) function, which is often used in the existing studies 
(see, e.g., Ardestani-Jaafari & Delage, 2016 and Kuryatnikova, Ghad- 
dar, & Molzahn, 2021 ) for the tractability purpose. The resulting 
final formulation is a series of linear and second-order conic (SOC) 
constraints, which can be solved efficiently by many commercial 
solvers. 

The quality of our final SOC approximation of the TCC is ad- 
justable depending on the quality of the PWL approximation of 
the Gaussian CDF. Intuitively, the more linear pieces we have, the 
more accurate the approximation is. However, a PWL approxima- 
tion with more pieces also leads to more constraints in our final 
SOC formulation, which means a higher computational cost. Hence, 
it is of our interest to choose an optimal PWL approximation that 
guarantees a given accuracy threshold with the minimum number 
of segments. 

Several studies have investigated the idea of finding the optimal 
PWL fit to a uni-variate function. For example, Hamann & Chen 
(1994) finds the optimal locations of segments based on a root- 
mean-square error tolerance. Tomek (1974) develops two heuristics 
to minimize the number of approximating segments subject to an 
error limit. More recently, Rebennack & Krasko (2020) and Kong 
& Maravelias (2020) developed algorithms that use mixed-integer 
techniques for finding segments that incite the exact amount of 
error required; however, their methodology is only applicable to 
bounded functions. In this paper, to choose an optimal PWL func- 
tion, we introduce an algorithm based on the linear interpolation 
error. Our methodology relies on the monotonicity and concavity 
of the target function, and it avoids introducing mixed-integer vari- 
ables. Moreover, it can be generalized to approximate any strictly 
monotone concave or convex function that is bounded from at 
least one side. In our theoretical results, we prove that our algo- 
rithm provides the best fit, and in our numerical results, we com- 
pare this algorithm with the uni-distance algorithm that is com- 
monly used to obtain a PWL approximation. We show that our 

method can achieve similar accuracy with significantly fewer lin- 
ear segments (e.g., 40% reduction in number of piece when the 
error tolerance is 0 . 05% ). Hence, employing our algorithm speeds 
up the computational time for our SOC approximation of the TCCs 
significantly. 

In summary, the main contributions of this paper are the fol- 
lowing: 

• We present a TCC-ACOPF to model the stochastic ACOPF prob- 
lem, which models the forecast error uncertainty more accu- 
rately using the GM distribution. In particular, the GM distri- 
bution addresses non-normalities such as skewness in power 
forecast data, which are not captured by the common normal 
distribution. 

• We present a convex inner approximation of a TCC on a GM 

distribution with K components, and we show that our convex 
formulation is exact under an easily verifiable condition. As this 
intermediate convex formulation may be expensive to solve on 
large-scale applications, we introduce a tractable SOC approx- 
imation of it based on a PWL approximation of the standard 
normal CDF. 

• Moreover, the quality of our SOC approximation depends on the 
quality of the PWL approximation, which can be improved by 
increasing the number of well-positioned PWL segments. We 
prove that our SOC approximation enjoys asymptotic conver- 
gence properties. As higher number of PWL segments lead to 
a higher computational cost, we propose an algorithm that ob- 
tains the minimum number of segments (and their optimal po- 
sitioning) required for a PWL function to speed up the compu- 
tation. 

• We report computational results with both synthetic and real- 
world datasets, which show that TCC-ACOPF can be solved effi- 
ciently (in a similar timeframe) as compared to the state-of-art 
OCC-ACOPF and deterministic ACOPF. Our results show that the 
TCC-ACOPF approach significantly improves the robustness and 
feasibility of solutions. 

The remainder of the paper is organized as follows. 
Section 2 introduces the ACOPF problem and the TCC-ACOPF 
problem. Section 3 shows how to reformulate the TCC-ACOPF into 
a convex problem and then approximate it by a second-order 
cone program. An algorithm to speed up the computation is also 
proposed in this Section. Section 4 numerically illustrates the 
strengths of the proposed model. Section 5 concludes the paper. 

2. Mathematical model 

In this section, we introduce mathematical formulations 
for deterministic ACOPF and TCC-ACOPF, in the following 
Sections 2.1 and 2.2 , respectively. We use boldface and normal 
symbols to represent vectors and scalars, respectively, throughout 
the paper. 

2.1. Deterministic ACOPF 

We use B, G, and R to denote the set of all buses, thermal gen- 
erators, and renewable generators respectively. For each bus i ∈ B, 
we use G i (resp. R i ) to denote the set of thermal generators (resp. 
renewable generators) at this bus, and v̄ i (resp. v i ) to denote the 
upper (resp. lower) bound on nodal voltage magnitude at this bus. 
For each bus i ∈ B and bus j ∈ B, we use L to denote the set of tu- 
ples (i, j) such that there is a branch between bus i and bus j, and 
Ī i j to denote this branch’s apparent power flow limit. For each ther- 

mal generator g ∈ G, we use P̄ g (resp. P g ) to denote its maximum 

(resp. minimum) active power generation amount, and Q̄ g (resp. 
Q 

g 
) to denote its maximum (resp. minimum) reactive power gen- 

eration amount. To define decision variables, we let p g (resp. q g ) 

3 
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represent the active (resp. reactive) power output of each thermal 

generator g ∈ G, e 
p 
i j 

(resp. e 
q 
i j 
) represent the active (resp. reactive) 

power flow of each tuple (i, j) ∈ L , and v i (resp. θi ) represent the 
nodal voltage magnitude (resp. angle) at each bus i ∈ B. Therefore, 
the ACOPF model can be described as follows: 

min 
p , q , v , θθθ , 

e p ,e q 

∑ 

g∈G 

c g (p g ) (1a) 

s.t. P g ≤ p g ≤ P̄ g , ∀ g ∈ G, (1b) 

Q 
g 

≤ q g ≤ Q̄ g , ∀ g ∈ G, (1c) 

v i ≤ v i ≤ v̄ i , ∀ i ∈ B, (1d) 

(e 
p 
i j 
) 2 + (e 

q 
i j 
) 2 ≤ ( ̄I i j ) 

2 , ∀ (i, j) ∈ L , (1e) 

ϕ( p , q , v , θθθ ) = 0 , (1f) 

θre f = 0 . (1g) 

In the objective function (1a) , c g (p g ) represents the power pro- 
duction cost of generator g and it is typically a convex quadratic 
function ( Wood, Wollenberg, & Sheblé, 2013 ). Constraints (1b) and 
(1c) restrict the active and reactive generation amount of each unit, 
respectively. Constraints (1d) set the upper/lower bounds of the 
nodal voltage magnitude at each bus i ∈ B. The capacity of each 
branch is bounded by (1e) and the voltage angle at the reference 
bus is set to zero by (1g) . The set of active and reactive power bal- 
ance equations from the Kirchhoff’s current and voltage laws are 
enforced by (1f) . Specifically, the active and reactive power flows 
are functions of the voltage magnitudes v and voltage angles θθθ , as 
illustrated in the following line power flow equations: 

e 
p 
i j 

= v i v j 

(

G i j cos (θi − θ j ) + B i j sin (θi − θ j ) 
)

, ∀ (i, j) ∈ L , (2a) 

e 
q 
i j 

= v i v j 

(

G i j sin (θi − θ j ) − B i j cos (θi − θ j ) 
)

, ∀ (i, j) ∈ L , (2b) 

where parameters G i j and B i j represent the real and imaginary 
parts of network admittance for each tuple (i, j) ∈ L , respectively. 
It follows that the nodal power flow equations can be represented 
by as follows: 
∑ 

g∈G i 

p g − D 
p 
i 

+ 

∑ 

g∈R i 

r 
p 
g = v 

2 
i G ii + 

∑ 

j :(i, j ) ∈L 

e 
p 
i j 
, ∀ i ∈ B, (3a) 

∑ 

g∈G i 

q g − D 
q 
i 

+ 

∑ 

g∈R i 

r 
q 
g = −v 

2 
i B ii + 

∑ 

j :(i, j ) ∈L 

e 
q 
i j 
, ∀ i ∈ B, (3b) 

which shows that the net active (resp. reactive) power injection at 
each bus i ∈ B is equal to the active (resp. reactive) power flow 

leaving this bus. In (3) , D 
p 
i 

(resp. D 
q 
i 
) denotes the active (resp. 

reactive) power demand at each bus i ∈ B, R i denotes the set of 

renewable generators at each bus i ∈ B, and r 
p 
g (resp. r 

q 
g ) denotes 

the forecast active (resp. reactive) power injections from a given 
renewable generator g ∈ R . Note that since for any (i, j) ∈ L , if v i , 

v j , θi , and θ j are given, then e 
p 
i j 

and e 
q 
i j 

are uniquely determined. 

Thus, e p and e q are not involved in the function ϕ( p , q , v , θθθ ) = 0 
as arguments in (1f) . 

From (3) , we can see that there are more variables than equa- 
tions, which implies that some variables can be chosen indepen- 
dently and the others will be implicitly determined. In fact, cer- 
tain physical structure settings of the power systems enable us to 
choose such variables independently, thereby controlling the bal- 
ance in (3) . Specifically, to that end, three bus types are considered 
in power system operations, i.e., pv buses, pq buses, and a v θ bus. 
The pv buses (referred to as “generation buses” and collected in set 
B pv ) maintain constant values of active power generation and volt- 
age magnitude; the pq buses (referred to as “load buses” or “buses 
without generation or load” and collected in set B pq ) maintain con- 
stant active and reactive power outputs; the v θ bus (referred to as 
“reference bus” and collected in singleton B 

v θ ) is unique and main- 
tains constant values of the voltage magnitude and angle ( Kothari 
& Nagrath, 2003; Roald, 2016 ). 

The deterministic ACOPF (1) assumes that the renewable gener- 

ation outputs (i.e., r 
p 
g and r 

q 
g for each i ∈ B) are known exactly; 

that is, the forecast values are exact. However, due to the in- 
termittent nature (e.g., wind fluctuates and solar relies on sunny 
weather), renewable energy actually creates huge uncertainties to 
power system operations, thereby requesting advanced decision 
making approaches under uncertainty for the ACOPF problem. 

Remark 1. The deterministic ACOPF (1) is solved to support the 
power system operations at different levels and stages. For in- 
stance, at the transmission level, the transmission grid operator 
may solve the day-ahead unit commitment and economic dispatch 
problems with the ACOPF formulation incorporated to perform 

market clearing. The operator may also solve the ACOPF (1) in the 
real-time market to evaluate the imbalances of power supply and 
demand and thus activate the ancillary services, thereby ensur- 
ing the system stability. Note that the ACOPF formulation becomes 
more crucial than before at the transmission level because the high 
penetration of renewable energy leads to significant uncertainties 
in the system and a more accurate OPF formulation can help the 
grid operator make a decision that can better hedge against the 
uncertainties. In addition, at the distribution level, the distribution 
grid operator may solve the ACOPF formulation in various stages, 
such as generation expansion planning and short-term operations. 
Specifically, as a distribution grid is usually represented as a radial 
network, the generic ACOPF formulation (1) can be equivalently re- 
formulated as an SOC formulation ( Farivar & Low, 2013 ) by using 
the special radial network structure. Note that our proposed ap- 
proach in the remainder of this paper also works for this equiva- 
lent ACOPF formulation. 

