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ABSTRACT

Leaf spectroscopy provides an efficient way of predicting foliar functional traits, commonly using physically- and
empirically-based models. However, the generality of both models has not been fully investigated, and it is not
clear if inversion strategies of physically-based models can be transferred across datasets. In this study, we
evaluated the generality of leaf spectroscopic models for predicting key foliar functional traits and compared the
performance of physically- and empirically-based approaches. Two extensive datasets compiling a total of 3861
foliar samples were collected from 24 field sites in eastern United States and south China. The leaf radiative
transfer model PROSPECT was coupled with COSINE (PROCOSINE) to retrieve foliar traits from leaf bidirectional
reflectance factor (BRF). A commonly used empirically-based model, partial least squares regression (PLSR) was
performed as a comparison. Results showed that both PROSPECT and PROCOSINE can accurately estimate leaf
mass per area (LMA) and equivalent water thickness (EWT). Inversion strategies including the selection of
optimal spectral domains and the use of prior information (IS3) greatly improved the estimation accuracy of leaf
nitrogen, leaf chlorophyll a + b and carotenoids. The estimation accuracies were similar when transferring
inversion strategies across datasets, indicating a high level of transferability of physically-based models. PLSR
and interval PLSR (iPLSR, via feature selection) could predict foliar traits with high accuracies when cross-
validation was performed, and iPLSR achieved higher accuracies. But both the empirical approaches demon-
strated low transferability when applied to an independent dataset. Our findings highlight the importance of
generalized traits models with respect to development and calibration of leaf radiative transfer model, as well as
incorporating representative samples in training empirical models. This study can help us to better understand
the variation of foliar traits among and within species, their response to environmental change, as well as plant
biodiversity.

1. Introduction

Plant functional traits refer to the morpho

and acclimation of plants to environment (Pérez-Harguindeguy et al.,
2013; Reich, 2014; Wright et al., 2004). Foliar functional traits play an
logical, biochemical and important role in ecosystem processes and functions such as nutrient

physiological properties of plants which determine the establishment, cycling and gross primary productivity (Cornwell et al., 2008; Schimel
growth, reproduction and survival of plants, and reflect the adaptation and Schneider, 2019; van Bodegom et al., 2014), and therefore are
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considered as essential biodiversity variables and have been used to
parameterize Earth system models (Pereira et al., 2013; Rogers et al.,
2017; Skidmore et al., 2021). The most studied foliar functional traits
include leaf mass per area (LMA), leaf water content (also known as
equivalent water thickness, EWT), leaf nitrogen (N), phosphorus (P) and
potassium (K), and leaf pigments (chlorophyll a + b, carotenoids) (Diaz
et al., 2016; Ustin et al., 2009; Wright et al., 2004). LMA and N are often
used to define the “leaf economics spectrum” which reflects the trade-off
between resource acquisition and allocation (Reich et al., 1997; Wright
etal., 2004). Leaf water transports nutrients within plants and is of great
importance for photosynthesis, respiration and transpiration (Ustin
et al., 2012). P and K are key macro nutrients for plant growth and
metabolism (Taiz and Zeiger, 2010). Leaf pigments play an essential role
in harvesting light for photosynthesis and dissipating excess light to
provide photoprotection under high illumination (Croft and Chen,
2018).

Traditionally, foliar traits are collected through field sampling and
laboratory chemistry analysis, which is time-consuming and expensive.
In contrast, leaf spectroscopy provides an efficient way of determining
foliar traits (Féret et al., 2021; Serbin et al., 2019; Wang et al., 2020;
Yang et al., 2016). In leaf spectroscopy, physically- and empirically-
based approaches are two categories of methods used to link foliar
traits to leaf spectra (Féret et al., 2019; Li et al., 2018; Shiklomanov
et al., 2016). The physically-based approach relies on the inversion of
radiative transfer models (RTMs). Based on physical laws, RTMs
describe the absorption, scattering and reflection processes of light
within leaves (Féret et al., 2019; Jacquemoud and Baret, 1990). Of all
radiative transfer models, PROSPECT is the most widely used. It simu-
lates the leaf directional-hemispherical reflectance (DHR) and trans-
mittance (DHT) spectra within 400-2500 nm based on the content per
surface unit of a set of chemical constituents characterized by a specific
absorption coefficient, and a structure parameter to account for scat-
tering (Feret et al., 2008; Jacquemoud and Baret, 1990).

The physically-based approach generally shows a stronger robust-
ness and transferability than the empirically-based approach (Darvish-
zadeh et al., 2008; Féret et al., 2019). However, limitations still exist in
this approach. First, the foliar traits that can be estimated by the
physically-based approach are limited to the input parameters of RTMs.
For instance, the leaf constituents included in PROSPECT are EWT, LMA,
chlorophyll a + b content (C,), carotenoids (Cyc), anthocyanins,
nitrogen-based proteins and carbon-based constituents (Féret et al.,
2017, 2021; Feret et al., 2008; Jacquemoud and Baret, 1990). Second,
the estimation accuracy of physically-based approach varies among
constituents and several inversion strategies have been proposed to
improve the performance of model inversion, such as the incorporation
of prior information, the selection of optimal spectral domains, and the
application of ecological constrains (Combal et al., 2003; Darvishzadeh
et al., 2008; Féret et al., 2021; Spafford et al., 2021; Yebra and Chuvieco,
2009). However, the prior information, optimal spectral domains and
ecological constrains found or used in these studies often vary with
datasets (Darvishzadeh et al., 2008; Jurdao et al., 2013; Yebra and
Chuvieco, 2009). In other words, there is still no consensus on what and
how inversion strategies should be applied, and it is unclear if these
inversion strategies are transferable across datasets.

Finally, intensive field measurements of leaf DHR and DHT spectra
are usually inaccessible due to the high cost of the integrating sphere
and long measurement time. A new double integrating sphere provides a
more efficient way of measuring DHR and DHT, but there is a compro-
mise between measurement time and data accuracy (Hovi et al., 2018;
Mottus et al., 2017). Leaf bi-directional reflectance factor (BRF)
measured using a leaf contact probe can be an alternative with lower
cost, higher signal-to-noise ratio and easier portability during field data
collection (Li et al., 2018, 2019; Sims and Gamon, 2002; Yang et al.,
2016). BRF may diverge from DHR (Bousquet et al., 2005; Jay et al.,
2016; Li et al., 2018, 2019; Maccioni et al., 2001), because leaf surface
may include waxes or trichomes interacting with light and resulting in
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directional effects such as specular reflectance or enhanced scattering.
Several studies have shown that a replacement of DHR with BRF in the
PROSPECT model inversion can lead to a poor accuracy in trait esti-
mations (Li and Wang, 2011; Ma et al., 2012). To solve this problem, Jay
et al. (2016) developed the COSINE (ClOse-range Spectral ImagiNg of
1Eaves) model to relate leaf DHR to BRF. By coupling PROSPECT and
COSINE (the coupled model is called ‘PROCOSINE’), previous studies
have showed that foliar traits (Cap, EWT and LMA) in crops (e.g., wheat
and rice) can be estimated from leaf BRF with a high accuracy (Fu et al.,
20205 Li et al., 2018, 2019; Wang et al., 2021). However, it is unclear if
PROCOSINE can estimate foliar traits across more diverse plant species.

The abovementioned facts make it challenging for ecologists to apply
the physically-based approach to estimate foliar traits. In this sense,
empirical approaches represent interesting alternative methods for trait
estimation due to the ease of implementation and no limitation for foliar
traits (Burnett et al., 2021; Serbin et al., 2019; Wang et al., 2019). The
empirically-based approach aims to establish statistical models between
foliar traits and leaf spectra, which include ordinary least squares
regression (OLSR) (Féret et al., 2011; Li et al., 2019; Wang et al., 2016),
stepwise linear regression (Grossman et al., 1996; Wang et al., 2015b),
partial least squares regression (PLSR) (Martin et al., 2008; Nakaji et al.,
2019; Wang et al., 2020), and machine learning algorithms such as
supporting vector machine (SVM), gaussian process regression (GPR),
and convolutional neural network (CNN) (Féret et al., 2019; Pullanagari
et al., 2021; Verrelst et al.,, 2012). However, the empirically-based
approach is often criticized for its poor transferability across sites, spe-
cies and dates (Nakaji et al., 2019; Yang et al., 2016), because the
models are driven by the training data. Serbin et al. (2019) showed that
LMA could be predicted across different biomes with a high accuracy
when building statistical models with the data collected from a wide
range of sites, species and dates. However, whether such an approach
applies to other foliar traits is still unclear.

