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ABSTRACT

Large-scale information on several vegetation properties (‘plant traits’) is critical to assess ecosystem functioning,
functional diversity and their role in the Earth system. Hyperspectral remote sensing of plant canopies offers a
key tool to map multiple plant traits. However, we are still lacking generalized methods to translate hyper-
spectral reflectance into a suite of relevant plant traits across biomes, land cover and sensor types. The absence of
globally representative data sets and the gap between the available reflectance data with corresponding in-situ
measurements have hampered such approaches. In recent years, the scientific community acquired multiple data
sets encompassing canopy hyperspectral reflectance and plant traits from different plant types and sensors. To
combine these heterogeneous data sets, we propose three multi-trait modeling approaches based on Convolu-
tional Neural Networks (CNNs) to simultaneously infer a broad set of 20 structural and chemical traits (e.g. leaf
mass per area, leaf area index, pigments, nitrogen). The performance of these multi-trait CNN models predicting
these traits was compared against single-trait CNN as well as single-trait partial least squares regression (PLSR).
We found that the multi-trait CNNs performances significantly increased from single-trait CNNs (nRMSE =
0.027-19.61%) and the state-of-the-art PLSR models (nRMSE = 1.94-40.07%) across a broad range of vegetation
types (crops, forest, tundra, grassland, shrubland) and sensor types. Thus, providing a single model for multiple
traits not only proved to be computationally more efficient, but also more accurate, since it enabled the model to
incorporate traits’ co-variation. Despite the data heterogeneity of the merged data set, our models performances’
were comparable or exceeded those of previous studies. Overall, this study highlights the potential of weakly
supervised approaches to overcome the scarcity of in-situ measurements and take a step forward in creating
efficient predictive models of multiple biochemical and biophysical vegetation properties.

1. Introduction

can enhance our understanding of ecosystem functioning (Lavorel and
Garnier, 2002; Migliavacca et al., 2021). Traits determine plant pro-

Plant functional traits are key for assessing and monitoring terrestrial ductivity and stress resistance and thus also how plants compete for
ecosystem properties. They provide insights on functional diversity and growth and survival in different environments (Funk et al., 2017). For
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example, leaf mass per area (LMA) is positively related to photosynthetic
productivity and negatively to structural robustness and depends on
resource availability and environmental conditions (Diaz et al., 2016;
Grime, 1988; Poorter et al., 2009). Leaf pigments (e.g., chlorophyll,
carotenoids) determine photosynthetic capacities and their variations
can indicate changes in plant health due to stress (Feret et al., 2008;
Zarco-Tejada et al., 2018, 2019; Berger et al., 2022). Other leaf con-
stituents such as nitrogen and carbon are directly linked to biosphere-
atmosphere cycles (de Bello et al., 2010) and are important to param-
eterize vegetation in Earth system models (Yang et al., 2015). A
comprehensive set of quantitative trait measurements is thus desirable
to understand the functioning of ecosystems.

Still, despite the efforts towards compiling field observations from a
myriad of studies into global databases (e.g. TRY, Kattge et al., 2020),
the available data are sparse in terms of geographical coverage, species
and range of traits (Asner et al., 2015; Kattge et al., 2020). In this
context, hyperspectral remote sensing data offer an efficient proxy to
map plant traits (Cavender-Bares et al., 2020; Jetz et al., 2016). Such
data enable repeatable and non-destructive optical observations using
numerous platforms and sensors providing information on spectral
reflectance across a wide range of the electromagnetic spectrum via
continuous narrow bands. Given the mechanistic interactions of light
with leaf and canopy traits (Billings and Morris, 1951; Gates et al., 1965;
Kattenborn and Schmidtlein, 2019; Ustin and Gamon, 2010), hyper-
spectral observations have a high potential to reveal plant traits over
remote and large areas (Hank et al., 2019; Asner and Martin, 2016;
Homolova et al., 2013; Singh et al., 2015; van Cleemput et al., 2018;
Danner et al., 2021; Wocher et al., 2022). Recently launched and
forthcoming hyperspectral space missions such as PRecursore Iper-
Spettrale della Missione Applicativa (PRISMA, Cogliati et al., 2021),
Environmental Mapping and Analysis Program (EnMAP, Guanter et al.,
2015) and Surface Biology and Geology (SBG, Cawse-Nicholson et al.,
2021) along with the higher-resolution proximal and airborne in-
struments, support this potential and will provide an unprecedented
source of data. However, in view of the varieties of these hyperspectral
data sources and potential applications, we are missing transferable
retrieval methods across sensors, acquisition settings, ecosystems and
plant functional types.

From a methodological perspective, available retrieval methods
range from data-driven statistical methods to the inversion of radiative
transfer models (RTM) to hybrid methods (see Verrelst et al., 2019 for a
review). RTMs simulate the interaction of light with vegetation prop-
erties and thus their inversion can represent a promising approach for
plant trait retrieval (Berger et al., 2018; Dorigo et al., 2007; Feilhauer
etal., 2017, 2018; Jacquemoud et al., 2009). Yet, plant trait retrieval by
RTM inversion is only possible for traits that are considered in the RTM
itself. Moreover, RTM inversions are very sensitive to the RTM’s
configuration and thus have to be specifically parameterized for
different vegetation types, canopy structures, phenological stages or use
cases (Dorigo et al., 2007; Atzberger and Richter, 2012; Verrelst et al.,
2013). Conversely, data-driven approaches automatically learn the
statistical relation between the spectral data and plant traits. Partial
Least Squares regression (PLSR) (Geladi and Kowalski, 1986; Wold et al.,
2001) can be considered as the benchmark approach given its long
history in imaging spectroscopy (Asner and Martin, 2008; Feilhauer
et al.,, 2010; Singh et al., 2015; Wang et al., 2020). In recent years, new
machine learning algorithms emerged as powerful approaches to solve
retrieval tasks from hyperspectral data (Wang et al., 2020; Prilianti
et al., 2021; Shi et al., 2022).

Despite the potentials of data-driven methods, there are multiple
constraints:

1) Commonly, data-driven models are trained with data sets repre-
senting limited variation in ecosystem properties, plant functional types,
sensor systems and acquisition settings, thus limiting their trans-
ferability. For instance, previous studies (Asner et al., 2015; Berger et al.,
2020; Wang et al., 2019) have concentrated on individual ecosystems
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such as croplands, forests, or grasslands using specific data sets. How-
ever, models developed from these data sets may produce significant
uncertainties when employed on a new data set, making them less
transferable to other ecosystems or alternative data sets (Wang et al.,
2020).

2) Data-driven models are often built independently for different
traits. This prevents exploiting interrelationships between certain traits.
For example, different traits may be driven by the same processes or may
manifest in overlapping absorption features such as pigments or
resource-investment related traits. Consequently, taking the trait in-
terrelations into account might improve the overall retrieval quality.
Moreover, the simultaneous prediction of multiple traits may also
enlarge computational efficiency. It is thus compelling to aim for a data-
driven approach that is capable of predicting a set of traits simulta-
neously. We further refer to such an approach as ‘multi-trait’ model.

3) Furthermore, most data-driven approaches for plant trait retrieval
cannot easily be extended with new training data, which hinders
continuous model improvements and knowledge transferability.