Remark 2. Note that the non-dispatchable renewable generation 
may have a large impact on the overall cost of the power sys- 
tem. Besides adjusting the generation outputs of the existing dis- 
patchable thermal generators in the system, the system imbalances 
due to the renewable generation uncertainty may also be com- 
pensated by other market tools, such as ancillary services. These 
services could range from energy storage devices and immediate 
power purchase strategies, to reactive power generation devices. 
These services can be implemented at different levels and stages of 
the power system (as mentioned in Remark 1 ), including transmis- 
sion and distribution levels, to balance the network. Thus, a direct 
cost component for each service can be considered in the objective 
function of model (1) , and we leave this for the future research. 

2.2. TCC-ACOPF 

To account for the uncertainty due to renewable generation, 
we introduce a TCC-ACOPF that ensures a secure system opera- 
tion under uncertainty. In particular, for a given renewable gener- 
ator g ∈ R , we denote this generator’s uncertain active power gen- 

eration amount by r 
p 
g ( ξξξ ) = r 

p 
g + ξg , where r 

p 
g denotes the forecast 
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active power generation amount of generator g, ξg denotes a ran- 
dom variable representing the real-time deviation of this generator 

from the forecast value r 
p 
g , and ξξξ denotes the vector of ξg ’s with 

any g ∈ R . Facing the active power generation variation of each re- 
newable generator g ∈ R , the power system has to respond to the 
variation by adjusting the values of other decision variables, i.e., 

r 
q 
g ( ξξξ ) for any g ∈ R , p g ( ξξξ ) for any g ∈ G, q g ( ξξξ ) for any g ∈ G, v i ( ξξξ ) 

for any i ∈ B, and θi ( ξξξ ) for any i ∈ B, thereby controlling system 

balance and stability in the real-time operations. Technically, such 
responses maintain the ACOPF model (1) to be feasible. To track 
such adjustments and avoid high complexities, system operators 
often adopt a family of affine response control policies for prac- 
tical purpose ( Jaleeli, VanSlyck, Ewart, Fink, & Hoffmann, 1992 ). In 
this paper the response policies are selected as follows. First, the 
reactive power output of a renewable generator g changes follow- 
ing the active power output variations of this renewable generator 
according to 

r 
q 
g ( ξξξ ) = γg r 

p 
g ( ξξξ ) , ∀ g ∈ R , (4) 

where γg is a decision variable that depends on operational re- 
quirements ( Cabrera-Tobar, Bullich-Massagué, Aragüés-Peñalba, & 

Gomis-Bellmunt, 2019; Roald, 2016 ). Second, according to the au- 
tomatic generation control (AGC) policy ( Borkowska, 1974; Ven- 
zke, Halilbasic, Markovic, Hug, & Chatzivasileiadis, 2017 ), the active 
power output of a thermal (dispatchable) generator under the re- 
newable generation uncertainty is adjusted by the following equa- 
tion: 

p g ( ξξξ ) = p g − αg �, ∀ g ∈ G, (5) 

where αg is the participation factor of each thermal generator g ∈ G

and � = 
∑ 

g∈R ξg . In our model, αg will be optimized as a deci- 
sion variable for any g ∈ G, and it indicates the fraction of the total 
forecast error that is compensated by thermal generator g. Third, 
a distinction between pv , pq , and v θ buses becomes important for 
the reactive power balancing and voltage control. Considering com- 
mon practice, we assume that the voltage is adjusted at pq buses 
to keep the reactive power constant with uncertainty, however, pv 
and v θ buses can adjust their reactive power to keep the voltage 
magnitude constant with uncertainty. 

With the uncertainty representation and response policies de- 
scribed above, we then can enforce the probability that each set 
of constraints of (1b) –(1e) hold with respect to the distribution of 
ξξξ , leading to the following four sets of chance constraints, respec- 
tively: 

P 
(

P g ≤ p g ( ξξξ ) ≤ P̄ g 
)

≥ 1 − ǫp , ∀ g ∈ G, (6a) 

P 

(

Q 
g 

≤ q g ( ξξξ ) ≤ Q̄ g 

)

≥ 1 − ǫq , ∀ g ∈ G, (6b) 

P 
(

v i ≤ v i ( ξξξ ) ≤ v̄ i 

)

≥ 1 − ǫv , ∀ i ∈ B, (6c) 

P 

(

(

e 
p 
i j 
( ξξξ ) 

)2 

+ 

(

e 
q 
i j 
( ξξξ ) 

)2 

≤
(

Ī i j 
)2 

)

≥ 1 − ǫL , ∀ (i, j) ∈ L . (6d) 

Here, P denotes the probability of an event with respect to 
the distribution of ξξξ . Constraints (6a) enforce both the upper and 
lower bounds on active power generation amount of a given gen- 
erator g ∈ G to be held simultaneously with a probability that is 
no less than 1 − ǫp . Similarly, the probabilistic bounds on reactive 
power flow, voltage magnitude, and apparent power flow are en- 
forced through (6b), (6c) , and (6d) , with violation probability less 
than ǫq , ǫv , and ǫL , respectively. 

Chance constraints (6a) –(6c) are TCCs where the stochastic con- 
straints are linear in the variables p g ( ξξξ ) , q g ( ξξξ ) , and v i ( ξξξ ) , respec- 

tively. As the stochastic constraints 
(

e 
p 
i j 
( ξξξ ) 

)2 

+ 

(

e 
q 
i j 
( ξξξ ) 

)2 

≤
(

Ī i j 
)2 

are nonlinear in the variables e 
p 
i j 
( ξξξ ) and e 

q 
i j 
( ξξξ ) , constraints (6d) are 

more challenging to deal with. Here, we follow the approach in 
Lubin et al. (2015) to inner approximate (6d) with the following 
constraints 

P 

(

| e p 
i j 
( ξξξ ) | ≤ ζ

p 
i j 

)

≥ 1 − β ǫL , ∀ (i, j) ∈ L , (7a) 

P 

(

| e q 
i j 
( ξξξ ) | ≤ ζ

q 
i j 

)

≥ 1 − (1 − β) ǫL , ∀ (i, j) ∈ L , (7b) 

(

ζ
p 
i j 

)2 

+ 

(

ζ
q 
i j 

)2 

≤
(

Ī i j 
)2 

, ∀ (i, j) ∈ L , (7c) 

where ζ
p 
i j 

and ζ
q 
i j 

are auxiliary decision variables and β ∈ (0 , 1) 

is a given parameter that is typically set as 0.5. The resulting con- 
straints (7a) and (7b) are in the same form as (6a) –(6c) , and (7c) is 
a deterministic convex quadratic constraint. 

Therefore, the mathematical formulation of TCC-ACOPF can be 
described as follows: 

min 
p , q , v , θθθ

ζζζp , ζζζq , ααα, γγγ

∑ 

g∈G 

E 
[

c g (p g ( ξξξ )) 
]

(8a) 

s.t. (6a), (6b), (6c), (7a), (7b), (7c), (1g), 

ˆ ϕ ( p ( ξξξ ) , q ( ξξξ ) , v ( ξξξ ) , θθθ ( ξξξ ) | ̂  p , ̂  q , ̂  v , ̂  θθθ ) = 0 , ∀ ξξξ , (8b) 

where E denotes the expectation with respect to the distribution of 
ξξξ , objective function (8a) minimizes the expected total operating 
cost, and constraints (8b) describe the linearized version of con- 
straints (2) and (3) . This linearization follows the existing studies 
( Fu & McCalley, 2001; Lubin et al., 2019; Roald & Andersson, 2017 ). 
Specifically, constraints (8b) are obtained from a Taylor expansion 
of (2) and (3) around a feasible solution (denoted by ( ̂  p , ̂  q , ̂  v , ̂  θθθ ) ) to 
the deterministic ACOPF model (1) . As constraints (8b) hold for all 
the possible realizations of ξξξ , these constraints ensure that the so- 
lution of (8) satisfies the linearized power balance equations under 
all possible realizations of uncertainty. These existing studies show 

that this approximation is very tight (see Lemma 1 in Lubin et al. 
(2019) and the numerical results therein). Note that, (6a) –(6c) and 
(7a) –(7b) represent all the TCCs in our model, and they are nonlin- 
ear and nonconvex in general. However, the inner stochastic con- 
straints of the TCCs are all defined by functions which are affine 
in decision variables and affine in random variables. In the follow- 
ing section, a tractable approximation for such two-sided chance- 
constraints is developed. 

3. Reformulation techniques for TCC 

In this section, we develop a tractable convex formulation of 
(8) by approximating the two-sided chance constraints (6a) –(6c) 
and (7a) –(7b) by a series of linear and SOC constraints. To that end, 
we consider a general form of TCC as follows: 

P 
(

l b ≤ h 1 ( x ) 
⊤ ξξξ + h 0 ( x ) ≤ u b 

)

≥ 1 − ǫ, (9) 

where h 1 ( x ) and h 0 ( x ) are affine functions of a vector of decision 
variables x , l b and u b are lower and upper bounds of the TCC, re- 
spectively, and ξξξ represents a vector of random variables. For ease 
of exposition, we define h ( x , ξξξ ) := h 1 ( x ) 

⊤ ξξξ + h 0 ( x ) , which is affine 
in x . 

In general, TCCs are very difficult to solve. As a result, many ex- 
isting studies, including Bienstock et al. (2014) , Roald & Andersson 
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(2017) , and Dall’Anese et al. (2017) , approximate the TCC (9) by 
two one-sided chance constraints as follows: 

P 
(

h ( x , ξξξ ) ≤ u b 
)

≥ 1 − ˆ ǫ, (10a) 

P 
(

h ( x , ξξξ ) ≥ l b 
)

≥ 1 − ˆ ǫ. (10b) 

When ˆ ǫ = ǫ, it is clear that (10) provides an outer approxi- 
mation of (9) . When ˆ ǫ = ǫ/ 2 , (10) provides an inner approxima- 
tion for (9) , which is known as the Bonferroni approximation of 
TCCs ( Hanasusanto, Roitch, Kuhn, & Wiesemann, 2017; Nemirovski 
& Shapiro, 2007 ). 