Therefore, a comprehensive comparison of physically- and
empirically-based approaches is needed to evaluate the model perfor-
mance and transferability in predicting foliar traits, which will provide
helpful guidance for selecting the optimal approach. In this study, we
aim to assess the generality of leaf spectroscopic models for predicting
key foliar functional traits from leaf BRF measurements with both
physically- and empirically-based approaches. We collected two exten-
sive datasets from 20 temperate and subtropical sites in eastern United
States (US) and four subtropical and tropical sites in south China (CN).
US and CN datasets represented foliar samples from different geographic
areas (North America vs. East Asia), plant functional types (deciduous
vs. evergreen) and plant species. These samples covered a wide range of
geographic areas, species, light conditions, and growth periods. Thus,
the two datasets provided a great opportunity to evaluate the generality
of leaf spectroscopic models, i.e., the model performance when applied
to an independent dataset (Martin et al., 2008; Serbin et al., 2019). Our
specific objectives are:

(1) to test the applicability of the physically-based approach, i.e.,
coupled PROSPECT and COSINE, in predicting foliar traits using
leaf bidirectional reflectance;

(2) to evaluate the ability of various inversion strategies in improving
leaf trait estimations and their transferability across datasets;

(3) to assess the model performance and transferability of the
empirically-based approach.

2. Materials and methods
2.1. Study sites and field sampling

Two datasets of foliar samples were collected from a wide range of
geographic areas, species, light conditions and growth periods. One was

from the subtropical, temperate forest and grass ecosystems in eastern
United States (hereafter referred to as “US”), and the other from the
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subtropical and tropical forests in south China (hereafter referred to as
“CN”). Details of the sample sizes, plant species, sampling dates and field
sites are summarized in Tables 1 and S1 — S2. The sampling locations of
each dataset are shown in Fig. 1.

The US dataset is composed of foliar samples from 19 field sites
across seven NEON domains and foliar samples from Madison, Wis-
consin (Chlus, 2020; Wang et al., 2020) (Fig. 1). NEON (National
Ecological Observation Network) is a continental-scale observation fa-
cility collecting open access ecological data for monitoring ecosystem
changes and responses to environment (Kampe et al., 2010; Schimel
et al., 2007). The NEON data were collected during the peak growth
season of 2017. Foliar samples included mature leaves from both the
sunlit top and the lowest reachable shade branches of each individual
tree or shrub, as well as leaves from grasses and forbs. The Madison
subset was collected from May to November in 2016 to capture the
seasonal variations in foliar traits. Sunlit and shade foliar samples were
collected from over 100 species such as broadleaf trees, graminoids,
forbs and vine species.

The CN dataset was collected from four subtropical and tropical
forests sites located within three provinces in south China, including
Guangxi, Guangdong and Hainan (Fig. 1). Field work was conducted
from July to October in 2020, and from May to July in 2021 (Table 1).
Samples were mainly from broadleaf trees with a small number of shrubs
(21 out of the 360 samples). Leaf samples were collected from sunlit top
of canopy branches of trees for all sites except the Guangxi site. At this
site, samples were collected from the top, middle and bottom of the
canopy to capture the vertical profile of foliar traits.

Fresh leaf spectra were measured on foliar samples using an ASD
FieldSpec 3 spectrometer (ASD Inc., Boulder, USA) coupled with a plant
contact probe with an external light source. The instrument was first
optimized, and dark current was automatically corrected. A spectralon
99% white reference was then measured to obtain the leaf bidirectional
reflectance factor (BRF). Ten readings were averaged per measurement
(of sample and white reference). The integrating time was set to 1 s. One
spectrum was made on one place of the adaxial side of each leaf with a
black background by avoiding the main veins. The leaf samples were
measured onsite within three hours upon collection. The measurement
protocol was consistent for all field campaigns. After leaf BRF mea-
surements, each fresh leaf was weighted for fresh weight (FW, g) using a
digital scale (precision 0.001 g) and was scanned for leaf area (LA, cm?)
using a flatbed scanner (Epson, Nagano, Japan). Then, the foliar samples
were dried at 65 °C for at least 72 h and were measured for dry weight
(DW, g). Equivalent water thickness (EWT, mg/cmz) was calculated as
(FW-DW)/LA. Leaf mass per area (LMA, mg/cmz) was calculated as DW/
LA.

A subset of foliar samples was flash frozen in the field in liquid

Table 1

Summary of the field sites, sampling dates, and number of samples and species.
CN: south China; US: eastern United States. The values in brackets indicate the
number of samples and species measured for equivalent water thickness (EWT)
and leaf mass per area (LMA) in the US extensive dataset. The NEON site codes
and names are listed in Fig. 1. The coordinate, climate, vegetation type of each
site are listed in Table S1. The sampled species of each dataset are listed in
Table S2.

Dataset  Field site Sampling dates Number of Number of
samples species
CN Heshan Sep.-Oct. 2020; 196 34
May 2021
Liuzhou Jul. 2020 39 2
Shenzhen Nov. 2021 24 18
Wanning Jul. 2021 101 53
Total 360 97
Us 19 NEON May-Oct. 2017 111 (3498) 76 (178)
sites
Madison May-Nov. 2016 273 121
Total 384 (3498) 186 (178)
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nitrogen, and was later analyzed for pigments including leaf chlorophyll
a + b content per surface unit (Cap, pg/cm?) and carotenoid content per
surface unit (Cye, pg/cm?) using the high-performance liquid chroma-
tography (HPLC, Agilent 1200 Series; Agilent Technologies) (Kothari
et al., 2018; Schweiger et al., 2018). Another subset of foliar samples
was oven-dried, ground, and then sent for chemistry analysis of nitrogen
concentration (Npas, mg/g). Nitrogen content (Nyrea, 8/ m?) was
calculated using LMA (Ngrea = Niass X LMA). It should be noted that the
pigment analysis of the CN samples was different from that of the US
samples. In the case of CN, five leaf discs (~ 1.414 cm?) were obtained
from a leaf sample and flash frozen in the field by liquid nitrogen. In
laboratory, the leaf discs were ground in liquid nitrogen and incubated
in 95% ethanol (v/v) to determine C,, and Cy. using the equations in
Lichtenthaler (1987).

As summarized in Table 1, the NEON dataset includes 3498 leaves
measured for EWT and LMA, 111 samples for foliar pigments and ni-
trogen. In the Madison dataset, 273 leaves were collected for EWT, LMA,
foliar pigments and nitrogen. In the CN dataset, 360 foliar samples were
collected for LMA, EWT, nitrogen and foliar pigments.

2.2. The physically-based approach

2.2.1. The PROCOSINE model inversion

The PROCOSINE model results from the coupling of PROSPECT and
COSINE models. Here, we used two versions of the PROSPECT model.
The PROSPECT-D model (Féret et al., 2017) simulates DHR and DHT
from a set of leaf biophysical descriptors, including a refractive index,
the leaf structure parameter (Ngyyct), Cabs Cxe, EWT, LMA, the leaf
anthocyanin content (Capt), and their specific absorption coefficients.
The refractive index and specific absorption coefficients are fixed values
in the model. The PROSPECT-PRO model (Féret et al., 2021) simulates
DHR and DHT from the same set of leaf biophysical descriptors, except
that LMA is divided into two distinct constituents, the leaf protein
content (PROT) and leaf carbon-based constituents (CBC), which
combine cellulose, lignin, and other structural and non-structural car-
bohydrates. Then the DHR simulated with PROSPECT-D and
PROSPECT-PRO over the visible to shortwave infrared (VSWIR) domain
from 400 nm to 2500 nm is expressed as in Egs. (1) and (2).