Deep learning and particularly Convolutional Neural Networks
(CNNs) may pave new avenues to alleviate such issues (Sosnin et al.,
2019; Yosinski et al., 2014; Zhang and Yang, 2021). CNNs are a powerful
method for automatic feature engineering and are increasingly being
applied to remote sensing data (Kattenborn et al., 2021; Zhu et al.,
2017). Due to their depth and large number of neurons such models are
capable of learning complex relationships. Accordingly, given sufficient
representativeness of the input data, such models may learn transferable
relationships across application domains, sensor types and acquisition
settings. Moreover, CNNs are commonly trained iteratively, enabling to
exploit very large data sets and allowing for continuous updating and
fine-tuning of models with new, unseen data (Shin et al., 2016).

The availability of canopy spectra and their corresponding trait ob-
servations from different studies encompassing different plant types and
sensors constantly increases (e.g. Rogers et al., 2021; van Cleemput
etal., 2019). This opens a way to harness the scalability of deep learning
and test the robustness of the models when integrating multi-source
hyperspectral and plant trait data (e.g. EcoSIS, Wagner et al., 2018).
However, due to the different context of these studies, a combination of
such data sets is naturally sparse, meaning not all potential traits are
covered across different data sets. Therefore, the objective of this study
is to explore the potential of weakly supervised approaches to train
models on sparse data for simultaneously predicting multiple traits (n =
20) from canopy hyperspectral data. This analysis is based on a com-
bination of 42 data sets from heterogeneous data of different vegetation
and sensor types. We implement three weakly-supervised multi-trait
CNN approaches to investigate the hypothesis of whether the incorpo-
ration of trait-trait correlation in models’ calibration would improve the
trait estimations. The performance of these strategies is compared to
common single-trait PLSR and single-trait CNN models.

2. Material and methods
2.1. Data merging and cleaning

We employed 42 data sets of full range canopy spectra (400-2500
nm) with corresponding trait measurements (e.g. LMA, pigments) that
were available upon request or from archives (e.g. EcoSIS, PANGEA)
(Burnett et al., 2021; Cerasoli et al., 2018; Chlus et al., 2020; Ewald
et al., 2018b, 2020; Hank et al., 2015, 2016; Herrmann et al., 2011;
Kattenborn et al., 2019a; Pottier et al., 2014; Rogers et al., 2021; Singh
et al., 2015; van Cleemput et al., 2019; Wang et al., 2020; Wocher et al.,
2018; Dao et al., 2021). The sites of the collected samples are distributed
across different continents (America, Asia and Europe see Fig. A.1 in
Appendix A) and vary in climate and vegetation type (see details
Table A.1 in Appendix A). The data comprise observations from different
natural and semi-natural ecosystems (forest, grassland, tundra and
shrubland), agricultural sites (crops and pastures), as well as plant-pot-
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experiments. Hence, the resulting data represent an aggregation of large
and heterogeneous multi-site and multi-ecosystem sources.

2.1.1. Hyperspectral data

Canopy reflectance spectra were acquired with proximal and
airborne hyperspectral sensors (e.g. ASD FieldSpec, Spectra Vista Cor-
poration, SVC; AVIRIS; NEON Airborne Observation Platform AOP) and
have different spectral properties. Still, they cover a comparable wave-
length range of the solar electromagnetic spectrum (see Table A.1). A
forward and backward linear interpolation was performed to unify the
diverse measurements in the full range of 400-2500 nm in 1 nm steps.
To deal with the known issues of atmospheric water absorption in open-
sky canopy reflectance spectra, we removed water absorption regions
(1351-1430, 1801-2050 and 2451-2501 nm) and independently
smoothed the three remaining parts of the spectra with a Savitzky-Golay
filter (Savitzky and Golay, 1964) using a window size of 65 nm. Finally,
1721 interpolated spectral bands were retained for the analysis. Given
the heterogeneity of the different data sets, the 5573 processed spectra
cover a wide range of reflectance values (Fig. 1).The data were checked
for overall spectral artifacts or inconsistencies (Appendix B). Despite the
heterogeneity in land cover and vegetation types, we observed smooth
transitions between the spectral features of the different data sets orig-
inating from sensor or pre-processing procedures (Fig. B.1 in Appendix
B).

2.1.2. Leaf and canopy traits

From the available reference data, we selected a variety of traits
(Table 1) related to light harvesting and growth, e.g. leaf pigments, ni-
trogen, structure and resource investments, leaf area index (LAI),
equivalent water thickness (EWT) and leaf mass per area (LMA). Where
necessary, leaf traits were converted to area basis, in contrast to mass-
based measurements, to avoid the high correlation with LMA (see also
Fig. B.2 in Appendix B) and to facilitate the model to learn the actual
absorption features of the respective constituent (Hill et al., 2019; Kat-
tenborn et al., 2019b; Ustin and Gamon, 2010; Zhao et al., 2021)
(Fig. B.2). Main conversions were based on the common relationships
from literature (Kattenborn and Schmidtlein, 2019; Lichtenthaler, 1987)
(Table A.2 in Appendix A). Table 1 summarizes the quantity of obser-
vations for each trait, their value ranges and the number of associated
data sets. For the further analyses and for the sake of the training sta-
bility and computational efficiency, the trait values were rescaled. For
this, we used the power transformation, which is a monotonic trans-
formation to transform and normalize the data to a more-Gaussian-like
distribution.

2.2. Multi-trait model development

2.2.1. CNN implementation and training
Given the one-dimensional nature of the spectral data, we used one-
dimensional Convolutional Neural Networks (1D-CNN). The context of
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Fig. 1. Distribution of canopy reflectance of the available samples (N = 5573).
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neighboring wavelengths of the spectra makes CNN-based models
preferable here to the naive multilayer perceptron architecture (MLP).
CNNs can have a deep structure and conventionally include blocks
(convolutional block) of successive layers including convolution, pool-
ing, and activation layers. The convolution operation is a sliding dot
product of a filter (kernel) applied to the spectral signal. Several filters
are used in the convolutional layer where they serve as a feature
extractor and are iteratively learned during the CNN training process.
The kernel’s sliding fashion enables feature detection to be applied
across the full signal range. Subsequently, the pooling layers enable to
condense information from the output of the convolutional layers and
facilitate a hierarchical feature extraction at multiple wavelength scales.
For more details about CNNs, the reader is referred to Goodfellow et al.
(2016).

As backbone architecture, we used an adapted version of
EfficientNet-BO (Tan and Le, 2019), which is modified for one dimen-
sional input data. EfficientNet architectures are composed of a sequence
of the previously described CNN blocks with skip connections. They are
designed to improve accuracy and efficiency by using a scalable struc-
ture that allows the network to learn effectively from larger resolutions
while reducing computation costs. This is done through a combination
of depthwise separable convolutions, 1 x 1 convolutions and network
scaling methods (Tan and Le, 2019). The output layer of the imple-
mented architecture comprised 20 units corresponding to the number of
traits to be predicted.

The learning process of the model was based on the stochastic
gradient descent algorithm, where the Adaptive Momentum estimation
(Adam) optimizer was used to update the weights (Kingma and Ba,
2014). The number of epochs was set to 300 with a batch size of 32. We
employed the Hubert loss function to reduce the effect of outliers. Given
sparsity and resulting imbalance of trait observations in the merged data
set, we used a weighted loss version. The weights of the samples w (%)
were calculated for each sample as the complement of the number of
non-null trait samples np, to the total number of samples nyy; in the
corresponding original data set (Eq. 1). Additionally, a random up-
sampling with replacement was performed to have an equal number
of samples from each data set on the training set.