The approximation (10) is inexact and often very weak ( Xie & 

Ahmed, 2017 ), and it is accordingly followed by further studies 
seeking better approximations. For instance, Lubin et al. (2015) de- 
veloped an SOC approximation of a TCC, in which ξξξ follows Gaus- 
sian distribution with known mean and covariance. In many prac- 
tical settings, however, the Gaussian distribution is known to lack 
accuracy in modeling uncertainty, especially when it comes to 
skewness in the distribution, which though is commonly present 
in power system applications ( Hodge et al., 2012 ). In the following 
Section 3.1 , we provide a tight approximation for a general TCC 
under a GM distribution, which allows for significantly more accu- 
rate modeling of uncertainties. Our approximation has a control- 
lable degree of accuracy, which is of high value as it provides an 
additional degree of flexibility to the model. 

3.1. Tight approximation 

In this section, we show that TCC (9) under GM distributions 
can be inner approximated by a set of convex constraints. A suf- 
ficient condition is also provided under which the approximation 
becomes exact. Moreover, the resulting convex constraints can be 
efficiently approximated by a set of linear and SOC constraints, 
which converges to the feasibility set of the original TCC (9) . For 
notational brevity, we define [ n ] = { 1 , 2 , . . . , n } for any positive in- 
teger number n . We make the following assumption throughout 
this paper. 

Assumption 1. The random variable ξξξ follows a GM distribution 
with K components as follows: 

ξξξ ∼
K 

∑ 

k =1 

w k N ( μμμk , ηk �) , (11) 

where component k ∈ [ K] is a Gaussian distribution with mean 
μμμk , positive definite covariance ηk �, and weight w k > 0 such that 
∑ K 

k =1 w k = 1 . 

We use F to denote the CDF of ξξξ and accordingly have F ( ξξξ ) = 
∑ K 

k =1 w k F k ( ξξξ ) , where F k denotes the corresponding CDF of each 
component k ∈ [ K] . Note that the covariance of each component is 
a positive multiple of � ≻ 0 , which is the covariance matrix base 
for all components. Moreover, if the distribution of ξξξ only consists 
of one Gaussian distribution, i.e., K = 1 , the uncertainty distribu- 
tion simplifies to the Gaussian distribution. 

Using the GM distribution to represent the uncertainty, the fol- 
lowing proposition, in which we develop a convex reformulation of 
the TCC, is key to our main results. Our results are related to the 
perspective function of the standard normal CDF 
(·) . In particu- 
lar, the perspective function of 
, see Combettes (2016) , is defined 
as 

˜ 
 : R × [0 , ∞ ) → R , ˜ 
(z, λ) := 

{

λ
(z/λ) , if λ > 0 
0 , if λ = 0 . 

Since 
 is a bounded continuous function, it is clear that ˜ 
 is 
also continuous. Also, since 
 is a continuous concave function 

on [0 , ∞ ) , ˜ 
 is concave on [0 , ∞ ) × [0 , ∞ ) ( Combettes, 2016 ). For 
ease of exposition, we assume 0 · 
(z/ 0) = 0 for all z ∈ R with- 
out mentioning the perspective function. We also define μ′ 

k 
( x ) := 

h 1 ( x ) 
⊤ μμμk + h 0 ( x ) and �

′ ( x ) := 

√ 

h 1 ( x ) ⊤ � h 1 ( x ) for the rest of the 
paper. 

Proposition 1. Under Assumption 1 , the two-sided chance constraint 

(9) can be inner approximated by the following convex constraints in 

( x , λ) : 

λ

( 
K 

∑ 

k =1 

w k 

(




(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

+ 


(

μ′ 
k 
( x ) − l b √ 
ηk λ

))

) 

≥ λ(2 − ǫ) , 

(12a) 

l b ≤ μ′ 
k ( x ) ≤ u b , ∀ k ∈ [ K] , (12b) 

�′ ( x ) ≤ λ, (12c) 

where 
(·) is the standard normal CDF and λ ∈ R is a nonnega- 

tive auxiliary variable. Moreover, if ǫ ≤ (1 / 2) min { w 1 , . . . , w K } , then 
the approximation is exact; that is, x satisfies (9) if and only if there 

exists λ ∈ R such that ( x , λ) satisfies (12) . 

Proof. First, we show the convexity of constraints (12) . Note that 

(·) is concave in the restricted domain [0 , ∞ ) , which is enforced 
by (12b) . As discussed above, its perspective function ˜ 
(z, λ) is 
concave over [0 , ∞ ) × [0 , ∞ ) . Since affine substitution and nonneg- 
ative weighted summation maintain concavity, (12a) is a convex 
constraint in ( x , λ) . It is easy to see that (12b) and (12c) are affine 
and SOC constraints, respectively, and thus are convex. 

Next, we show that (12) is an inner approximation of the TCC 
(9) . We consider two possible cases: �′ ( x ) = 0 and �′ ( x ) > 0 . (i) 
When �′ ( x ) = 0 , we have h 1 ( x ) = 0 because � ≻ 0 and accord- 
ingly (9) is reduced to (12b) . (ii) When �′ ( x ) > 0 , under Assump- 
tion 1 , we have 

P F 

(

l b ≤ h ( x , ξξξ ) ≤ u b 
)

= 

K 
∑ 

k =1 

w k P F k 

(

l b ≤ h ( x , ξξξ ) ≤ u b 
)

= 

K 
∑ 

k =1 

w k P F k 

(

l b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

≤
h ( x , ξξξ ) − μ′ 

k 
( x ) 

√ 
ηk �′ ( x ) 

≤
u b − μ′ 

k 
( x ) 

√ 
ηk �′ ( x ) 

)

= 

K 
∑ 

k =1 

w k 

(




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

− 


(

l b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

))

= 

K 
∑ 

k =1 

w k 

(




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

+ 


(

μ′ 
k 
( x ) − l b √ 
ηk �′ ( x ) 

))

− 1 , 

where the last equation holds because 
(x ) = 1 − 
(−x ) . As a re- 
sult, (9) can be recast as 

K 
∑ 

k =1 

w k 

(




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

+ 


(

μ′ 
k 
( x ) − l b √ 
ηk �′ ( x ) 

))

≥ 2 − ǫ. (13) 

Consider ( x , λ) that satisfies constraints (12) . Because 
(·) is an 
increasing function, l b ≤ μ′ 

k 
( x ) ≤ u b , and λ ≥ �′ ( x ) > 0 , we con- 

clude that 




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

≥ 


(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

and 


(

μ′ 
k 
( x ) − l b √ 
ηk �′ ( x ) 

)

≥ 


(

μ′ 
k 
( x ) − l b √ 
ηk λ

)

, 

which, together with (12a) , implies (13) . Thus, for any ( x , λ) that 
satisfies constraints (12) under both the above two cases, the x sat- 
isfies (9) . 
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Finally, we show the equivalence between (12) and (9) when 
ǫ ≤ (1 / 2) min { w 1 , . . . , w K } . (i) Suppose that x satisfies constraint 
(9) with h 1 ( x ) = 0 . Then, �′ ( x ) = 0 and h ( x , ξξξ ) = h 0 ( x ) = μ′ 

k 
( x ) 

for all k ∈ [ K] . By setting λ = 0 , we see that constraints (12) are 
satisfied by ( x , λ) . (ii) Suppose that x satisfies constraint (9) with 
h 1 ( x ) � = 0 . Then (13) is satisfied by x . We claim that such an x sat- 
isfies (12b) , that is, for all k ∈ [ K] , 




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

≥ 0 . 5 and 


(

μ′ 
k 
( x ) − l b √ 
ηk �′ ( x ) 

)

≥ 0 . 5 . 

If not, then there exists some κ ∈ [ K] such that 




(

u b − μ′ 
κ ( x ) 

√ 
ηκ�′ ( x ) 

)

+ 


(

μ′ 
κ ( x ) − l b √ 
ηκ�′ ( x ) 

)

< 1 . 5 

because both 

(

u b −μ′ 
κ ( x ) 

√ 
ηκ�′ ( x ) 

)

and 

(

μ′ 
κ ( x ) −l b √ 
ηκ�′ ( x ) 

)

are no larger than 1 

and one of them is less than 0.5 by contradiction. It further follows 
that, 

K 
∑ 

k =1 

w k 

(




(

u b − μ′ 
k 
( x ) 

√ 
ηk �′ ( x ) 

)

+ 


(

μ′ 
k 
( x ) − l b √ 
ηk �′ ( x ) 

))

< 

∑ 

k � = κ

(2 w k ) + 1 . 5 w κ = 2 
K 

∑ 

k =1 

w k − 0 . 5 w κ = 2 − 0 . 5 w κ ≤ 2 − ǫ, 

which contradicts (13) . Therefore, for any x satisfying (13) , by 
setting λ = �′ ( x ) , we see that constraints (12) are satisfied by 
( x , λ) . �

Remark 3. The exactness condition in Proposition 1 , i.e., ǫ ≤
(1 / 2) min { w 1 , . . . , w K } , is always satisfied in the case of simple 
Gaussian ( K = 1 ) if ǫ ≤ 0 . 5 . Hence, our proof recovers and gener- 
alizes the convexity results in Lubin et al. (2015) . 

Remark 4. The exactness condition in Proposition 1 is usually sat- 
isfied in practice where smaller values of ǫ are of interest. For ex- 
ample, in the case where w k = 1 /K for each k ∈ [ K] , our reformu- 
lation is exact for ǫ ≤ 1 / (2 K) . That means a mixture of 4 Gaus- 
sians with ǫ ≤ 0 . 125 is convex and can be exactly reformulated by 
Proposition 1 . 

Although (12) consists of convex constraints, it can be computa- 
tionally expensive to solve for large-scale applications. In the rest 
of this section, we discuss how to approximate (12) using linear 
and SOC constraints. By Proposition 1 , the domain of 
(·) can be 
restricted to [0 , ∞ ) in our model (12) without loss of generality, on 
which 
(·) is concave. As a result, a PWL inner approximation of 

(·) on the interval [0 , ∞ ) can be found by a modified linear inter- 
polation. Specifically, we call a vector t = (t 0 , t 1 , · · · , t M ) 

⊤ ∈ R M+1 a 
valid interpolation vector if 0 = t 0 < t 1 < · · · < t M . For a valid inter- 
polation vector t ∈ R M+1 , we define ˆ 
t 

M (z) := min 
m ∈ [ M+1] 

{

a t m z + b t m 

}

, 

the PWL function from [0 , ∞ ) to R with M + 1 segments such that 

{

a t m t m −1 + b t m = 
(t m −1 ) , 
a t m t m + b t m = 
(t m ) , 

∀ m ∈ [ M] , 

a t 
M+1 = 0 , and b t 

M+1 = 
(t M ) , as illustrated in Fig. 1 . The follow- 

ing lemma about ˆ 
t 
M (·) is straightforward due to the concavity of 


(·) , and the proof is omitted. 

Lemma 1. For any valid interpolation vector t ∈ R M+1 , ˆ 
t 
M (·) is a 

concave increasing PWL function over [0 , ∞ ) , and ˆ 
t 
M (z) ≤ 
(z) for 

all z ∈ [0 , ∞ ) . 

