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Probabilistic Constraint Construction for
Network-Safe Load Coordination
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Abstract—Distributed Energy Resources (DERs) can provide
balancing services to the grid, but their power variations might
cause voltage and current constraint violations in the distribution
network, compromising network safety. This could be avoided by
including network constraints within DER control formulations,
but the entities coordinating DERs (e.g., aggregators) may not
have access to network information, which typically is known only
to the utility. Therefore, it is challenging to develop network-safe
DER control algorithms when the aggregator is not the utility;
it requires these entities to coordinate with each other. In this
article, we develop an aggregator-utility coordination framework
that enables network-safe control of thermostatically-controlled
loads to provide frequency regulation. In our framework, the util-
ity sends a network-safe constraint set on the aggregator’s input
without directly sharing any network information. We propose a
constraint set construction algorithm that guarantees satisfaction
of a chance constraint on network safety. Assuming monotonicity
of the probability of network safety with respect to the aggregator’s
input, we leverage the bisection method to find the largest possible
constraint set, providing maximum flexibility to the aggregator.
Simulations show that, compared to two benchmark algorithms,
the proposed approach provides a good balance between service
quality and network safety.

Index Terms—Chance constraints, distributed energy resources,
load control, network safety, thermostatically-controlled loads.

1. INTRODUCTION

S THE amount of intermittent renewable generation is
A rapidly growing, it is becoming more difficult to rely solely
on the conventional ways of balancing power systems. One
emerging solution is to leverage Distributed Energy Resources
(DERs), such as thermostatically-controlled loads (TCLs), bat-
teries, and electric vehicles, to provide grid services, which can
improve grid reliability and reduce grid operating costs and
environmental impacts. However, DERs coordinated to provide
balancing services might cause issues in the distribution net-
work, such as under/over-voltages, over-current violations, and
transformer overheating, compromising network safety.
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When the distribution network operator (i.e., the utility) coor-
dinates DERs to provide grid services it can adopt a centralized
algorithm that explicitly manages distribution network con-
straints, e.g., the algorithms provided in [1], [2], [3]. However, in
competitive U.S. electricity markets it is becoming more likely
that third-party (i.e., non-utility) DER aggregators will take on
this role. Unfortunately, the aggregator does not have access to
detailed distribution network information typically known only
to the utility, and so it is unable to directly determine how its
actions would affect the distribution network. This challenge has
already been recognized by the US Federal Energy Regulatory
Commission (FERC) [4].

Thus, there is a need for coordination between the aggregator
and the utility to ensure network-safe operation of DERs. The
recent FERC Order No. 2222 [5] provided some guidance on the
development of operational coordination architectures between
DER aggregators, utilities, and market coordinators; however,
it is still unclear how these architectures will evolve and which
architecture is “best.” Beyond ensuring network safety, coor-
dination architectures should also 1) ensure that each entity’s
private information (e.g., sensitive network information held
by the utility, proprietary DER coordination strategies held by
the aggregator, and private DER state information held by the
DERSs’ end-users) is not shared with the other entities and 2)
communication between the entities is minimal for compatibility
with current communications infrastructure and/or to reduce
the cost of any newly required infrastructure. Furthermore,
architectures need to specify coordination protocols on different
timescales, for example, 1) for operational planning such that
the aggregator can determine its offer for balancing services,
and 2) for real-time control in case network conditions differ
significantly from forecasts and aggregator actions need to be
curtailed.

In this article, we propose an aggregator-utility coordina-
tion framework for a collection of TCLs to provide balancing
services like frequency regulation while ensuring distribution
network-safety with high probability. We focus on real-time
coordination, specifically, a setting in which an aggregator is
already committed to provide a certain amount of balancing
services, but real-time distribution network conditions require
curtailment of those services. In our framework, the utility
sends the aggregator a one-step ahead constraint set (i.e., a
set computed at time step ¢ to be implemented at time step
t + 1) on the aggregator’s control input. Choosing an input from
this set guarantees the satisfaction of a chance constraint on
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network safety with a certain confidence level. This method
leverages estimation from Monte Carlo simulation and the bi-
section method to provide the largest possible constraint set
to maximize the network-safe TCL flexibility. To achieve light
communication requirements, the aggregator control algorithm
assumes the TCLs all respond to the same scalar control input.
This constrains the aggregator’s degrees-of-freedom but also
makes it possible for the utility to define a simple constraint
set on the control input.