W = 100=(nyy /1) 100 €h)

To avoid over-fitting, two conventional regularization techniques
were used: data augmentation and drop out. Data augmentation in-
troduces artificial variation in the data to help regulate the learning
process. We applied two random modifications for every epoch (a
training cycle using all observations) with a 15% chance. This included
1) an addition of random noise with +30% of the spectral standard
deviation per wavelength derived from all training samples and 2) an
amplitude multiplication of the entire reflectance spectra with a random
value between 0.98 and 1.02. As additional model regularization, we
applied dropout (Hinton et al., 2012) after each block, which randomly
drops learning units with a defined probability.

Within the 300 epochs, we selected the final model according to the
lowest root mean squared error of a 20% hold-out from the training
data. All CNN models were implemented in Python (3.9.5) with the
TensorFlow (2.7.0) and Keras (2.7.0) frameworks.

2.2.2. CNN multi-trait and weakly supervised learning

In the view of the sparsity of the merged data set (Table. 1), we tested
three different strategies to train multi-trait models using the above-
mentioned CNN architecture: The first strategy, CNNyyltiincompletes Was
trained on the original sparse data set. To overcome data sparsity, we
modified the loss function to only update the weights according to traits
where a corresponding reference observation was present (i.e. not a
missing value). This approach falls within the incomplete supervision
category in the context of weakly supervised learning (Zhou, 2018). This
strategy is considered as the baseline approach in this study.
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Table 1
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Statistics of 20 selected functional traits available across 42 data sets. More details on the data sets can be found in Table A.1. N = Number of samples, N Data sets =
Number of data sets including the trait, Std = standard deviation, Min = minimum, Max = maximum.

Trait name Trait description Unit N N Data sets Mean Std Min Max
Anth Anthocyanin content (ug/cm?) 644 2 1.27 0.41 0.56 2.98
Boron Boron content (pg/cmz) 1086 14 0.39 0.26 0.01 2.34

C Carbon content (mg/cm?) 1876 23 5.84 4.44 0.10 37.29
Ca Calcium content (ng/cm?) 1045 16 107.25 101.97 0.69 988.73
Car Carotenoid content (pg/cmz) 1859 21 8.75 2.77 1.18 40.44
Cellulose Cellulose (mg/cm?) 1402 15 2.35 1.87 0.35 15.22
Chl Chlorophyll content (ng/cm?) 2141 24 38.57 14.53 4.45 229.50
Copper Copper content (ng/cm?) 1101 14 0.07 0.03 0.01 0.28
EWT Equivalent Water Thickness (mg/cm?) 1918 19 15.65 9.27 0.23 80.62
Fiber Fiber (mg/cm?) 1385 15 5.23 4.57 0.14 29.81
LAI Leaf Area Index (m?/m?) 1643 15 3.35 1.64 0.06 7.67
Lignin Lignin (mg/cm?) 1415 16 2.69 2.41 0.05 14.58
LMA Leaf Mass per Area (g/mz) 3328 32 92.05 68.08 5.72 663.81
Magnesium Magnesium content (ng/cm?) 1099 15 24.09 16.16 0.25 141.54
Manganese Manganese content (ng/cm?) 894 14 3.09 2.31 0.01 15.19
N Nitrogen content (mg/cmz) 2193 26 0.19 0.10 0.01 0.95
NSC Non-Structural Carbohydrates (mg/cm?) 1093 14 3.21 2.85 0.28 21.83
Phosphorus Phosphorus content (pg/cm?) 1289 16 14.42 9.45 0.29 73.43
Potassium Potassium content (ng/cm?) 1008 15 102.64 62.73 0.40 470.07
Sulfur Sulfur content (pg/cm?) 1039 14 13.31 9.13 0.62 57.23

The second strategy, CNNpyltinexact @ims to maximize the identifi-
cation of trait-trait relations during the learning process from all data
samples and, hence, includes a gap-filling of missing trait values. The
gap-filling process is based on the predictions of the CNNmytiincomplete-
To avoid unrealistic values, trait predictions lower than the 1% quantile
and exceeding the 99% quantile of the original data set (Table 1) were
not considered for gap-filling. This automated gap-filling approach does
not require data on species or ecosystem characteristics, which might be
missing or hard to define (Schrodt et al., 2015; Shan et al., 2012).
Instead, it directly learns trait-trait relationships from available hyper-
spectral data. CNNpyitinexact falls within the two weak supervision cat-
egories: incomplete and inexact supervision. The incomplete
supervision is related to the gap-filling procedure, and the inexact su-
pervision is performed when training on the completed but noisy labels
(i.e. reference data with gap-filled values).

The third strategy, CNNpyltilncompleteTRy @ims to fill data gaps with
trait observations obtained from the TRY plant trait database (Kattge
et al., 2020). The TRY database (version 5), includes >11.8 million trait
observations across >270.000 taxa. For each dominant species found in
the reference data, trait observations were queried from TRY using the
species name. We applied fuzzy matching to deal with minor in-
consistencies in the spelling of the species names with a Damerau-
Levenshtein-Edit distance >89 (Damerau, 1964; Konstantinidis, 2005).
The dominant species mapping resulted therefore in 144 correspon-
dences with TRY species. For these species, the median trait values were
then used to fill the missing values. This gap-filled data set was then used
to train the multi-trait CNN model (CNNpytfincompleteTRY)- This strategy
falls also within the inexact and incomplete weak supervision categories
as the model is trained on sparse and noisy labels (i.e. median trait
values within species).

2.3. Comparison to single-trait models

To evaluate the benefit of the multi-trait models and the uncertainty
introduced from the weakly supervised approaches (i.e. inexact and
incomplete), we additionally trained single-trait CNN (CNNjiygle)
models, where a separate model was trained for each individual trait.
Apart from the final layer (number of output units), the architecture for
these models was the same as for the multi-trait models (Section 2.2.1).
Moreover, we compared the CNN-based single and multi-trait models to
partial least squares regression (Wold et al., 1984). PLSR is currently one
of the most frequently applied algorithms for imaging spectroscopy
(Feilhauer et al., 2010; Homolova et al., 2013). For training PLSR

models for each trait (PLSRgjngle), We used scikit-learn (version 0.24.2)
Python libraries. To avoid over-fitting, the optimal PLSR number of
latent components was selected by minimizing the predicted residual
sum of squares (PRESS) in cross-validation (Chen et al., 2004).

2.4. Model evaluation

Using trait measurements and the canopy reflectance data from 42
data sets described in Section 2.1, we compared the predictive perfor-
mance of the 1) multi-trait CNN models to 2) single-trait CNN and 3)
single-trait PLSR models (Fig. 2). For a fair comparison, the same input
data settings were adopted for the training and evaluation of all
modeling approaches including data splitting, transformation and up-
sampling. The up-sampling procedure is a random sampling with
replacement and was applied to all samples in the training set to make
sure that a comparable number of samples is included from each data set
and to reduce the effect of bias towards data sets with more samples.

