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A B S T R A C T   

Large-scale information on several vegetation properties (‘plant traits’) is critical to assess ecosystem functioning, 
functional diversity and their role in the Earth system. Hyperspectral remote sensing of plant canopies offers a 
key tool to map multiple plant traits. However, we are still lacking generalized methods to translate hyper
spectral reflectance into a suite of relevant plant traits across biomes, land cover and sensor types. The absence of 
globally representative data sets and the gap between the available reflectance data with corresponding in-situ 
measurements have hampered such approaches. In recent years, the scientific community acquired multiple data 
sets encompassing canopy hyperspectral reflectance and plant traits from different plant types and sensors. To 
combine these heterogeneous data sets, we propose three multi-trait modeling approaches based on Convolu
tional Neural Networks (CNNs) to simultaneously infer a broad set of 20 structural and chemical traits (e.g. leaf 
mass per area, leaf area index, pigments, nitrogen). The performance of these multi-trait CNN models predicting 
these traits was compared against single-trait CNN as well as single-trait partial least squares regression (PLSR). 
We found that the multi-trait CNNs performances significantly increased from single-trait CNNs (nRMSE =

0.027–19.61%) and the state-of-the-art PLSR models (nRMSE = 1.94–40.07%) across a broad range of vegetation 
types (crops, forest, tundra, grassland, shrubland) and sensor types. Thus, providing a single model for multiple 
traits not only proved to be computationally more efficient, but also more accurate, since it enabled the model to 
incorporate traits’ co-variation. Despite the data heterogeneity of the merged data set, our models performances’ 
were comparable or exceeded those of previous studies. Overall, this study highlights the potential of weakly 
supervised approaches to overcome the scarcity of in-situ measurements and take a step forward in creating 
efficient predictive models of multiple biochemical and biophysical vegetation properties.   

1. Introduction 

Plant functional traits are key for assessing and monitoring terrestrial 
ecosystem properties. They provide insights on functional diversity and 

can enhance our understanding of ecosystem functioning (Lavorel and 
Garnier, 2002; Migliavacca et al., 2021). Traits determine plant pro
ductivity and stress resistance and thus also how plants compete for 
growth and survival in different environments (Funk et al., 2017). For 
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example, leaf mass per area (LMA) is positively related to photosynthetic 
productivity and negatively to structural robustness and depends on 
resource availability and environmental conditions (Díaz et al., 2016; 
Grime, 1988; Poorter et al., 2009). Leaf pigments (e.g., chlorophyll, 
carotenoids) determine photosynthetic capacities and their variations 
can indicate changes in plant health due to stress (Feret et al., 2008; 
Zarco-Tejada et al., 2018, 2019; Berger et al., 2022). Other leaf con
stituents such as nitrogen and carbon are directly linked to biosphere- 
atmosphere cycles (de Bello et al., 2010) and are important to param
eterize vegetation in Earth system models (Yang et al., 2015). A 
comprehensive set of quantitative trait measurements is thus desirable 
to understand the functioning of ecosystems. 

Still, despite the efforts towards compiling field observations from a 
myriad of studies into global databases (e.g. TRY, Kattge et al., 2020), 
the available data are sparse in terms of geographical coverage, species 
and range of traits (Asner et al., 2015; Kattge et al., 2020). In this 
context, hyperspectral remote sensing data offer an efficient proxy to 
map plant traits (Cavender-Bares et al., 2020; Jetz et al., 2016). Such 
data enable repeatable and non-destructive optical observations using 
numerous platforms and sensors providing information on spectral 
reflectance across a wide range of the electromagnetic spectrum via 
continuous narrow bands. Given the mechanistic interactions of light 
with leaf and canopy traits (Billings and Morris, 1951; Gates et al., 1965; 
Kattenborn and Schmidtlein, 2019; Ustin and Gamon, 2010), hyper
spectral observations have a high potential to reveal plant traits over 
remote and large areas (Hank et al., 2019; Asner and Martin, 2016; 
Homolová et al., 2013; Singh et al., 2015; van Cleemput et al., 2018; 
Danner et al., 2021; Wocher et al., 2022). Recently launched and 
forthcoming hyperspectral space missions such as PRecursore Iper
Spettrale della Missione Applicativa (PRISMA, Cogliati et al., 2021), 
Environmental Mapping and Analysis Program (EnMAP, Guanter et al., 
2015) and Surface Biology and Geology (SBG, Cawse-Nicholson et al., 
2021) along with the higher-resolution proximal and airborne in
struments, support this potential and will provide an unprecedented 
source of data. However, in view of the varieties of these hyperspectral 
data sources and potential applications, we are missing transferable 
retrieval methods across sensors, acquisition settings, ecosystems and 
plant functional types. 

From a methodological perspective, available retrieval methods 
range from data-driven statistical methods to the inversion of radiative 
transfer models (RTM) to hybrid methods (see Verrelst et al., 2019 for a 
review). RTMs simulate the interaction of light with vegetation prop
erties and thus their inversion can represent a promising approach for 
plant trait retrieval (Berger et al., 2018; Dorigo et al., 2007; Feilhauer 
et al., 2017, 2018; Jacquemoud et al., 2009). Yet, plant trait retrieval by 
RTM inversion is only possible for traits that are considered in the RTM 
itself. Moreover, RTM inversions are very sensitive to the RTM’s 
configuration and thus have to be specifically parameterized for 
different vegetation types, canopy structures, phenological stages or use 
cases (Dorigo et al., 2007; Atzberger and Richter, 2012; Verrelst et al., 
2013). Conversely, data-driven approaches automatically learn the 
statistical relation between the spectral data and plant traits. Partial 
Least Squares regression (PLSR) (Geladi and Kowalski, 1986; Wold et al., 
2001) can be considered as the benchmark approach given its long 
history in imaging spectroscopy (Asner and Martin, 2008; Feilhauer 
et al., 2010; Singh et al., 2015; Wang et al., 2020). In recent years, new 
machine learning algorithms emerged as powerful approaches to solve 
retrieval tasks from hyperspectral data (Wang et al., 2020; Prilianti 
et al., 2021; Shi et al., 2022). 

Despite the potentials of data-driven methods, there are multiple 
constraints: 

1) Commonly, data-driven models are trained with data sets repre
senting limited variation in ecosystem properties, plant functional types, 
sensor systems and acquisition settings, thus limiting their trans
ferability. For instance, previous studies (Asner et al., 2015; Berger et al., 
2020; Wang et al., 2019) have concentrated on individual ecosystems 

such as croplands, forests, or grasslands using specific data sets. How
ever, models developed from these data sets may produce significant 
uncertainties when employed on a new data set, making them less 
transferable to other ecosystems or alternative data sets (Wang et al., 
2020). 

2) Data-driven models are often built independently for different 
traits. This prevents exploiting interrelationships between certain traits. 
For example, different traits may be driven by the same processes or may 
manifest in overlapping absorption features such as pigments or 
resource-investment related traits. Consequently, taking the trait in
terrelations into account might improve the overall retrieval quality. 
Moreover, the simultaneous prediction of multiple traits may also 
enlarge computational efficiency. It is thus compelling to aim for a data- 
driven approach that is capable of predicting a set of traits simulta
neously. We further refer to such an approach as ‘multi-trait’ model. 

