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A B S T R A C T   

Leaf spectroscopy provides an efficient way of predicting foliar functional traits, commonly using physically- and 
empirically-based models. However, the generality of both models has not been fully investigated, and it is not 
clear if inversion strategies of physically-based models can be transferred across datasets. In this study, we 
evaluated the generality of leaf spectroscopic models for predicting key foliar functional traits and compared the 
performance of physically- and empirically-based approaches. Two extensive datasets compiling a total of 3861 
foliar samples were collected from 24 field sites in eastern United States and south China. The leaf radiative 
transfer model PROSPECT was coupled with COSINE (PROCOSINE) to retrieve foliar traits from leaf bidirectional 
reflectance factor (BRF). A commonly used empirically-based model, partial least squares regression (PLSR) was 
performed as a comparison. Results showed that both PROSPECT and PROCOSINE can accurately estimate leaf 
mass per area (LMA) and equivalent water thickness (EWT). Inversion strategies including the selection of 
optimal spectral domains and the use of prior information (IS3) greatly improved the estimation accuracy of leaf 
nitrogen, leaf chlorophyll a + b and carotenoids. The estimation accuracies were similar when transferring 
inversion strategies across datasets, indicating a high level of transferability of physically-based models. PLSR 
and interval PLSR (iPLSR, via feature selection) could predict foliar traits with high accuracies when cross- 
validation was performed, and iPLSR achieved higher accuracies. But both the empirical approaches demon
strated low transferability when applied to an independent dataset. Our findings highlight the importance of 
generalized traits models with respect to development and calibration of leaf radiative transfer model, as well as 
incorporating representative samples in training empirical models. This study can help us to better understand 
the variation of foliar traits among and within species, their response to environmental change, as well as plant 
biodiversity.   

1. Introduction 

Plant functional traits refer to the morphological, biochemical and 
physiological properties of plants which determine the establishment, 
growth, reproduction and survival of plants, and reflect the adaptation 

and acclimation of plants to environment (Pérez-Harguindeguy et al., 
2013; Reich, 2014; Wright et al., 2004). Foliar functional traits play an 
important role in ecosystem processes and functions such as nutrient 
cycling and gross primary productivity (Cornwell et al., 2008; Schimel 
and Schneider, 2019; van Bodegom et al., 2014), and therefore are 
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considered as essential biodiversity variables and have been used to 
parameterize Earth system models (Pereira et al., 2013; Rogers et al., 
2017; Skidmore et al., 2021). The most studied foliar functional traits 
include leaf mass per area (LMA), leaf water content (also known as 
equivalent water thickness, EWT), leaf nitrogen (N), phosphorus (P) and 
potassium (K), and leaf pigments (chlorophyll a + b, carotenoids) (Díaz 
et al., 2016; Ustin et al., 2009; Wright et al., 2004). LMA and N are often 
used to define the “leaf economics spectrum” which reflects the trade-off 
between resource acquisition and allocation (Reich et al., 1997; Wright 
et al., 2004). Leaf water transports nutrients within plants and is of great 
importance for photosynthesis, respiration and transpiration (Ustin 
et al., 2012). P and K are key macro nutrients for plant growth and 
metabolism (Taiz and Zeiger, 2010). Leaf pigments play an essential role 
in harvesting light for photosynthesis and dissipating excess light to 
provide photoprotection under high illumination (Croft and Chen, 
2018). 

Traditionally, foliar traits are collected through field sampling and 
laboratory chemistry analysis, which is time-consuming and expensive. 
In contrast, leaf spectroscopy provides an efficient way of determining 
foliar traits (Féret et al., 2021; Serbin et al., 2019; Wang et al., 2020; 
Yang et al., 2016). In leaf spectroscopy, physically- and empirically- 
based approaches are two categories of methods used to link foliar 
traits to leaf spectra (Féret et al., 2019; Li et al., 2018; Shiklomanov 
et al., 2016). The physically-based approach relies on the inversion of 
radiative transfer models (RTMs). Based on physical laws, RTMs 
describe the absorption, scattering and reflection processes of light 
within leaves (Féret et al., 2019; Jacquemoud and Baret, 1990). Of all 
radiative transfer models, PROSPECT is the most widely used. It simu
lates the leaf directional-hemispherical reflectance (DHR) and trans
mittance (DHT) spectra within 400–2500 nm based on the content per 
surface unit of a set of chemical constituents characterized by a specific 
absorption coefficient, and a structure parameter to account for scat
tering (Feret et al., 2008; Jacquemoud and Baret, 1990). 

The physically-based approach generally shows a stronger robust
ness and transferability than the empirically-based approach (Darvish
zadeh et al., 2008; Féret et al., 2019). However, limitations still exist in 
this approach. First, the foliar traits that can be estimated by the 
physically-based approach are limited to the input parameters of RTMs. 
For instance, the leaf constituents included in PROSPECT are EWT, LMA, 
chlorophyll a + b content (Cab), carotenoids (Cxc), anthocyanins, 
nitrogen-based proteins and carbon-based constituents (Féret et al., 
2017, 2021; Feret et al., 2008; Jacquemoud and Baret, 1990). Second, 
the estimation accuracy of physically-based approach varies among 
constituents and several inversion strategies have been proposed to 
improve the performance of model inversion, such as the incorporation 
of prior information, the selection of optimal spectral domains, and the 
application of ecological constrains (Combal et al., 2003; Darvishzadeh 
et al., 2008; Féret et al., 2021; Spafford et al., 2021; Yebra and Chuvieco, 
2009). However, the prior information, optimal spectral domains and 
ecological constrains found or used in these studies often vary with 
datasets (Darvishzadeh et al., 2008; Jurdao et al., 2013; Yebra and 
Chuvieco, 2009). In other words, there is still no consensus on what and 
how inversion strategies should be applied, and it is unclear if these 
inversion strategies are transferable across datasets. 

Finally, intensive field measurements of leaf DHR and DHT spectra 
are usually inaccessible due to the high cost of the integrating sphere 
and long measurement time. A new double integrating sphere provides a 
more efficient way of measuring DHR and DHT, but there is a compro
mise between measurement time and data accuracy (Hovi et al., 2018; 
Mõttus et al., 2017). Leaf bi-directional reflectance factor (BRF) 
measured using a leaf contact probe can be an alternative with lower 
cost, higher signal-to-noise ratio and easier portability during field data 
collection (Li et al., 2018, 2019; Sims and Gamon, 2002; Yang et al., 
2016). BRF may diverge from DHR (Bousquet et al., 2005; Jay et al., 
2016; Li et al., 2018, 2019; Maccioni et al., 2001), because leaf surface 
may include waxes or trichomes interacting with light and resulting in 

directional effects such as specular reflectance or enhanced scattering. 
Several studies have shown that a replacement of DHR with BRF in the 
PROSPECT model inversion can lead to a poor accuracy in trait esti
mations (Li and Wang, 2011; Ma et al., 2012). To solve this problem, Jay 
et al. (2016) developed the COSINE (ClOse-range Spectral ImagiNg of 
lEaves) model to relate leaf DHR to BRF. By coupling PROSPECT and 
COSINE (the coupled model is called ‘PROCOSINE’), previous studies 
have showed that foliar traits (Cab, EWT and LMA) in crops (e.g., wheat 
and rice) can be estimated from leaf BRF with a high accuracy (Fu et al., 
2020; Li et al., 2018, 2019; Wang et al., 2021). However, it is unclear if 
PROCOSINE can estimate foliar traits across more diverse plant species. 

The abovementioned facts make it challenging for ecologists to apply 
the physically-based approach to estimate foliar traits. In this sense, 
empirical approaches represent interesting alternative methods for trait 
estimation due to the ease of implementation and no limitation for foliar 
traits (Burnett et al., 2021; Serbin et al., 2019; Wang et al., 2019). The 
empirically-based approach aims to establish statistical models between 
foliar traits and leaf spectra, which include ordinary least squares 
regression (OLSR) (Féret et al., 2011; Li et al., 2019; Wang et al., 2016), 
stepwise linear regression (Grossman et al., 1996; Wang et al., 2015b), 
partial least squares regression (PLSR) (Martin et al., 2008; Nakaji et al., 
2019; Wang et al., 2020), and machine learning algorithms such as 
supporting vector machine (SVM), gaussian process regression (GPR), 
and convolutional neural network (CNN) (Féret et al., 2019; Pullanagari 
et al., 2021; Verrelst et al., 2012). However, the empirically-based 
approach is often criticized for its poor transferability across sites, spe
cies and dates (Nakaji et al., 2019; Yang et al., 2016), because the 
models are driven by the training data. Serbin et al. (2019) showed that 
LMA could be predicted across different biomes with a high accuracy 
when building statistical models with the data collected from a wide 
range of sites, species and dates. However, whether such an approach 
applies to other foliar traits is still unclear. 