DHR;;, p = PROSPECT — D(Nyuer; Cab, Cre, EWT, LMA) [6h)
DHR iy, pro = PROSPECT — PRO(Nyyuer, Cab, Cxe, EWT, PROT,CBC)  (2)

where DHRg;in, p is the DHR simulated with PROSPECT-D, DHRgim, pro is
the DHR simulated with PROSPECT-PRO, Ngyct, Cab, Cxe; EWT, LMA,
PROT and CBC are the leaf structure parameter (unitless), leaf chloro-
phyll a + b content (ug/cm?), leaf carotenoids content (jg/cm?), leaf dry
matter per area (mg/cmz), leaf protein content (mg/cmz) and leaf
carbon-based constituents content (mg/cm?). Specifically, PROSPECT-D
was used to estimate Cap, Cxc, EWT and LMA, and PROSPECT-PRO was
used for predicting PROT.

PROCOSINE simulated BRF from DHR simulated with any version of
PROSPECT, and three additional parameters corresponding to leaf
orientation and a specular term (Jay et al., 2016; Li et al., 2018) (Eq.
(3)):

BRE,, — cosb;
cosb,

(DHR i + bypec) ®3)

where 0; and 6; are the light incident angle (angle between the light
source and the normal to the leaf), and illumination zenith angle,
respectively, and bg,. is a wavelength-independent specular term
(unitless) corresponding to the difference between leaf BRF and DHR
(Bousquet et al., 2005; Jay et al., 2016; Li et al., 2018).

The inversion of PROCOSINE involves the optimization of model
parameter vector € by minimizing the difference between the measured
and modeled leaf BRF (Eq. (4)):
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Fig. 1. Location of field sites with sample collection: (a) eastern United States; (b) south China.
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=

where the model parameter vector § combines the set of leaf biophysical
descriptors corresponding to the PROSPECT version in use and bgpec, 41
and 4, represent the wavelength range used for model inversions;
BRFpes(2) is the bidirectional reflectance factor measured at wavelength
A; BRFgim(A, 0) is the leaf bidirectional reflectance factor at wavelength A,
which is simulated by PROCOSINE with model parameters 6 (Egs. (1)-
(3)). Here we used a simplified version of PROCOSINE, as the geometry

of acquisition defined by 6; and 6; was set to 15° for all leaves.

The Matlab code of PROSPECT-PRO was downloaded from https://
gitlab.com/jbferet/prospect_pro_matlab. The optimization was per-
formed using the function fminsearchbnd in Matlab (The MathWorks,
Inc.). The optimization range of foliar traits (Cap, Cxc, EWT, LMA, PROT,
and CBC) was determined by in situ measurements (see Table 2). To
estimate leaf nitrogen content (Nyyea, mg/cmz), ascale factor of 4.43 was
applied to leaf protein content (PROT): Nyrea = PROT/4.43 (Yeoh and
Wee, 1994).

Table 2

The range of each leaf parameter used in the coupled PROSPECT (-D or -PRO) and COSINE.
Parameter Abbreviation Unit Initial value Minimum Maximum Maximum

Us) (CN)

Leaf structure Nstruet - 1.5 0.5 3.5 3.5
Chlorophyll a + b Cab pg/cm? 40 0.5 120 90
Carotenoids Cye ng/cm? 10 0.5 25 20
Anthocyanin Canth g/cm? 0.1 0 20 20
Equivalent water thickness EWT mg/cm? 10 1 60 30
Leaf mass per area LMA mg/cm2 10 1 30 30
Protein PROT mg/cm? 1 0.1 3 3
Carbon-based constituents CBC mg/cm? 9 0.9 27 27
Specular term bspec - 0.2 -0.2 0.6 0.6
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2.2.2. lIterative optimization: inversion strategies

Various inversion strategies have been proposed to reduce the un-
certainty in parameter estimations such as prior information, the se-
lection of optimal spectral domain, and ecological constraints using
empirical relationships to eliminate unrealistic combinations of pa-
rameters (Combal et al., 2003; Darvishzadeh et al., 2008; Jurdao et al.,
2013; Yebra and Chuvieco, 2009). Here, we assessed the performance of
three inversion strategies (hereafter referred to IS1-3):

(1) using the full spectrum without any prior information;

(2) using the optimal spectral domains reported by previous studies
(Feéret et al., 2019, 2021; Spafford et al., 2021) with prior infor-
mation on Nsyrycr and bgpec;

(3) selecting optimal non-contiguous spectral domains from US and
CN datasets following the procedure described in Féret et al.
(2021) with prior information on Nyryce and bgpec.

It should be noted that we did not identify optimal spectral domains
by using the whole US dataset when testing inversion strategy IS3, due to
the high computation time. Instead, we applied inversion strategy IS3 on
a subset of US foliar samples (n = 384) with concurrent measurements of
ten foliar traits. Then, we applied the selected optimal spectral regions to
predict EWT and LMA for the US extensive dataset with 3498 mea-
surements of EWT and LMA. In this way, we could assess if the optimal
spectral domains obtained from a subset of the dataset can be applied to
the whole dataset.

In IS1, the full spectrum was simply applied to the cost function to
estimate the foliar traits, that is, .y = 400 nm and A, = 2500 nm in Eq.
(4). In IS2, the optimal spectral domains identified by Féret et al. (2021,
2019) and Spafford et al. (2021) were applied to estimate the foliar
traits. They were 1700-2400 nm for EWT and LMA (i.e., . = 1700 nm,
An = 2400 nm), 2100-2139 nm and 2160-2179 nm for leaf protein,
700-720 nm for Cap, and 520-560 nm for Cyc.

In IS3, we used a sequential forward feature selection (SFS) tech-
nique to identify the non-contiguous optimum spectral domains (Kudo
and Sklansky, 2000; Marcano-Cedeno et al., 2010). This method started
with an empty feature set and sequentially added features which
generated the minimum RMSE between the trait estimations and the
measurements (Féret et al., 2021). We created 20 evenly-sized spectral
features of 50 nm from 1400 nm to 2399 nm for EWT, LMA and Ngea,
and 17 spectral features of 20 nm from 460 nm to 799 nm for C,, and
Cxc- The root mean squared error (RMSE) between the predicted and
measured traits was calculated to assess the model performance, and the
minimum RMSE was used to identify the optimal spectral domains. Take
EWT as an example, we firstly performed the model inversion using each
of 20 features, and searched for the one which generated the minimum
RMSE between the measured and the predicted EWT. Then we identified
the next spectral feature among the remaining 19 features by combining
the previously identified feature, which led to the minimum RMSE with
two features. The procedure continued until all features were added and
the full spectrum of 1400-2399 nm was used for model inversion. The
RMSE for each set of features was calculated. The order of spectral
feature added to the optimal non-contiguous spectral domains was
recorded.

We performed inversion of PROSPECT and PROCOSINE to predict
the five foliar traits (EWT, LMA, Ngarea, Cab, Cxc), and compared the
retrieval performance of the two models in order to test the contribution
of additional specular term and leaf orientation in PROCOSINE. In
PROSPECT inversion, the prior information on the leaf structure was
obtained using an empirical relationship built on the DHR at 1131 nm
following Spafford et al. (2021). For PROCOSINE, the approach may not
be applicable to BRF due to the differences between DHR and BRF. We
found that EWT and LMA could be estimated with moderate accuracies
using the full spectrum without prior information (IS1). Thus, we
assumed that other parameters such as leaf structure and by, were also
well retrieved. In PROCOSINE, we used the Ngyct and bgpec estimated
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from IS1 as prior information for ease of operation.

In addition, we applied the optimal non-contiguous spectral domains
(IS3) obtained from one dataset to the other dataset to evaluate the
model performance and transferability of inversion strategies across
datasets.

2.3. Partial least squares regression

Partial least squares regression (PLSR) transforms the original data to
a smaller number of orthogonal latent vectors and maximizes the cor-
relation between the response variables and the predictor variables
(Wold et al., 2001). It deals with the problem of multicollinearity
inherent in hyperspectral data and has been widely used to estimate
foliar functional traits using leaf spectroscopy or imaging spectroscopy
(Asner et al., 2015; Serbin et al., 2019; Wang et al., 2020; Yang et al.,
2016). To select the most informative spectral bands, we performed one
of the feature selection methods in PLSR, the interval PLSR (iPLSR)
(Mehmood et al., 2012; Ngrgaard et al., 2000). iPLSR is one of the
wrapper methods in PLSR, which is similar to the sequential forward
feature selection approach used in RTM inversion.