3) Furthermore, most data-driven approaches for plant trait retrieval 
cannot easily be extended with new training data, which hinders 
continuous model improvements and knowledge transferability. 

Deep learning and particularly Convolutional Neural Networks 
(CNNs) may pave new avenues to alleviate such issues (Sosnin et al., 
2019; Yosinski et al., 2014; Zhang and Yang, 2021). CNNs are a powerful 
method for automatic feature engineering and are increasingly being 
applied to remote sensing data (Kattenborn et al., 2021; Zhu et al., 
2017). Due to their depth and large number of neurons such models are 
capable of learning complex relationships. Accordingly, given sufficient 
representativeness of the input data, such models may learn transferable 
relationships across application domains, sensor types and acquisition 
settings. Moreover, CNNs are commonly trained iteratively, enabling to 
exploit very large data sets and allowing for continuous updating and 
fine-tuning of models with new, unseen data (Shin et al., 2016). 

The availability of canopy spectra and their corresponding trait ob
servations from different studies encompassing different plant types and 
sensors constantly increases (e.g. Rogers et al., 2021; van Cleemput 
et al., 2019). This opens a way to harness the scalability of deep learning 
and test the robustness of the models when integrating multi-source 
hyperspectral and plant trait data (e.g. EcoSIS, Wagner et al., 2018). 
However, due to the different context of these studies, a combination of 
such data sets is naturally sparse, meaning not all potential traits are 
covered across different data sets. Therefore, the objective of this study 
is to explore the potential of weakly supervised approaches to train 
models on sparse data for simultaneously predicting multiple traits (n =
20) from canopy hyperspectral data. This analysis is based on a com
bination of 42 data sets from heterogeneous data of different vegetation 
and sensor types. We implement three weakly-supervised multi-trait 
CNN approaches to investigate the hypothesis of whether the incorpo
ration of trait-trait correlation in models’ calibration would improve the 
trait estimations. The performance of these strategies is compared to 
common single-trait PLSR and single-trait CNN models. 

2. Material and methods 

2.1. Data merging and cleaning 

We employed 42 data sets of full range canopy spectra (400–2500 
nm) with corresponding trait measurements (e.g. LMA, pigments) that 
were available upon request or from archives (e.g. EcoSIS, PANGEA) 
(Burnett et al., 2021; Cerasoli et al., 2018; Chlus et al., 2020; Ewald 
et al., 2018b, 2020; Hank et al., 2015, 2016; Herrmann et al., 2011; 
Kattenborn et al., 2019a; Pottier et al., 2014; Rogers et al., 2021; Singh 
et al., 2015; van Cleemput et al., 2019; Wang et al., 2020; Wocher et al., 
2018; Dao et al., 2021). The sites of the collected samples are distributed 
across different continents (America, Asia and Europe see Fig. A.1 in 
Appendix A) and vary in climate and vegetation type (see details 
Table A.1 in Appendix A). The data comprise observations from different 
natural and semi-natural ecosystems (forest, grassland, tundra and 
shrubland), agricultural sites (crops and pastures), as well as plant-pot- 
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experiments. Hence, the resulting data represent an aggregation of large 
and heterogeneous multi-site and multi-ecosystem sources. 

2.1.1. Hyperspectral data 
Canopy reflectance spectra were acquired with proximal and 

airborne hyperspectral sensors (e.g. ASD FieldSpec, Spectra Vista Cor
poration, SVC; AVIRIS; NEON Airborne Observation Platform AOP) and 
have different spectral properties. Still, they cover a comparable wave
length range of the solar electromagnetic spectrum (see Table A.1). A 
forward and backward linear interpolation was performed to unify the 
diverse measurements in the full range of 400–2500 nm in 1 nm steps. 
To deal with the known issues of atmospheric water absorption in open- 
sky canopy reflectance spectra, we removed water absorption regions 
(1351–1430, 1801–2050 and 2451–2501 nm) and independently 
smoothed the three remaining parts of the spectra with a Savitzky-Golay 
filter (Savitzky and Golay, 1964) using a window size of 65 nm. Finally, 
1721 interpolated spectral bands were retained for the analysis. Given 
the heterogeneity of the different data sets, the 5573 processed spectra 
cover a wide range of reflectance values (Fig. 1).The data were checked 
for overall spectral artifacts or inconsistencies (Appendix B). Despite the 
heterogeneity in land cover and vegetation types, we observed smooth 
transitions between the spectral features of the different data sets orig
inating from sensor or pre-processing procedures (Fig. B.1 in Appendix 
B). 

2.1.2. Leaf and canopy traits 
From the available reference data, we selected a variety of traits 

(Table 1) related to light harvesting and growth, e.g. leaf pigments, ni
trogen, structure and resource investments, leaf area index (LAI), 
equivalent water thickness (EWT) and leaf mass per area (LMA). Where 
necessary, leaf traits were converted to area basis, in contrast to mass- 
based measurements, to avoid the high correlation with LMA (see also 
Fig. B.2 in Appendix B) and to facilitate the model to learn the actual 
absorption features of the respective constituent (Hill et al., 2019; Kat
tenborn et al., 2019b; Ustin and Gamon, 2010; Zhao et al., 2021) 
(Fig. B.2). Main conversions were based on the common relationships 
from literature (Kattenborn and Schmidtlein, 2019; Lichtenthaler, 1987) 
(Table A.2 in Appendix A). Table 1 summarizes the quantity of obser
vations for each trait, their value ranges and the number of associated 
data sets. For the further analyses and for the sake of the training sta
bility and computational efficiency, the trait values were rescaled. For 
this, we used the power transformation, which is a monotonic trans
formation to transform and normalize the data to a more-Gaussian-like 
distribution. 

2.2. Multi-trait model development 

2.2.1. CNN implementation and training 
Given the one-dimensional nature of the spectral data, we used one- 

dimensional Convolutional Neural Networks (1D-CNN). The context of 

neighboring wavelengths of the spectra makes CNN-based models 
preferable here to the naive multilayer perceptron architecture (MLP). 
CNNs can have a deep structure and conventionally include blocks 
(convolutional block) of successive layers including convolution, pool
ing, and activation layers. The convolution operation is a sliding dot 
product of a filter (kernel) applied to the spectral signal. Several filters 
are used in the convolutional layer where they serve as a feature 
extractor and are iteratively learned during the CNN training process. 
The kernel’s sliding fashion enables feature detection to be applied 
across the full signal range. Subsequently, the pooling layers enable to 
condense information from the output of the convolutional layers and 
facilitate a hierarchical feature extraction at multiple wavelength scales. 
For more details about CNNs, the reader is referred to Goodfellow et al. 
(2016). 

As backbone architecture, we used an adapted version of 
EfficientNet-B0 (Tan and Le, 2019), which is modified for one dimen
sional input data. EfficientNet architectures are composed of a sequence 
of the previously described CNN blocks with skip connections. They are 
designed to improve accuracy and efficiency by using a scalable struc
ture that allows the network to learn effectively from larger resolutions 
while reducing computation costs. This is done through a combination 
of depthwise separable convolutions, 1 × 1 convolutions and network 
scaling methods (Tan and Le, 2019). The output layer of the imple
mented architecture comprised 20 units corresponding to the number of 
traits to be predicted. 