Therefore, a comprehensive comparison of physically- and 
empirically-based approaches is needed to evaluate the model perfor
mance and transferability in predicting foliar traits, which will provide 
helpful guidance for selecting the optimal approach. In this study, we 
aim to assess the generality of leaf spectroscopic models for predicting 
key foliar functional traits from leaf BRF measurements with both 
physically- and empirically-based approaches. We collected two exten
sive datasets from 20 temperate and subtropical sites in eastern United 
States (US) and four subtropical and tropical sites in south China (CN). 
US and CN datasets represented foliar samples from different geographic 
areas (North America vs. East Asia), plant functional types (deciduous 
vs. evergreen) and plant species. These samples covered a wide range of 
geographic areas, species, light conditions, and growth periods. Thus, 
the two datasets provided a great opportunity to evaluate the generality 
of leaf spectroscopic models, i.e., the model performance when applied 
to an independent dataset (Martin et al., 2008; Serbin et al., 2019). Our 
specific objectives are:  

(1) to test the applicability of the physically-based approach, i.e., 
coupled PROSPECT and COSINE, in predicting foliar traits using 
leaf bidirectional reflectance;  

(2) to evaluate the ability of various inversion strategies in improving 
leaf trait estimations and their transferability across datasets;  

(3) to assess the model performance and transferability of the 
empirically-based approach. 

2. Materials and methods 

2.1. Study sites and field sampling 

Two datasets of foliar samples were collected from a wide range of 
geographic areas, species, light conditions and growth periods. One was 
from the subtropical, temperate forest and grass ecosystems in eastern 
United States (hereafter referred to as “US”), and the other from the 
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subtropical and tropical forests in south China (hereafter referred to as 
“CN”). Details of the sample sizes, plant species, sampling dates and field 
sites are summarized in Tables 1 and S1 – S2. The sampling locations of 
each dataset are shown in Fig. 1. 

The US dataset is composed of foliar samples from 19 field sites 
across seven NEON domains and foliar samples from Madison, Wis
consin (Chlus, 2020; Wang et al., 2020) (Fig. 1). NEON (National 
Ecological Observation Network) is a continental-scale observation fa
cility collecting open access ecological data for monitoring ecosystem 
changes and responses to environment (Kampe et al., 2010; Schimel 
et al., 2007). The NEON data were collected during the peak growth 
season of 2017. Foliar samples included mature leaves from both the 
sunlit top and the lowest reachable shade branches of each individual 
tree or shrub, as well as leaves from grasses and forbs. The Madison 
subset was collected from May to November in 2016 to capture the 
seasonal variations in foliar traits. Sunlit and shade foliar samples were 
collected from over 100 species such as broadleaf trees, graminoids, 
forbs and vine species. 

The CN dataset was collected from four subtropical and tropical 
forests sites located within three provinces in south China, including 
Guangxi, Guangdong and Hainan (Fig. 1). Field work was conducted 
from July to October in 2020, and from May to July in 2021 (Table 1). 
Samples were mainly from broadleaf trees with a small number of shrubs 
(21 out of the 360 samples). Leaf samples were collected from sunlit top 
of canopy branches of trees for all sites except the Guangxi site. At this 
site, samples were collected from the top, middle and bottom of the 
canopy to capture the vertical profile of foliar traits. 

Fresh leaf spectra were measured on foliar samples using an ASD 
FieldSpec 3 spectrometer (ASD Inc., Boulder, USA) coupled with a plant 
contact probe with an external light source. The instrument was first 
optimized, and dark current was automatically corrected. A spectralon 
99% white reference was then measured to obtain the leaf bidirectional 
reflectance factor (BRF). Ten readings were averaged per measurement 
(of sample and white reference). The integrating time was set to 1 s. One 
spectrum was made on one place of the adaxial side of each leaf with a 
black background by avoiding the main veins. The leaf samples were 
measured onsite within three hours upon collection. The measurement 
protocol was consistent for all field campaigns. After leaf BRF mea
surements, each fresh leaf was weighted for fresh weight (FW, g) using a 
digital scale (precision 0.001 g) and was scanned for leaf area (LA, cm2) 
using a flatbed scanner (Epson, Nagano, Japan). Then, the foliar samples 
were dried at 65 ◦C for at least 72 h and were measured for dry weight 
(DW, g). Equivalent water thickness (EWT, mg/cm2) was calculated as 
(FW-DW)/LA. Leaf mass per area (LMA, mg/cm2) was calculated as DW/ 
LA. 

A subset of foliar samples was flash frozen in the field in liquid 

nitrogen, and was later analyzed for pigments including leaf chlorophyll 
a + b content per surface unit (Cab, μg/cm2) and carotenoid content per 
surface unit (Cxc, μg/cm2) using the high-performance liquid chroma
tography (HPLC, Agilent 1200 Series; Agilent Technologies) (Kothari 
et al., 2018; Schweiger et al., 2018). Another subset of foliar samples 
was oven-dried, ground, and then sent for chemistry analysis of nitrogen 
concentration (Nmass, mg/g). Nitrogen content (Narea, g/m2) was 
calculated using LMA (Narea = Nmass × LMA). It should be noted that the 
pigment analysis of the CN samples was different from that of the US 
samples. In the case of CN, five leaf discs (~ 1.414 cm2) were obtained 
from a leaf sample and flash frozen in the field by liquid nitrogen. In 
laboratory, the leaf discs were ground in liquid nitrogen and incubated 
in 95% ethanol (v/v) to determine Cab and Cxc using the equations in 
Lichtenthaler (1987). 

As summarized in Table 1, the NEON dataset includes 3498 leaves 
measured for EWT and LMA, 111 samples for foliar pigments and ni
trogen. In the Madison dataset, 273 leaves were collected for EWT, LMA, 
foliar pigments and nitrogen. In the CN dataset, 360 foliar samples were 
collected for LMA, EWT, nitrogen and foliar pigments. 

2.2. The physically-based approach 

2.2.1. The PROCOSINE model inversion 
The PROCOSINE model results from the coupling of PROSPECT and 

COSINE models. Here, we used two versions of the PROSPECT model. 
The PROSPECT-D model (Féret et al., 2017) simulates DHR and DHT 
from a set of leaf biophysical descriptors, including a refractive index, 
the leaf structure parameter (Nstruct), Cab, Cxc, EWT, LMA, the leaf 
anthocyanin content (Cant), and their specific absorption coefficients. 
The refractive index and specific absorption coefficients are fixed values 
in the model. The PROSPECT-PRO model (Féret et al., 2021) simulates 
DHR and DHT from the same set of leaf biophysical descriptors, except 
that LMA is divided into two distinct constituents, the leaf protein 
content (PROT) and leaf carbon-based constituents (CBC), which 
combine cellulose, lignin, and other structural and non-structural car
bohydrates. Then the DHR simulated with PROSPECT-D and 
PROSPECT-PRO over the visible to shortwave infrared (VSWIR) domain 
from 400 nm to 2500 nm is expressed as in Eqs. (1) and (2). 

DHRsim,D = PROSPECT − D(Nstruct, Cab, Cxc, EWT, LMA) (1)  

DHRsim,PRO = PROSPECT − PRO(Nstruct, Cab, Cxc, EWT, PROT, CBC) (2)  

where DHRsim, D is the DHR simulated with PROSPECT-D, DHRsim, PRO is 
the DHR simulated with PROSPECT-PRO, Nstruct, Cab, Cxc, EWT, LMA, 
PROT and CBC are the leaf structure parameter (unitless), leaf chloro
phyll a + b content (μg/cm2), leaf carotenoids content (μg/cm2), leaf dry 
matter per area (mg/cm2), leaf protein content (mg/cm2) and leaf 
carbon-based constituents content (mg/cm2). Specifically, PROSPECT-D 
was used to estimate Cab, Cxc, EWT and LMA, and PROSPECT-PRO was 
used for predicting PROT. 