Replacing the standard normal CDF 
(·) with a PWL function 
ˆ 
t 
M (·) , we have an inner approximation of (12a) : 

λ

( 

∑ 

k 

w k 

(

ˆ 
t 
M 

(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

+ ̂  
t 
M 

(

μ′ 
k 
( x ) − l b √ 
ηk λ

))

) 

≥ λ(2 −ǫ) . 

(14) 

Let �t 
m := t m − t m −1 for each m ∈ [ M] , �t := max m ∈ [ M] �

t 
m , and 

E( t ) := sup z≥0 { 
(z) − ˆ 
t 
M (z) } . We are interested in the asymptotic 

behavior of the approximation as E( t ) → 0 . To that end, we intro- 
duce the following definition. 

Definition 1. Let { t r } r := { t 1 , t 2 , . . . , } be a sequence of valid inter- 
polation vectors where t r = (t r 0 , t 

r 
1 , . . . , t 

r 
M r 

) ⊤ . We call { t r } r a “fine”
sequence if ˆ 
t r 

M r 
(z) → 
(z) as r → ∞ for all z ∈ [0 , ∞ ) . 

In other words, the choice of valid interpolation vectors in a 
“fine” sequence guarantees pointwise convergence of { ̂  
t r 

M r 
} r to 


on [0 , ∞ ) . The following lemma shows that a “fine” sequence con- 
verges not only pointwisely but also uniformly. 

Lemma 2. Let f : [ a, ∞ ) → [ b, c) be an increasing surjective func- 
tion. For each r ≥ 0 , let f r : [ a, ∞ ) → [ b, c) be an increasing function 
such that f r (z) ≤ f (z) for all z ∈ [ a, ∞ ) . If lim r→∞ f r (z) = f (z) for 

every z ∈ [ a, ∞ ) , then f r converges to f uniformly. That is, for any 

ǫ > 0 , there exists R ≥ 0 such that | f r (z) − f (z) | < ǫ for all r ≥ R and 

z ∈ [ a, ∞ ) . 

Proof. For any ǫ > 0 , let M := ⌈ 2(c − b) /ǫ⌉ − 1 . Since f is an 
increasing surjective function, f (a ) = b and f is invertible. Let 
s i := f −1 (b + i ǫ/ 2) for i = 0 , . . . , M. Then, f (s i +1 ) − f (s i ) = ǫ/ 2 for 
i = 0 , . . . , M − 1 , and f (s M ) ≥ c − ǫ/ 2 . For each i = 0 , . . . , M, since 
lim r→∞ f r (s i ) = f (s i ) , there exists R i ≥ 0 such that f (s i ) − f r (s i ) < 

ǫ/ 2 for all r ≥ R i . Due to the monotonicity of f and f r , for any z ≥
a = s 0 , if z ∈ [ s i , s i +1 ] for some i = 0 , . . . , M − 1 , then for all r ≥ R i , 

f (z) − f r (z) ≤ f (s i +1 ) − f r (s i ) = ( f (s i +1 ) − f (s i ) ) 

+ ( f (s i ) − f r (s i ) ) < 
ǫ

2 
+ 

ǫ

2 
= ǫ;

if z ∈ [ s M , ∞ ) , then for all r ≥ R M , 

f (z) − f r (z) ≤ c − f r (s M ) = ( c − f (s M ) ) + ( f (s M ) − f r (s M ) ) 

< 
ǫ

2 
+ 

ǫ

2 
= ǫ. 

Let R := max i ∈{ 0 , ... ,M} { R i } . We see that 0 ≤ f (z) − f r (z) < ǫ for all 
r ≥ R and z ∈ [ a, ∞ ) . �

With Lemma 1 and Lemma 2 , it is clear that a sequence of valid 
interpolation vectors { t r } r is “fine” if and only if E( t r ) → 0 as r → 

∞ . 
Note that it may be inconvenient to check the convergence of 

a sequence to determine whether it is “fine.” The following lemma 
provides an easy-to-check sufficient condition. 

Lemma 3. A sequence of valid interpolation points { t r } r is “fine” if 

�t r → 0 and t r 
M r 

→ ∞ as r → ∞ . 

Proof. For any valid interpolation vector t ∈ R M+1 , note that 

E( t ) ≤ max 

{

max 
m ∈ [ M] 

{ 
(t m ) − 
(t m −1 ) } , 1 − 
(t M ) 

}

. 

For any small 0 < ǫ < 
1 
2 , since t 

r 
M r 

→ ∞ as r → ∞ , there is r̄ > 0 

such that t r 
M r 

> 
−1 (1 − ǫ) for all r ≥ r̄ . That is, 

1 − 
(t r M r 
) < ǫ, ∀ r ≥ r̄ . 

Also, since �t r → 0 as r → ∞ , there is ˆ r > 0 such that �t r < 

ǫ/ 
′ (0) = ǫ
√ 
2 π for all r ≥ ˆ r , where 
′ (·) is the derivative func- 

tion of 
(·) . Due to the concavity and monotonicity of 
 over 
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Fig. 1. An example of PWL fitting of the standard normal CDF ( M = 4 ). 

[0 , ∞ ) , for all r ≥ ˆ r , 


(t r m ) − 
(t r m −1 ) ≤ 
′ (t r m −1 )(t 
r 
m − t r m −1 ) 

≤ 
′ (0)�t r < ǫ ∀ m ∈ [ M r ] . 

Consequently, E( t r ) < ǫ for all r ≥ max { ̄r , ̂  r } , which completes the 
proof. �

As an example, the sequence { t r } r , where t r = 

(0 , 1 r , 
2 
r , · · · , r 

2 

r ) 
⊤ ∈ R r 

2 +1 , is a “fine” sequence. An- 
other example of a “fine” sequence is { t r } r , where t r = 

(0 , 
−1 ( r+1 
2 r ) , 


−1 ( r+2 
2 r ) , · · · , 
−1 ( 2 r−1 

2 r )) ⊤ ∈ R r . Both of the exam- 
ples can be checked easily using Lemma 3 . We remark here that 
Lemma 3 is not a necessary condition. For example, the sequence 
{ t r } r , where t r = (0 , 1 r , 

1 
r + 

1 
r−1 , · · · , 1 r + 

1 
r−1 + · · · + 

1 
2 + 1) ⊤ ∈ R r+1 , 

is a “fine” sequence by the definition — we leave the details to the 
readers — however, �t r = 1 for all r > 0 , which does not satisfy 
the condition in Lemma 3 . 

When { t r } r is a “fine” sequence, constraint (14) converges to 
(12a) in the following sense. 

Proposition 2. Suppose that f (·, ·) is a continuous function of ( x , λ) . 

Let ( x ∗, λ∗) be an optimal solution of 

inf { f ( x , λ) | ( x , λ) satisfies (12) } , (15) 

and let ( x ∗t , λ
∗
t ) be an optimal solution of 

inf { f ( x , λ) | ( x , λ) satisfies (14), (12b), (12c) } . (16) 

Then, we have f ( x ∗t , λ
∗
t ) ≥ f ( x ∗, λ∗) for any valid interpolation 

vector t . Moreover, if there exists ( ̄x , ̄λ) such that (12) are satisfied 

and (12a) is strictly satisfied, then 

lim 
r→∞ 

f ( x ∗t r , λ
∗
t r ) = f ( x ∗, λ∗) 

for any “fine” sequence { t r } r . 
The proof of Proposition 2 relies on the following technical 

lemma. 

Lemma 4. Let X ⊆ R n be a nonempty convex set, � : R n → R be a 

concave function over X, and f : R n → R be a continuous function. 

Suppose that { �r } r is a sequence of functions from R n to R such that 

for any y ∈ X, 

�r ( y ) ≤ �( y ) and lim 
r→∞ 

�r ( y ) = �( y ) . 

Let y ∗ be an optimal solution of inf { f ( y ) | �( y ) ≥ 0 , y ∈ X} , and let 
y ∗r be an optimal solution of inf { f ( y ) | �r ( y ) ≥ 0 , y ∈ X} . If there ex- 
ists ȳ ∈ X such that �( ̄y ) > 0 , then f ( y ∗r ) ≥ f ( y ∗) for all r ≥ 0 , and 
lim r→∞ f ( y 

∗
r ) = f ( y ∗) . 

Proof. For any ǫ > 0 , since f (·) is continuous, there exists σ1 ∈ 

(0 , ‖ ̄y − y ∗‖ ) such that | f ( y ) − f ( y ∗) | < ǫ whenever ‖ y − y ∗‖ ≤ σ1 . 
Let 

ˆ y := σ1 
ȳ − y ∗

‖ ̄y − y ∗‖ 
+ y ∗ = 

σ1 

‖ ̄y − y ∗‖ 
ȳ + 

(

1 −
σ1 

‖ ̄y − y ∗‖ 

)

y ∗, 

which represents a convex combination of ȳ and y ∗. It follows that 
‖ ̂ y − y ∗‖ ≤ σ1 , implying f ( ̂ y ) − f ( y ∗) < ǫ due to the continuity of 
f (·) , and that ˆ y ∈ X due to the convexity of X . Moreover, by the 
concavity of �(·) over X , we have 

�( ̂ y ) ≥
σ1 

‖ ̄y − y ∗‖ 
�( ̄y ) + 

(

1 −
σ1 

‖ ̄y − y ∗‖ 

)

�( y ∗) > 0 . 

Since lim r→∞ �r ( ̂ y ) = �( ̂ y ) > 0 , there exists R ≥ 0 such that 
�r ( ̂ y ) > 0 for any r ≥ R . It follows that ˆ y is a feasible solution to 
the minimization problem inf { f ( y ) | �r ( y ) ≥ 0 , y ∈ X} for any r ≥
R , and accordingly f ( y ∗r ) ≤ f ( ̂ y ) . Therefore, we can conclude that 
f ( y ∗r ) − f ( y ∗) ≤ f ( ̂ y ) − f ( y ∗) < ǫ for any r ≥ R . That is, we have 

lim sup 
r→∞ 

f ( y ∗r ) ≤ f ( y ∗) . (17) 

In addition, for any r ≥ 0 , since �r ( y ) ≤ �( y ) for any y ∈ X , we 
have inf { f ( y ) | �( y ) ≥ 0 , y ∈ X} is a relaxation of inf { f ( y ) | �r ( y ) ≥
0 , y ∈ X} . Therefore, we conclude that for any r > 0 , 

f ( y ∗r ) − f ( y ∗) ≥ 0 . (18) 

By combining (17) and (18) , we complete the proof. �

Lemma 4 shows that for an optimization problem under the 
setting mentioned therein, its inner approximations converge to 
one formulation that has the same optimal value of the origi- 
nal problem. We prove this conclusion by creating a sequence 
of feasible regions (represented based on { �r } r ) contained in the 
original feasible region (represented based on �), where this se- 
quence converges to one that produces the optimal value of the 
original problem. With this lemma, we are now ready to prove 
Proposition 2 . 