The learning process of the model was based on the stochastic 
gradient descent algorithm, where the Adaptive Momentum estimation 
(Adam) optimizer was used to update the weights (Kingma and Ba, 
2014). The number of epochs was set to 300 with a batch size of 32. We 
employed the Hubert loss function to reduce the effect of outliers. Given 
sparsity and resulting imbalance of trait observations in the merged data 
set, we used a weighted loss version. The weights of the samples w (%) 
were calculated for each sample as the complement of the number of 
non-null trait samples nnn to the total number of samples ntot in the 
corresponding original data set (Eq. 1). Additionally, a random up- 
sampling with replacement was performed to have an equal number 
of samples from each data set on the training set. 

w = 100–(nnn/ntot)
* 100 (1) 

To avoid over-fitting, two conventional regularization techniques 
were used: data augmentation and drop out. Data augmentation in
troduces artificial variation in the data to help regulate the learning 
process. We applied two random modifications for every epoch (a 
training cycle using all observations) with a 15% chance. This included 
1) an addition of random noise with ±30% of the spectral standard 
deviation per wavelength derived from all training samples and 2) an 
amplitude multiplication of the entire reflectance spectra with a random 
value between 0.98 and 1.02. As additional model regularization, we 
applied dropout (Hinton et al., 2012) after each block, which randomly 
drops learning units with a defined probability. 

Within the 300 epochs, we selected the final model according to the 
lowest root mean squared error of a 20% hold-out from the training 
data. All CNN models were implemented in Python (3.9.5) with the 
TensorFlow (2.7.0) and Keras (2.7.0) frameworks. 

2.2.2. CNN multi-trait and weakly supervised learning 
In the view of the sparsity of the merged data set (Table. 1), we tested 

three different strategies to train multi-trait models using the above- 
mentioned CNN architecture: The first strategy, CNNmultiIncomplete, was 
trained on the original sparse data set. To overcome data sparsity, we 
modified the loss function to only update the weights according to traits 
where a corresponding reference observation was present (i.e. not a 
missing value). This approach falls within the incomplete supervision 
category in the context of weakly supervised learning (Zhou, 2018). This 
strategy is considered as the baseline approach in this study. 

Fig. 1. Distribution of canopy reflectance of the available samples (N = 5573).  
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The second strategy, CNNmultiInexact aims to maximize the identifi
cation of trait-trait relations during the learning process from all data 
samples and, hence, includes a gap-filling of missing trait values. The 
gap-filling process is based on the predictions of the CNNmultiIncomplete. 
To avoid unrealistic values, trait predictions lower than the 1% quantile 
and exceeding the 99% quantile of the original data set (Table 1) were 
not considered for gap-filling. This automated gap-filling approach does 
not require data on species or ecosystem characteristics, which might be 
missing or hard to define (Schrodt et al., 2015; Shan et al., 2012). 
Instead, it directly learns trait-trait relationships from available hyper
spectral data. CNNmultiInexact falls within the two weak supervision cat
egories: incomplete and inexact supervision. The incomplete 
supervision is related to the gap-filling procedure, and the inexact su
pervision is performed when training on the completed but noisy labels 
(i.e. reference data with gap-filled values). 

The third strategy, CNNmultiIncompleteTRY aims to fill data gaps with 
trait observations obtained from the TRY plant trait database (Kattge 
et al., 2020). The TRY database (version 5), includes >11.8 million trait 
observations across >270.000 taxa. For each dominant species found in 
the reference data, trait observations were queried from TRY using the 
species name. We applied fuzzy matching to deal with minor in
consistencies in the spelling of the species names with a Damerau- 
Levenshtein-Edit distance >89 (Damerau, 1964; Konstantinidis, 2005). 
The dominant species mapping resulted therefore in 144 correspon
dences with TRY species. For these species, the median trait values were 
then used to fill the missing values. This gap-filled data set was then used 
to train the multi-trait CNN model (CNNmultIincompleteTRY). This strategy 
falls also within the inexact and incomplete weak supervision categories 
as the model is trained on sparse and noisy labels (i.e. median trait 
values within species). 

2.3. Comparison to single-trait models 

To evaluate the benefit of the multi-trait models and the uncertainty 
introduced from the weakly supervised approaches (i.e. inexact and 
incomplete), we additionally trained single-trait CNN (CNNsingle) 
models, where a separate model was trained for each individual trait. 
Apart from the final layer (number of output units), the architecture for 
these models was the same as for the multi-trait models (Section 2.2.1). 
Moreover, we compared the CNN-based single and multi-trait models to 
partial least squares regression (Wold et al., 1984). PLSR is currently one 
of the most frequently applied algorithms for imaging spectroscopy 
(Feilhauer et al., 2010; Homolová et al., 2013). For training PLSR 

models for each trait (PLSRsingle), we used scikit-learn (version 0.24.2) 
Python libraries. To avoid over-fitting, the optimal PLSR number of 
latent components was selected by minimizing the predicted residual 
sum of squares (PRESS) in cross-validation (Chen et al., 2004). 

2.4. Model evaluation 

Using trait measurements and the canopy reflectance data from 42 
data sets described in Section 2.1, we compared the predictive perfor
mance of the 1) multi-trait CNN models to 2) single-trait CNN and 3) 
single-trait PLSR models (Fig. 2). For a fair comparison, the same input 
data settings were adopted for the training and evaluation of all 
modeling approaches including data splitting, transformation and up- 
sampling. The up-sampling procedure is a random sampling with 
replacement and was applied to all samples in the training set to make 
sure that a comparable number of samples is included from each data set 
and to reduce the effect of bias towards data sets with more samples. 

After training, the models were evaluated for their performance 1) 
within the domain of the training data (internal validation) using 
randomly sampled hold-outs, and 2) with regard to their transferability 
to new domains (external validation), where each individual data set 
was once retained from model training. For the internal evaluation, we 
adopted a 5-fold cross-validation (CV) for all models. Given the unbal
anced sampling frequency of the individual data sets, we performed a 
stratified cross-validation based on the data set provenance (original 
data sets). This procedure ensures equal distribution of trait samples 
across the folds. For the hold-out test sets, only the original (and not the 
gap-filled) samples were used. The external validation consisted of 
training the models repetitively on 41 out of 42 data sets while keeping 
one data set as hold-out for testing. To reduce computational load, the 
data set-CV was only applied for CNNmultiIncomplete and PLSRsingle..We 
evaluated the model performances using the coefficient of determina
tion R2 and the normalized root mean squared error (nRMSE, %). The 
nRMSE was derived by normalizing the root mean square error over the 
range of the observations (1–99% quantile). The final model perfor
mance was obtained by averaging the R2 and nRMSE values over the 5 
folds of the CV. 

2.5. Feature attribution 

To visualize the spectral features learned by the CNNmultiIncomplete 
model, we estimated the feature importance of each input wavelength, 
which were interpreted and compared with known spectral plant 

Table 1 
Statistics of 20 selected functional traits available across 42 data sets. More details on the data sets can be found in Table A.1. N = Number of samples, N Data sets =
Number of data sets including the trait, Std = standard deviation, Min = minimum, Max = maximum.  