PROCOSINE simulated BRF from DHR simulated with any version of 
PROSPECT, and three additional parameters corresponding to leaf 
orientation and a specular term (Jay et al., 2016; Li et al., 2018) (Eq. 
(3)): 

BRFsim =
cosθi

cosθs

(
DHRsim + bspec

)
(3)  

where θi and θs are the light incident angle (angle between the light 
source and the normal to the leaf), and illumination zenith angle, 
respectively, and bspec is a wavelength-independent specular term 
(unitless) corresponding to the difference between leaf BRF and DHR 
(Bousquet et al., 2005; Jay et al., 2016; Li et al., 2018). 

The inversion of PROCOSINE involves the optimization of model 
parameter vector θ by minimizing the difference between the measured 
and modeled leaf BRF (Eq. (4)): 

Table 1 
Summary of the field sites, sampling dates, and number of samples and species. 
CN: south China; US: eastern United States. The values in brackets indicate the 
number of samples and species measured for equivalent water thickness (EWT) 
and leaf mass per area (LMA) in the US extensive dataset. The NEON site codes 
and names are listed in Fig. 1. The coordinate, climate, vegetation type of each 
site are listed in Table S1. The sampled species of each dataset are listed in 
Table S2.  

Dataset Field site Sampling dates Number of 
samples 

Number of 
species 

CN Heshan Sep.-Oct. 2020; 
May 2021 

196 34 

Liuzhou Jul. 2020 39 2 
Shenzhen Nov. 2021 24 18 
Wanning Jul. 2021 101 53 

Total 360 97 
US 19 NEON 

sites 
May-Oct. 2017 111 (3498) 76 (178) 

Madison May-Nov. 2016 273 121 
Total 384 (3498) 186 (178)  
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J(θ) =
∑λn

λ=λ1

(BRFmes(λ)–BRFsim(λ, θ) )
2 (4)  

where the model parameter vector θ combines the set of leaf biophysical 
descriptors corresponding to the PROSPECT version in use and bspec, λ1 
and λn represent the wavelength range used for model inversions; 
BRFmes(λ) is the bidirectional reflectance factor measured at wavelength 
λ; BRFsim(λ, θ) is the leaf bidirectional reflectance factor at wavelength λ, 
which is simulated by PROCOSINE with model parameters θ (Eqs. (1)– 
(3)). Here we used a simplified version of PROCOSINE, as the geometry 

of acquisition defined by θi and θs was set to 15◦ for all leaves. 
The Matlab code of PROSPECT-PRO was downloaded from https:// 

gitlab.com/jbferet/prospect_pro_matlab. The optimization was per
formed using the function fminsearchbnd in Matlab (The MathWorks, 
Inc.). The optimization range of foliar traits (Cab, Cxc, EWT, LMA, PROT, 
and CBC) was determined by in situ measurements (see Table 2). To 
estimate leaf nitrogen content (Narea, mg/cm2), a scale factor of 4.43 was 
applied to leaf protein content (PROT): Narea = PROT/4.43 (Yeoh and 
Wee, 1994). 

Fig. 1. Location of field sites with sample collection: (a) eastern United States; (b) south China.  

Table 2 
The range of each leaf parameter used in the coupled PROSPECT (-D or -PRO) and COSINE.  

Parameter Abbreviation Unit Initial value Minimum Maximum 
(US) 

Maximum 
(CN) 

Leaf structure Nstruct – 1.5 0.5 3.5 3.5 
Chlorophyll a + b Cab μg/cm2 40 0.5 120 90 
Carotenoids Cxc μg/cm2 10 0.5 25 20 
Anthocyanin Canth μg/cm2 0.1 0 20 20 
Equivalent water thickness EWT mg/cm2 10 1 60 30 
Leaf mass per area LMA mg/cm2 10 1 30 30 
Protein PROT mg/cm2 1 0.1 3 3 
Carbon-based constituents CBC mg/cm2 9 0.9 27 27 
Specular term bspec – 0.2 −0.2 0.6 0.6  
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2.2.2. Iterative optimization: inversion strategies 
Various inversion strategies have been proposed to reduce the un

certainty in parameter estimations such as prior information, the se
lection of optimal spectral domain, and ecological constraints using 
empirical relationships to eliminate unrealistic combinations of pa
rameters (Combal et al., 2003; Darvishzadeh et al., 2008; Jurdao et al., 
2013; Yebra and Chuvieco, 2009). Here, we assessed the performance of 
three inversion strategies (hereafter referred to IS1–3):  

(1) using the full spectrum without any prior information;  
(2) using the optimal spectral domains reported by previous studies 

(Féret et al., 2019, 2021; Spafford et al., 2021) with prior infor
mation on Nstruct and bspec;  

(3) selecting optimal non-contiguous spectral domains from US and 
CN datasets following the procedure described in Féret et al. 
(2021) with prior information on Nstruct and bspec. 

It should be noted that we did not identify optimal spectral domains 
by using the whole US dataset when testing inversion strategy IS3, due to 
the high computation time. Instead, we applied inversion strategy IS3 on 
a subset of US foliar samples (n = 384) with concurrent measurements of 
ten foliar traits. Then, we applied the selected optimal spectral regions to 
predict EWT and LMA for the US extensive dataset with 3498 mea
surements of EWT and LMA. In this way, we could assess if the optimal 
spectral domains obtained from a subset of the dataset can be applied to 
the whole dataset. 

In IS1, the full spectrum was simply applied to the cost function to 
estimate the foliar traits, that is, λ1 = 400 nm and λn = 2500 nm in Eq. 
(4). In IS2, the optimal spectral domains identified by Féret et al. (2021, 
2019) and Spafford et al. (2021) were applied to estimate the foliar 
traits. They were 1700–2400 nm for EWT and LMA (i.e., λ1 = 1700 nm, 
λn = 2400 nm), 2100–2139 nm and 2160–2179 nm for leaf protein, 
700–720 nm for Cab, and 520–560 nm for Cxc. 

In IS3, we used a sequential forward feature selection (SFS) tech
nique to identify the non-contiguous optimum spectral domains (Kudo 
and Sklansky, 2000; Marcano-Cedeno et al., 2010). This method started 
with an empty feature set and sequentially added features which 
generated the minimum RMSE between the trait estimations and the 
measurements (Féret et al., 2021). We created 20 evenly-sized spectral 
features of 50 nm from 1400 nm to 2399 nm for EWT, LMA and Narea, 
and 17 spectral features of 20 nm from 460 nm to 799 nm for Cab and 
Cxc. The root mean squared error (RMSE) between the predicted and 
measured traits was calculated to assess the model performance, and the 
minimum RMSE was used to identify the optimal spectral domains. Take 
EWT as an example, we firstly performed the model inversion using each 
of 20 features, and searched for the one which generated the minimum 
RMSE between the measured and the predicted EWT. Then we identified 
the next spectral feature among the remaining 19 features by combining 
the previously identified feature, which led to the minimum RMSE with 
two features. The procedure continued until all features were added and 
the full spectrum of 1400–2399 nm was used for model inversion. The 
RMSE for each set of features was calculated. The order of spectral 
feature added to the optimal non-contiguous spectral domains was 
recorded. 

We performed inversion of PROSPECT and PROCOSINE to predict 
the five foliar traits (EWT, LMA, Narea, Cab, Cxc), and compared the 
retrieval performance of the two models in order to test the contribution 
of additional specular term and leaf orientation in PROCOSINE. In 
PROSPECT inversion, the prior information on the leaf structure was 
obtained using an empirical relationship built on the DHR at 1131 nm 
following Spafford et al. (2021). For PROCOSINE, the approach may not 
be applicable to BRF due to the differences between DHR and BRF. We 
found that EWT and LMA could be estimated with moderate accuracies 
using the full spectrum without prior information (IS1). Thus, we 
assumed that other parameters such as leaf structure and bspec were also 
well retrieved. In PROCOSINE, we used the Nstruct and bspec estimated 

from IS1 as prior information for ease of operation. 
In addition, we applied the optimal non-contiguous spectral domains 

(IS3) obtained from one dataset to the other dataset to evaluate the 
model performance and transferability of inversion strategies across 
datasets. 

2.3. Partial least squares regression 

Partial least squares regression (PLSR) transforms the original data to 
a smaller number of orthogonal latent vectors and maximizes the cor
relation between the response variables and the predictor variables 
(Wold et al., 2001). It deals with the problem of multicollinearity 
inherent in hyperspectral data and has been widely used to estimate 
foliar functional traits using leaf spectroscopy or imaging spectroscopy 
(Asner et al., 2015; Serbin et al., 2019; Wang et al., 2020; Yang et al., 
2016). To select the most informative spectral bands, we performed one 
of the feature selection methods in PLSR, the interval PLSR (iPLSR) 
(Mehmood et al., 2012; Nørgaard et al., 2000). iPLSR is one of the 
wrapper methods in PLSR, which is similar to the sequential forward 
feature selection approach used in RTM inversion. 