Proof of Proposition. 2 .. For any valid interpolation vector t , 
Lemma 1 implies that (16) is an inner approximation of (15) . 
Therefore, f ( x ∗t , λ

∗
t ) ≥ f ( x ∗, λ∗) for any valid interpolation vector t . 

Now consider a “fine” sequence { t r } r . Let 

�( x , λ) := λ

( 
∑ 

k 

w k 

(




(

u b − μ′ 
k ( x ) √ 

ηk λ

)

+ 


(

μ′ 
k ( x ) − l b √ 

ηk λ

))

+ ǫ − 2 

) 

, 

�r ( x , λ) := λ

( 
∑ 

k 

w k 

(

ˆ 
t r 
M r 

(

u b − μ′ 
k ( x ) √ 

ηk λ

)

+ ˆ 
t r 
M r 

(

μ′ 
k ( x ) − l b √ 

ηk λ

))

+ ǫ − 2 

) 

, 
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and X := { ( x , λ) | ( x , λ) satisfies (12b), (12c) } . By Proposition 1 and 
the existence of ( ̄x , ̄λ) , we have that X is a nonempty convex set, 
�(·, ·) is a concave function over X , and there exists ( ̄x , ̄λ) ∈ X

such that �( ̄x , ̄λ) > 0 . Moreover, by Lemma 1 and Definition 1 , it 
is easy to check that 

�r ( x , λ) ≤ �( x , λ) and lim 
r→∞ 

�r ( x , λ) = �( x , λ) 

for all ( x , λ) ∈ X . Therefore, the proof is completed by a direct ap- 
plication of Lemma 4 . �

Remark 5. The assumption about the existence of ( ̄x , ̄λ) in 
Proposition 2 is easy to satisfy in practice. In particular, if there 
exists x̄ such that P (l b ≤ h ( ̄x , ξξξ ) ≤ u b ) > 1 − ǫ and �′ ( ̄x ) > 0 , then 
under Assumption 1 , (13) is satisfied strictly at x̄ , and thus 

( ̄x , 
√ 

h 1 ( ̄x ) ⊤ � h 1 ( ̄x ) ) satisfies (12) and satisfies (12a) strictly. 

In summary, constraints (14), (12b) , and (12c) provide an in- 
ner approximation of constraints (12) , and more importantly, they 
guarantee asymptotic convergence in terms of optimal values. In 
the following proposition, we show that the set defined by (14) is 
in fact polyhedral. 

Proposition 3. Consider ( x , λ) that satisfies (12b) and (12c) . Then, 

( x , λ) satisfies (14) if and only if there exists πππ ∈ R 2 K such that 

( x , λ, πππ ) satisfies the following linear constraints: 

{

a t m (u b − μ′ 
k ( x )) + b t m 

√ 
ηk λ ≥ √ 

ηk πk, 1 , 

a t m (μ
′ 
k ( x ) − l b ) + b t m 

√ 
ηk λ ≥ √ 

ηk πk, 2 , 
∀ m ∈ [ M + 1] , ∀ k ∈ [ K] , 

(19a) 

K 
∑ 

k =1 

w k (πk, 1 + πk, 2 ) ≥ λ(2 − ǫ) . (19b) 

Proof. First, if ( x , λ, πππ ) satisfies (19) for some πππ ∈ R 2 K , then 

λ ˆ 
t 
M 

(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

= λ min 
m ∈ [ M+1] 

{

a t m 

(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

+ b t m 

}

= 
1 

√ 
ηk 

min 
m ∈ [ M+1] 

{

a t m (u b − μ′ 
k ( x )) + b t m 

√ 
ηk λ

}

≥πk, 1 , (20) 

where the inequality holds due to (19a) . With similar arguments, 
we have 

λ ˆ 
t 
M 

(

μ′ 
k 
( x ) − l b √ 
ηk λ

)

≥ πk, 2 . (21) 

Combining (19b) and (20) - (21) , we see that (14) is satisfied by 
( x , λ) . 

Next, if ( x , λ) satisfies (14) , then we can set 

πk, 1 := ˆ 
t 
M 

(

u b − μ′ 
k 
( x ) 

√ 
ηk λ

)

and πk, 2 := ˆ 
t 
M 

(

μ′ 
k 
( x ) − l b √ 
ηk λ

)

for k ∈ [ K] if λ > 0 . If λ = 0 , we can set πk, j := 0 for k ∈ [ K] , j ∈ 

{ 1 , 2 } . It follows in both cases that ( x , λ, πππ ) satisfies (19) . �

For any continuous function f (·) and any valid in- 
terpolation vector t , let f ∗ := inf { f ( x ) | x satisfies (9) } and 
f ∗t := inf { f ( x ) | x satisfies (19), (12b), (12c) with some λ, πππ} . 
Note that (12c) is an SOC constraint as it is equivalent to 
‖ �1 / 2 h 1 ( x ) ‖ ≤ λ, where �1 / 2 is a symmetric positive definite 
matrix such that �1 / 2 �1 / 2 = �. We summarize our results in this 
section in the following theorem. 

Theorem 1. Under Assumption 1 , TCC (9) can be inner approximated 

by the set of linear constraints (19) , (12b) and SOC constraint (12c) . 

In addition, if ǫ ≤ (1 / 2) min { w 1 , . . . , w K } and (9) is strictly satisfied 
by some x̄ , the inner approximation converges to (9) in the sense that 

f ∗
t r 

→ f ∗ as r → ∞ for any “fine” sequence { t r } r . 

Using the results from Theorem 1 , one can provide an SOCP ap- 
proximation of the TCC-ACOPF (8) , where each of the TCCs (6a) –
(6c) and (7a) – (7b) can be replaced with its counterpart as in (19), 
(12b) , and (12c) . 

3.2. Selection of interpolation points 

The quality of our SOCP approximation in Section 3.1 is 
related to the choice of the valid interpolation vector t = 

(t 0 , . . . , t M ) 
⊤ . Loosely speaking, a smaller maximum error E( t ) = 

max z∈ [0 , ∞ ) { 
(z) − ˆ 
t 
M (z) } is likely to lead to a better SOCP ap- 

proximation. The maximum error E( t ) depends on two factors: 
the number of interpolation points and where the interpolation 
points are positioned. Intuitively, more interpolation points (i.e., a 
larger M) often lead to more accurate approximation. Neverthe- 
less, a larger M results in more constraints in (19) and thus a 
higher computational cost. For a given δ, we are interested in how 

to choose the minimum number of interpolation points such that 
E( t ) ≤ δ. First, we provide the following lemma to help character- 
ize the maximum error of a linear interpolation. 

Lemma 5. Given two interpolation points b > a ≥ 0 , let ˆ 
a,b (·) 
be the linear interpolation of 
(·) such that ˆ 
a,b (a ) = 
(a ) and 

ˆ 
a,b (b) = 
(b) . The maximum error of the linear interpolation on 

[ a, b] is 

max 
z∈ [ a,b] 

{


(z) − ˆ 
a,b (z) 
}

= 


(

√ 

− ln (2 πs 2 ) 

)

− s 

(

√ 

− ln (2 πs 2 ) − a 

)

− 
(a ) , (22) 

where s = (
(b) − 
(a )) / (b − a ) . Moreover, define two functions 

E a (b) = Ē b (a ) := max 
z∈ [ a,b] 

{


(z) − ˆ 
a,b (z) 
}

. 

Then, E a (·) is an increasing continuous function on (a, ∞ ) and Ē b (·) 
is a decreasing continuous function on (−∞ , b) . 

Proof. The linear interpolation of 
(·) on [ a, b] can be expressed 
as ˆ 
a,b (z) = 
(a ) + s (z − a ) . Since 
(·) is strictly concave on 
[0 , ∞ ) , the maximum error on [ a, b] , i.e., 

max 
z∈ [ a,b] 

{ 
(z) − s (z − a ) − 
(a ) } , 

occurs at z ∗ ∈ (a, b) such that 
′ (z ∗) = s , i.e., (1 / 
√ 
2 π ) e −

(z ∗ ) 2 
2 = s . 

Therefore, z ∗ = 

√ 

− ln (2 πs 2 ) , and the maximum error is 
(z ∗) −
s (z ∗ − a ) − 
(a ) , which proves (22) . 

Now consider any 0 ≤ a < b < c. Since 
(·) is strictly concave 
on [0 , ∞ ) , 


(b) − 
(a ) 

b − a 
> 


(c) − 
(a ) 

c − a 
. 

Therefore, for any z ∈ (a, b] , 

ˆ 
a,b (z) = 
(a ) + 

(b) − 
(a ) 

b − a 
(z − a ) > 
(a ) 

+ 

(c) − 
(a ) 

c − a 
(z − a ) = ˆ 
a,c (z) . 

As a result, 

E a (b) = max 
z∈ (a,b) 

{


(z) − ˆ 
a,b (z) 
}

< max 
z∈ (a,b) 

{


(z) − ˆ 
a,c (z) 
}

≤ max 
z∈ [ a,c] 

{


(z) − ˆ 
a,c (z) 
}

= E a (c) . 
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That is, E a (·) is an increasing function. Similarly, we can show that 
Ē b (·) is decreasing. By (22) , it is clear that both E a (·) and Ē b (·) are 
continuous. �

Based on Lemma 5 , we propose Algorithm 1 to calculate the 

Algorithm 1: Interpolation points positioning. 

Data : approximation tolerance δ > 0 . 
Result : a valid interpolation vector t = (t 0 , . . . , t M ) 

⊤ such that 
E( t ) ≤ δ and M is minimal. 

m ← 0 , t 0 ← 0 ; 
while 
(t m ) < 1 − δ do 

use line search to find t m +1 ∈ [ t m , ∞ ) such that 
E t m (t m +1 ) = δ; 
m ← m + 1 ; 

M ← m ; 

positions of interpolation points. Given a tolerance δ of the max- 
imum error E( t ) , Algorithm 1 finds a PWL approximation of 
(·) 
with the least interpolation points. The minimality of the number 
of interpolation points is guaranteed by the following theorem. 

Theorem 2. For δ > 0 , let t = (t 0 , . . . , t M ) 
⊤ be the output of Algo- 

rithm 1 . Let ˆ 
t ′ 
M ′ (·) be a PWL approximation of 
(·) defined by a 

valid interpolation vector t ′ = (t ′ 0 , . . . , t 
′ 
M ′ ) 

⊤ . If E( t ′ ) ≤ δ, then M ′ ≥
M. 

Proof. We prove by contradiction. Suppose that M ′ < M. We first 
show that t ′ m ≤ t m for all m ∈ [ M ′ ] . Note that for any m ∈ [ M ′ ] , 
E t ′ 

m −1 
(t ′ m ) = max z∈ [ t ′ 

m −1 ,t 
′ 
m ] 

{ 
(z) − ˆ 
t ′ 
M ′ (z) } ≤ E( t ′ ) ≤ δ by Lemma 5 . 