Trait name Trait description Unit N N Data sets Mean Std Min Max 

Anth Anthocyanin content (μg/cm2) 644 2 1.27 0.41 0.56 2.98 
Boron Boron content (μg/cm2) 1086 14 0.39 0.26 0.01 2.34 
C Carbon content (mg/cm2) 1876 23 5.84 4.44 0.10 37.29 
Ca Calcium content (μg/cm2) 1045 16 107.25 101.97 0.69 988.73 
Car Carotenoid content (μg/cm2) 1859 21 8.75 2.77 1.18 40.44 
Cellulose Cellulose (mg/cm2) 1402 15 2.35 1.87 0.35 15.22 
Chl Chlorophyll content (μg/cm2) 2141 24 38.57 14.53 4.45 229.50 
Copper Copper content (μg/cm2) 1101 14 0.07 0.03 0.01 0.28 
EWT Equivalent Water Thickness (mg/cm2) 1918 19 15.65 9.27 0.23 80.62 
Fiber Fiber (mg/cm2) 1385 15 5.23 4.57 0.14 29.81 
LAI Leaf Area Index (m2/m2) 1643 15 3.35 1.64 0.06 7.67 
Lignin Lignin (mg/cm2) 1415 16 2.69 2.41 0.05 14.58 
LMA Leaf Mass per Area (g/m2) 3328 32 92.05 68.08 5.72 663.81 
Magnesium Magnesium content (μg/cm2) 1099 15 24.09 16.16 0.25 141.54 
Manganese Manganese content (μg/cm2) 894 14 3.09 2.31 0.01 15.19 
N Nitrogen content (mg/cm2) 2193 26 0.19 0.10 0.01 0.95 
NSC Non-Structural Carbohydrates (mg/cm2) 1093 14 3.21 2.85 0.28 21.83 
Phosphorus Phosphorus content (μg/cm2) 1289 16 14.42 9.45 0.29 73.43 
Potassium Potassium content (μg/cm2) 1008 15 102.64 62.73 0.40 470.07 
Sulfur Sulfur content (μg/cm2) 1039 14 13.31 9.13 0.62 57.23  
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features. As feature importance metrics, we derived medians of Shapley 
Additive exPlanations (SHAP, Lundberg and Lee, 2017) absolute values. 
The SHAP values present a unified approach to explain model pre
dictions based on the optimal game theory Shapley values. The Shapley 
values represent the local marginal contribution (i.e. for individual 
samples in the data) of each feature in the input for a specific prediction. 
They attribute the change in the expected model prediction when con
ditioning on one feature by calculating the difference from the predic
tion in which the feature in question is not included (Lundberg and Lee, 
2017). These values can be approximated with different algorithms. We 
used the gradient explainer class, which combines the integrated gra
dients (Sundararajan et al., 2017), SHAP and SmoothGrad (Smilkov 
et al., 2017) methods. All SHAP coefficients were rescaled between 
0 and 1 and normalized by the mean SHAP value of all traits to eliminate 
the effect of the learned trait covariance. For comparison, we also dis
played the PLSR regression coefficients. 

2.6. Uncertainty estimation 

As indicated by earlier studies, transferability of machine learning- 
based models to new, unseen data depends on the distance in feature 
space (Kattenborn et al., 2022; Ludwig et al., 2023; Mila et al., 2022). 
Therefore, we implemented an uncertainty estimation procedure to 
reveal the effect of spectral dissimilarity between new data and data 
used in model training. Such a procedure is particularly valuable in view 
of large-scale mapping across ecosystems and sensors. 

Inspired by Janet et al. (2019) and Meyer and Pebesma (2021), the 
implemented uncertainty estimation was based on the relationship be
tween 1) CNN model residuals obtained from the internal evaluation and 
2) the distance in feature space (dissimilarity of training vs. test sets). To 
reveal spectral dissimilarity from the eye of the CNN, the feature space 
was obtained from the CNN model embedding space of the global 
pooling of the last convolutional layer. Based on this feature space, the 
dissimilarity for each test sample was calculated as the average distance 
to the five nearest neighbors of the training data. The model uncertainty 
was then estimated using the calculated dissimilarity as predictor in a 
95% quantile regression. The predicted values can be seen as the worst- 
case error prediction of the model. This procedure was tested for the 
CNNmultiIncomplete model. 

3. Results 

3.1. Summary of the merged data set 

3.1.1. Trait variations 
The trait values across the merged data sets varied highly due to the 

heterogeneity in vegetation types and species (Table 1). This yields a 
large range in the trait values. LMA, Chl and EWT showed the highest 
variability (Coefficient of Variation CV = 47.97, 42,91, 38.44%, see 
Fig. B. 3, 4 in Appendix B) in the original data while all other traits had 
similar variations (on average 35%). The correlation analysis based on 
Spearman coefficient of the merged data set revealed high correlation 
between several traits (Fig. 3). As expected, leaf constituents related to 
plant resource investments showed a large correlation (e.g. LMA, Car
bon, Lignin, Fiber, Cellulose). These resource-investment related traits 
were rather independent from leaf pigments, which in turn were highly 
correlated among each other (Chl, Car, Anth). Both resource investment 
related traits and pigments showed a considerable correlation with leaf 
N. Overall, rather weak correlations were found for LAI and leaf con
stituents, whereas for N and C a positive relationship was observed. 
Water content overall also showed a positive correlation with other leaf 
constituents. 

3.1.2. Canopy spectra 
The canopy reflectance spectra were relatively similar when aver

aged across land cover types (Fig. 4) and we found smooth transitions 
across data sets and biomes (Fig. B.1, Appendix B). Higher reflectance 
values were observed for the Tundra data in the NIR region (Fig. 4a). 
Largest coefficients of variations were found in the SWIR 2 region 
(2000–2500 nm) followed by the VIS region (400–750 nm). Most of the 
spectral variation was found in the crop related samples whilst forest 
samples had the lowest spectral variation (Fig. 4b). 

3.2. Trait predictions 

3.2.1. Prediction performances 
The model performances derived from the 5-fold cross-validation 

showed the overall predictive performance varied greatly for the 
different traits (Fig. 5). With all CNN-based models, the goodness-of-fit 
of the predictions was higher for LMA, C, NSC (Non-structural carbon) 
(R2 > 0.69). Lower predictive performances of these models were ob
tained for EWT, N, Pigments, LAI, Cellulose, Lignin, Fiber, Copper and 
Phosphorus (R2: 0.46–0.69 and nRMSE: 12–17%). Overall, the trait 
estimation performances of the CNN-based models exceeded those of the 
PLSR models (R2: 0.18 to 0.66 and nRMSE: 11–22%). The PLSR models 

Fig. 2. Model performance assessment (internal validation) of multi-trait and single-trait models. The evaluation is based on a stratified 5-fold cross-validation.  
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showed bias with high values for some traits, including LMA, Pigments 
and Carbon related traits (see Fig. D.1). Only for a few traits, i.e. Boron, 
Ca and Manganese, the PLSR models showed higher performances than 
CNN models. Ca, Boron, Magnesium, Sulfur, Potassium and Manganese 

obtained the lowest validation performance for all models, especially 
with single-trait models (R2 < 0.44 and nRMSE >15%). 