Previous work, e.g. [6], [7], [8], [9], has proposed strategies
to control aggregations of TCLs, such as air conditioners and
water heaters, to provide balancing services in ways that are
non-disruptive to end-users. TCLs have inherent thermal energy
storage capacity and non-disruptiveness can be achieved, e.g.,
by keeping internal temperatures inside a narrow temperature
dead-band. However, network safety was not considered in the
above papers. Some work has developed network-safe control
algorithms for TCLs coordinated by third-party aggregators.
Ref. [10] proposes both a utility-centric and an aggregator-
centric coordination framework, differentiated by which en-
tity ultimately sends control inputs to the TCLs. That paper
and [11] develop utility-centric strategies wherein the utility
blocks aggregator’s inputs that would otherwise cause network
constraint violations. In contrast, our proposed approach would
be considered aggregator-centric.

Aggregator-centric network-safe DER coordination could be
achieved through (convex) inner approximation of safe oper-
ating regions [12], [13], [14], which could be computed by
the utility and sent to the aggregator as constraints on the net
DER power deviations at each node. Research from Australia
refers to these nodal constraints as operating envelopes [15],
[16], [17]. Ref. [18] proposes an optimization problem to obtain
a hyper-rectangular constraint set on the net DER power con-
sumption at each node in order to satisfy chance constraints on
the voltage at each node. However, these approaches all require
constraints to be applied at each node, rather than applying
a constraint on aggregate power deviations by DERs located
across a network. Ref. [19] proposes a method to constrain the
norm of the power deviations across all nodes in the network,
but requires significant computation to compute the constraint.
Assuming an aggregate power deviation constraint exists, our
previous work [20] develops an aggregator-centric TCL coor-
dination algorithm using formal methods, but does not develop
an approach to obtain the constraint, and the solutions are very
conservative.

In contrast to this previous work, this article makes the fol-
lowing contributions: 1) we develop a new aggregator-centric
approach to enable network-safe control of TCLs for balancing
services; 2) assuming a simple control scheme that leverages
a scalar control input to coordinate TCLs to provide balancing
services (the aggregator’s algorithm), we develop an approach
to constrain the control input to satisfy a chance constraint on
network safety (the utility’s algorithm); and 3) we demonstrate
our approach in simulation and compare its performance to two
benchmark approaches. In contrast to past work on network-safe
control that assumes the system is deterministic, e.g., [19],
here we consider uncertainty in the power consumption of
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non-participating loads. Furthermore, in contrast to [20], we as-
sume the aggregator has incomplete information about the TCLs
to reduce communication requirements and preserve some level
of privacy. Lastly, though some past work leveraged chance con-
straints to develop network-safe DER coordination approaches,
e.g., [18], [21], [22], [23], [24], [25], [26], these papers all
assume that the controller has detailed distribution network
information (enabling the formulation of a chance-constrained
optimal power flow problem), which is inconsistent with our
utility-aggregator coordination framework. Several approaches
attempt to tackle the lack of detailed network information within
aggregator-centric frameworks, including via sensitivity analy-
sis as demonstrated in [27] and via reinforcement learning as
proposed in [28]. However, these approaches do not formally
guarantee network safety nor do they satisfy a chance constraint
on network safety.

This article is organized as follows. Section II introduces
the problem of interest. Section III explains the aggregator’s
control approach and Section IV details the proposed constraint
construction algorithm used by the utility to achieve network
safety at a high level of probability. Section V presents the
results of a case study comparing the proposed approach to
two benchmarks. The appendix includes proofs of two of the
theorems.