Similar to Section 2.2.2, we created evenly-sized spectral features for 
EWT, LMA, Narea, Cab and Cxc. For each trait, we firstly built iPLSR 
models using each of the features, and searched for the one which 
generated the minimum RMSE between the trait measurements and 
predictions. Then we identified the next spectral feature among the 
remaining features by combining the previously identified one, which 
led to the minimum RMSE with two features. The procedure continued 
until all features were added. The RMSE for each set of features was 
calculated, and the minimum RMSE was used to identify the optimal 
spectral domains. For comparison, we also built PLSR models with the 
full spectrum (400–2400 nm). 

To avoid model overfitting, the number of latent vectors was deter
mined by minimizing the prediction residual sum of squares (PRESS) 
statistic through 200 70/30 jack-knifed splits of the calibration dataset 
(Chen et al., 2004). In this study, we built iPLSR and PLSR models be
tween foliar traits and leaf spectra to explore the generality of 
empirically-based approaches. 

First, we evaluated the performance of models within each dataset. 
That is, iPLSR and PLSR models were built on the CN or US dataset. The 
original dataset was randomly split with 70% for model calibration and 
30% for model validation. Within the calibration subset, 70% of the 
samples were randomly selected to generate a model. To minimize the 
effect of random sampling on model calibration, we repeated the 
random sampling procedure for 200 times and thus generated 200 
models. 

Second, we evaluated the transferability of iPLSR and PLSR models 
across different datasets. That is, models were calibrated on the US (or 
CN) dataset and validated on the CN (or US) dataset. In this scenario, the 
calibration dataset was one of the full datasets (US or CN). Similarly, 200 
models were generated by randomly sampling 70% of the calibration 
dataset for 200 times. 

Finally, the 200 models were applied to the validation subset. The 
validation subset was the 30% withheld data of each dataset in the first 
scenario, and one of the datasets (CN or US) in the second scenario. The 
average of the resultant 200 predictions was used as an estimate of foliar 
traits. For iPLSR, the selected optimal spectral domains were used to 
evaluate the informative spectral bands. For PLSR, the variable impor
tance of projection (VIP) was calculated to evaluate the contribution of 
each wavelength to the trait prediction (Wold et al., 2001). 

2.4. Model evaluation 

Four statistics, including the coefficient of determination (R2), the 
root mean squared error (RMSE), the normalized RMSE (NRMSE =

RMSE/mean), and the bias (BIAS) between model predictions and field 
measurements, were calculated to evaluate the performance of the 
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physically- and empirically-based approaches. BIAS was calculated as 
the difference between the averages of predictions and measurements. A 
positive value of BIAS often indicates over-estimation of the model 
predictions, and a negative value of BIAS means under-estimation. 

To evaluate the model transferability, we calculated the relative 
RMSE difference, 

RMSEdiff =
(RMSEacross − RMSEwithin)

RMSEwithin
*100% (5)  

where RMSEwithin is the RMSE when cross-validation is performed within 
a dataset, RMSEacross is the RMSE when models are applied across 
datasets (e.g., models developed on US were applied to CN). 

3. Results 

3.1. Statistics of the foliar functional traits 

The statistics and distribution patterns of the foliar functional traits 
from CN and US datasets are shown in Table 3, as well as Figs. 2 and S1 - 
S2. All foliar traits in US dataset showed similar to broader range in 
terms of content than in CN dataset (Table 3). The range measured for 
LMA was similar across CN and US datasets, but the mean LMA in CN 
was higher, which may be explained by ecological factors and strategies, 
as CN dataset was mainly composed of evergreen broadleaf species. The 
EWT range in US was broader than that in CN due to the presence of 
species such as cattail (Typha angustifolia) and yellow iris (Iris pseuda
corus) with particularly high EWT (> 30 mg/cm2). The mean of Narea 
was higher in CN (0.18 mg/cm2) than in US (0.16 mg/cm2). The dis
tribution and mean values of Cab in CN and US were similar. The mean 
value of Cxc in CN (6.30 μg/cm2) was lower than in US (8.17 μg/cm2). 

3.2. The variability of leaf bidirectional reflectance factor 

The mean and standard deviation of the leaf BRF for two datasets are 
shown in Figs. 3 and S3. The mean reflectance of US in the visible 
spectral region was much higher than that of CN, which was attributed 
to a lower chlorophyll content in young and senesced leaves in the 
Madison subset. The mean reflectance in the near-infrared region was 
higher in CN than US due to more scattering caused by thicker leaves of 
evergreen broadleaf species in CN. The lower mean reflectance of CN in 
the shortwave infrared region can be attributed to the absorption by 
higher EWT and LMA (Table 3). The standard deviation of leaf reflec
tance was similar for the two datasets. 

3.3. The performance of PROSPECT and PROCOSINE 

3.3.1. The optimal non-contiguous spectral domains 

3.3.1.1. PROSPECT. The optimal non-contiguous spectral domains for 
predicting foliar traits (IS3) in CN and US datasets are listed in Fig. 4 and 
Table S3. The optimal spectral domains to estimate EWT and LMA used 

in PROSPECT model inversion were mostly overlapped for CN and US 
(Fig. 4). The optimal spectral domains to predict Narea were the same for 
CN and US, which was 2100–2149 nm. For pigments, the optimal 
spectral domains for the two datasets were similar sharing the red-edge 
spectral segments of 740–759 nm and 760–779 nm. 

3.3.1.2. PROCOSINE. The optimal non-contiguous spectral domains for 
the estimation of EWT and LMA with PROCOSINE largely differed from 
those obtained with PROSPECT (-D or -PRO), but were quite consistent 
for Narea and pigments (Fig. 4). The optimal spectral regions to predict 
EWT for CN and US datasets only shared one spectral segment of 
2050–2099 nm. For LMA, the optimal spectral regions for the two 
datasets had the common spectral segments of 2300–2349, 2250–2299, 
and 2350–2399 nm. The most accurate prediction of Narea for US was 
obtained by six segments of 50 nm starting with 2050, 2150, 2100 and 
2250 nm. For CN, the optimal subdomains only included one segments 
starting with 2100 nm. The optimal spectral domains to predict Cab were 
similar for CN and US, both including the red-edge spectral region of 
520–559 nm. When predicting Ccx, the optimal spectral regions were 
also similar for the two datasets sharing the spectral segment of 
700–779 nm. 

3.3.2. Model performance within each individual dataset 

3.3.2.1. PROSPECT. Both EWT and LMA were accurately estimated by 
inverting PROSPECT with the full spectrum (RMSE = 2.37–4.50 mg/ 
cm2, Table 4). IS2 led to improved results compared to IS1 when using 
BRF. The accuracy was further improved when using the optimal non- 
contiguous spectral domains identified in this study (Fig. 5). 

EWT was more accurately predicted in CN than in US. This could be 
largely explained by the presence of samples corresponding to forb 
species in the US dataset, with EWT higher than 25.0 mg/cm2 (e.g., 
cattail, Typha angustifolia; rattlesnake master, Eryngium yuccifolium). 
With these samples being removed, the estimation accuracy of EWT in 
US was greatly improved with RMSE decreasing from 3.62 mg/cm2 to 
2.69 mg/cm2. For LMA, an underestimation was found for both CN and 
US when performing IS1 (Table S4). Selecting optimal non-contiguous 
spectral regions (IS3) was the best inversion strategy for LMA (Table 4). 

Both the selection of optimal spectral domains and the use of prior 
information significantly improved the estimation of Narea. The RMSE of 
Narea reduced from 0.350 to 0.058 mg/cm2 for CN and from 0.320 to 
0.049 mg/cm2 for US, respectively (Table 4). 

Cab was most accurately estimated with the IS3 (Table 4). Cab in US 
was more accurately predicted than that in CN. Cxc was poorly estimated 
for both datasets with any of the three inversion strategies. 

3.3.2.2. PROCOSINE. The estimation accuracies of foliar traits using 
PROCOSINE were lower than those from PROSPECT (Table 4). Notably, 
the RMSE of LMA increased from 1.16 to 1.36 mg/cm2 with PROSPECT 
to 1.58–2.24 mg/cm2 with PROCOSINE. The inversion strategies 
yielding the most accurate estimations were similar for the two models. 