According to a Wilcoxon signed-rank test, the multi-trait models 
performed significantly better than single-trait models across all traits 
(e.g. CNNmultiIncomplete p < 0.001, w = 205, details see Appendix C). In 
comparison to CNNsingle, CNN-based, multi-trait models clearly 
improved the prediction performance for most of the traits. The pre
diction performance was particularly improved for traits where fewer 
samples were available or where a comparably lower correlation with 
spectral bands was observed (Fig. B.4, Appendix B), including Anth, 
Sulfur, Ca and Potassium (Fig. 5b). Overall, the R2 across all traits was 
higher for CNN multi-trait models than for CNNsingle except for LMA, C 
and NSC (Fig. 5c, d). 

Similar performance was obtained among the different CNN-based 
multi-trait models, i.e. CNNmultiIncomplete, CNNmultiInexact and CNNmul

tiIncompleteTRY. The predictive performance for the CNNmultiInexact ranged 
from R2 of 0.21–0.70 and nRMSE of 10.41–18.79%, for CNNmultiIncomplete 
R2 of 0.29–0.77 and nRMSE of 9.17–17.81% and CNNmultiIncompleteTRY R2 

of 0.29–0.78 and nRMSE of 8.92–17.85%. Overall, the CNNmultiIncom

pleteTRY performed slightly better than the other two multi-trait strategies 
for most of the traits (Fig. 5). The CNNmultiIncompleteTRY procedure is 
further discussed in Section 3.2.2. 

Fig. 3. Correlation plot of traits based on Spearman’s rank correlation coefficient. Refer to Table 1 for an explanation of the traits. A correlation of leaf traits on a 
mass-basis is given in Fig. B.2. 

Fig. 4. Canopy average reflectance and the corresponding spectral variation 
(Coefficient of Variation, CV) across the different land cover types. 
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All multi-trait approaches resulted in relatively robust and similar 
prediction performances across the different vegetation types (Fig. 6, 
D.3, 4 Appendix D). For some traits (e.g. LMA, N, EWT), the values are 
slightly clustered according to vegetation types, but we did not observe a 
prominent or systematic bias in predictive performance across these 
classes. For most traits, the model predictions are evenly scattered 
around the 1:1 line, which is also underlined by slopes of the linear fit 
close to 1 between the predicted and observed trait values (Fig. 6, D.3, 4 
Appendix D). 

Similar performance results were followed with the external evalu
ation, where CNN multi-trait model surpassed the performance of 
PLSRsingle models (Fig. 7, E.1 Appendix E). With both modeling ap
proaches, the performance across all traits with the external validation 
was lower than the internal validation, especially with PLSRsingle (Fig. 7, 
E.1, Table E.1). For CNNmultiIncomplete LMA and C were the most trans
ferable traits with R2 higher than 0.6 which is consistent with the in
ternal validation, while for PLSR Copper and Chl had the highest 
goodness-of-fit with R2 > 0.39. However, the baseline multi-trait 
model (CNNmultiIncomplete) showed a bias in high trait values with N 
and LAI for example. 

3.2.2. Details on trait database integration 
Due to data availability, the gap-filling of the CNNmultiIncompleteTRY 

procedure was limited to 13 out of 20 traits (Table 3). The model per
formance significantly improved for all the gap-filled traits (p = 0.004, 
w = 82, Wilcoxon signed-rank test). Surprisingly, the CNNmultiIncom

pleteTRY approach resulted even in significantly improved performance 
for traits where no gap-filling could be performed, i.e. EWT, Car, Fiber, 
NSC and S (p = 0.0313, w = 15). While the filling rate was not an 
important factor for model improvement, the introduced variation from 
the species-based trait values had the largest effect on traits that already 
had less sparse trait observations samples in the data set. For instance, 
Chl had the highest improvement in performance and even surpasses the 
results of the baseline model CNNmultiIncomplete (Table 3). 

3.2.3. Feature importance 
The feature importance for CNNmultiIncomplete and PLSRSingle showed 

a clear correspondence in the overall patterns (Fig. 8). For LMA, the 
relevant wavelengths in the CNN multi-trait model were spread across 
the entire spectrum, with higher values in the longer wavelengths of the 
NIR and SWIR regions (1200–2450 nm). As expected, very similar pat
terns were found for traits that directly contribute to LMA, namely C, 
Cellulose, Fiber and Lignin. The CNN multi-trait estimation of Chl and 
Car mostly relied on spectral bands in the VIS and red-edge region 
(approx. 500–800 nm). For LAI, high SHAP values were found in the NIR 
region. 

4. Discussion 

4.1. Considerations on the merged data set 

The transferability of statistical models to predict plant traits from 
new reflectance spectra is a major challenge (Ainsworth et al., 2014; 
Heckmann et al., 2017; Silva-Perez et al., 2018). Few previous studies 
have demonstrated that the transferability of models can be enhanced 
when the model training includes plots from different species and sites 
(Asner et al., 2015, Serbin et al., 2019; Wang et al., 2020; Kothari et al., 
2022b). Here, we merged 42 canopy reflectance data sets (from 28 
studies) to assess the robustness of retrieval models when calibrated on 
heterogeneous data not only from different ecosystem types but also 
experimental settings (e.g. hyperspectral data acquisition and in-situ 
measurement protocols). This procedure provides an opportunity to 
address common shortages of reference data while also increasing the 
representativeness in terms of geographical coverage and diversity in 
vegetation type in the training data. Yet, it should be noted that the 
temporal coverage of the data is biased towards the peak of the vege
tation period, while the senescence is underrepresented. This may affect 
for example the inter-correlations between traits as displayed in Fig. 3. 

Merging the data sets required expert knowledge and a considerable 
effort for checking, cleaning, and converting trait observations. 

Fig. 5. (a) and (b): Comparative predictive accuracies (R2 and nRMSE) from the stratified 5-fold cross validation of the CNNmultiIncomplete, CNNmultiInexact and 
CNNmultiIncompleteTRY models as well as PLSRsingle and CNNsingle models for 20 traits. (c) and (d): The kernel density estimate (KDE) of the trait-based metric dis
tributions (R2 and nRMSE) with the associated median values (dashed lines). Refer to Table 1 for an explanation of the traits. Detailed performances can be found in 
Table C.1 and 2 Appendix C. 
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Fig. 6. Internal validation: Correlation between observed and predicted values of 20 traits from the multi-trait model CNNmultiIncomplete. The shown vegetation types 
only refer to the available types in the original associated data sets (not all land cover types are covered for each trait). Refer to Table 1 for an explanation of the 
traits. Scatter plots for the other models are given in Appendix D. 
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Fig. 7. External validation: Correlation between observed and predicted values of 20 traits from the multi-trait model CNNmultiIncomplete. The shown vegetation types 
only refer to the available types in the original associated data sets. Scatter plots for PLSRsingle are given in Appendix E. 
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Although a large share of the data used here was acquired from the 
EcoSIS database, the available data often include errors and in
consistencies, e.g. assignment of wrong dimensions or units. In consid
eration of future initiatives for data integration, these experiences 
emphasize the need for a harmonization of plant trait observations, 
including units and dimensions, e.g. area or mass based, as well as 
quality assessments, terminology and sampling protocols. 