Similar to Section 2.2.2, we created evenly-sized spectral features for
EWT, LMA, Narea, Cap and Cy.. For each trait, we firstly built iPLSR
models using each of the features, and searched for the one which
generated the minimum RMSE between the trait measurements and
predictions. Then we identified the next spectral feature among the
remaining features by combining the previously identified one, which
led to the minimum RMSE with two features. The procedure continued
until all features were added. The RMSE for each set of features was
calculated, and the minimum RMSE was used to identify the optimal
spectral domains. For comparison, we also built PLSR models with the
full spectrum (400-2400 nm).

To avoid model overfitting, the number of latent vectors was deter-
mined by minimizing the prediction residual sum of squares (PRESS)
statistic through 200 70/30 jack-knifed splits of the calibration dataset
(Chen et al., 2004). In this study, we built iPLSR and PLSR models be-
tween foliar traits and leaf spectra to explore the generality of
empirically-based approaches.

First, we evaluated the performance of models within each dataset.
That is, iPLSR and PLSR models were built on the CN or US dataset. The
original dataset was randomly split with 70% for model calibration and
30% for model validation. Within the calibration subset, 70% of the
samples were randomly selected to generate a model. To minimize the
effect of random sampling on model calibration, we repeated the
random sampling procedure for 200 times and thus generated 200
models.

Second, we evaluated the transferability of iPLSR and PLSR models
across different datasets. That is, models were calibrated on the US (or
CN) dataset and validated on the CN (or US) dataset. In this scenario, the
calibration dataset was one of the full datasets (US or CN). Similarly, 200
models were generated by randomly sampling 70% of the calibration
dataset for 200 times.

Finally, the 200 models were applied to the validation subset. The
validation subset was the 30% withheld data of each dataset in the first
scenario, and one of the datasets (CN or US) in the second scenario. The
average of the resultant 200 predictions was used as an estimate of foliar
traits. For iPLSR, the selected optimal spectral domains were used to
evaluate the informative spectral bands. For PLSR, the variable impor-
tance of projection (VIP) was calculated to evaluate the contribution of
each wavelength to the trait prediction (Wold et al., 2001).

2.4. Model evaluation

Four statistics, including the coefficient of determination (R?), the
root mean squared error (RMSE), the normalized RMSE (NRMSE =
RMSE/mean), and the bias (BIAS) between model predictions and field
measurements, were calculated to evaluate the performance of the
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physically- and empirically-based approaches. BIAS was calculated as
the difference between the averages of predictions and measurements. A
positive value of BIAS often indicates over-estimation of the model
predictions, and a negative value of BIAS means under-estimation.

To evaluate the model transferability, we calculated the relative
RMSE difference,

(RMSE icro5s — RMSE i5in)
RMSE ishin

RMSEd,ff = * 100% (5)

where RMSE,,inin is the RMSE when cross-validation is performed within
a dataset, RMSEq,ss is the RMSE when models are applied across
datasets (e.g., models developed on US were applied to CN).

3. Results
3.1. Statistics of the foliar functional traits

The statistics and distribution patterns of the foliar functional traits
from CN and US datasets are shown in Table 3, as well as Figs. 2 and S1 -
$2. All foliar traits in US dataset showed similar to broader range in
terms of content than in CN dataset (Table 3). The range measured for
LMA was similar across CN and US datasets, but the mean LMA in CN
was higher, which may be explained by ecological factors and strategies,
as CN dataset was mainly composed of evergreen broadleaf species. The
EWT range in US was broader than that in CN due to the presence of
species such as cattail (Typha angustifolia) and yellow iris (Iris pseuda-
corus) with particularly high EWT (> 30 mg/cmz). The mean of Ngrea
was higher in CN (0.18 mg/cmz) than in US (0.16 mg/cmz). The dis-
tribution and mean values of C,p in CN and US were similar. The mean
value of Cy. in CN (6.30 ug/cmz) was lower than in US (8.17 pg/cmz).

3.2. The variability of leaf bidirectional reflectance factor

The mean and standard deviation of the leaf BRF for two datasets are
shown in Figs. 3 and S3. The mean reflectance of US in the visible
spectral region was much higher than that of CN, which was attributed
to a lower chlorophyll content in young and senesced leaves in the
Madison subset. The mean reflectance in the near-infrared region was
higher in CN than US due to more scattering caused by thicker leaves of
evergreen broadleaf species in CN. The lower mean reflectance of CN in
the shortwave infrared region can be attributed to the absorption by
higher EWT and LMA (Table 3). The standard deviation of leaf reflec-
tance was similar for the two datasets.

3.3. The performance of PROSPECT and PROCOSINE

3.3.1. The optimal non-contiguous spectral domains

3.3.1.1. PROSPECT. The optimal non-contiguous spectral domains for
predicting foliar traits (IS3) in CN and US datasets are listed in Fig. 4 and

Table S3. The optimal spectral domains to estimate EWT and LMA used

Table 3

Statistics of the foliar functional traits in CN and US datasets used in this study. EWT:

Cyc: leaf carotenoids. SD: standard deviation; CV: coefficient of variation.
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in PROSPECT model inversion were mostly overlapped for CN and US
(Fig. 4). The optimal spectral domains to predict Nare, were the same for
CN and US, which was 2100-2149 nm. For pigments, the optimal
spectral domains for the two datasets were similar sharing the red-edge
spectral segments of 740-759 nm and 760-779 nm.

3.3.1.2. PROCOSINE. The optimal non-contiguous spectral domains for
the estimation of EWT and LMA with PROCOSINE largely differed from
those obtained with PROSPECT (-D or -PRO), but were quite consistent
for Nyrea and pigments (Fig. 4). The optimal spectral regions to predict
EWT for CN and US datasets only shared one spectral segment of
2050-2099 nm. For LMA, the optimal spectral regions for the two
datasets had the common spectral segments of 2300-2349, 2250-2299,
and 2350-2399 nm. The most accurate prediction of Ny, for US was
obtained by six segments of 50 nm starting with 2050, 2150, 2100 and
2250 nm. For CN, the optimal subdomains only included one segments
starting with 2100 nm. The optimal spectral domains to predict C,, were
similar for CN and US, both including the red-edge spectral region of
520-559 nm. When predicting C., the optimal spectral regions were
also similar for the two datasets sharing the spectral segment of
700-779 nm.

3.3.2. Model performance within each individual dataset

3.3.2.1. PROSPECT. Both EWT and LMA were accurately estimated by
inverting PROSPECT with the full spectrum (RMSE = 2.37-4.50 mg/
cmz, Table 4). IS2 led to improved results compared to IS1 when using
BRF. The accuracy was further improved when using the optimal non-
contiguous spectral domains identified in this study (Fig. 5).

EWT was more accurately predicted in CN than in US. This could be
largely explained by the presence of samples corresponding to forb
species in the US dataset, with EWT higher than 25.0 mg/cm? (e.g.,
cattail, Typha angustifolia; rattlesnake master, Eryngium yuccifolium).
With these samples being removed, the estimation accuracy of EWT in
US was greatly improved with RMSE decreasing from 3.62 mg/cm? to
2.69 mg/cm?. For LMA, an underestimation was found for both CN and
US when performing IS1 (Table S4). Selecting optimal non-contiguous
spectral regions (IS3) was the best inversion strategy for LMA (Table 4).

Both the selection of optimal spectral domains and the use of prior
information significantly improved the estimation of Nyrea. The RMSE of
Narea reduced from 0.350 to 0.058 mg/crn2 for CN and from 0.320 to
0.049 mg/cm? for US, respectively (Table 4).

Cab was most accurately estimated with the IS3 (Table 4). Cyp in US
was more accurately predicted than that in CN. Cy. was poorly estimated
for both datasets with any of the three inversion strategies.