Table 3 
Statistics of the foliar functional traits in CN and US datasets used in this study. EWT: equivalent water thickness; LMA: leaf mass per area; Cab: leaf chlorophyll a + b; 
Cxc: leaf carotenoids. SD: standard deviation; CV: coefficient of variation.  

Dataset Trait Unit Number of samples Min Max Range Mean SD CV 

CN EWT mg/cm2 359 5.50 26.43 20.93 13.91 4.06 0.29 
LMA mg/cm2 360 2.79 23.06 20.27 8.66 3.17 0.37 
Narea mg/cm2 357 0.07 0.38 0.31 0.18 0.06 0.36 
Cab μg/cm2 172 6.94 80.70 73.76 36.54 14.13 0.39 
Cxc μg/cm2 172 1.11 13.20 12.09 6.30 2.30 0.37 

US EWT mg/cm2 3769 0.38 68.03 67.65 10.32 5.31 0.51 
LMA mg/cm2 3791 0.21 24.36 24.15 7.41 3.01 0.41 
Narea mg/cm2 294 0.03 0.39 0.36 0.16 0.07 0.43 
Cab μg/cm2 371 0.78 109.11 108.33 39.97 18.95 0.47 
Cxc μg/cm2 372 0.89 20.95 20.95 8.17 3.15 0.39  
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The results of each dataset by light conditions (sun and shade leaves), 
and by growth periods (mature, young, and old leaves) were shown in 
Figs. S4 – S7. Foliar traits of the shade leaves were more accurately 
estimated than those of sun leaves in both CN and US (Figs. S4 – S5). 
With respect to growth periods, the estimation accuracies of foliar traits 

were quite similar for young and mature leaves in CN (Fig. S6). In US, no 
clear patterns were found in the estimation accuracies of foliar traits for 
mature, young, and old leaves (Fig. S7). 

3.3.3. Transferability of inversion strategies across datasets 

3.3.3.1. PROSPECT. EWT and LMA in CN could be accurately esti
mated using the optimal spectral domains obtained from the US dataset 
(Table 5). The estimation accuracy was high for LMA (RMSE = 1.39 mg/ 
cm2) but lower for EWT (RMSE = 3.62 mg/cm2) in US when applying 
the optimal spectral domains identified for the CN dataset. 

Narea was accurately predicted both in CN and US (RMSE = 0.058 
mg/cm2 and 0.049 mg/cm2, respectively) with the optimal spectral 
domains obtained from the counterpart, indicating a high transferability 
of the inversion strategy (Table 5). Cab was less accurately estimated 
when applying the optimal spectral domains identified in one dataset to 
the other (Table 5, Figs. 6, S8 – S9). Cxc was poorly predicted for both 
datasets when using the optimal spectral domains identified by the 
counterpart. 

We also applied the selected optimal spectral regions from the US 
dataset (Table S3) to the US extensive dataset with 3498 measurements 
of EWT and LMA (Table 6). The most accurate estimation of LMA was 
achieved using the optimum non-contiguous spectral regions (RMSE =
1.30 mg/cm2). However, EWT was most accurately predicted by IS2 
using the optimal spectral regions reported in previous studies (RMSE =
2.96 mg/cm2). 

3.3.3.2. PROCOSINE. PROCOSINE resulted in less accurate estimations 
of foliar traits than PROSPECT when applying the optimal spectral do
mains identified in one dataset to the other (Table 5). LMA in CN was 

Fig. 2. Histogram and distribution density plot of the foliar traits in CN and US datasets. EWT: equivalent water thickness; LMA: leaf mass per area; Cab: leaf 
chlorophyll a + b; Cxc: leaf carotenoids. 

Fig. 3. The mean of leaf bi-directional reflectance factor (with standard devi
ation) for CN and US datasets. 
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Fig. 4. The optimal non-contiguous spectral domains for predicting foliar traits in CN and US datasets used in model inversion of PROSPECT and PROCOSINE. EWT: 
equivalent water thickness; LMA: leaf mass per area; Narea: leaf nitrogen; Cab: leaf chlorophyll a + b; Cxc: leaf carotenoids. 

Table 4 
The model performance of PROSPECT and PROCOSINE to predict foliar traits in CN and US datasets with three inversion strategies (IS1–3). IS1: uses the full spectrum; 
IS2: uses the optimal spectral regions as suggested in previous studies (Féret et al., 2019, 2021; Spafford et al., 2021); IS3: uses the optimal non-contiguous spectral 
regions identified in this study. Bold values are the most accurate estimation among the three inversion strategies. The values of NRMSE and BIAS are listed in Tables S4 
and S5. EWT: equivalent water thickness; LMA: leaf mass per area; Narea: leaf nitrogen; Cab: leaf chlorophyll a + b; Cxc: leaf carotenoids.  

Trait Inversion strategy PROSPECT PROCOSINE 

CN dataset US dataset CN dataset US dataset 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

EWT 
(mg/cm2) 

IS1 0.56 4.02 0.64 4.50 0.62 3.89 0.68 4.58 
IS2 0.53 3.17 0.65 4.72 0.60 3.52 0.65 4.60 
IS3 0.74 2.18 0.77 3.62 0.66 2.82 0.69 4.19 

LMA 
(mg/cm2) 

IS1 0.77 2.37 0.72 2.78 0.80 2.27 0.72 2.89 
IS2 0.85 1.24 0.82 1.44 0.81 1.96 0.74 2.51 
IS3 0.87 1.16 0.84 1.36 0.81 1.58 0.74 2.24 

Narea 

(mg/cm2) 
IS1 0.29 0.35 0.43 0.32 0.19 0.34 0.33 0.30 
IS2 0.35 0.070 0.61 0.060 0.35 0.077 0.57 0.067 
IS3 0.50 0.058 0.63 0.049 0.47 0.067 0.48 0.069 

Cab 

(μg/cm2) 
IS1 0.21 25.13 0.60 13.12 0.25 25.15 0.64 13.15 
IS2 0.36 22.92 0.71 11.74 0.27 25.71 0.61 15.09 
IS3 0.33 13.13 0.69 10.92 0.14 18.49 0.48 16.13 

Cxc 

(μg/cm2) 
IS1 0.14 8.81 0.13 6.05 0.15 9.29 0.19 7.15 
IS2 0.17 11.81 0.18 6.97 0.29 12.31 0.27 8.50 
IS3 0.07 3.47 0.14 5.31 0.04 4.52 0.21 5.72  
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predicted with moderate accuracy (RMSE = 1.56 mg/cm2) with the 
optimal spectral domains obtained from the US dataset, while LMA in US 
was poorly estimated (RMSE = 2.76 mg/cm2) with the optimal spectral 
domains identified by the CN dataset. Pigments were predicted with 
poor accuracies for both datasets when using the optimal spectral do
mains identified by their counterpart. 

EWT and LMA were retrieved with lower accuracies, when applying 
the optimal spectral regions identified for the US dataset to the US 
extensive dataset using PROCOSINE compared to PROSPECT (Table 6). 

3.4. The performance of the empirically-based approach 

3.4.1. Model performance within each individual dataset 
Both the iPLSR and PLSR model accurately estimated the majority of 

foliar traits when it was cross-validated within the same dataset (Ta
bles 7 and S8), and the accuracies were higher than those of PROSPECT 
and PROCOSINE (Table 4). iPLSR achieved higher accuracies than PLSR 
(Tables 7 and S8). EWT and LMA were most accurately predicted, fol
lowed by Narea, Cab and Cxc. 

Fig. 5. RMSE between the measured and predicted foliar traits from leaf bidirectional reflectance factor with PROSPECT and PROCOSINE. The X axis is the 
wavelength added to the feature set in the selection of optimal non-contiguous spectral regions (IS3). The Y axis is the number of model inversions in the sequential 
forward feature selection (SFS). The white “+” symbol indicates the wavelength added to the feature set which leads to minimum RMSE in each run. The white star 
symbol indicates the wavelength which leads to minimum RMSE among all runs. EWT: equivalent water thickness; LMA: leaf mass per area; Narea: leaf nitrogen; Cab: 
leaf chlorophyll a + b; Cxc: leaf carotenoids. 
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3.4.2. Model performance across datasets 
When the iPLSR and PLSR model was validated across datasets, the 

estimation accuracies decreased (Tables 7 – 9, S9). The model built on 
US generally performed better than that built on CN (Table 8 and Figs. 7, 
S10 – S15). The trait model built on US worked well for predicting LMA 
in CN, resulted in systematic negative bias for the estimation EWT, 
estimated Cab and Cxc with moderate accuracy, but accurately predicted 
Narea. 