As this merged data set incorporates various ecosystems and land 
cover types, its trait variability exceeds those of previous studies 
(Table 1, Fig. 3, Asner et al., 2015; Schiefer et al., 2021; Serbin et al., 
2019; Wang et al., 2019, 2020). We assume that merging the different 
data sets is a compelling requirement for developing models that are 
transferable and robust across different traits, ecosystems, and vegeta
tion types in the context of global mapping. Here, the baseline multi- 
trait model (CNNmultiIncomplete) appeared to generalize well over the 
individual data sets (Fig. 7). It should be noted, however, that the data 
only represent a small portion of the Earth’s flora and its spatio-temporal 
variation. Hence, despite the unprecedented trait variability realized 
here, the presented study should be regarded as a pioneering study in 
terms of model transferability and performance. 

In the merged data set, not only the trait values but also the reflec
tance data showed considerable variability, which could be attributed 
not only to the spectral properties of the vegetation itself but also to 
differences in pre-processing modes with related uncertainties (e.g. 
during atmospheric correction procedures), remote sensing data acqui
sition settings (e.g. sun-observer-relationship) and instruments (e.g. 
airborne vs. field spectrometer data). We could not investigate in depth 
to what extent such factors limited the transferability of the models as 
information on such factors was not available for all individual data sets. 
Yet, we did not observe a significant difference in performance of our 
baseline multi-trait model (CNNmultiIncomplete) across the different 
remote sensing platforms (p = 0.17, u = 72, Mann–Whitney-U test) 
(Fig. E.3, 4 in Appendix E). 

Merging data from multiple sources may improve model perfor
mances and transferability, but the sparsity and imbalance of trait ob
servations challenged the model evaluations. For example, the number 
of data sets per trait ranges from 2 to 32 (Table 1), as most studies are 
application-specific and, hence, trait-specific. Likewise, the number of 
observations per data set ranged from 22 to 549. Thus, the relative 
performance of the model for the different traits is not necessarily 
directly comparable. Similarly, for some ecosystems or vegetation types 
only a few samples were available, which limited a conclusive perfor
mance evaluation in this regard. These challenges are expected to be 
resolved as more data may become openly available in the future. 

4.2. Comparison of modeling approaches 

Overall, the model performances of CNN-based models out
performed the widely used PLSR based models. This is consistent with 
previous studies that used hyperspectral data to retrieve vegetation and 
soil properties (Cui and Fearn, 2018; Ng et al., 2019; Pullanagari et al., 
2021). The increased performance of CNN over PLSR may be explained 
by its ability to represent nonlinear relationships with an overall 
increased number of parameters, enabling the algorithm to learn more 
complex relationships. For example, the large trait-ranges of the merged 
data set presented in this study may inherit several non-linearities be
tween spectra-trait-relationships. Such nonlinearities may result from 
saturation effects, where a change in high trait values results in little 
change of spectral reflectance, as observed in the present study for 
chlorophyll, LMA or LAI. The linearity of PLSR models appeared to be 
less suitable to resolve such effects, as indicated by a clear saturation of 
PLSR-based predictions for high values for these traits (Fig. D.1, E.1 in 
Appendix D and E). In such cases PLSR models tended to include more 
predictors (latent vectors) but this did not necessarily improve the 
model performance. Similar issues with PLSR-based models and satu
ration effects were also reported with leaf-scale reflectance data in 
Kothari et al. (2022). In contrast to the PLSR-based predictions, the 
predictions of the CNN models did not show saturation effects and no 
obvious systematic biases could be observed across the trait range 
(Fig. D.2–4). 

In addition to the model performance, CNNs are known to be less 
reliant on feature engineering and are effective to identify automatically 
relevant features from the input data (Goodfellow et al., 2016). Previous 
studies in the context of variable retrieval from hyperspectral data 
showed that shallower machine learning methods were more dependent 
on pre-processing of input data (Cui and Fearn, 2018; Ng et al., 2019). 
Another advantage of CNNs and other batch-compatible deep learning 
methods over previous machine learning methods (e.g. PLSR, Random 
Forest) is that the data are exposed iteratively to the model, which 
potentially enables training models with an infinite amount of data 
without exceeding the memory. The latter aspect may become very 
relevant in the near future that promises an increase in data availability, 
e.g. via more data acquisitions from spaceborne spectrometers and a 
growing culture of open data through initiatives such as ecosis.org. 

The multi-trait CNN models clearly outperformed the single-trait 
models. This is consistent with other studies in different areas which 
employed multi-task CNN models (Ng et al., 2019; Padarian et al., 2019; 
Ramsundar et al., 2015; Tsakiridis et al., 2020). In comparison of the 
CNNsingle model the retrieval of pigments, N, LAI, EWT, Phosphorus, 
Lignin, Cellulose, Fiber, Magnesium, Ca, Potassium, Boron, Copper, 
Sulfur was improved with our baseline multi-trait model (CNNmultiIn

complete). Even for traits that were only represented in a few data sets, the 
multi-trait models performed better than the single-trait models (e.g. 
Anth, Sulfur, Copper, Boron, Magnesium). We assume that multi-trait 
models not only allow for simultaneous and thus efficient trait 
retrieval, but also allow the model to indirectly learn trait-trait 
relationships. 

Such trait-trait relationships may also explain the observed feature 
importances (Fig. 8). For instance, the spectral features for N were 
consistent with known protein features in the SWIR region (Féret et al., 
2021) and others near the red-edge region related to pigments (Ustin 
et al., 2009). As expected, we also observed very similar spectral fea
tures across all wavelengths among traits related to leaf resource in
vestments (LMA, Lignin, Fiber, Cellulose, and C; compare Kokaly et al., 
2009), which may also explain higher model performance for several of 
these traits when predicted in a multi-trait setting. For Anth, we 
observed relatively accurate predictions and rather broad absorption 
features, although previous studies revealed that Anth pigments have 
rather subtle and narrow spectral absorption properties (Féret et al., 
2017). We assume that the broad features obtained here result from the 
high correlation with Chl and Car (Fig. 3), which in turn have more 

Table 3 
Comparative nRMSE values (%) of the CNNmultiIncompleteTRY with CNNmultiIn

complete and CNNsingle models. CNNmultiIncompleteTRY. Filling rates = (n obs. after - 
n obs. before) * 100 / n obs. before. Refer to Table. 1 for an explanation of the 
traits and to Table. C.3 for more detailed metrics (Appendix C).  

Traits Filling 
rate 
(%) 

nRMSE 
(%) 
CNNsingle 

nRMSE (%) 
CNNmultiIncomplete 

nRMSE (%) 
CNNmultiIncompleteTRY 

Potassium 118.14 16.42 15.04 14.84 
Phosphorus 99.07 14.89 13.23 13.51 
Ca 97.42 19.87 17.82 17.85 
Magnesium 93.64 18.65 16.26 16.00 
C 92.33 10.45 10.76 10.48 
Manganese 64.54 18.49 16.69 16.26 
N 50.69 12.40 11.39 11.29 
Copper 50.27 15.29 14.02 13.83 
Chl 34.13 17.25 16.58 15.50 
LMA 23.20 9.18 9.18 8.92 
Lignin 12.43 14.91 12.86 12.48 
Cellulose 7.77 14.71 12.78 12.58 
Boron 0.55 17.39 15.11 14.86  

E. Cherif et al.                                                                                                                                                                                                                                   

http://ecosis.org


Remote Sensing of Environment 292 (2023) 113580

11

broad spectral absorption features and may indirectly facilitate Anth 
estimation (Jacquemoud and Ustin, 2019; Ollinger, 2011; Ustin et al., 
2009). Similarly, nutrients such as Copper, Sulfur, Potassium and Boron 
do not have distinct spectral absorption features in canopy spectra, but 
their surprisingly high retrieval performance may be explained by their 
correlation with other leaf traits that are related to leaf resource in
vestments (Figs. 3, 6) and that have a more explicit spectral response, 
such as LMA or C (Domínguez et al., 2012; Kothari and Schweiger, 
2022). 