After training, the models were evaluated for their performance 1)
within the domain of the training data (internal validation) using
randomly sampled hold-outs, and 2) with regard to their transferability
to new domains (external validation), where each individual data set
was once retained from model training. For the internal evaluation, we
adopted a 5-fold cross-validation (CV) for all models. Given the unbal-
anced sampling frequency of the individual data sets, we performed a
stratified cross-validation based on the data set provenance (original
data sets). This procedure ensures equal distribution of trait samples
across the folds. For the hold-out test sets, only the original (and not the
gap-filled) samples were used. The external validation consisted of
training the models repetitively on 41 out of 42 data sets while keeping
one data set as hold-out for testing. To reduce computational load, the
data set-CV was only applied for CNNpyytimcomplete and PLSRjngle..We
evaluated the model performances using the coefficient of determina-
tion R? and the normalized root mean squared error (nRMSE, %). The
nRMSE was derived by normalizing the root mean square error over the
range of the observations (1-99% quantile). The final model perfor-
mance was obtained by averaging the R? and nRMSE values over the 5
folds of the CV.

2.5. Feature attribution

To visualize the spectral features learned by the CNNpyitimcomplete
model, we estimated the feature importance of each input wavelength,
which were interpreted and compared with known spectral plant
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Fig. 2. Model performance assessment (internal validation) of multi-trait and single-trait models. The evaluation is based on a stratified 5-fold cross-validation.

features. As feature importance metrics, we derived medians of Shapley
Additive exPlanations (SHAP, Lundberg and Lee, 2017) absolute values.
The SHAP values present a unified approach to explain model pre-
dictions based on the optimal game theory Shapley values. The Shapley
values represent the local marginal contribution (i.e. for individual
samples in the data) of each feature in the input for a specific prediction.
They attribute the change in the expected model prediction when con-
ditioning on one feature by calculating the difference from the predic-
tion in which the feature in question is not included (Lundberg and Lee,
2017). These values can be approximated with different algorithms. We
used the gradient explainer class, which combines the integrated gra-
dients (Sundararajan et al., 2017), SHAP and SmoothGrad (Smilkov
et al., 2017) methods. All SHAP coefficients were rescaled between
0 and 1 and normalized by the mean SHAP value of all traits to eliminate
the effect of the learned trait covariance. For comparison, we also dis-
played the PLSR regression coefficients.

2.6. Uncertainty estimation

As indicated by earlier studies, transferability of machine learning-
based models to new, unseen data depends on the distance in feature
space (Kattenborn et al., 2022; Ludwig et al., 2023; Mila et al., 2022).
Therefore, we implemented an uncertainty estimation procedure to
reveal the effect of spectral dissimilarity between new data and data
used in model training. Such a procedure is particularly valuable in view
of large-scale mapping across ecosystems and sensors.

Inspired by Janet et al. (2019) and Meyer and Pebesma (2021), the
implemented uncertainty estimation was based on the relationship be-
tween 1) CNN model residuals obtained from the internal evaluation and
2) the distance in feature space (dissimilarity of training vs. test sets). To
reveal spectral dissimilarity from the eye of the CNN, the feature space
was obtained from the CNN model embedding space of the global
pooling of the last convolutional layer. Based on this feature space, the
dissimilarity for each test sample was calculated as the average distance
to the five nearest neighbors of the training data. The model uncertainty
was then estimated using the calculated dissimilarity as predictor in a
95% quantile regression. The predicted values can be seen as the worst-
case error prediction of the model. This procedure was tested for the
CNNnultilncomplete model.

3. Results
3.1. Summary of the merged data set

3.1.1. Trait variations

The trait values across the merged data sets varied highly due to the
heterogeneity in vegetation types and species (Table 1). This yields a
large range in the trait values. LMA, Chl and EWT showed the highest
variability (Coefficient of Variation CV = 47.97, 42,91, 38.44%, see
Fig. B. 3, 4 in Appendix B) in the original data while all other traits had
similar variations (on average 35%). The correlation analysis based on
Spearman coefficient of the merged data set revealed high correlation
between several traits (Fig. 3). As expected, leaf constituents related to
plant resource investments showed a large correlation (e.g. LMA, Car-
bon, Lignin, Fiber, Cellulose). These resource-investment related traits
were rather independent from leaf pigments, which in turn were highly
correlated among each other (Chl, Car, Anth). Both resource investment
related traits and pigments showed a considerable correlation with leaf
N. Overall, rather weak correlations were found for LAI and leaf con-
stituents, whereas for N and C a positive relationship was observed.
Water content overall also showed a positive correlation with other leaf
constituents.

3.1.2. Canopy spectra

The canopy reflectance spectra were relatively similar when aver-
aged across land cover types (Fig. 4) and we found smooth transitions
across data sets and biomes (Fig. B.1, Appendix B). Higher reflectance
values were observed for the Tundra data in the NIR region (Fig. 4a).
Largest coefficients of variations were found in the SWIR 2 region
(2000-2500 nm) followed by the VIS region (400-750 nm). Most of the
spectral variation was found in the crop related samples whilst forest
samples had the lowest spectral variation (Fig. 4b).

3.2. Trait predictions

3.2.1. Prediction performances

The model performances derived from the 5-fold cross-validation
showed the overall predictive performance varied greatly for the
different traits (Fig. 5). With all CNN-based models, the goodness-of-fit
of the predictions was higher for LMA, C, NSC (Non-structural carbon)
(R? > 0.69). Lower predictive performances of these models were ob-
tained for EWT, N, Pigments, LAI, Cellulose, Lignin, Fiber, Copper and
Phosphorus (R% 0.46-0.69 and nRMSE: 12-17%). Overall, the trait
estimation performances of the CNN-based models exceeded those of the
PLSR models (R2: 0.18 to 0.66 and nRMSE: 11-22%). The PLSR models
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Fig. 3. Correlation plot of traits based on Spearman’s rank correlation coefficient. Refer to Table 1 for an explanation of the traits. A correlation of leaf traits on a

mass-basis is given in Fig. B.2.
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Fig. 4. Canopy average reflectance and the corresponding spectral variation
(Coefficient of Variation, CV) across the different land cover types.

showed bias with high values for some traits, including LMA, Pigments
and Carbon related traits (see Fig. D.1). Only for a few traits, i.e. Boron,
Ca and Manganese, the PLSR models showed higher performances than
CNN models. Ca, Boron, Magnesium, Sulfur, Potassium and Manganese

obtained the lowest validation performance for all models, especially
with single-trait models (R2 < 0.44 and nRMSE >15%).

According to a Wilcoxon signed-rank test, the multi-trait models
performed significantly better than single-trait models across all traits
(e.g. CNNpyltitncomplete P < 0.001, w = 205, details see Appendix C). In
comparison to CNNsingle, CNN-based, multi-trait models clearly
improved the prediction performance for most of the traits. The pre-
diction performance was particularly improved for traits where fewer
samples were available or where a comparably lower correlation with
spectral bands was observed (Fig. B.4, Appendix B), including Anth,
Sulfur, Ca and Potassium (Fig. 5b). Overall, the R? across all traits was
higher for CNN multi-trait models than for CNNj;ngle €xcept for LMA, C
and NSC (Fig. 5c¢, d).