Notation: N is the set of natural numbers. [N] denotes
{1,...,N}and [N]odenotes {0, 1, ..., N}.The jth element of
vector ¥ is y;. Binomial distribution B(ns, v) has n; trials, each
with success probability -, and cumulative density function (cdf)
Fa(x;ns,v). N(i,0?) is the normal distribution with mean p
and variance 0. Function 1(A) is 1 if A is true, and 0 otherwise.
Allrandom variables are capitalized English letters, e.g., X, with
realizations denoted T and estimates/approximates denoted Z.
All other variables are denoted by symbols other than capitalized
English letters. Vectors and matrices are bolded.

II. FRAMEWORK & PROBLEM OF INTEREST

We consider a framework in which an aggregator and utility
coordinate to provide network-safe grid balancing services, e.g.,
frequency regulation, by aggregations of TCLs. TCLs switch
ON/OFF to maintain temperature within a dead-band. We focus
on real-time coordination, i.e., we assume that the aggregator has
already participated in the ancillary services market and com-
mitted balancing service capacity to the independent system op-
erator (ISO). The amount of balancing service capacity offered
by the aggregator was based on forecasts of the capabilities of
the TCLs and the network state. However, the real-time network
state differs significantly from its forecasts and so the committed
balancing service capacity mustbe curtailed to avoid distribution
network constraint violations. This could happen when load
consumption and/or renewable power injections are significantly
different from forecasts and the network is operating close to its
limits.

We assume that the following coordination steps occur at each
discrete time step ¢, with a sampling time At¢. The coordination
scheme is shown in Fig. 1.
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Fig. 1. Aggregator-utility coordination scheme.

1) The aggregator receives a constraint set U(¢) from the
utility and a reference signal p.¢(¢) (e.g., a scaled and
shifted frequency regulation signal) from the ISO.

2) The aggregator determines the input wu(t) € U(¢) and
broadcasts the same input to all TCLs.

3) Each TCL maintains or switches its ON/OFF mode based
on its temperature and the aggregator’s input u(t).

4) The utility observes the active and reactive power con-
sumption at each network node p(¢) and g(¢), and ob-
tains some information from the aggregator (described
below). Then, it constructs a one-step ahead constraint
set U(t + 1) and sends it to the aggregator. (And go back
to step 1.)

The aggregator’s goal is to select u(t) to maximize the quality
of grid balancing services. This means that the aggregator should
choose an input u(t) that is likely to adjust the aggregate power
of the TCLs to match the reference signal pr(¢) as closely as
possible. Here, we assume the aggregator’s input u(¢) is a real
scalar in the range [—1, 1] and is interpreted by each TCL as the
probability it should switch modes; the details of how it switches
are given in Section III. TCL coordination through probabilistic
switching has been considered in previous work e.g., [6], [10].
An advantage of this type of input is that it only needs simple
broadcast communication infrastructure. However, it does not
allow the aggregator to directly adjust the power consumption
of individual TCLs, which means that the aggregator has a low
degree-of-freedom in control.

Since the aggregator does not have detailed distribution net-
work information and cannot evaluate how its input would affect
the network, the utility sends a constraint set (¢ + 1) on the
aggregator’s input u(t + 1). This set U(¢ + 1) is designed such
that, if u(¢ + 1) € U(¢ + 1), then probability of network safety
is over a desired value 1 —e. We propose a method for the
utility to compute U (¢ + 1) in Section IV, which is the main
contribution of this work. To do this, the utility leverages:

1) Real-time data from household smart meters to obtain
the active and reactive power consumption at each node, p(t)
and g(t). We recognize that in practice most utilities do not
currently gather smart meter data in real-time, but this is possible
with most existing smart meters and could be enabled through
reconfiguration of their settings.

2) Forecasts of the probability distributions of the one-
step ahead active and reactive power consumption of non-
participating loads at each node, P"(¢ + 1) and Q%(t + 1). We
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assume that these distributions are estimated using historical
and real-time data from household smart meters, and lever-
aging a disaggregation technique [29] to separate the power
consumption of the TCLs from that of the non-participating
loads. We assume that P“(¢) and Q%(¢) are correlated and
fpr qu(t) is their joint probability density function (pdf), which
we can also estimate from historical and real-time data. We
note that energy disaggregation is imperfect and that estimating
fpr g accurately requires a large amount of data, particularly
for large-scale distribution networks. In this article, we assume
that the disaggregation process is accurate and we have sufficient
data to estimate fp. g with high precision.