The trait model built on CN could only predict EWT and LMA in US 
with high accuracies (Table 8 and Fig. 7). The LMA in US was estimated 
with R2 = 0.82 and RMSE = 1.60 mg/cm2. Since the EWT in CN ranged 
from 5.50 to 26.43 mg/cm2, the EWT in US was underestimated for the 
measurements higher than 25.0 mg/cm2. Narea was moderately esti
mated, and pigments were poorly estimated when transferring the 
models from CN to US. This is likely due to the fact that the trait range in 
CN is smaller than that in US (Table 3). 

3.4.3. The feature importance of iPLSR and PLSR 
For iPLSR, the optimal spectral domains for predicting foliar traits in 

CN and US datasets were largely inconsistent (Fig. 8). For Narea, the 
optimal spectral domains for the two datasets were quite similar sharing 
the spectral segments of 1650–1800 nm, 2050–2100 nm, 2200–2250 

Table 5 
The cross-dataset validation of PROSPECT and PROCOSINE to predict foliar 
traits using the optimal non-contiguous spectral regions (IS3) identified in each 
dataset (Table S3). US ➔ CN denotes the prediction accuracy statistics for the CN 
dataset using the optimal spectral domains obtained from US. CN ➔ US denotes 
the prediction accuracy statistics for the US dataset using the optimal spectral 
domains obtained from CN. The values of NRMSE and BIAS are listed in 
Tables S6 and S7. EWT: equivalent water thickness; LMA: leaf mass per area; Cab: 
leaf chlorophyll a + b; Cxc: leaf carotenoids; Narea: leaf nitrogen.  

Trait PROSPECT PROCOSINE 

US ➔ CN CN ➔ US US ➔ CN CN ➔ US 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

EWT (mg/ 
cm2) 

0.73 2.27 0.78 3.62 0.62 3.06 0.66 4.40 

LMA (mg/ 
cm2) 

0.88 1.22 0.83 1.39 0.83 1.56 0.67 2.76 

Narea (mg/ 
cm2) 

0.50 0.058 0.63 0.049 0.33 0.071 0.55 0.074 

Cab (μg/ 
cm2) 

0.35 19.42 0.60 15.21 0.19 24.70 0.38 19.24 

Cxc (μg/ 
cm2) 

0.14 3.71 0.10 5.12 0.24 5.47 0.02 6.53  

Fig. 6. Measured versus predicted foliar traits from the leaf bidirectional reflectance factor with PROSPECT and PROCOSINE. Predictions for CN were obtained using 
the optimal non-contiguous spectral regions obtained from US, and vise versa (Table S3). EWT: equivalent water thickness; LMA: leaf mass per area; Cab: leaf 
chlorophyll a + b; Cxc: leaf carotenoids. 
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nm, and 2300–2400 nm. For other traits, the optimal spectral domains 
for CN and US were mostly different. 

For PLSR, the variable importance of projection (VIP) values of EWT 
and LMA models built on CN and US were similar (Fig. S16), which 

resulted in good model transferability of those two foliar traits. For EWT, 
VIP had higher values between 1350 nm and 1450 nm. The VIP values of 
LMA models were higher at 1200–1340 nm, 1660–1750 nm and 
2250–2320 nm. Narea models built on CN and US had similar VIP values 
in the spectral region of 1400–2400 nm. The VIP values of pigment 
models were high in the visible spectral region, with peaks at 700–740 
nm shared by both models built on CN and US. 

4. Discussion 

4.1. The feasibility of the physically-based approach in predicting foliar 
traits 

This study confirms the applicability of physical model inversion on 
leaf bidirectional reflectance factor for the estimation of LMA, EWT and 
Narea. Here, both PROSPECT and PROCOSINE model inversion resulted 
in satisfactory accuracy across geographic areas, plant species, light 
conditions and growth periods (Table 4, Figs. S4 – S7). The estimation 
accuracies of foliar traits using PROSPECT were generally higher than 
those from PROCOSINE. We also confirmed the capability of various 
inversion strategies in improving leaf trait estimations and their trans
ferability across datasets of different continents (Table 5, Fig. 6). Simi
larly, PROSPECT resulted in more accurate estimations of foliar traits 
than PROCOSINE when applying the non-contiguous optimal spectral 
domains identified in one dataset to the other (Table 5). The optimal 
spectral domains for predicting EWT and LMA with PROSPECT largely 
differed from those obtained with PROCOSINE, but were quite 

Table 6 
The model performance of PROSPECT and PROCOSINE to predict equivalent 
water thickness (EWT) and leaf mass per area (LMA) in the US extensive dataset 
of 3498 foliar samples with three inversion strategies (IS1–3). IS1: uses the full 
spectrum; IS2: uses the optimal spectral regions as suggested in previous studies 
(Féret et al., 2019, 2021; Spafford et al., 2021); IS3 uses the optimal non- 
contiguous spectral regions identified for the US dataset for predicting EWT 
and LMA, respectively (Table S3). Bold values are the most accurate estimation 
among the three inversion strategies.  

Model Trait Inversion 
strategy 

US extensive dataset 

R2 RMSE NRMSE BIAS 

PROSPECT EWT 
(mg/ 
cm2) 

IS1 0.67 4.00 7.87 1.88 
IS2 0.67 2.96 5.83 2.65 
IS3 0.78 2.99 5.90 1.76 

LMA 
(mg/ 
cm2) 

IS1 0.72 2.50 10.92 −0.98 
IS2 0.81 1.34 5.85 −0.14 
IS3 0.83 1.30 5.69 ¡0.33 

PROCOSINE EWT 
(mg/ 
cm2) 

IS1 0.71 4.53 8.92 2.59 
IS2 0.69 4.31 8.50 2.06 
IS3 0.48 3.80 7.49 ¡0.05 

LMA 
(mg/ 
cm2) 

IS1 0.73 2.52 10.97 −0.82 
IS2 0.76 2.27 9.91 −0.32 
IS3 0.79 1.98 8.61 ¡0.31  

Table 7 
The model performance of interval partial least squares regression (iPLSR) by selecting the optimal spectral domains. iPLSR model was built on CN dataset or US 
dataset. Cross-validation was performed on 30% of each dataset. h is the number of latent vectors used to build iPLSR models. EWT: equivalent water thickness; LMA: 
leaf mass per area; Cab: leaf chlorophyll a + b; Cxc: leaf carotenoids.  

Trait Independent Validation 

CN dataset US dataset 

h R2 RMSE NRMSE BIAS h R2 RMSE NRMSE BIAS 

EWT (mg/cm2) 11 0.92 1.13 6.50 0.08 16 0.92 1.75 4.56 0.07 
LMA (mg/cm2) 17 0.97 0.61 4.09 0.14 14 0.93 0.69 6.28 0.01 
Narea (mg/cm2) 16 0.88 0.022 8.30 0.0002 14 0.87 0.021 7.94 0.005 
Cab (μg/cm2) 9 0.61 8.68 14.30 1.83 8 0.81 8.02 8.74 −0.08 
Cxc (μg/cm2) 7 0.61 1.34 15.43 0.06 4 0.60 1.86 14.04 0.08  

Table 8 
The cross-dataset validation of interval partial least squares regression (iPLSR) to predict foliar traits. iPLSR model was built on one of the two datasets (CN and US) and 
applied to the other for validation. h is the number of latent vectors used to build iPLSR models. EWT: equivalent water thickness; LMA: leaf mass per area; Cab: leaf 
chlorophyll a + b; Cxc: leaf carotenoids.  

Trait US → CN CN → US 

R2 RMSE NRMSE BIAS R2 RMSE NRMSE BIAS 

EWT (mg/cm2) 0.68 2.61 12.48 −0.68 0.71 4.67 7.26 1.70 
LMA (mg/cm2) 0.84 2.13 10.49 −1.70 0.82 1.60 8.20 0.85 
Narea (mg/cm2) 0.74 0.033 10.72 −0.0009 0.68 0.044 12.11 −0.02 
Cab (μg/cm2) 0.38 17.73 24.04 13.72 0.29 22.21 20.50 −9.25 
Cxc (μg/cm2) 0.42 3.47 28.67 2.99 0.05 4.39 21.91 −1.76  

Table 9 
The relative RMSE difference between the RMSE when cross-validation was performed within a dataset and the RMSE when the models were applied across datasets. 
Leaf trait models included PROSPECT, PROCOSINE, PLSR and interval PLSR (iPLSR).  