Similar performance was obtained among the different CNN-based
multi-trait models, i.e. CNNpultiincompletes CNNmultitnexact and CNNpy1-
tilncompleteTRY- The predictive performance for the CNNpyitimexact ranged
from R% 0f 0.21-0.70 and nRMSE of 10.41-18.79%, for CNNpultincomplete
R? 0f 0.29-0.77 and nRMSE of 9.17-17.81% and CNNpimcompleteTry R
of 0.29-0.78 and nRMSE of 8.92-17.85%. Overall, the CNNpuitiincom-
pleteTry performed slightly better than the other two multi-trait strategies
for most of the traits (Fig. 5). The CNNpyytimcompleteTRy Procedure is
further discussed in Section 3.2.2.
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Fig. 5. (a) and (b): Comparative predictive accuracies (R? and nRMSE) from the stratified 5-fold cross validation of the CNNnuttitcompletes CNNmultiiexact and
CNNnuttitmcompleterry Mmodels as well as PLSRgjngle and CNNgingle models for 20 traits. (c) and (d): The kernel density estimate (KDE) of the trait-based metric dis-
tributions (R? and nRMSE) with the associated median values (dashed lines). Refer to Table 1 for an explanation of the traits. Detailed performances can be found in

Table C.1 and 2 Appendix C.

All multi-trait approaches resulted in relatively robust and similar
prediction performances across the different vegetation types (Fig. 6,
D.3, 4 Appendix D). For some traits (e.g. LMA, N, EWT), the values are
slightly clustered according to vegetation types, but we did not observe a
prominent or systematic bias in predictive performance across these
classes. For most traits, the model predictions are evenly scattered
around the 1:1 line, which is also underlined by slopes of the linear fit
close to 1 between the predicted and observed trait values (Fig. 6, D.3, 4
Appendix D).

Similar performance results were followed with the external evalu-
ation, where CNN multi-trait model surpassed the performance of
PLSRsingle models (Fig. 7, E.1 Appendix E). With both modeling ap-
proaches, the performance across all traits with the external validation
was lower than the internal validation, especially with PLSRgingle (Fig. 7,
E.1, Table E.1). For CNNyytiincomplete LMA and C were the most trans-
ferable traits with R? higher than 0.6 which is consistent with the in-
ternal validation, while for PLSR Copper and Chl had the highest
goodness-of-fit with R > 0.39. However, the baseline multi-trait
model (CNNpyltiincomplete) Showed a bias in high trait values with N
and LAI for example.

3.2.2. Detadils on trait database integration

Due to data availability, the gap-filling of the CNNpyitiincompleteTRY
procedure was limited to 13 out of 20 traits (Table 3). The model per-
formance significantly improved for all the gap-filled traits (p = 0.004,
w = 82, Wilcoxon signed-rank test). Surprisingly, the CNNpuitincom-
pleteTRY approach resulted even in significantly improved performance
for traits where no gap-filling could be performed, i.e. EWT, Car, Fiber,
NSC and S (p = 0.0313, w = 15). While the filling rate was not an
important factor for model improvement, the introduced variation from
the species-based trait values had the largest effect on traits that already
had less sparse trait observations samples in the data set. For instance,
Chl had the highest improvement in performance and even surpasses the
results of the baseline model CNNyyitiincomplete (Table 3).

3.2.3. Feature importance

The feature importance for CNNyyitiincomplete and PLSRsingle sShowed
a clear correspondence in the overall patterns (Fig. 8). For LMA, the
relevant wavelengths in the CNN multi-trait model were spread across
the entire spectrum, with higher values in the longer wavelengths of the
NIR and SWIR regions (1200-2450 nm). As expected, very similar pat-
terns were found for traits that directly contribute to LMA, namely C,
Cellulose, Fiber and Lignin. The CNN multi-trait estimation of Chl and
Car mostly relied on spectral bands in the VIS and red-edge region
(approx. 500-800 nm). For LAI, high SHAP values were found in the NIR
region.

4. Discussion
4.1. Considerations on the merged data set

The transferability of statistical models to predict plant traits from
new reflectance spectra is a major challenge (Ainsworth et al., 2014;
Heckmann et al., 2017; Silva-Perez et al., 2018). Few previous studies
have demonstrated that the transferability of models can be enhanced
when the model training includes plots from different species and sites
(Asner et al., 2015, Serbin et al., 2019; Wang et al., 2020; Kothari et al.,
2022b). Here, we merged 42 canopy reflectance data sets (from 28
studies) to assess the robustness of retrieval models when calibrated on
heterogeneous data not only from different ecosystem types but also
experimental settings (e.g. hyperspectral data acquisition and in-situ
measurement protocols). This procedure provides an opportunity to
address common shortages of reference data while also increasing the
representativeness in terms of geographical coverage and diversity in
vegetation type in the training data. Yet, it should be noted that the
temporal coverage of the data is biased towards the peak of the vege-
tation period, while the senescence is underrepresented. This may affect
for example the inter-correlations between traits as displayed in Fig. 3.

Merging the data sets required expert knowledge and a considerable
effort for checking, cleaning, and converting trait observations.
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Fig. 6. Internal validation: Correlation between observed and predicted values of 20 traits from the multi-trait model CNNyuitimmcomplete- The shown vegetation types
only refer to the available types in the original associated data sets (not all land cover types are covered for each trait). Refer to Table 1 for an explanation of the
traits. Scatter plots for the other models are given in Appendix D.
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Fig. 7. External validation: Correlation between observed and predicted values of 20 traits from the multi-trait model CNNnultimcomplete- The shown vegetation types
only refer to the available types in the original associated data sets. Scatter plots for PLSRgjgle are given in Appendix E.
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Table 3

Comparative nRMSE values (%) of the CNNnuiincompleterry With CNNppyiimn-
complete aNd CNNjingle models. CNNpyitimcompletery. Filling rates = (n obs. after -
n obs. before) * 100 / n obs. before. Refer to Table. 1 for an explanation of the
traits and to Table. C.3 for more detailed metrics (Appendix C).

Traits Filling nRMSE nRMSE (%) nRMSE (%)
rate (%) CNNultitncomplete CNNmultitncompleteTRY
(%) CNNGiingle

Potassium 118.14 16.42 15.04 14.84

Phosphorus ~ 99.07 14.89 13.23 13.51

Ca 97.42 19.87 17.82 17.85

Magnesium  93.64 18.65 16.26 16.00

C 92.33 10.45 10.76 10.48

Manganese 64.54 18.49 16.69 16.26

N 50.69 12.40 11.39 11.29

Copper 50.27 15.29 14.02 13.83

Chl 34.13 17.25 16.58 15.50

LMA 23.20 9.18 9.18 8.92

Lignin 12.43 14.91 12.86 12.48

Cellulose 7.77 14.71 12.78 12.58

Boron 0.55 17.39 15.11 14.86

Although a large share of the data used here was acquired from the
EcoSIS database, the available data often include errors and in-
consistencies, e.g. assignment of wrong dimensions or units. In consid-
eration of future initiatives for data integration, these experiences
emphasize the need for a harmonization of plant trait observations,
including units and dimensions, e.g. area or mass based, as well as
quality assessments, terminology and sampling protocols.

As this merged data set incorporates various ecosystems and land
cover types, its trait variability exceeds those of previous studies
(Table 1, Fig. 3, Asner et al., 2015; Schiefer et al., 2021; Serbin et al.,
2019; Wang et al., 2019, 2020). We assume that merging the different
data sets is a compelling requirement for developing models that are
transferable and robust across different traits, ecosystems, and vegeta-
tion types in the context of global mapping. Here, the baseline multi-
trait model (CNNpuitimcomplete) appeared to generalize well over the
individual data sets (Fig. 7). It should be noted, however, that the data
only represent a small portion of the Earth’s flora and its spatio-temporal
variation. Hence, despite the unprecedented trait variability realized
here, the presented study should be regarded as a pioneering study in
terms of model transferability and performance.