3.3.2.2. PROCOSINE. The estimation accuracies of foliar traits using
PROCOSINE were lower than those from PROSPECT (Table 4). Notably,
the RMSE of LMA increased from 1.16 to 1.36 mg/cm? with PROSPECT
to 1.58-2.24 mg/cm? with PROCOSINE. The inversion strategies
yielding the most accurate estimations were similar for the two models.

equivalent water thickness; LMA: leaf mass per area; C,p: leaf chlorophyll a + b;

Dataset Trait Unit Number of samples Min Max Range Mean SD Ccv

CN EWT mg/cm? 359 5.50 26.43 20.93 13.91 4.06 0.29
LMA mg/cm? 360 2.79 23.06 20.27 8.66 3.17 0.37
Narea mg/cm? 357 0.07 0.38 0.31 0.18 0.06 0.36
Cab ].lg/(:m2 172 6.94 80.70 73.76 36.54 14.13 0.39
Cxe ug/cm? 172 1.11 13.20 12.09 6.30 2.30 0.37

us EWT mg/cm? 3769 0.38 68.03 67.65 10.32 5.31 0.51
LMA Ing/cm2 3791 0.21 24.36 24.15 7.41 3.01 0.41
Narea mg/cm? 294 0.03 0.39 0.36 0.16 0.07 0.43
Cab jg/cm? 371 0.78 109.11 108.33 39.97 18.95 0.47
Cye jg/cm? 372 0.89 20.95 20.95 8.17 3.15 0.39
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Fig. 2. Histogram and distribution density plot of the foliar traits in CN and US datasets. EWT: equivalent water thickness; LMA: leaf mass per area; Cp: leaf

chlorophyll a + b; Cy: leaf carotenoids.
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Fig. 3. The mean of leaf bi-directional reflectance factor (with standard devi-
ation) for CN and US datasets.

The results of each dataset by light conditions (sun and shade leaves),
and by growth periods (mature, young, and old leaves) were shown in
Figs. S4 — S7. Foliar traits of the shade leaves were more accurately
estimated than those of sun leaves in both CN and US (Figs. S4 - S5).
With respect to growth periods, the estimation accuracies of foliar traits

were quite similar for young and mature leaves in CN (Fig. S6). In US, no
clear patterns were found in the estimation accuracies of foliar traits for
mature, young, and old leaves (Fig. S7).

3.3.3. Transferability of inversion strategies across datasets

3.3.3.1. PROSPECT. EWT and LMA in CN could be accurately esti-
mated using the optimal spectral domains obtained from the US dataset
(Table 5). The estimation accuracy was high for LMA (RMSE = 1.39 mg/
cm?) but lower for EWT (RMSE = 3.62 mg/cm?) in US when applying
the optimal spectral domains identified for the CN dataset.

Narea Was accurately predicted both in CN and US (RMSE = 0.058
mg/cm? and 0.049 mg/cm?, respectively) with the optimal spectral
domains obtained from the counterpart, indicating a high transferability
of the inversion strategy (Table 5). Cap was less accurately estimated
when applying the optimal spectral domains identified in one dataset to
the other (Table 5, Figs. 6, S8 — §9). Cy. was poorly predicted for both
datasets when using the optimal spectral domains identified by the
counterpart.

We also applied the selected optimal spectral regions from the US
dataset (Table S3) to the US extensive dataset with 3498 measurements
of EWT and LMA (Table 6). The most accurate estimation of LMA was
achieved using the optimum non-contiguous spectral regions (RMSE =
1.30 mg/cm?). However, EWT was most accurately predicted by IS2
using the optimal spectral regions reported in previous studies (RMSE =
2.96 mg/cm?).

3.3.3.2. PROCOSINE. PROCOSINE resulted in less accurate estimations
of foliar traits than PROSPECT when applying the optimal spectral do-
mains identified in one dataset to the other (Table 5). LMA in CN was
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Fig. 4. The optimal non-contiguous spectral domains for predicting foliar traits in CN and US datasets used in model inversion of PROSPECT and PROCOSINE. EWT:
equivalent water thickness; LMA: leaf mass per area; Ny.,: leaf nitrogen; C,p: leaf chlorophyll a + b; Cy.: leaf carotenoids.

Table 4

The model performance of PROSPECT and PROCOSINE to predict foliar traits in CN and US datasets with three inversion strategies (IS1-3). ISI: uses the full spectrum;
IS2: uses the optimal spectral regions as suggested in previous studies (Féret et al., 2019, 2021; Spafford et al., 2021); IS3: uses the optimal non-contiguous spectral
regions identified in this study. Bold values are the most accurate estimation among the three inversion strategies. The values of NRMSE and BIAS are listed in Tables S4
and S5. EWT: equivalent water thickness; LMA: leaf mass per area; N,ye,: leaf nitrogen; C,p: leaf chlorophyll a + b; Cy.: leaf carotenoids.

Trait Inversion strategy PROSPECT PROCOSINE
CN dataset US dataset CN dataset US dataset
R? RMSE R? RMSE R? RMSE R? RMSE
EWT IS1 0.56 4.02 0.64 4.50 0.62 3.89 0.68 4.58
(mg/cm?) 1S2 0.53 3.17 0.65 4.72 0.60 3.52 0.65 4.60
1S3 0.74 2.18 0.77 3.62 0.66 2.82 0.69 4.19
LMA IS1 0.77 2.37 0.72 2.78 0.80 2.27 0.72 2.89
(mg/cmz) 1S2 0.85 1.24 0.82 1.44 0.81 1.96 0.74 2.51
1S3 0.87 1.16 0.84 1.36 0.81 1.58 0.74 2.24
Narea IS1 0.29 0.35 0.43 0.32 0.19 0.34 0.33 0.30
(mg/cmz) 1S2 0.35 0.070 0.61 0.060 0.35 0.077 0.57 0.067
1S3 0.50 0.058 0.63 0.049 0.47 0.067 0.48 0.069
Cab IS1 0.21 25.13 0.60 13.12 0.25 25.15 0.64 13.15
(ug/cm?) 1S2 0.36 22.92 0.71 11.74 0.27 25.71 0.61 15.09
IS3 0.33 13.13 0.69 10.92 0.14 18.49 0.48 16.13
Cxe IS1 0.14 8.81 0.13 6.05 0.15 9.29 0.19 7.15
(ug/cm?) 1S2 0.17 11.81 0.18 6.97 0.29 12.31 0.27 8.50
IS3 0.07 3.47 0.14 5.31 0.04 4.52 0.21 5.72
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Fig. 5. RMSE between the measured and predicted foliar traits from leaf bidirectional reflectance factor with PROSPECT and PROCOSINE. The X axis is the
wavelength added to the feature set in the selection of optimal non-contiguous spectral regions (IS3). The Y axis is the number of model inversions in the sequential
forward feature selection (SFS). The white “+” symbol indicates the wavelength added to the feature set which leads to minimum RMSE in each run. The white star
symbol indicates the wavelength which leads to minimum RMSE among all runs. EWT: equivalent water thickness; LMA: leaf mass per area; Nyye,: leaf nitrogen; C,p:

leaf chlorophyll a + b; Cy: leaf carotenoids.

predicted with moderate accuracy (RMSE = 1.56 mg/cm?) with the
optimal spectral domains obtained from the US dataset, while LMA in US
was poorly estimated (RMSE = 2.76 mg/cm?) with the optimal spectral
domains identified by the CN dataset. Pigments were predicted with
poor accuracies for both datasets when using the optimal spectral do-
mains identified by their counterpart.

EWT and LMA were retrieved with lower accuracies, when applying
the optimal spectral regions identified for the US dataset to the US
extensive dataset using PROCOSINE compared to PROSPECT (Table 6).

3.4. The performance of the empirically-based approach

3.4.1. Model performance within each individual dataset

Both the iPLSR and PLSR model accurately estimated the majority of
foliar traits when it was cross-validated within the same dataset (Ta-
bles 7 and S8), and the accuracies were higher than those of PROSPECT
and PROCOSINE (Table 4). iPLSR achieved higher accuracies than PLSR
(Tables 7 and S$8). EWT and LMA were most accurately predicted, fol-
lowed by Narea, Cab and Cyc.
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Table 5

The cross-dataset validation of PROSPECT and PROCOSINE to predict foliar
traits using the optimal non-contiguous spectral regions (IS3) identified in each
dataset (Table S3). US - CN denotes the prediction accuracy statistics for the CN
dataset using the optimal spectral domains obtained from US. CN = US denotes
the prediction accuracy statistics for the US dataset using the optimal spectral
domains obtained from CN. The values of NRMSE and BIAS are listed in
Tables S6 and S7. EWT: equivalent water thickness; LMA: leaf mass per area; C,p:
leaf chlorophyll a + b; Cy: leaf carotenoids; Ny, leaf nitrogen.