As t ′ is a valid interpolation vector, t ′ 0 = 0 . Since 

E 0 (t 1 ) = E t 0 (t 1 ) = δ ≥ E( t ′ ) ≥ E t ′ 0 (t 
′ 
1 ) = E 0 (t 

′ 
1 ) 

and E 0 (·) is increasing on (0 , ∞ ) , we have t ′ 1 ≤ t 1 . Now suppose 
that t ′ m ≤ t m for some m ∈ [ M ′ − 1] . Then, 

E t ′ m (t m +1 ) = Ē t m +1 (t 
′ 
m ) ≥ Ē t m +1 (t m ) = E t m (t m +1 ) = δ ≥ E t ′ m (t 

′ 
m +1 ) , 

where the first inequality holds because Ē t m +1 (·) is decreasing on 
(−∞ , t m +1 ) . Since E t ′ m 

(·) is increasing on (t ′ m , ∞ ) , we have t ′ 
m +1 ≤

t m +1 . By induction, t 
′ 
m ≤ t m for all m ∈ [ M ′ ] . 

Since M ′ < M, t ′ 
M ′ ≤ t M ′ ≤ t M−1 . Therefore, 
(t M−1 ) ≥ 
(t ′ 

M ′ ) . On 

the other hand, since ˆ 
t ′ 
M ′ (z) = 
(t ′ 

M ′ ) for all z ∈ [ t ′ 
M ′ , ∞ ) , 

δ ≥ 
(z) − ˆ 
t ′ 
M ′ (z) = 
(z) − 
(t ′ M ′ ) ∀ z ∈ [ t ′ M ′ , ∞ ) . 

Taking z → ∞ , we have 
(t ′ 
M ′ ) ≥ 1 − δ. Therefore, 
(t M−1 ) ≥


(t ′ 
M ′ ) ≥ 1 − δ, which contradicts the assumption that 

Algorithm 1 does not terminate at M − 1 . �

It is worth noting that although our proposed PWL algorithm is 
tailored for the standard normal CDF in this paper, it can be gener- 
alized to approximate any other strictly monotone convex or con- 
cave functions that are bounded from at least one side. 

4. Computational experiments 

In this section, we implement the proposed TCC-ACOPF model 
and approximation from Theorem 1 on modified IEEE 30-bus and 
118-bus test systems. First, in Section 4.1 , we introduce the test 
systems, the real historical data that we collect, and the synthetic 
data that we create. Next, in Section 4.2 , we present computa- 
tional results to demonstrate the effectiveness of our proposed 
TCC-ACOPF model in comparison to the state-of-art methods. All 
computational experiments are performed on a PC with an Intel 
Core i7-7700 CPU and 16 GB RAM. We use JuMP in Julia ( Dunning, 
Huchette, & Lubin, 2017 ) to implement all of the models. Ipopt 

solver ( Wächter & Biegler, 2006 ) is used to solve the nonlinear 
deterministic ACOPF model (1) , and Gurobi 9.0 solver is used for 
solving the SOCP formulations. 

4.1. Data setting 

Our modified IEEE 118-bus system is based on the original 
IEEE 118-bus system available online at MATPOWER ( Zimmerman, 
Murillo-Sánchez, & Thomas, 2010 ), which includes 118 buses, 54 
thermal generators, and 186 transmission lines. The following 
modifications are made: the value of P̄ g for each g ∈ G is reduced 

by 30% and the values of D 
p 
i 

and D 
q 
i 

for each i ∈ B are increased 
by 10%. We also include 11 wind farms, which provide about 33% 
of the total demand, and their forecast power outputs are listed in 
Table 1 . Moreover, the standard IEEE 30-bus system has 30 buses, 6 
thermal generators, and 41 transmission lines, and it is also avail- 
able online at Zimmerman et al. (2010) . We will consider differ- 
ent number of wind farms (leading to different penetration lev- 
els of renewable energy) in our modified IEEE 30-bus system in 
Section 4.2.3 . In our computational experiments, we set the risk 
control parameters ǫp = ǫq = ǫv = ǫL in (8) and use a single risk 
parameter ǫ to denote all of them thereafter. 

We consider the renewable power generation forecast errors 
(i.e., ξξξ ) of the wind farms in the test systems to be uncertain. The 
real wind power outputs and the hour-ahead wind power fore- 
casts from Wind Integration National Dataset Toolkit of National 
Renewable Energy Laboratory (NREL) are analyzed to obtain histor- 
ical data on forecast errors ( Draxl, Hodge, Clifton, & McCaa, 2015 ). 
Note that, the wind power forecast errors are then scaled based on 
the wind power capacity. In addition to the historical data, we also 
generate synthetic data that can reflect skewness in the forecast er- 
ror distribution. Specifically, three synthetic datasets are generated 
and they are referred to as “Left-skewed,” “Normally distributed,”
and “Right-skewed” datasets, respectively, with each of them hav- 
ing a size of N = 20 , 0 0 0 data samples and |R| variates, where |R| 
represents the cardinality of set R , i.e., the total number of renew- 
able wind generators in our studied test systems. For each dataset, 
we create three groups of data samples (referred to as “Group 1,”
“Group 2,” and “Group 3” data samples) and merge them to create 
the entire dataset, as specified in the following: 

• First, we randomly create an |R| × |R| correlation matrix ρ . 
• Second, we create Group 1 data samples with size of N/ 2 . 

Each data sample follows a multivariate normal distribution 
N ( ̌µ1 , 0 . 1 ρ

⊤ ρ) , where each element of µ̌1 (i.e., μ̌1 r , ∀ r ∈ R ) 
is randomly generated within the interval [ −0 . 05 , 0 . 05] . That is, 
most data samples are around zero. 

• Third, we introduce a parameter ̟ ∈ (0 , 1) , which is used 
to control the skewness of the dataset, and create Group 2 
data samples with size of (N/ 2) ̟  . Each data sample follows 
a multivariate normal distribution N ( ̌µ2 / (1 − ̟ ) , ρ⊤ ρ) , where 
each element of µ̌2 is randomly generated within the interval 
[ −0 . 15 , −0 . 05] . That is, most data samples are below zero. 

• Fourth, we create Group 3 data samples with size of (N/ 2)(1 −
̟ ) . Each data sample follows a multivariate normal distribu- 
tion N ( ̌µ3 /̟ , ρ⊤ ρ) , where each element of µ̌3 is randomly 
generated within the interval [0.05,0.15]. That is, most data 
samples are above zero. 

For the modified IEEE 118-bus system with |R| = 11 wind 
farms, we set ̟ to be 0.7, 0.5, and 0.3 for creating the “Left- 
skewed,” “Normally distributed,” and “Right-skewed” datasets, re- 
spectively. 

For each of the real and synthetic datasets described above, 
we can fit it with a Gaussian distribution ( K = 1 ) and a GM dis- 
tribution with two components ( K = 2 ) separately, both of which 
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Table 1 

Hourly wind power forecast (MW). 

Bus i 3 8 11 20 24 26 31 38 43 49 53 

∑ 
g∈R i r 

p 
g (0) 70 147 102 105 113 84 59 250 118 76 72 

Fig. 2. Synthetic data alongside Gaussian and GM fits for forecast error of a wind farm. 

are used in our computational experiments, thereby obtaining nec- 
essary parameters therein. It leads to “Gaussian Fit” and “GM 

Fit” correspondingly for each dataset. For the Gaussian Fit, the 
mean vectors and covariance matrices are simply calculated from 

the data. For the GM Fit, the weighted means and covariance 
are obtained using the mvnormalmixEM package in R, which fits 
a multivariate GM distribution to the data via an expectation- 
maximization algorithm ( Benaglia, Chauveau, Hunter, & Young, 
2010 ). We take a renewable generator as an example, and show 

the fitting results to the synthetic forecast errors of this gener- 
ator based on the histogram of the data visually in Fig. 2 . We 
can observe that both GM and Gaussian distributions fit simi- 
larly to the “Normally distributed” dataset, but the GM distribu- 
tion fits much better for the “Left-skewed” and “Right-skewed”
datasets. 

4.2. Results and discussions 

We implement our proposed TCC-ACOPF model and approxima- 
tion approaches by considering (i) a Gaussian distribution ( K = 1 ) 
and (ii) a GM distribution with two components ( K = 2 ), leading 
to two specific models denoted by TCC-ACOPF-K1 and TCC-ACOPF- 
K2, respectively. Our approaches are compared with the one-sided 
chance-constrained model (denoted by “OCC-ACOPF”), where Lubin 
et al. (2019) assume that the active power, reactive power, and 
voltage limits are specified in one-sided chance constraints and 
the apparent flow constraints (7a) –(7b) are approximated by a TCC 
SOC formulation. The computational results are presented in the 
follow sequence: (i) comparisons are presented regarding the op- 
timality and violation probability of each approach, as shown in 
Section 4.2.1 ; (ii) sensitivity analyses are performed to verify the 
accuracy and computational efficiency of our proposed approach, 
as shown in Section 4.2.2 ; (iii) the scalability of our proposed ap- 
proach is discussed under various levels of renewable energy pen- 
etration, as shown in Section 4.2.3 ; and (iv) real case studies are 
provided to demonstrate the out-of-sample performance of the so- 
lutions generated by our proposed model and approaches, leading 
to real-world nonlinear ACOPF feasibility analyses in practice, as 
shown in Section 4.2.4 . 

4.2.1. Optimality and violation probability 

First, we compare the computational performance of OCC- 
ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2 over the synthetic data. 
The in-sample optimal values and out-of-sample violation proba- 
bilities are evaluated on the modified 118-bus system with |R| = 

11 wind farms. We set ǫ = 0 . 2 and obtain 10 optimal segments via 
Algorithm 1 by setting δ = 0 . 002 when performing the PWL ap- 
proximation. In addition, for each of the three synthetic datasets, 
we randomly select 5,0 0 0 data samples therein to fit a Gaussian 
distribution ( K = 1 ) and a GM distribution with two components 
( K = 2 ). We correspondingly solve all the three aforementioned 
models, recording the solutions and reporting the optimal values 
(represented by “Opt. Val. ($)” in Table 2 ). 

Based on the solution induced by a model, we further evaluate 
its quality over the remaining 15,0 0 0 data samples by calculating 
the maximum violation probability (represented by “Vio. Prob.” in 
Table 2 ) across all the nominal constraints in the model. Specif- 
ically, given an uncertainty realization and the obtained solution, 
we check whether each set of the nominal two-sided constraints 
on active power, reactive power, voltage, and power flow is vio- 
lated or not. For example, given an uncertainty realization ˆ ξξξ , an 
optimal solution ( p ∗g , α

∗
g ), and a generator g ∈ G, we check whether 

P g ≤ p g ( ̂  ξξξ ) − α∗
g 

∑ 

r∈R 
ˆ ξr ≤ P̄ g in (1b) is violated. By running eval- 

uation tests over 15,0 0 0 data samples, we can obtain the corre- 
sponding violation probability of this constraint (i.e., the number of 
times that this constraint is violated divided by 15,0 0 0). We then 
report the maximum violation probability across all of such two- 
sided nominal constraints enforced by chance constraints in each 
model, as shown in Table 2 . 