In the merged data set, not only the trait values but also the reflec-
tance data showed considerable variability, which could be attributed
not only to the spectral properties of the vegetation itself but also to
differences in pre-processing modes with related uncertainties (e.g.
during atmospheric correction procedures), remote sensing data acqui-
sition settings (e.g. sun-observer-relationship) and instruments (e.g.
airborne vs. field spectrometer data). We could not investigate in depth
to what extent such factors limited the transferability of the models as
information on such factors was not available for all individual data sets.
Yet, we did not observe a significant difference in performance of our
baseline multi-trait model (CNNpuitiincomplete) across the different
remote sensing platforms (p = 0.17, u = 72, Mann-Whitney-U test)
(Fig. E.3, 4 in Appendix E).

Merging data from multiple sources may improve model perfor-
mances and transferability, but the sparsity and imbalance of trait ob-
servations challenged the model evaluations. For example, the number
of data sets per trait ranges from 2 to 32 (Table 1), as most studies are
application-specific and, hence, trait-specific. Likewise, the number of
observations per data set ranged from 22 to 549. Thus, the relative
performance of the model for the different traits is not necessarily
directly comparable. Similarly, for some ecosystems or vegetation types
only a few samples were available, which limited a conclusive perfor-
mance evaluation in this regard. These challenges are expected to be
resolved as more data may become openly available in the future.
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4.2. Comparison of modeling approaches

Overall, the model performances of CNN-based models out-
performed the widely used PLSR based models. This is consistent with
previous studies that used hyperspectral data to retrieve vegetation and
soil properties (Cui and Fearn, 2018; Ng et al., 2019; Pullanagari et al.,
2021). The increased performance of CNN over PLSR may be explained
by its ability to represent nonlinear relationships with an overall
increased number of parameters, enabling the algorithm to learn more
complex relationships. For example, the large trait-ranges of the merged
data set presented in this study may inherit several non-linearities be-
tween spectra-trait-relationships. Such nonlinearities may result from
saturation effects, where a change in high trait values results in little
change of spectral reflectance, as observed in the present study for
chlorophyll, LMA or LAIL The linearity of PLSR models appeared to be
less suitable to resolve such effects, as indicated by a clear saturation of
PLSR-based predictions for high values for these traits (Fig. D.1, E.1 in
Appendix D and E). In such cases PLSR models tended to include more
predictors (latent vectors) but this did not necessarily improve the
model performance. Similar issues with PLSR-based models and satu-
ration effects were also reported with leaf-scale reflectance data in
Kothari et al. (2022). In contrast to the PLSR-based predictions, the
predictions of the CNN models did not show saturation effects and no
obvious systematic biases could be observed across the trait range
(Fig. D.2-4).

In addition to the model performance, CNNs are known to be less
reliant on feature engineering and are effective to identify automatically
relevant features from the input data (Goodfellow et al., 2016). Previous
studies in the context of variable retrieval from hyperspectral data
showed that shallower machine learning methods were more dependent
on pre-processing of input data (Cui and Fearn, 2018; Ng et al., 2019).
Another advantage of CNNs and other batch-compatible deep learning
methods over previous machine learning methods (e.g. PLSR, Random
Forest) is that the data are exposed iteratively to the model, which
potentially enables training models with an infinite amount of data
without exceeding the memory. The latter aspect may become very
relevant in the near future that promises an increase in data availability,
e.g. via more data acquisitions from spaceborne spectrometers and a
growing culture of open data through initiatives such as ecosis.org.

The multi-trait CNN models clearly outperformed the single-trait
models. This is consistent with other studies in different areas which
employed multi-task CNN models (Ng et al., 2019; Padarian et al., 2019;
Ramsundar et al., 2015; Tsakiridis et al., 2020). In comparison of the
CNNgingle model the retrieval of pigments, N, LAI, EWT, Phosphorus,
Lignin, Cellulose, Fiber, Magnesium, Ca, Potassium, Boron, Copper,
Sulfur was improved with our baseline multi-trait model (CNNpyitimn-
complete)- Even for traits that were only represented in a few data sets, the
multi-trait models performed better than the single-trait models (e.g.
Anth, Sulfur, Copper, Boron, Magnesium). We assume that multi-trait
models not only allow for simultaneous and thus efficient trait
retrieval, but also allow the model to indirectly learn trait-trait
relationships.

Such trait-trait relationships may also explain the observed feature
importances (Fig. 8). For instance, the spectral features for N were
consistent with known protein features in the SWIR region (Féret et al.,
2021) and others near the red-edge region related to pigments (Ustin
et al., 2009). As expected, we also observed very similar spectral fea-
tures across all wavelengths among traits related to leaf resource in-
vestments (LMA, Lignin, Fiber, Cellulose, and C; compare Kokaly et al.,
2009), which may also explain higher model performance for several of
these traits when predicted in a multi-trait setting. For Anth, we
observed relatively accurate predictions and rather broad absorption
features, although previous studies revealed that Anth pigments have
rather subtle and narrow spectral absorption properties (Féret et al.,
2017). We assume that the broad features obtained here result from the
high correlation with Chl and Car (Fig. 3), which in turn have more


http://ecosis.org

E. Cherif et al.

Remote Sensing of Environment 292 (2023) 113580

LMA (g/m?) N content (mg/cm?) LAI (m2/m?2)
1.0 1.0 1.0
0.8 0.8 0.8 4
0.6 0.6 - 0.6 1
0.4 0.4 - 0.4 4
0.2 4 0.2 0.2 4
0.0 4 T T 0.0 4 0.01 T T T T T
500 1000 1500 2000 2500 5oo 1000 1500 zooo o 500 1000 1500 2000 2500
C content (mg/cm?) Chl content (ug/cm?) EWT (mg/cm?)
1.0 o 1.0 A 1.04
0.8 - 0.8 0.8 4
0.6 0.6 0.6
0.4 - 0.4 0.4 4
0.2 4 0.2 024
0.0 1 100+ 004 ' . . . .
500 1000 1500 zooo 2500 500 1000 1500 2000 500 500 1000 1500 2000 2500
Carotenoid content (pug/cm?) Phosphorus content (mg/cm?) Lignin (mg/cm?)
1.0 A 1.0 4 1.0
0.8 - 0.8 0.8 4
0.6 - 0.6 4 0.6 1
0.4 - 0.4 4 0.4 4
0.2 - 0.2 0.2 4
0.0 - i 1004 0.0 4 .
M 500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
2 Cellulose (mg/cm?) Fiber (mg/cm?) Anthocyanin content (ug/cm?)
T 1.0 1.0 4 1.0
5
g 08+ 0.8 0.8 4
E o6+ 0.6 4 0.6 1
2 o044 0.4 0.4
F
® 024 0.2 4 0.2 4
9
%= 0.0 0.0 1 0.0 4
] T T T T T T
2 500 1000 1500 2000 2500 500 1000 1500 2000 2500 1000 1500 2000 500
]
o NSC (mg/cm?) Magnesium content (mg/cm?) Ca content (mg/cm?)
0 1.0 1.0 1.0 4
o
0.8 1 0.8 4 0.8 4
0.6 - 0.6 4 0.6 1
0.4 4 0.4 4 0.4
0.2 4 0.2 4 0.2 4
0.0 1 T T 0.0 1 T T T T T 001 T T
1000 1500 2000 2500 500 1000 1500 2000 2500 1000 1500 2000 2500
Potassium content (mg/cm?) Boron content (mg/cm?) Copper content (mg/cm?)
1.0 4 1.0 4 1.04
0.8 4 0.8 4 0.8 4
0.6 - 0.6 0.6 4
0.4 4 0.4 4 0.4 4
0.2 4 0.2 4 0.2 4
0.0 1 . 0.0 4 J 0.0+
T T
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
Sulfur content (mg/cm?) Manganese content (mg/cm?)
1.0 4 1.0
0.8 0.8 4
_— PLSRSingIe
0.6 0.6
0.4 0.4 4 — CNNmuItilncomplete
0.2 4 0.2 4
0.0 0.0+ .
500 1000 1500 2000 2500 500 1000 1500 2000 2500