Trait PROSPECT PROCOSINE
US - CN CN > US US - CN CN > US
R? RMSE R? RMSE R? RMSE R’ RMSE
EWT (mg/ 073 2.27 0.78  3.62 0.62 3.06 0.66  4.40
2:
cm?)
LMA (mg/ 0.88 1.22 0.83 1.39 0.83 1.56 0.67 276
cm?)
Naea (mg/ 050 0.058 0.63 0.049 0.33 0071 055 0.074
2
cm®)
Cab (ng/ 0.35 19.42 060 1521 019 2470 0.38 19.24
2:
cm®)
Cye (H8/ 0.14 3.71 0.10 5.12 0.24  5.47 0.02  6.53
cmz)

PROSPECT

EWT (mg/cm?)

LMA (mg/cm?)
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3.4.2. Model performance across datasets

When the iPLSR and PLSR model was validated across datasets, the
estimation accuracies decreased (Tables 7 — 9, 8§9). The model built on
US generally performed better than that built on CN (Table 8 and Figs. 7,
$10 - S15). The trait model built on US worked well for predicting LMA
in CN, resulted in systematic negative bias for the estimation EWT,
estimated Cyp, and Cy. with moderate accuracy, but accurately predicted
Narea-

The trait model built on CN could only predict EWT and LMA in US
with high accuracies (Table 8 and Fig. 7). The LMA in US was estimated
with R? = 0.82 and RMSE = 1.60 mg/cm?. Since the EWT in CN ranged
from 5.50 to 26.43 mg/cm?, the EWT in US was underestimated for the
measurements higher than 25.0 rng/cm2. Narea Was moderately esti-
mated, and pigments were poorly estimated when transferring the
models from CN to US. This is likely due to the fact that the trait range in
CN is smaller than that in US (Table 3).

3.4.3. The feature importance of iPLSR and PLSR

For iPLSR, the optimal spectral domains for predicting foliar traits in
CN and US datasets were largely inconsistent (Fig. 8). For Nyrea, the
optimal spectral domains for the two datasets were quite similar sharing
the spectral segments of 1650-1800 nm, 2050-2100 nm, 2200-2250
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Fig. 6. Measured versus predicted foliar traits from the leaf bidirectional reflectance factor with PROSPECT and PROCOSINE. Predictions for CN were obtained using
the optimal non-contiguous spectral regions obtained from US, and vise versa (Table S3). EWT: equivalent water thickness; LMA: leaf mass per area; C,p: leaf
chlorophyll a + b; Cy: leaf carotenoids.

10



Z. Wang et al.

Table 6

The model performance of PROSPECT and PROCOSINE to predict equivalent
water thickness (EWT) and leaf mass per area (LMA) in the US extensive dataset
of 3498 foliar samples with three inversion strategies (ISI1-3). IS1: uses the full
spectrum; IS2: uses the optimal spectral regions as suggested in previous studies
(Féret et al., 2019, 2021; Spafford et al., 2021); IS3 uses the optimal non-
contiguous spectral regions identified for the US dataset for predicting EWT
and LMA, respectively (Table S3). Bold values are the most accurate estimation
among the three inversion strategies.

Model Trait Inversion US extensive dataset
strategy R  RMSE NRMSE BIAS
PROSPECT EWT IS1 0.67  4.00 7.87 1.88
(mg/ 1S2 0.67 2.96 5.83 2.65
cm?) 1S3 0.78 299 5.90 1.76
LMA IS1 0.72 2.50 10.92 —0.98
(mg/ 1S2 0.81 1.34 5.85 -0.14
cm?) 1S3 0.83 1.30 5.69 —0.33
PROCOSINE EWT IS1 0.71 4.53 8.92 2.59
(mg/ 1s2 0.69 431 8.50 2.06
cm?) 1S3 0.48 3.80 7.49 —0.05
LMA IS1 0.73 2.52 10.97 —0.82
(mg/ 1S2 0.76 2.27 9.91 —-0.32
cm?) IS3 0.79 1.98 8.61 —0.31

nm, and 2300-2400 nm. For other traits, the optimal spectral domains
for CN and US were mostly different.

For PLSR, the variable importance of projection (VIP) values of EWT
and LMA models built on CN and US were similar (Fig. $16), which

Table 7
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resulted in good model transferability of those two foliar traits. For EWT,
VIP had higher values between 1350 nm and 1450 nm. The VIP values of
LMA models were higher at 1200-1340 nm, 1660-1750 nm and
2250-2320 nm. Ny, models built on CN and US had similar VIP values
in the spectral region of 1400-2400 nm. The VIP values of pigment
models were high in the visible spectral region, with peaks at 700-740
nm shared by both models built on CN and US.

4. Discussion

4.1. The feasibility of the physically-based approach in predicting foliar
traits

This study confirms the applicability of physical model inversion on
leaf bidirectional reflectance factor for the estimation of LMA, EWT and
Narea. Here, both PROSPECT and PROCOSINE model inversion resulted
in satisfactory accuracy across geographic areas, plant species, light
conditions and growth periods (Table 4, Figs. S4 — S7). The estimation
accuracies of foliar traits using PROSPECT were generally higher than
those from PROCOSINE. We also confirmed the capability of various
inversion strategies in improving leaf trait estimations and their trans-
ferability across datasets of different continents (Table 5, Fig. 6). Simi-
larly, PROSPECT resulted in more accurate estimations of foliar traits
than PROCOSINE when applying the non-contiguous optimal spectral
domains identified in one dataset to the other (Table 5). The optimal
spectral domains for predicting EWT and LMA with PROSPECT largely
differed from those obtained with PROCOSINE, but were quite

The model performance of interval partial least squares regression (iPLSR) by selecting the optimal spectral domains. iPLSR model was built on CN dataset or US
dataset. Cross-validation was performed on 30% of each dataset. h is the number of latent vectors used to build iPLSR models. EWT: equivalent water thickness; LMA:

leaf mass per area; C,p: leaf chlorophyll a + b; Cy: leaf carotenoids.

Trait Independent Validation

CN dataset US dataset

h R? RMSE NRMSE BIAS h R? RMSE NRMSE BIAS
EWT (mg/cmz) 11 0.92 1.13 6.50 0.08 16 0.92 1.75 4.56 0.07
LMA (mg/cm?) 17 0.97 0.61 4.09 0.14 14 0.93 0.69 6.28 0.01
Narea (mg/cm?) 16 0.88 0.022 8.30 0.0002 14 0.87 0.021 7.94 0.005
Cab (ug/cm?) 9 0.61 8.68 14.30 1.83 8 0.81 8.02 8.74 —0.08
Cxe (p.g/cm2) 7 0.61 1.34 15.43 0.06 4 0.60 1.86 14.04 0.08

Table 8

The cross-dataset validation of interval partial least squares regression (iPLSR) to predict foliar traits. iPLSR model was built on one of the two datasets (CN and US) and
applied to the other for validation. h is the number of latent vectors used to build iPLSR models. EWT: equivalent water thickness; LMA: leaf mass per area; Cy,p: leaf

chlorophyll a + b; Cy.: leaf carotenoids.

Trait US - CN CN - US

R? RMSE NRMSE BIAS R? RMSE NRMSE BIAS
EWT (mg/cm?) 0.68 2.61 12.48 —0.68 0.71 4.67 7.26 1.70
LMA (mg/cm?) 0.84 2.13 10.49 -1.70 0.82 1.60 8.20 0.85
Narea (mg/cm?) 0.74 0.033 10.72 —0.0009 0.68 0.044 12.11 —0.02
Cap (pg/cm?) 0.38 17.73 24.04 13.72 0.29 22.21 20.50 —9.25
Cye (ug/cm?) 0.42 3.47 28.67 2.99 0.05 4.39 21.91 -1.76

Table 9

The relative RMSE difference between the RMSE when cross-validation was performed within a dataset and the RMSE when the models were applied across datasets.
Leaf trait models included PROSPECT, PROCOSINE, PLSR and interval PLSR (iPLSR).