Trait PROSPECT PROCOSINE PLSR iPLSR 

US➔CN CN➔US US➔CN CN➔US US➔CN CN➔US US➔CN CN➔US 

EWT 4% 0% 9% 5% 218% 61% 131% 167% 
LMA 5% 2% −1% 23% 37% 30% 249% 132% 
Narea 0% 0% 6% 10% −3% 136% 50% 110% 
Cab 48% 39% 34% 46% 46% 98% 104% 177% 
Cxc 7% −4% 21% 14% 91% 87% 159% 136%  
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consistent for Narea and pigments (Fig. 4, Table S3). 
Our estimation accuracy of EWT and LMA was comparable with 

previous studies (Féret et al., 2019; Feret et al., 2008; Li et al., 2018; 
Spafford et al., 2021). This can be attributed to the fact that water and 
dry matter are the dominant drivers of the variations in leaf reflectance 
and have strong absorption features (Feret et al., 2008; Jacquemoud 
et al., 2009). LMA was often less accurately estimated than EWT due to 
the overlapping effect of water absorption features (Ali et al., 2016; 
Colombo et al., 2008; Feret et al., 2008; Riaño et al., 2005). However, 
this study found that LMA can be more accurately predicted than EWT 
by using the physically-based approach with properly selected spectral 
information (Table 4). The optimal spectral domains for LMA mainly 
located in 1600–1800 nm and 2050–2400 nm (Fig. 4 and Table S3). 
EWT has weaker absorption in these spectral domains (Wang et al., 
2015a; Féret et al., 2019), which thereby improved the prediction of 
LMA. Our results also confirmed that applying various inversion stra
tegies could further improve the estimation accuracy of both LMA and 
EWT. 

More importantly, our study confirmed the feasibility of retrieving 
foliar N from leaf bidirectional reflectance factor by inverting the 
PROSPECT or PROCOSINE model on a wider range of dataset (Table 4). 
However, inversion strategies are needed in order to achieve a satis
factory estimation accuracy. The selection of optimal non-contiguous 
spectral region can significantly improve the prediction (Table 4), and 
the use of leaf structure and bspec as prior information can further in
crease the accuracy. The optimal spectral subdomains were similar for 
the two datasets (Fig. 4, Table S3), and had the common feature of 2100 
nm related to the absorption features of protein (Curran, 1989; Fourty 
et al., 1996). 

Compared to EWT and LMA, Narea had a lower estimation accuracy 
because of the weaker absorption of proteins which was overlapped by 

the absorption features of water and other constituents of dry matter 
(Curran, 1989). Féret et al. (2021) reported lower NRMSE for the esti
mation of proteins using PROSPECT-PRO (NRMSE = 15.1%), possibly 
because the calibration and validation samples were from the same 
dataset LOPEX. This would lead to consistent experimental uncertainty 
during data collection (including protocol, equipment, operator and 
error in measurement). Although RTM model was developed based on 
physical laws, some important parameters need to be empirically cali
brated using in-situ data. For instance, the specific absorption co
efficients (SAC) of dry matter, chlorophyll, carotenoids, and protein 
were calibrated from leaf directional-hemispherical reflectance and 
transmittance (Féret et al., 2017, 2021; Feret et al., 2008). As shown in 
Table S10, the SAC calibration of PROSPECT-PRO was performed using 
a small number of samples (n = 33) from LOPEX which is the only 
publicly available dataset. We expect that the estimation accuracy of 
Narea can be further improved if datasets with the concurrent measure
ments of leaf spectra and traits from more diverse samples can be used 
for the calibration of PROSPECT-PRO (Féret et al., 2021). 

Leaf chlorophyll in US dataset was accurately estimated through 
PROSPECT and PROCOSINE inversion (Table 4), and the model per
formance was similar to previous studies (Feret et al., 2008; Féret et al., 
2017; Spafford et al., 2021). Predicting leaf carotenoids is still chal
lenging due to its low concentration and overlapping absorption features 
with chlorophyll (Feret et al., 2008). We obtained less accurate esti
mation for carotenoids than chlorophyll (Table 4), which is in agree
ment with previous studies (Feret et al., 2008; Spafford et al., 2021). 
Leaf chlorophyll in CN dataset was less accurately estimated (Table 4), 
possibly due to the discrepancy in the plant functional type between the 
SAC calibration dataset and our CN dataset, as well as the uncertainty in 
pigment analysis. US samples were determined using the high- 
performance liquid chromatography (HPLC) techniques, while CN 

Fig. 7. Measured versus predicted foliar traits from the leaf bidirectional reflectance factor using interval partial least squares regression (iPLSR). Foliar traits in CN 
dataset were predicted with the US model, while foliar traits in US dataset were predicted with the CN model. EWT: equivalent water thickness; LMA: leaf mass per 
area; Cab: leaf chlorophyll a + b; Cxc: leaf carotenoids. 

Z. Wang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 293 (2023) 113614

13

samples were measured using the spectrophotometric analysis. The 
plant functional types used for the SAC calibration of PROSPECT are 
mainly European deciduous species (Table S10) while the plant func
tional types of our CN dataset used for testing PROSPECT are mainly 
evergreen broadleaf species. Again, this emphasized the importance of 
incorporating more diverse leaf samples for the SAC calibration of 
PROSPECT. 

Other inversion strategies such as ecological constrains or wavelet 
transform can potentially improve the estimation by reducing the un
realistic combination of traits (Banskota et al., 2013; Jurdao et al., 2013; 
Li et al., 2018; Wang et al., 2018; Yebra and Chuvieco, 2009). Our study 
did not include the use of ecological constrains in model inversion for 
the following reasons. The ecological rules are often built on empirical 
relationships which may be species- or site- specific and not be appli
cable when transferring to another dataset. For instance, Narea and EWT 
was found to be highly correlated (Homolová et al., 2013; Sullivan et al., 
2013; Wang et al., 2015a), but not in the CN and US datasets used in this 
study (r = 0.30 and 0.32, respectively). The relationship between Narea 
and LMA was often more correlated within species and become much 
weaker at high taxonomic levels (Anderegg et al., 2018). Therefore, it is 
difficult to apply a universal relationship in model inversion, and the use 
of such ecological rules may decrease the generality of RTM. For local 
studies with similar species, the use of ecological constrains is recom
mended which may significantly improve the estimation accuracy of 
Narea. 

A previous study performed the model inversion by coupling 
PROSPECT and continuous wavelet transform in the merit function, and 
achieved more accurate estimation of LMA than PROCOSINE for wheat 
and rice (Li et al., 2018). This was because wavelet transform could both 
alleviate the effect of specular reflectance and enhance the absorption of 
dry matter absorption. In this study, we assessed the performance of 
wavelet transform but did not achieve satisfactory results (results not 
shown). Therefore, this study chose to couple PROSPECT and COSINE, 

which has a stronger physical basis to consider the specular reflectance 
effect than wavelet transform (Jay et al., 2016; Li et al., 2018). We also 
performed model inversion simply using PROSPECT without accounting 
for the specular reflectance, and obtained trait estimations with similar 
or higher accuracies than PROCOSINE (Tables 4 – 5, Figs. 5 – 6). The 
good performance of PROSPECT (designed for DHR) on BRF could be 
attributed to an overestimation of leaf structure using Spafford et al. 
(2021), which may offset the influence of specular reflectance. Mean
while, the lower estimation accuracies by PROCOSINE may be caused by 
the uncertainties in estimating leaf structure and bspec. 

4.2. Towards a generalized foliar trait model using PLSR 

A generalized empirical model (PLSR) was newly developed to pre
dict LMA across plant species, leaf ages and biomes (Serbin et al., 2019). 
Our results further confirmed the feasibility of developing a generalized 
LMA model by extending the dataset to south China which was rarely 
sampled. Furthermore, the interval PLSR via feature selection further 
improved the estimation accuracies of foliar traits than PLSR using the 
full spectrum. The model developed on US can accurately predict the 
LMA in CN but with some bias, which may be due to the fact that the 
dominant plant species in US and CN were deciduous and evergreen, 
respectively. 