Wavelengths (nm)
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of this article.)

broad spectral absorption features and may indirectly facilitate Anth
estimation (Jacquemoud and Ustin, 2019; Ollinger, 2011; Ustin et al.,
2009). Similarly, nutrients such as Copper, Sulfur, Potassium and Boron
do not have distinct spectral absorption features in canopy spectra, but
their surprisingly high retrieval performance may be explained by their
correlation with other leaf traits that are related to leaf resource in-
vestments (Figs. 3, 6) and that have a more explicit spectral response,
such as LMA or C (Dominguez et al., 2012; Kothari and Schweiger,
2022).

Largest improvements from single- to multi-trait estimates were
found for Lignin, Cellulose and Fiber (Fig. 5), which can be attributed to
the high correlation with LMA and C (Fig. 3). Conversely, for LMA, C and
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NSC the multi-trait approaches did not result in notable improvements.
This may be explained by the fact that these three traits are already very
tightly related (chemically and spectrally) and a covariance among these
traits does not add further benefit. Moreover, compared to other traits,
LMA, C and NSC can be predicted most accurately (Fig. 6), so the
covariance with other traits that cannot be predicted as accurately is less
likely to facilitate the predictive performance. Similar findings for LMA
estimation were found by Furbank et al. (2021) when including the
inter-correlation with photosynthetic traits.

We tested three weakly supervised strategies for training the multi-
trait models in the context of the data sparsity, i.e. CNNpyitincom-
pleteTRY> CNNmuitimcomplete 80d  CNNpultiexact: The three strategies
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resulted in similar model performance across the traits (e.g. for each
strategy, LMA, C and NSC were most accurate and macronutrients least
accurate). Yet, CNNpyltimexact resulted in the lowest model performance.
This is explained by the uncertainty introduced during the spectrally-
based gap-filling procedure. However, even with the propagated un-
certainty from the gap-filling process, CNNpyitimexact Outperformed the
single-trait models. This demonstrates that such gap-filling strategies are
promising to enrich existing sparse data sets, especially as no external
knowledge on species or ecosystem type is required. Future attempts
may apply a more conservative gap-filling, where data gaps are only
filled if the estimated traits are assumed to have a low uncertainty. The
uncertainty assessment presented in this study (see Fig. G.1 in Appendix
G for details) may be a promising avenue.

The gap-filling strategy based on trait databases (CNNpuitincom-
pleteTrY) Significantly improved the performance (compared to CNNpy.
tilncomplete) for those traits that were gap-filled (p = 0.004, w = 82
Wilcoxon signed-rank test, Table 3, C.3), even when using median trait
values by species which do not account for the within-species trait
variations. Nonetheless, for the scope of this analysis this does not affect
the interpretation of the results as most of the collected samples were
taken in the growing season and the results were only evaluated with the
original trait obsevations (i.e. no gap-filling). Interestingly, CNNpyltimn-
completeTRY €ven improved the model performance for those traits where
no gap-filling was performed (due to missing observations in the TRY
database, p = 0.0313, w = 15, Wilcoxon signed-rank test, Fig. 5,
Table C.3). This not only underlines the potential of incorporating
ancillary trait information, but also highlights the overall value of the
multi-trait and corresponding trait-trait relationship. For instance, this
has surprisingly influenced the retrieval of Chl and Car, with an
improvement of 12-16% in R? and 7-7.88% in nRMSE; as well as EWT,
Fiber, NSC and Sulfur by 2.00-4.10% in R? and 1.68-4.95% in nRMSE.
We assume that the growth of trait databases as TRY will even increase
the potential of this gap-filling approach.

4.3. Model performance across plant traits

Across all traits, highest model performance was observed for LMA
(Fig. 5). This is in line with a series of previous studies highlighting the
transferability of models for estimating LMA across data sets at leaf and
canopy scale (Serbin et al., 2019; Silva-Perez et al., 2018; Wang et al.,
2019, 2020; Helsen et al., 2021; Schiefer et al., 2021; Kothari et al.,
2022b). In contrast to these previous studies, the CNN models used here
resulted in comparable or even higher model performances although we
tested our models using a more diverse data set and exclusively on
canopy spectra. The high performance of the LMA estimation is partly a
surprise given its broad and overlapping absorption features with water
content and scattering components at the canopy scale (Homolova et al.,
2013). The high performance of LMA may be partially supported by the
ample samples across most of the used data sets (32 data sets out of 42
had LMA observations). Moreover, the robustness of the LMA estimation
may also be explained by the overall high correlation of LMA with in-
dividual bands across the entire spectrum (Fig. B. 4, Appendix B).

Particularly for LMA but also for most of the other traits, our results
suggest that the performances of the multi-trait models are often on par
to those of previous studies. For instance, for LAI, Chl, Car and EWT, our
models obtained higher performances than Schiefer et al. (2021), who
used PLSR models on a data set of canopy spectra across grassland
species, which was also integrated in our study. Overall, model perfor-
mances were comparable to Wang et al. (2020), who used airborne
canopy spectra across biomes and to Wang et al. (2019), who used
canopy spectra in grasslands. EWT performances were lower than in
Wang et al., 2020, where water content was one of the most accurately
retrieved traits. The fact that the estimation of EWT was comparably low
in the present study may result from the different protocols used across
the merged data sets.

In this study we focused on area-based leaf traits due to multiple
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reasons: Firstly, as highlighted across different studies in the context of
the radiative transfer theory (Dawson et al., 1998; Ganapol et al., 1998;
Jacquemoud and Baret, 1990; Vilfan et al., 2016), the retrieval of leaf
constituents from spectral signals depends on how much of a leaf con-
stituent (mass) in a given leaf area interacts with light (area-based). In
contrast, relative ratios of leaf constituents to LMA (mass-based traits)
are not directly related to spectral absorption features (also discussed in
Kattenborn et al., 2019b, Zhao et al., 2021). Secondly, normalizing traits
on a mass-basis may overshadow the original variation of leaf traits and
introduce unrealistic trait-trait-relationships. For instance, photosyn-
thetic traits (e.g. pigments) are generally assumed to be largely inde-
pendent of leaf resource investments (LMA) (Lloyd et al., 2013; Osnas
et al., 2013). This was confirmed for the present data set (Spearman rho
<0.4) - but only if the data was scaled on an area-basis (Fig. B.2, Ap-
pendix B). As soon as pigments were scaled on a mass-basis, ill-founded
correlations were introduced (Spearman rho < —0.73, see Lloyd et al.,
2013 for a statistical rationale). Likewise, traits that directly contribute
to the total leaf mass were obviously highly correlated to LMA when
compared on an area-basis (spearmans’s rho >0.84 for Carbon, NSC,
Lignin, Fiber, Cellulose), while a comparably weak relationship was
found on a mass-basis (Spearman’s rho <0.51). Moreover, we found
unrealistically high variation of these LMA-related traits (Carbon, NSC,
Lignin, Fiber, Cellulose) when assessed on a mass-basis, which may have
mis-lead model calibration (Fig. B.3, Appendix B). Thus, to comply with
the physical principles of radiative transfer theory but also reasonable
trait-trait relationships, the modeling in the present study was per-
formed exclusively on an area basis.