Trait PROSPECT PROCOSINE PLSR iPLSR

US-CN CN-US US-CN CN-US US-CN CN-US US-CN CN-US
EWT 4% 0% 9% 5% 218% 61% 131% 167%
LMA 5% 2% -1% 23% 37% 30% 249% 132%
Narea 0% 0% 6% 10% —3% 136% 50% 110%
Cab 48% 39% 34% 46% 46% 98% 104% 177%
Cxe 7% —4% 21% 14% 91% 87% 159% 136%

11
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Fig. 7. Measured versus predicted foliar traits from the leaf bidirectional reflectance factor using interval partial least squares regression (iPLSR). Foliar traits in CN
dataset were predicted with the US model, while foliar traits in US dataset were predicted with the CN model. EWT: equivalent water thickness; LMA: leaf mass per

area; C,p: leaf chlorophyll a + b; Cy: leaf carotenoids.

consistent for Nge, and pigments (Fig. 4, Table S3).

Our estimation accuracy of EWT and LMA was comparable with
previous studies (Féret et al., 2019; Feret et al., 2008; Li et al., 2018;
Spafford et al., 2021). This can be attributed to the fact that water and
dry matter are the dominant drivers of the variations in leaf reflectance
and have strong absorption features (Feret et al., 2008; Jacquemoud
et al., 2009). LMA was often less accurately estimated than EWT due to
the overlapping effect of water absorption features (Ali et al., 2016;
Colombo et al., 2008; Feret et al., 2008; Riano et al., 2005). However,
this study found that LMA can be more accurately predicted than EWT
by using the physically-based approach with properly selected spectral
information (Table 4). The optimal spectral domains for LMA mainly
located in 1600-1800 nm and 2050-2400 nm (Fig. 4 and Table S3).
EWT has weaker absorption in these spectral domains (Wang et al.,
2015a; Féret et al., 2019), which thereby improved the prediction of
LMA. Our results also confirmed that applying various inversion stra-
tegies could further improve the estimation accuracy of both LMA and
EWT.

More importantly, our study confirmed the feasibility of retrieving
foliar N from leaf bidirectional reflectance factor by inverting the
PROSPECT or PROCOSINE model on a wider range of dataset (Table 4).
However, inversion strategies are needed in order to achieve a satis-
factory estimation accuracy. The selection of optimal non-contiguous
spectral region can significantly improve the prediction (Table 4), and
the use of leaf structure and b, as prior information can further in-
crease the accuracy. The optimal spectral subdomains were similar for
the two datasets (Fig. 4, Table $3), and had the common feature of 2100
nm related to the absorption features of protein (Curran, 1989; Fourty
et al., 1996).

Compared to EWT and LMA, Ngre, had a lower estimation accuracy
because of the weaker absorption of proteins which was overlapped by
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the absorption features of water and other constituents of dry matter
(Curran, 1989). Féret et al. (2021) reported lower NRMSE for the esti-
mation of proteins using PROSPECT-PRO (NRMSE = 15.1%), possibly
because the calibration and validation samples were from the same
dataset LOPEX. This would lead to consistent experimental uncertainty
during data collection (including protocol, equipment, operator and
error in measurement). Although RTM model was developed based on
physical laws, some important parameters need to be empirically cali-
brated using in-situ data. For instance, the specific absorption co-
efficients (SAC) of dry matter, chlorophyll, carotenoids, and protein
were calibrated from leaf directional-hemispherical reflectance and
transmittance (Féret et al., 2017, 2021; Feret et al., 2008). As shown in
Table S10, the SAC calibration of PROSPECT-PRO was performed using
a small number of samples (n = 33) from LOPEX which is the only
publicly available dataset. We expect that the estimation accuracy of
Narea can be further improved if datasets with the concurrent measure-
ments of leaf spectra and traits from more diverse samples can be used
for the calibration of PROSPECT-PRO (Féret et al., 2021).

Leaf chlorophyll in US dataset was accurately estimated through
PROSPECT and PROCOSINE inversion (Table 4), and the model per-
formance was similar to previous studies (Feret et al., 2008; Féret et al.,
2017; Spafford et al., 2021). Predicting leaf carotenoids is still chal-
lenging due to its low concentration and overlapping absorption features
with chlorophyll (Feret et al., 2008). We obtained less accurate esti-
mation for carotenoids than chlorophyll (Table 4), which is in agree-
ment with previous studies (Feret et al., 2008; Spafford et al., 2021).
Leaf chlorophyll in CN dataset was less accurately estimated (Table 4),
possibly due to the discrepancy in the plant functional type between the
SAC calibration dataset and our CN dataset, as well as the uncertainty in
pigment analysis. US samples were determined using the high-
performance liquid chromatography (HPLC) techniques, while CN
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Fig. 8. The optimal spectral domains for predicting foliar traits in CN and US datasets used in interval PLSR (iPLSR). EWT: equivalent water thickness; LMA: leaf
mass per area; Nyt leaf nitrogen; C,p: leaf chlorophyll a + b; Cy.: leaf carotenoids.

samples were measured using the spectrophotometric analysis. The
plant functional types used for the SAC calibration of PROSPECT are
mainly European deciduous species (Table S10) while the plant func-
tional types of our CN dataset used for testing PROSPECT are mainly
evergreen broadleaf species. Again, this emphasized the importance of
incorporating more diverse leaf samples for the SAC calibration of
PROSPECT.

Other inversion strategies such as ecological constrains or wavelet
transform can potentially improve the estimation by reducing the un-
realistic combination of traits (Banskota et al., 2013; Jurdao et al., 2013;
Lietal., 2018; Wang et al., 2018; Yebra and Chuvieco, 2009). Our study
did not include the use of ecological constrains in model inversion for
the following reasons. The ecological rules are often built on empirical
relationships which may be species- or site- specific and not be appli-
cable when transferring to another dataset. For instance, Nyreo and EWT
was found to be highly correlated (Homolova et al., 2013; Sullivan et al.,
2013; Wang et al., 2015a), but not in the CN and US datasets used in this
study (r = 0.30 and 0.32, respectively). The relationship between Nyreq
and LMA was often more correlated within species and become much
weaker at high taxonomic levels (Anderegg et al., 2018). Therefore, it is
difficult to apply a universal relationship in model inversion, and the use
of such ecological rules may decrease the generality of RTM. For local
studies with similar species, the use of ecological constrains is recom-
mended which may significantly improve the estimation accuracy of
Narea-

A previous study performed the model inversion by coupling
PROSPECT and continuous wavelet transform in the merit function, and
achieved more accurate estimation of LMA than PROCOSINE for wheat
and rice (Li et al., 2018). This was because wavelet transform could both
alleviate the effect of specular reflectance and enhance the absorption of
dry matter absorption. In this study, we assessed the performance of
wavelet transform but did not achieve satisfactory results (results not
shown). Therefore, this study chose to couple PROSPECT and COSINE,
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which has a stronger physical basis to consider the specular reflectance
effect than wavelet transform (Jay et al., 2016; Li et al., 2018). We also
performed model inversion simply using PROSPECT without accounting
for the specular reflectance, and obtained trait estimations with similar
or higher accuracies than PROCOSINE (Tables 4 — 5, Figs. 5 — 6). The
good performance of PROSPECT (designed for DHR) on BRF could be
attributed to an overestimation of leaf structure using Spafford et al.
(2021), which may offset the influence of specular reflectance. Mean-
while, the lower estimation accuracies by PROCOSINE may be caused by
the uncertainties in estimating leaf structure and bgpec.

4.2. Towards a generalized foliar trait model using PLSR

A generalized empirical model (PLSR) was newly developed to pre-
dict LMA across plant species, leaf ages and biomes (Serbin et al., 2019).
Our results further confirmed the feasibility of developing a generalized
LMA model by extending the dataset to south China which was rarely
sampled. Furthermore, the interval PLSR via feature selection further
improved the estimation accuracies of foliar traits than PLSR using the
full spectrum. The model developed on US can accurately predict the
LMA in CN but with some bias, which may be due to the fact that the
dominant plant species in US and CN were deciduous and evergreen,
respectively.