In terms of the optimal values, we can observe that there is 
no significant difference (within 5%) among the three models, irre- 
spective of which dataset is applied. This is mainly because there is 
no direct renewable generation cost in objective function (8a) , and 
accordingly the effect of renewable generation uncertainty appears 
to be small on the optimal cost. 

In terms of the maximum violation probability, we can observe 
that as compared to the other two models, the OCC-ACOPF is sub- 
ject to a relatively high violation probability. It indicates that a 
nominal constraint in ACOPF is likely to fail with a very high prob- 
ability (e.g., 43.1%), which is much higher than the pre-set risk 
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Table 2 

Performance on Optimality and Violation Probability with ǫ = 0 . 2 . 

Datasets OCC-ACOPF TCC-ACOPF-K1 TCC-ACOPF-K2 

Right-skewed Opt. Val. ($) 91289.2 92291.0 93003.1 

Vio. Prob. 0.431 0.286 0.178 

Normally distributed Opt. Val. ($) 89699.4 90081.2 90105.7 

Vio. Prob. 0.314 0.184 0.182 

Left-skewed Opt. Val. ($) 89568.1 90225.1 90282.4 

Vio. Prob. 0.378 0.233 0.182 

Fig. 3. Sensitivity analyses on the maximum violation probability with respect to 

ǫ. 

Fig. 4. Sensitivity analyses on the total cost with respect to ǫ. 

control parameter ǫ = 0 . 2 . In addition, while TCC-ACOPF-K1 clearly 
performs better than the OCC-ACOPF by ensuring less violation 
probability, it does not well account for the data skewness. In fact, 
the violation probabilities induced by TCC-ACOPF-K1 over the Left- 
skewed and Right-skewed datasets can be up to 23 . 3% and 28 . 6% , 
respectively, both of which are higher than the pre-set risk con- 
trol parameter ǫ = 0 . 2 . Finally, we can observe that TCC-ACOPF-K2, 
which considers a GM distribution with two components, signifi- 
cantly outperforms the above two models by providing the most 
robust solutions. The corresponding maximum violation probabili- 
ties under various datasets are all less than the pre-set risk control 
parameter ǫ = 0 . 2 . 

Next, we use the Right-skewed dataset to perform sensitivity 
analyses with respect to the value of ǫ, with results illustrated 
in Figs. 3–5 . Figure 3 shows that the maximum violation proba- 
bility guaranteed by the OCC-ACOPF model, which always exceeds 
the pre-set risk control parameter ǫ, is also very sensitive to ǫ. It 
indicates that the solution provided by OCC-ACOPF is not robust 
and may lead to unstable operations in practice. The blue curve 

Fig. 5. Sensitivity analyses on cost difference with respect to ǫ. 

representing TCC-ACOPF-K1 stays lower than the red curve repre- 
senting OCC-ACOPF and accordingly ensure less violation probabil- 
ity, but it is always above the neutral line representing the value 
of ǫ. It indicates that the solution provided by TCC-ACOPF-K1, al- 
beit further incorporating the TCCs, is not robust enough. In con- 
trast, the green curve representing TCC-ACOPF-K2 turns out to be 
very robust with respect to the risk parameter ǫ because the max- 
imum violation probability always stays below the neutral line, re- 
gardless of the specific value that ǫ takes. In short, TCC-ACOPF- 
K1 confirms the quality of our proposed TCC approach over the 
OCC approach by enforcing joint probabilistic bound on two-sided 
constraints, and TCC-ACOPF-K2 further confirms the advantages of 
adopting GM distributions over simple Gaussian distributions by 
considering skewness in the data, as illustrated in Fig. 2 . 

Furthermore, Fig. 4 shows the optimal total cost of the models, 
while the cost difference between TCC-ACOPF-K2 and OCC-ACOPF 
(in square-dotted blue) and that between TCC-ACOPF-K2 and TCC- 
ACOPF-K1 (in triangle-dotted red) are shown in Fig. 5 . We observe 
that as the risk parameter ǫ increases, (i) the total costs of all mod- 
els decrease because each model prepares less electrical generation 
to hedge against the decreasing risk; (ii) both cost differences de- 
crease as well due to the same reason. Both cost differences are 
relatively small (within 5% ) because the renewable generation un- 
certainty does not significantly affect the total generation cost, as 
there is no need to include renewable generation cost in the objec- 
tive function of each model. Nevertheless, as Remark 2 notes, more 
cost components can be considered in the objective function of 
model (1) , by which the cost differences may be larger. In addition, 
the consideration of renewable generation uncertainty does affect 
the reliability of the obtained solutions, as shown in Table 2 . Com- 
bining the results from Figs. 3, 4 , and 5 , we can observe that, in or- 
der to gain a solution with high reliability under the Right-skewed 
dataset, TCC-ACOPF-K2 is preferred because it accurately captures 
the possibility of electricity shortage, while inducing higher yet rel- 
atively similar costs. 
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Table 3 

Computational Time (seconds). 

Model ǫ (%) 

20 10 5 1 0.5 

ACOPF 2.30 1.54 2.08 2.33 1.95 

OCC-ACOPF 0.35 0.38 0.38 0.36 0.36 

TCC-ACOPF-K1 2.19 2.82 2.42 2.52 2.92 

TCC-ACOPF-K2 4.97 6.24 5.28 5.49 5.93 

Table 4 

Algorithm 1 vs. Uni-distance: # Pieces Required. 

δ 0.05 0.01 0.005 0.002 0.001 0.0 0 05 

Algorithm 1 3 6 7 10 14 19 

Uni-distance 4 8 11 17 23 33 

4.2.2. Computational efficiency 

We demonstrate the computational efficiency of our proposed 
models and other benchmark models using the Right-skewed 
dataset on the modified IEEE-118 bus system. We first report the 
computational times of the four models, i.e., deterministic ACOPF 
(1) , OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2, with respect 
to different values of ǫ, as shown in Table 3 . We observe that all 
four models can be solved very efficiently (within 10 seconds). The 
slight computational time increase for TCC-ACOPF-K2 is due to the 
relatively high number of linear segments in the PWL approxima- 
tion, i.e., M = 10 . 

Next, we focus on the effect of PWL approximation accu- 
racy on the efficiency of solution obtained from TCC-ACOPF-K2. 
As we mentioned in Section 3.2 , the PWL approximation error 
is controllable through the number of interpolation points and 
their positioning in the PWL approximation, and we proved that 
Algorithm 1 obtains the minimum number of interpolation points 
required for an approximation error δ when approximating the 
Gaussian CDF. To numerically demonstrate the significance of using 
Algorithm 1 , we compare it with the typical uni-distance algorithm 

used for PWL approximation. Different from Algorithm 1 , the uni- 
distance algorithm positions t 0 , . . . , t M such that t i − t i −1 = t j − t j−1 

for any i, j ∈ [ M] and i � = j. We first report the number of pieces 
required by each algorithm to reach the approximation error δ
in Table 4 . We have the following observations. (i) By increasing 
the approximation quality, i.e., reducing δ, both algorithms ratio- 
nally require more linear pieces. (ii) For given δ, Algorithm 1 re- 
quires significantly fewer linear pieces, as compared to the uni- 
distance algorithm. For instance, when δ = 0 . 001 , Algorithm 1 re- 
quires around 40% fewer pieces than the uni-distance algorithm. 
The demand of fewer pieces leads to significant reduction in com- 
putational time because fewer constraints are involved. 

We then perform sensitivity analyses to investigate how the 
approximation error δ affects the optimal value (represented by 
“Opt. Val. ($)” in Table 5 ) and computational time (represented by 
“CPU (seconds)” in Table 5 ) of model TCC-ACOPF-K2. In Table 5 , 
it is clear that more accurate PWL approximations (i.e., smaller 
values of δ) lead to higher-quality solutions for TCC-ACOPF-K2, 
while such increasing quality comes at the price of longer com- 
putational times. In practice, system operators can choose an ap- 
propriate value of δ based on practical considerations to reach a 
balance between solution quality and computational time. 

Table 6 

Hourly wind power forecast (MW). 

Farm g 1 2 3 4 5 

r 
p 
g (0) 70 147 102 150 160 

4.2.3. Scalability 

We evaluate the scalability of our proposed approach under 
various penetration levels of renewable energy. We compare the 
performance of the four models mentioned above: deterministic 
ACOPF (1) , OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2, over the 
IEEE 30-bus test system. In this system, we consider |R| = 3 , 4 , and 
5 wind farms, respectively, leading to 20% , 30% , and 40% of renew- 
able penetration levels. The forecast power outputs of all the five 
wind farms are described in Table 6 . 

To represent the uncertainty, we follow the process described 
in Section 4.1 to generate synthetic data samples with Left-skewed 
distributions, where the skewness parameter ̟ = 0 . 9 . We gener- 
ate 100 data instances, where each instance is generated follow- 
ing the process in Section 4.1 and has N = 20 , 0 0 0 data samples 
and |R| variates. Given one of the four models above, we follow 

the experiments in Section 4.2.1 to first obtain its in-sample opti- 
mal value and out-of-sample violation probability for each of the 
100 data instances, and then report the average result in Table 7 . 
In Table 7 , the column “Problem Setting” describes how the wind 
farms are installed, the columns “Opt. Val. ($)” and “Vio. Prob.”
have the same meaning with those in Table 2 , and the column 
“CPU (seconds)” represents the average computational time for the 
in-sample tests. 

We have the following observations. First, as the renewable 
penetration level increases, the total generation cost of the dis- 
patchable thermal generators decreases for all the four models be- 
cause the thermal generators need to produce less electricity when 
more renewable energy is available. Second, all the models can be 
efficiently solved in less than one second, and the computational 
times are similar for all the models under different penetration 
levels. Third, when the penetration level is fixed, the optimal ob- 
jective values of the four models are similar. Fourth, with a slightly 
higher generation cost and longer computational time, the model 
TCC-ACOPF-K2 can generate solutions that meet the violation prob- 
ability requirement (i.e., ≤ ǫ = 0 . 2 ) under different penetration lev- 
els. Specifically, it is the only model that can do so. Meanwhile, we 
observe that the model TCC-ACOPF-K2 performs better than the 
model TCC-ACOPF-K1, further indicating the benefits of adopting 
a GM distribution based on our proposed TCC models. Overall, the 
results demonstrate the effectiveness of our proposed approach in 
dealing with the increasing renewable energy penetration. 