Note, however, that our proposed models can also be used to derive
mass-based traits through normalizing the respective trait prediction by
LMA predictions (traityass = traitarea / LMA). We applied this procedure
to compare our model performances to previous studies that performed
trait retrieval on a mass-basis (Appendix F). The performances of our
baseline multi-trait model (CNNpyyticomplete) With mass-based N and
Phosphorus were comparable to studies reviewed in Homolova et al.
(2013), while exceeding those of Wang et al. (2020), Asner et al. (2015),
Chadwick and Asner (2016), Ewald et al. (2018a) and Wang et al.
(2019). The predictive performance for the converted pigments, Fiber,
Lignin and Cellulose was lower or comparable to Wang et al. (2020) and
Singh et al. (2015) and exceeded those of Asner et al. (2015) and Martin
et al. (2018) for tropical forest.

Nevertheless, it should be highlighted that it is often not possible to
directly and quantitatively compare model performances across studies,
since they frequently differ in vegetation type, modeling approach,
model performance metrics and validation strategy, remote sensing
platform and sensor, temporal and spatial resolution and extent, simu-
lated and real data, plant traits or a combination of these. Also, the aim
and thus the setting of the individual modeling attempts largely differs:
some studies aimed to predict traits in a very specific domain and from a
very specific platform, while here we aimed to predict traits across
different platforms, sensors and vegetation types.

4.4. Model performance across data sets (transferability)

While the 5-fold CV evaluated the model performance with obser-
vations that are similar to those observations used in training (internal
validation), the model transferability specifically estimated the model
performance towards entirely unseen data sets (external validation).
The model performances for the transferability evaluation were lower
than the internal 5-fold CV (decline of 32% R? and 18% nRMSE (mean
across traits), Fig. 7, Table E.1 Appendix E). This decline in performance
is expected given the large heterogeneity among the data sets (Table 1,
Fig. 4) which might largely differ from the training data, e.g. in terms of
sensor, platform, illumination conditions, calibration procedure, trait
sampling protocol or vegetation type. Overall, in terms of transferability
the CNNpuitincomplete model clearly outperformed the PLSRjng1e model
(Fig. 7, E.1). This may be explained by the larger number of parameters
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in the CNN-based models, which may facilitate learning more abstract
spectral features and to resolve spectral features across different sensor
or calibration settings. Both CNN- and PLSR-based traits, whose pre-
dictions had higher performances with the random internal CV, corre-
sponded to those that had on average the most accurate prediction with
the site transferability evaluation. Similar findings have been obtained
in Kothari et al. (2022) at the leaf-scale.

Overall, the CNN-based transferability across data sets in this study
can be considered as relatively high when compared with previous
studies. Even at the leaf-level where spectrally-based trait retrieval is
generally less challenging than at the canopy-scale, several studies re-
ported similar or larger drops in performance across traits (Serbin et al.,
2019; Helsen et al., 2021; Kothari et al., 2022b). For instance, the LMA
PLSR multi-biome model of Serbin et al. (2019) resulted in R? of 0.89 for
the internal calibration and dropped to 0.66 when validated externally
with LOPEX (Hosgood et al., 1995) and ANGERS data sets (Feret et al.,
2008) and to 0.68 with the CABO data set (https://data.caboscience.
org/leaf, Kothari et al., 2022b,a). Wang et al. (2020) showed a very
high model transferability with PLSR models across different vegetation
types particularly for LMA and EWT. Likewise, the CNN-based model in
Pullanagari et al. (2021) resulted in a robust transferability performance
for N retrieval from grasslands where the authors claimed that this can
be attributed to the richness of samples from multi-year and multi-site in
the training set. However, these studies were based on a consistent
sensor and data calibration and processing procedure. This underscores
the challenge to train models that are transferable across remote sensing
data acquisition settings. However, despite these challenges stemming
from the diversity of integrated data sets, the transferability in this study
is surprisingly high and we anticipate that with ever increasing data
availability more generalized models can be trained in the future.

Eventually, the transferability of models will depend on the feature
space distance between the new, unseen data to the training data
(Ludwig et al., 2023). This is confirmed by the model uncertainty esti-
mation procedure developed in this study (Fig. G1 in Appendix G),
which is based on this principle and estimates the model uncertainty
from the internal CNN embedding, i.e. the feature space viewed from the
perspective of the model itself. Such an approach is assumed to be very
promising to reveal the area of applicability of a model to new obser-
vations and domains (Meyer and Pebesma, 2021).

4.5. Outlook

As demonstrated in the present study, multi-trait models may not
only facilitate high model performances due to the incorporated trait
interrelationships, but also provide a tool to simultaneously and, hence,
efficiently track multiple traits from remotely sensed hyperspectral data.
The multi-trait approach presented here is expandable to more traits and
can continuously be improved as new data become available. Instead of
retraining the model from scratch, the model weights can be easily
updated by retraining the model on new data. In the near future, a large
increase in the availability of hyperspectral and trait data can be ex-
pected through the availability of operationally scheduled large-scale
hyperspectral observations from spaceborne platforms. This goes
along with a generally increased incentive for data sharing by the
community and institutions and will include future in-situ and airborne
campaigns that contribute to the success of global missions such as
PRISMA, EnMAP, CHIME and SBG (Guanter et al., 2015; Labate et al.,
2009). Upcoming approaches may also test the integration of simulated
data from soil-leaf-canopy RTMs, in the context of hybrid retrieval
models (e.g. Wocher et al., 2022; Verrelst et al., 2021). Such an
approach might be particularly promising for traits, vegetation types or
states for which only few data are available. In addition, such a physi-
cally based approach also takes information about the soil background
as well as viewing and observation geometries into account, which may
be neglected by empirical approaches.
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5. Conclusion

From terrestrial platforms up to satellites, hyperspectral remote
sensing is advancing as an important tool for future global monitoring
applications. Currently, a significant bottleneck to unleash this potential
is the lack of scalable and transferable models. Here, we compiled a large
and sparse data set with a wide variability in vegetation types and traits.
Our results showed that multi-trait CNN models trained on these data
can be more performant than CNN models trained for single traits
individually. All tested CNN model approaches outperformed widely-
used PLSR models. For multiple traits, the model performances ob-
tained using the CNN multi-trait models were on par to those obtained in
previous studies — although the model performances here were esti-
mated from a more diverse data set. This highlights that building robust
models requires substantial data variability and only a collaborative
effort by the remote sensing community can significantly advance our
ability to create models that are transferable across sensors, scales, do-
mains, and ecosystems.
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