We also demonstrated that a generalized PLSR model for EWT can be
developed across continents (Table 8) due to the dominant role of water
in driving the variation of leaf spectra. There was a notable underesti-
mation in EWT predictions when transferring the models from US to CN
(Fig. 7), which was likely due to the fact that the CN dataset mainly
consisted of evergreen broadleaf species with higher EWT (Fig. 2). The
range of EWT limited the model transferability by generating pre-
dictions with a systematic bias but a high R? (Fig. 7, Table 8). When
transferring the EWT model from CN to US, a non-linear relationship
between the predictions and the measurements was observed, which
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was overestimation for samples with low values and underestimation for
those with high values (Fig. 7). Therefore, the development of robust
and transferable models across biomes needs the calibration data
covering diverse plant functional types.

Nitrogen can be accurately predicted when the models were trans-
ferred across datasets (Table 8), which can be due to the common
optimal spectral domains shared by CN and US (Fig. 8). The empirically-
based approach poorly estimated leaf pigments when transferring from
one dataset to the other (Table 8). Leaf chlorophyll a + b was more
accurately estimated than carotenoids. Although empirical approaches
are often criticized by the low generality, including more representative
samples in model development can potentially overcome the challenges
(Nakaji et al., 2019; Serbin et al., 2019; Wang et al., 2020; Yang et al.,
2016).

4.3. Implication for foliar trait prediction and ecological applications

Physically- and empirically-based approaches are complementary in
predicting foliar traits. The selection of approaches depends on the traits
of interest, estimation accuracy, model transferability and ease of
operation. In general, the physically-based approach can be used for
predicting EWT, LMA, Nyrea, Cap and Cyc, while the empirically-based
approach can be used for any foliar trait of interest with or without
obvious absorption features (Burnett et al., 2021). Foliar traits such as P
and K are not incorporated in RTM and can only rely on empirical ap-
proaches for prediction (Asner et al., 2015; Wang et al., 2020).

Both approaches could be used to predict EWT and LMA with high
accuracies over a wide range of plant species (Tables 4 and 7). The
physically-based approach could accurately predict Cyp, for deciduous
plant species but not for evergreen species, estimate Ny, With moderate
accuracy, and only poorly estimate Cy.. For those cases, empirical ap-
proaches such as PLSR are suggested to achieve higher estimation ac-
curacy (Féret et al., 2019; Wang et al., 2018).

RTM offers robustness and transferability, but inversion strategies
may affect the model transferability. For instance, the optimal spectral
regions and ecological constrains used for model inversion may vary
depending on the dataset. The optimal spectral regions suggested in
previous studies (IS2) did not yield satisfactory results when using BRF
(Table 4), which suggests that these optimal domains defined using DHR
and DHT should be refined. With the two extensive datasets collected in
eastern United States and south China, we found that the estimation
accuracies were quite similar when transferring inversion strategies
across datasets, indicating a high level of transferability of the
physically-based models (Tables 4, 5 and 9). RTM was most transferable
for LMA and EWT when using BRF, which agrees with Féret et al. (2019)
who used directional-hemispherical leaf optical properties. The model
transferability was slight lower for Nyea, and least for C,p, and Cy. The
possible reasons include the trait and spectral differences between the
two datasets (Figs. 2 and S17), the experimental uncertainty or bias in
the two datasets, as well as the suboptimal performance of BRF
compared to DHR. For empirically-based approaches such as PLSR and
iPLSR, the estimation accuracies were high when cross-validation was
performed, but greatly decreased if models were applied to an inde-
pendent dataset (Table 9). This demonstrated lower transferability of
empirically-based approaches across datasets. It is capable to build
generalized trait models for EWT and LMA irrespective of plant func-
tional types. To develop generalized trait models for leaf pigments and
nitrogen, an extensive dataset or representative samples from diverse
sites, biomes and species are needed (Serbin et al., 2019). Before
applying empirical models built on an existing dataset to a new dataset,
the similarity of two datasets in terms of foliar traits and spectral
characteristics should be evaluated. Transfer learning and model
updating can serve as promising techniques to improve the trans-
ferability of empirical models such as PLSR (Wan et al., 2022).

The ease of operation of empirically-based approach makes it more
popular for ecologists without high skills in remote sensing (Asner et al.,
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2015; Burnett et al., 2021; Streher et al., 2020). The operation of RTM
model is more challenging for most researchers, and improper use of the
RTM model often led to poor estimation accuracies. The software
package named Automated Radiative Transfer Models Operator
(ARTMO) provides a user-friendly tool of retrieving foliar traits using
RTM models and standard inversion (Verrelst et al., 2015, 2019). An R
package for PROSPECT (https://jbferet.gitlab.io/prospect/) has imple-
mented inversion strategies assessed in this study (i.e., prior information
and optimal spectral domains), which can help achieve satisfactory
estimation of foliar traits.

Most of the previous studies used leaf hemispherical-directional
reflectance (DHR) as model input to PROSPECT to predict foliar traits
such as EWT and LMA (Féret et al., 2019; Spafford et al., 2021). Our
results confirmed the applicability of leaf bidirectional reflectance factor
(BRF) in predicting five key foliar traits. More importantly, the estima-
tion accuracy was comparable to that obtained from DHR (Féret et al.,
2019; Feret et al., 2008; Spafford et al., 2021). Therefore, BRF measured
using a leaf contact probe can be used to estimate foliar traits from RTM
inversion when an integrating sphere is not available (Comar et al.,
2012; Li et al., 2018, 2019; Sims and Gamon, 2002). More extensive
datasets of BRF with concurrent trait measurements are shared on the
Ecological Spectral Information System (EcoSIS; https://www.ecosis.
org/). Such datasets will advance the development of generalized
spectroscopic models for predicting foliar traits, and help the identifi-
cation of current gaps in characterizing the spectral space of plants
living on the planet (Serbin et al., 2019).

Our study also suggested the possibility of integrating leaf PROS-
PECT or PROCOSINE model (e.g., by transforming BRF to
hemispherical-directional reflectance and transmittance) with canopy
radiative transfer models to predict foliar traits from canopy BRF. In this
coupled model, canopy radiative transfer models such as SAIL (Jac-
quemoud et al., 2009; Verhoef, 1984), INFORM (Atzberger, 2000) and
DART (Gastellu-Etchegorry, 1996) can be used to account for the effects
of canopy structure, background, illumination and viewing geometry on
canopy BRF. With the already operational and planned satellite missions
such as PRISMA (Loizzo et al., 2019), HiSui (Iwasaki et al., 2011),
GaoFen-5 (Liu et al., 2019), EnMAP (Guanter et al., 2015), CHIME (Rast
etal., 2019) and Surface Biology and Geology (SBG; National Academies
of Sciences, 2018), global monitoring of foliar traits regularly will
become possible (Berger et al., 2020). This will help us to better un-
derstand foliar trait variation at broad scales, links with foliar traits and
ecosystem function, as well as assess global functional biodiversity
(Rogers et al., 2017; Schimel and Schneider, 2019; Skidmore et al.,
2021; Wang et al., 2020).

5. Conclusions

This study compared the generality of RTM and empirical ap-
proaches for predicting key foliar functional traits using leaf bidirec-
tional reflectance factor (BRF). Two extensive datasets were collected in
eastern United States and south China which covered a large number of
species, leaf age and growth condition. By coupling PROSPECT and
COSINE, leaf BRF was used as model input to estimate foliar traits. We
found that EWT and LMA can be accurately estimated from RTM, while
inversion strategies were needed to improve accuracies in predicting
Narea and pigments. Moreover, the estimation accuracies were similar
when transferring inversion strategies across datasets of different con-
tinents, indicating high transferability of physically-based models. The
empirical approaches, PLSR and interval PLSR, demonstrated lower
transferability, e.g., by yielding accurate estimations when cross-
validation was performed, but lower accuracies if models were applied
to a new dataset. Generalized models can be developed for EWT and
LMA by RTM or empirical approaches such as PLSR. In terms of leaf
pigments and nitrogen, calibration of PROSPECT by incorporating more
diverse leaf samples across biomes is recommended to further improve
the estimation accuracy. An extensive dataset or representative samples
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from diverse sites, biomes and species are needed to build generalized
models with empirical approaches. In addition, transfer learning and
model updating can serve as promising techniques to improve the model
transferability. With such generalized spectroscopic models for pre-
dicting foliar traits, we can better understand the variation of foliar traits
among and within species, their response to environmental change, as
well as plant biodiversity.
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