4.2.4. Real case studies 

We perform case studies on the modified IEEE 118-bus test 
system using existing historical data in practice to further com- 
pare the computational performance of four models: deterministic 
ACOPF (1) , OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2. Specif- 
ically, we evaluate how the solutions to the four models perform 

under different uncertainty realizations. To that end, we first take 
5,0 0 0 data samples from the real-world dataset for each wind farm 

location, fit them to the corresponding distribution of the uncer- 
tain forecast error for each model, and obtain certain parameters 

Table 5 

Effect of PWL Function on the Solution Quality of TCC-ACOPF-K2. 

δ 0.05 0.01 0.005 0.002 0.001 0.0 0 05 

Opt. Val. ($) 98120.3 93263.8 93018.2 93003.3 92956.8 92951.9 

CPU (seconds) 3.8 4.1 4.4 4.8 8.9 14.2 
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Table 7 

Performance on Scalability with ǫ = 0 . 2 . 

Problem Setting Model Numerical Results 

Opt. Val. ($) Vio. Prob. CPU (seconds) 

3 Farms: { 1 , 2 , 3 } at buses: { 2 , 7 , 30 } ACOPF 484.80 — 0.14 

OCC-ACOPF 484.80 0.24 0.06 

TCC-ACOPF-K1 484.82 0.21 0.16 

TCC-ACOPF-K2 484.82 0.19 0.42 

4 Farms: { 1 , 2 , 3 , 4 } at buses: { 2 , 7 , 17 , 30 } ACOPF 413.50 — 0.14 

OCC-ACOPF 413.58 0.22 0.05 

TCC-ACOPF-K1 413.77 0.21 0.19 

TCC-ACOPF-K2 414.15 0.19 0.52 

5 Farms: { 1 , 2 , 3 , 4 , 5 } at buses: { 2 , 7 , 17 , 24 , 30 } ACOPF 340.60 — 0.17 

OCC-ACOPF 340.65 0.25 0.04 

TCC-ACOPF-K1 343.47 0.24 0.24 

TCC-ACOPF-K2 345.45 0.18 0.46 

(e.g., mean, variance, and weighted means) of the distribution for 
each model. Then, we solve the four models to obtain the opti- 
mal solution to each model. Given an optimal solution obtained 
from each model, denoted by ( p ∗, q ∗, v ∗, θθθ ∗, ααα∗, γγγ ∗) , we evaluate 
the out-of-sample performance of this solution over another 2,0 0 0 
data samples. Specifically, given one of the 2,0 0 0 data samples, i.e., 
a given uncertainty realization ˆ ξξξ , we perform the out-of-sample 
evaluation by solving the following re-dispatch model, where the 
obtained solution ( p ∗, q ∗, v ∗, θθθ ∗, ααα∗, γγγ ∗) is given as input parame- 
ters, to evaluate the feasibility of this obtained solution. 

min 
∑ 

(i, j) ∈L 

s̄ L i j + 

∑ 

g∈G 

( s 
p 
g + s̄ 

p 
g + s 

q 
g + s̄ 

q 
g ) + 

∑ 

i ∈B 

( s v i + s̄ v i ) (23a) 

s.t. P g − s 
p 
g ≤ p g ( ̂  ξξξ ) ≤ P̄ g + s̄ 

p 
g , ∀ g ∈ G, (23b) 

Q 
g 
− s 

q 
g ≤ q g ( ̂  ξξξ ) ≤ Q̄ g + s̄ 

q 
g , ∀ g ∈ G, (23c) 

v i − s v i ≤ v i ( ̂  ξξξ ) ≤ v̄ i + s̄ v i , ∀ i ∈ B, (23d) 

(

e 
p 
i j 
( ̂  ξξξ ) 

)2 

+ 

(

e 
q 
i j 
( ̂  ξξξ ) 

)2 

≤
(

Ī i j + s̄ L i j 

)2 

, ∀ (i, j) ∈ L , (23e) 

(1f), (1g) 

r 
q 
g ( ̂  ξξξ ) = γ ∗

g r 
p 
g ( ̂  ξξξ ) , ∀ g ∈ R , (23f) 

p g ( ̂  ξξξ ) = p ∗g − α∗
∑ 

g∈R 

ξg ∀ g ∈ G, (23g) 

q g ( ̂  ξξξ ) = q ∗g , ∀ g ∈ G i , i ∈ B pq , (23h) 

v i ( ̂  ξξξ ) = v 
∗
i , ∀ i ∈ B pv ∪ B 

v θ , (23i) 

s 
p 
g , ̄s 

p 
g , s 

q 
g , ̄s 

q 
g , s 

v 
i , ̄s 

v 
i , ̄s 

L 
i j ≥ 0 . (23j) 

The above re-dispatch model is essentially a modified nonlinear 

ACOPF (1) , in which nonnegative slack variables ( s 
p 
g , ̄s 

p 
g ) , ( s 

q 
g , ̄s 

q 
g ) , 

( s v 
i , ̄s 

v 
i ) , and s̄ 

L 
i j are added to measure constraint violations and the 

original variables in (1) are fixed to their optimal values through 
the affine response control policies (see Section 2.2 ). Here the ob- 
jective function (23a) is to minimize the total amount of viola- 
tions (i.e., the summation of all slack variables). Constraints (23b), 

Table 8 

Out-of-Sample Performance over Real Data. 

Model I p I q I v I l 

ACOPF 6.9 (31.2) 93.5 (285.2) 0.6 (1.4) 58.6 (185.3) 

OCC-ACOPF 2.1 (13.1) 26.7 (109.1) 0.2 (0.5) 15.5 (56.3) 

TCC-ACOPF-K1 0.6 (2.6) 7.2 (33.7) 0.2 (0.4) 8.9 (37.1) 

TCC-ACOPF-K2 0.2 (1.8) 6.4 (24.2) 0.1 (0.2) 5.1 (25.3) 

(23c), (23d) , and (23e) measure the violation of two-sided bounds 
through slack variables. Constraints (23g), (23h) , and (23i) fix the 
values of the explicit decision variables at the given optimal so- 
lution ( p ∗, q ∗, v ∗, ααα∗, γγγ ∗) . For instance, (23g) fixes the amount of 
active power generation from each thermal generator according 
to the AGC power response policy mentioned in (5) . Note that, 
to evaluate the solution to the deterministic ACOPF (1) , which 
does not have the participation factor ααα as decision variable, we 
manually set α∗

g = U (g) / 
∑ 

g∈G U (g) for each g ∈ G, where U(g) = 

max { ̄P g − P g , P g − P g } , representing unused capacity of generator g ∈ 

G. 
When the re-dispatch model leads to an optimal value at zero, 

i.e., no violation, then the given solution ( p ∗, q ∗, v ∗, θθθ ∗, ααα∗, γγγ ∗) is 

feasible to the corresponding given uncertainty realization ˆ ξξξ under 
the existing dispatchable resources. Otherwise, when some slack 
variables take positive values, the given solution is infeasible to the 
given uncertainty realization. We accordingly introduce four “im- 
balance metrics” to measure the violations corresponding to each 
of (1b) –(1f) : I p = 

∑ 

g∈G ( ̄s 
p 
g + s 

p 
g ) , I q = 

∑ 

g∈G ( ̄s 
q 
g + s 

q 
g ) , I v = 

∑ 

i ∈B ( ̄s 
v 
i + 

s v 
i ) , and e i j = 

∑ 

i j∈L s̄ 
l 
i j 
. The results are reported in Table 8 , where 

we report the average value and standard deviation (i.e., the num- 
ber within a parentheses) of each imbalance metric over the 2,0 0 0 
data samples. From the table, we can observe that while the 
chance-constrained models outperform the deterministic one and 
the TCC-based models outperform the OCC-based one, the TCC- 
ACOPF-K2 model based on our proposed approaches provides the 
smallest values over all of the four metrics. That is, TCC-ACOPF- 
K2 is exceptionally robust by providing solutions feasible to more 
uncertainty realizations. Such high reliability demonstrates the sig- 
nificance of our proposed model and approaches, which consider 
two-sided chance constraints for the ACOPF problem under uncer- 
tainty and include more accurate distributional information to rep- 
resent the uncertainty by adopting GM distributions. 

5. Conclusion 

As higher levels of renewable electricity penetrate the power 
system, the increasing uncertainty in the power system can cause 
adverse power interruptions, power outages, and network instabil- 
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ity. To secure the smooth operation of the power system, more 
accurate attention to these uncertainties is necessary. In this pa- 
per, we propose a fully two-sided chance-constrained AC optimal 
power flow formulation. This TCC-ACOPF guarantees (with a pre- 
defined probability) that both upper and lower bounds on ac- 
tive and reactive power generations, voltage, and power flows si- 
multaneously hold under uncertainty. In our formulation and to 
model the effect of uncertainty, we adapt a GM distribution to 
represent the forecast errors. Hence, we address the forecast er- 
rors much more accurately, especially in cases where the data are 
skewed and the common normality assumption fails. This novel 
TCC-ACOPF problem, however, is nonlinear and nonconvex; hence, 
we propose an SOC tractable approximation for it. To do so, we 
first provide a convex approximation of a TCC under GM distribu- 
tion, which is also exact when a sufficient condition is satisfied. 
The resulting convex formulation is nonlinear; hence, it is next 
efficiently approximated by a set of SOC constraints using PWL 
approximation of the CDF function. We prove that the resulting 
SOC formulation enjoys asymptotic convergence properties. More- 
over, the resulting tractable formulation becomes more accurate 
if a high number of well-positioned segments construct the PWL 
function. On the other hand, a higher number of segments also 
leads to computational difficulties. Therefore, to speed up our so- 
lution procedure, we also provide an algorithm to optimally select 
the PWL segments. A proof of optimality of the algorithm is also 
included. 

In case studies on modified IEEE 30-bus and IEEE 118-bus test 
systems, we show that our TCC-ACOPF formulations achieve higher 
quality optimal solutions compared to their OCC-ACOPF and de- 
terministic OPF benchmarks. Moreover, it is shown that our for- 
mulations are significantly more robust against uncertainty, espe- 
cially under high penetration levels of renewable energy, while be- 
ing computationally tractable. In particular, we observe that the 
utilization of GM distribution with two-sided chance constraints 
in TCC-ACOPF-K2 leads to maximum robustness both on synthetic 
and real historical datasets. We also show that our proposed PWL 
δ−approximation algorithm can successfully speed up our method- 
ology by the efficient selection of PWL segments, hence, making 
our methodology suitable for large-scale real-world applications. 

This research can be extended in different directions. First, the 
objective function of our generic ACOPF model (1) includes only 
the generation cost of dispatchable thermal generators. It would be 
interesting to consider more cost components (e.g., ancillary ser- 
vices costs) in the objective function, as additional practical cost 
considerations may be included in the industry. Second, our cur- 
rent experiments consider the value of K at 1 and 2. More results 
that demonstrate the benefits of adopting GM distributions can be 
obtained by increasing the value of K. Indeed, a larger K helps bet- 
ter represent the distribution of the uncertainty. We leave these for 
future research. 
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