Largest improvements from single- to multi-trait estimates were 
found for Lignin, Cellulose and Fiber (Fig. 5), which can be attributed to 
the high correlation with LMA and C (Fig. 3). Conversely, for LMA, C and 

NSC the multi-trait approaches did not result in notable improvements. 
This may be explained by the fact that these three traits are already very 
tightly related (chemically and spectrally) and a covariance among these 
traits does not add further benefit. Moreover, compared to other traits, 
LMA, C and NSC can be predicted most accurately (Fig. 6), so the 
covariance with other traits that cannot be predicted as accurately is less 
likely to facilitate the predictive performance. Similar findings for LMA 
estimation were found by Furbank et al. (2021) when including the 
inter-correlation with photosynthetic traits. 

We tested three weakly supervised strategies for training the multi- 
trait models in the context of the data sparsity, i.e. CNNmultiIncom

pleteTRY, CNNmultiIncomplete and CNNmultiInexact. The three strategies 

Fig. 8. Relative importance of spectral bands for the prediction of 20 traits using the CNNmultiIncomplete and PLSRsingle models. The importance metric of CNNmul

tiIncomplete (Black) is based on the SHAP scores with the gradient explainer, as for PLSRsingle the regression coefficients are shown (Blue). The gray shaded polygon 
represents a sample vegetation spectrum for orientation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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resulted in similar model performance across the traits (e.g. for each 
strategy, LMA, C and NSC were most accurate and macronutrients least 
accurate). Yet, CNNmultiInexact resulted in the lowest model performance. 
This is explained by the uncertainty introduced during the spectrally- 
based gap-filling procedure. However, even with the propagated un
certainty from the gap-filling process, CNNmultiInexact outperformed the 
single-trait models. This demonstrates that such gap-filling strategies are 
promising to enrich existing sparse data sets, especially as no external 
knowledge on species or ecosystem type is required. Future attempts 
may apply a more conservative gap-filling, where data gaps are only 
filled if the estimated traits are assumed to have a low uncertainty. The 
uncertainty assessment presented in this study (see Fig. G.1 in Appendix 
G for details) may be a promising avenue. 

The gap-filling strategy based on trait databases (CNNmultiIncom

pleteTRY) significantly improved the performance (compared to CNNmul

tiIncomplete) for those traits that were gap-filled (p = 0.004, w = 82 
Wilcoxon signed-rank test, Table 3, C.3), even when using median trait 
values by species which do not account for the within-species trait 
variations. Nonetheless, for the scope of this analysis this does not affect 
the interpretation of the results as most of the collected samples were 
taken in the growing season and the results were only evaluated with the 
original trait obsevations (i.e. no gap-filling). Interestingly, CNNmultiIn

completeTRY even improved the model performance for those traits where 
no gap-filling was performed (due to missing observations in the TRY 
database, p = 0.0313, w = 15, Wilcoxon signed-rank test, Fig. 5, 
Table C.3). This not only underlines the potential of incorporating 
ancillary trait information, but also highlights the overall value of the 
multi-trait and corresponding trait-trait relationship. For instance, this 
has surprisingly influenced the retrieval of Chl and Car, with an 
improvement of 12–16% in R2 and 7–7.88% in nRMSE; as well as EWT, 
Fiber, NSC and Sulfur by 2.00–4.10% in R2 and 1.68–4.95% in nRMSE. 
We assume that the growth of trait databases as TRY will even increase 
the potential of this gap-filling approach. 

4.3. Model performance across plant traits 

Across all traits, highest model performance was observed for LMA 
(Fig. 5). This is in line with a series of previous studies highlighting the 
transferability of models for estimating LMA across data sets at leaf and 
canopy scale (Serbin et al., 2019; Silva-Perez et al., 2018; Wang et al., 
2019, 2020; Helsen et al., 2021; Schiefer et al., 2021; Kothari et al., 
2022b). In contrast to these previous studies, the CNN models used here 
resulted in comparable or even higher model performances although we 
tested our models using a more diverse data set and exclusively on 
canopy spectra. The high performance of the LMA estimation is partly a 
surprise given its broad and overlapping absorption features with water 
content and scattering components at the canopy scale (Homolová et al., 
2013). The high performance of LMA may be partially supported by the 
ample samples across most of the used data sets (32 data sets out of 42 
had LMA observations). Moreover, the robustness of the LMA estimation 
may also be explained by the overall high correlation of LMA with in
dividual bands across the entire spectrum (Fig. B. 4, Appendix B). 

Particularly for LMA but also for most of the other traits, our results 
suggest that the performances of the multi-trait models are often on par 
to those of previous studies. For instance, for LAI, Chl, Car and EWT, our 
models obtained higher performances than Schiefer et al. (2021), who 
used PLSR models on a data set of canopy spectra across grassland 
species, which was also integrated in our study. Overall, model perfor
mances were comparable to Wang et al. (2020), who used airborne 
canopy spectra across biomes and to Wang et al. (2019), who used 
canopy spectra in grasslands. EWT performances were lower than in 
Wang et al., 2020, where water content was one of the most accurately 
retrieved traits. The fact that the estimation of EWT was comparably low 
in the present study may result from the different protocols used across 
the merged data sets. 

In this study we focused on area-based leaf traits due to multiple 

reasons: Firstly, as highlighted across different studies in the context of 
the radiative transfer theory (Dawson et al., 1998; Ganapol et al., 1998; 
Jacquemoud and Baret, 1990; Vilfan et al., 2016), the retrieval of leaf 
constituents from spectral signals depends on how much of a leaf con
stituent (mass) in a given leaf area interacts with light (area-based). In 
contrast, relative ratios of leaf constituents to LMA (mass-based traits) 
are not directly related to spectral absorption features (also discussed in 
Kattenborn et al., 2019b, Zhao et al., 2021). Secondly, normalizing traits 
on a mass-basis may overshadow the original variation of leaf traits and 
introduce unrealistic trait-trait-relationships. For instance, photosyn
thetic traits (e.g. pigments) are generally assumed to be largely inde
pendent of leaf resource investments (LMA) (Lloyd et al., 2013; Osnas 
et al., 2013). This was confirmed for the present data set (Spearman rho 
<0.4) - but only if the data was scaled on an area-basis (Fig. B.2, Ap
pendix B). As soon as pigments were scaled on a mass-basis, ill-founded 
correlations were introduced (Spearman rho < −0.73, see Lloyd et al., 
2013 for a statistical rationale). Likewise, traits that directly contribute 
to the total leaf mass were obviously highly correlated to LMA when 
compared on an area-basis (spearmans’s rho >0.84 for Carbon, NSC, 
Lignin, Fiber, Cellulose), while a comparably weak relationship was 
found on a mass-basis (Spearman’s rho <0.51). Moreover, we found 
unrealistically high variation of these LMA-related traits (Carbon, NSC, 
Lignin, Fiber, Cellulose) when assessed on a mass-basis, which may have 
mis‑lead model calibration (Fig. B.3, Appendix B). Thus, to comply with 
the physical principles of radiative transfer theory but also reasonable 
trait-trait relationships, the modeling in the present study was per
formed exclusively on an area basis. 