We also demonstrated that a generalized PLSR model for EWT can be 
developed across continents (Table 8) due to the dominant role of water 
in driving the variation of leaf spectra. There was a notable underesti
mation in EWT predictions when transferring the models from US to CN 
(Fig. 7), which was likely due to the fact that the CN dataset mainly 
consisted of evergreen broadleaf species with higher EWT (Fig. 2). The 
range of EWT limited the model transferability by generating pre
dictions with a systematic bias but a high R2 (Fig. 7, Table 8). When 
transferring the EWT model from CN to US, a non-linear relationship 
between the predictions and the measurements was observed, which 

Fig. 8. The optimal spectral domains for predicting foliar traits in CN and US datasets used in interval PLSR (iPLSR). EWT: equivalent water thickness; LMA: leaf 
mass per area; Narea: leaf nitrogen; Cab: leaf chlorophyll a + b; Cxc: leaf carotenoids. 
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was overestimation for samples with low values and underestimation for 
those with high values (Fig. 7). Therefore, the development of robust 
and transferable models across biomes needs the calibration data 
covering diverse plant functional types. 

Nitrogen can be accurately predicted when the models were trans
ferred across datasets (Table 8), which can be due to the common 
optimal spectral domains shared by CN and US (Fig. 8). The empirically- 
based approach poorly estimated leaf pigments when transferring from 
one dataset to the other (Table 8). Leaf chlorophyll a + b was more 
accurately estimated than carotenoids. Although empirical approaches 
are often criticized by the low generality, including more representative 
samples in model development can potentially overcome the challenges 
(Nakaji et al., 2019; Serbin et al., 2019; Wang et al., 2020; Yang et al., 
2016). 

4.3. Implication for foliar trait prediction and ecological applications 

Physically- and empirically-based approaches are complementary in 
predicting foliar traits. The selection of approaches depends on the traits 
of interest, estimation accuracy, model transferability and ease of 
operation. In general, the physically-based approach can be used for 
predicting EWT, LMA, Narea, Cab and Cxc, while the empirically-based 
approach can be used for any foliar trait of interest with or without 
obvious absorption features (Burnett et al., 2021). Foliar traits such as P 
and K are not incorporated in RTM and can only rely on empirical ap
proaches for prediction (Asner et al., 2015; Wang et al., 2020). 

Both approaches could be used to predict EWT and LMA with high 
accuracies over a wide range of plant species (Tables 4 and 7). The 
physically-based approach could accurately predict Cab for deciduous 
plant species but not for evergreen species, estimate Narea with moderate 
accuracy, and only poorly estimate Cxc. For those cases, empirical ap
proaches such as PLSR are suggested to achieve higher estimation ac
curacy (Féret et al., 2019; Wang et al., 2018). 

RTM offers robustness and transferability, but inversion strategies 
may affect the model transferability. For instance, the optimal spectral 
regions and ecological constrains used for model inversion may vary 
depending on the dataset. The optimal spectral regions suggested in 
previous studies (IS2) did not yield satisfactory results when using BRF 
(Table 4), which suggests that these optimal domains defined using DHR 
and DHT should be refined. With the two extensive datasets collected in 
eastern United States and south China, we found that the estimation 
accuracies were quite similar when transferring inversion strategies 
across datasets, indicating a high level of transferability of the 
physically-based models (Tables 4, 5 and 9). RTM was most transferable 
for LMA and EWT when using BRF, which agrees with Féret et al. (2019) 
who used directional-hemispherical leaf optical properties. The model 
transferability was slight lower for Narea, and least for Cab and Cxc. The 
possible reasons include the trait and spectral differences between the 
two datasets (Figs. 2 and S17), the experimental uncertainty or bias in 
the two datasets, as well as the suboptimal performance of BRF 
compared to DHR. For empirically-based approaches such as PLSR and 
iPLSR, the estimation accuracies were high when cross-validation was 
performed, but greatly decreased if models were applied to an inde
pendent dataset (Table 9). This demonstrated lower transferability of 
empirically-based approaches across datasets. It is capable to build 
generalized trait models for EWT and LMA irrespective of plant func
tional types. To develop generalized trait models for leaf pigments and 
nitrogen, an extensive dataset or representative samples from diverse 
sites, biomes and species are needed (Serbin et al., 2019). Before 
applying empirical models built on an existing dataset to a new dataset, 
the similarity of two datasets in terms of foliar traits and spectral 
characteristics should be evaluated. Transfer learning and model 
updating can serve as promising techniques to improve the trans
ferability of empirical models such as PLSR (Wan et al., 2022). 

The ease of operation of empirically-based approach makes it more 
popular for ecologists without high skills in remote sensing (Asner et al., 

2015; Burnett et al., 2021; Streher et al., 2020). The operation of RTM 
model is more challenging for most researchers, and improper use of the 
RTM model often led to poor estimation accuracies. The software 
package named Automated Radiative Transfer Models Operator 
(ARTMO) provides a user-friendly tool of retrieving foliar traits using 
RTM models and standard inversion (Verrelst et al., 2015, 2019). An R 
package for PROSPECT (https://jbferet.gitlab.io/prospect/) has imple
mented inversion strategies assessed in this study (i.e., prior information 
and optimal spectral domains), which can help achieve satisfactory 
estimation of foliar traits. 

Most of the previous studies used leaf hemispherical-directional 
reflectance (DHR) as model input to PROSPECT to predict foliar traits 
such as EWT and LMA (Féret et al., 2019; Spafford et al., 2021). Our 
results confirmed the applicability of leaf bidirectional reflectance factor 
(BRF) in predicting five key foliar traits. More importantly, the estima
tion accuracy was comparable to that obtained from DHR (Féret et al., 
2019; Feret et al., 2008; Spafford et al., 2021). Therefore, BRF measured 
using a leaf contact probe can be used to estimate foliar traits from RTM 
inversion when an integrating sphere is not available (Comar et al., 
2012; Li et al., 2018, 2019; Sims and Gamon, 2002). More extensive 
datasets of BRF with concurrent trait measurements are shared on the 
Ecological Spectral Information System (EcoSIS; https://www.ecosis. 
org/). Such datasets will advance the development of generalized 
spectroscopic models for predicting foliar traits, and help the identifi
cation of current gaps in characterizing the spectral space of plants 
living on the planet (Serbin et al., 2019). 

Our study also suggested the possibility of integrating leaf PROS
PECT or PROCOSINE model (e.g., by transforming BRF to 
hemispherical-directional reflectance and transmittance) with canopy 
radiative transfer models to predict foliar traits from canopy BRF. In this 
coupled model, canopy radiative transfer models such as SAIL (Jac
quemoud et al., 2009; Verhoef, 1984), INFORM (Atzberger, 2000) and 
DART (Gastellu-Etchegorry, 1996) can be used to account for the effects 
of canopy structure, background, illumination and viewing geometry on 
canopy BRF. With the already operational and planned satellite missions 
such as PRISMA (Loizzo et al., 2019), HiSui (Iwasaki et al., 2011), 
GaoFen-5 (Liu et al., 2019), EnMAP (Guanter et al., 2015), CHIME (Rast 
et al., 2019) and Surface Biology and Geology (SBG; National Academies 
of Sciences, 2018), global monitoring of foliar traits regularly will 
become possible (Berger et al., 2020). This will help us to better un
derstand foliar trait variation at broad scales, links with foliar traits and 
ecosystem function, as well as assess global functional biodiversity 
(Rogers et al., 2017; Schimel and Schneider, 2019; Skidmore et al., 
2021; Wang et al., 2020). 

5. Conclusions 

This study compared the generality of RTM and empirical ap
proaches for predicting key foliar functional traits using leaf bidirec
tional reflectance factor (BRF). Two extensive datasets were collected in 
eastern United States and south China which covered a large number of 
species, leaf age and growth condition. By coupling PROSPECT and 
COSINE, leaf BRF was used as model input to estimate foliar traits. We 
found that EWT and LMA can be accurately estimated from RTM, while 
inversion strategies were needed to improve accuracies in predicting 
Narea and pigments. Moreover, the estimation accuracies were similar 
when transferring inversion strategies across datasets of different con
tinents, indicating high transferability of physically-based models. The 
empirical approaches, PLSR and interval PLSR, demonstrated lower 
transferability, e.g., by yielding accurate estimations when cross- 
validation was performed, but lower accuracies if models were applied 
to a new dataset. Generalized models can be developed for EWT and 
LMA by RTM or empirical approaches such as PLSR. In terms of leaf 
pigments and nitrogen, calibration of PROSPECT by incorporating more 
diverse leaf samples across biomes is recommended to further improve 
the estimation accuracy. An extensive dataset or representative samples 
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from diverse sites, biomes and species are needed to build generalized 
models with empirical approaches. In addition, transfer learning and 
model updating can serve as promising techniques to improve the model 
transferability. With such generalized spectroscopic models for pre
dicting foliar traits, we can better understand the variation of foliar traits 
among and within species, their response to environmental change, as 
well as plant biodiversity. 
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