Note, however, that our proposed models can also be used to derive 
mass-based traits through normalizing the respective trait prediction by 
LMA predictions (traitmass = traitarea / LMA). We applied this procedure 
to compare our model performances to previous studies that performed 
trait retrieval on a mass-basis (Appendix F). The performances of our 
baseline multi-trait model (CNNmultiIncomplete) with mass-based N and 
Phosphorus were comparable to studies reviewed in Homolová et al. 
(2013), while exceeding those of Wang et al. (2020), Asner et al. (2015), 
Chadwick and Asner (2016), Ewald et al. (2018a) and Wang et al. 
(2019). The predictive performance for the converted pigments, Fiber, 
Lignin and Cellulose was lower or comparable to Wang et al. (2020) and 
Singh et al. (2015) and exceeded those of Asner et al. (2015) and Martin 
et al. (2018) for tropical forest. 

Nevertheless, it should be highlighted that it is often not possible to 
directly and quantitatively compare model performances across studies, 
since they frequently differ in vegetation type, modeling approach, 
model performance metrics and validation strategy, remote sensing 
platform and sensor, temporal and spatial resolution and extent, simu
lated and real data, plant traits or a combination of these. Also, the aim 
and thus the setting of the individual modeling attempts largely differs: 
some studies aimed to predict traits in a very specific domain and from a 
very specific platform, while here we aimed to predict traits across 
different platforms, sensors and vegetation types. 

4.4. Model performance across data sets (transferability) 

While the 5-fold CV evaluated the model performance with obser
vations that are similar to those observations used in training (internal 
validation), the model transferability specifically estimated the model 
performance towards entirely unseen data sets (external validation). 
The model performances for the transferability evaluation were lower 
than the internal 5-fold CV (decline of 32% R2 and 18% nRMSE (mean 
across traits), Fig. 7, Table E.1 Appendix E). This decline in performance 
is expected given the large heterogeneity among the data sets (Table 1, 
Fig. 4) which might largely differ from the training data, e.g. in terms of 
sensor, platform, illumination conditions, calibration procedure, trait 
sampling protocol or vegetation type. Overall, in terms of transferability 
the CNNmultiIncomplete model clearly outperformed the PLSRsingle model 
(Fig. 7, E.1). This may be explained by the larger number of parameters 
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in the CNN-based models, which may facilitate learning more abstract 
spectral features and to resolve spectral features across different sensor 
or calibration settings. Both CNN- and PLSR-based traits, whose pre
dictions had higher performances with the random internal CV, corre
sponded to those that had on average the most accurate prediction with 
the site transferability evaluation. Similar findings have been obtained 
in Kothari et al. (2022) at the leaf-scale. 

Overall, the CNN-based transferability across data sets in this study 
can be considered as relatively high when compared with previous 
studies. Even at the leaf-level where spectrally-based trait retrieval is 
generally less challenging than at the canopy-scale, several studies re
ported similar or larger drops in performance across traits (Serbin et al., 
2019; Helsen et al., 2021; Kothari et al., 2022b). For instance, the LMA 
PLSR multi-biome model of Serbin et al. (2019) resulted in R2 of 0.89 for 
the internal calibration and dropped to 0.66 when validated externally 
with LOPEX (Hosgood et al., 1995) and ANGERS data sets (Feret et al., 
2008) and to 0.68 with the CABO data set (https://data.caboscience. 
org/leaf, Kothari et al., 2022b,a). Wang et al. (2020) showed a very 
high model transferability with PLSR models across different vegetation 
types particularly for LMA and EWT. Likewise, the CNN-based model in 
Pullanagari et al. (2021) resulted in a robust transferability performance 
for N retrieval from grasslands where the authors claimed that this can 
be attributed to the richness of samples from multi-year and multi-site in 
the training set. However, these studies were based on a consistent 
sensor and data calibration and processing procedure. This underscores 
the challenge to train models that are transferable across remote sensing 
data acquisition settings. However, despite these challenges stemming 
from the diversity of integrated data sets, the transferability in this study 
is surprisingly high and we anticipate that with ever increasing data 
availability more generalized models can be trained in the future. 

Eventually, the transferability of models will depend on the feature 
space distance between the new, unseen data to the training data 
(Ludwig et al., 2023). This is confirmed by the model uncertainty esti
mation procedure developed in this study (Fig. G1 in Appendix G), 
which is based on this principle and estimates the model uncertainty 
from the internal CNN embedding, i.e. the feature space viewed from the 
perspective of the model itself. Such an approach is assumed to be very 
promising to reveal the area of applicability of a model to new obser
vations and domains (Meyer and Pebesma, 2021). 

4.5. Outlook 

As demonstrated in the present study, multi-trait models may not 
only facilitate high model performances due to the incorporated trait 
interrelationships, but also provide a tool to simultaneously and, hence, 
efficiently track multiple traits from remotely sensed hyperspectral data. 
The multi-trait approach presented here is expandable to more traits and 
can continuously be improved as new data become available. Instead of 
retraining the model from scratch, the model weights can be easily 
updated by retraining the model on new data. In the near future, a large 
increase in the availability of hyperspectral and trait data can be ex
pected through the availability of operationally scheduled large-scale 
hyperspectral observations from spaceborne platforms. This goes 
along with a generally increased incentive for data sharing by the 
community and institutions and will include future in-situ and airborne 
campaigns that contribute to the success of global missions such as 
PRISMA, EnMAP, CHIME and SBG (Guanter et al., 2015; Labate et al., 
2009). Upcoming approaches may also test the integration of simulated 
data from soil-leaf-canopy RTMs, in the context of hybrid retrieval 
models (e.g. Wocher et al., 2022; Verrelst et al., 2021). Such an 
approach might be particularly promising for traits, vegetation types or 
states for which only few data are available. In addition, such a physi
cally based approach also takes information about the soil background 
as well as viewing and observation geometries into account, which may 
be neglected by empirical approaches. 

5. Conclusion 

From terrestrial platforms up to satellites, hyperspectral remote 
sensing is advancing as an important tool for future global monitoring 
applications. Currently, a significant bottleneck to unleash this potential 
is the lack of scalable and transferable models. Here, we compiled a large 
and sparse data set with a wide variability in vegetation types and traits. 
Our results showed that multi-trait CNN models trained on these data 
can be more performant than CNN models trained for single traits 
individually. All tested CNN model approaches outperformed widely- 
used PLSR models. For multiple traits, the model performances ob
tained using the CNN multi-trait models were on par to those obtained in 
previous studies – although the model performances here were esti
mated from a more diverse data set. This highlights that building robust 
models requires substantial data variability and only a collaborative 
effort by the remote sensing community can significantly advance our 
ability to create models that are transferable across sensors, scales, do
mains, and ecosystems. 
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