3) Some real-time TCL information from the aggregator that
is necessary for constraint set computation. This should be mini-
mal to protect end-user privacy. In our framework, the aggregator
provides the one-step ahead estimated fractions of TCLs that
will be outside of their temperature dead-band and switched
OFF-to-ON and ON-to-OFF by their thermostats, WO (t + 1)
and WO (¢ + 1). Details on how this information is used are
provided in Section IV-A.

In this article, for the sake of simplicity, we define network
safety in terms of under-voltage violations. Specifically, we say
that the network is safe if there are no under-voltage violations,
and unsafe if there are any violations. The approach can be
easily extended to include over-voltage violations and other
distribution network constraint violations. The problem can be
formally stated as follows.

Problem 1: Given the desired safety probability 1 — €, the
real-time active and reactive power consumption at each node
p(t) and gq(t), the joint pdfs of the uncontrollable loads
fpr qu(t), fpr gu(t + 1), and the fractions of TCLs that are
outside of their dead-band wN(t + 1), w°™ (¢ + 1), find a
constraint set I/ (¢ + 1) such that the following chance constraint
holds if u(t 4+ 1) € U(t + 1),

Pr(;léff]"}(wrl)zﬁ) >1—¢ (M
where v is the lower bound on each of the nodal voltages V; and
n is the number of nodes other than the substation.

To solve this problem, we define the one-time step ahead
voltage at each node V; (¢ + 1) as a random variable whose dis-
tribution depends on the input u(¢ + 1); the details are explained
in Section IV. It is difficult to obtain a closed-form expression
for the probability distribution of each V;(t + 1). Therefore,
our approach leverages Monte Carlo simulation to estimate the
left side of (1) given a one-step ahead input u(t + 1). Since
estimation from sampling leads to error, we find a constraint
set U(t + 1) with a confidence level over a desired level 1 — 3
rather than giving an exact solution.

III. AGGREGATOR’S CONTROL APPROACH

In this section, we explain how the TCLs operate under the
aggregator’s input u(¢). For simplicity, we assume that all partic-
ipating TCLs are cooling TCLs (e.g., air conditioners), though
the approach also applies to heating TCLs. We denote by nT¢-

the vector whose element n;“" is the number of participating
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TCLs at node j. The total number of participating TCLs is
denoted by

n
nTCL . {TpTCL _ Zn}‘CL'
Jj=1

The internal temperature of the ¢th TCL at time £ is denoted by
6*(t) and its mode is denoted by m*(t), which is 0 when it is
OFF, and 1 when it is ON. The temperature dynamics of the :th
TCL follow the affine model from [30],

0'(t +1) = a0 (t) + (1 — agy) (64(2) +ripem’ (1)), ()
where 6% (t) is the ambient temperature and
i c_m)
e TG/

where 7, is the thermal resistance and c};, is the thermal capac-
itance of the ith TCL. Also, p}, is the energy transfer rate of
the <th TCL, which is negative for a cooling TCL. The power
consumption of the ith TCL in the ON mode is

P =py/¢,
where (? is the coefficient of performance; the power consump-

tion in the OFF mode is 0. We assume that the reactive power
consumption of the ith TCL is

qi = wi p!',
where w? is a positive constant. The aggregate active power
consumption of the TCLs is

nTCL

Pagg (t) == Z psms(t) .
i=1

Each TCL has a temperature range [ﬁi,?d] within which its
internal temperature should always be; this range is called the
temperature dead-band. The temperature set-point

0+

===

which is set by its end-user, is the midpoint of the dead-band.
Whenever a TCL’s internal temperature reaches or goes beyond
the boundary of its dead-band it switches its mode to go back
into the dead-band.

At each time step ¢, the aggregator determines its input u(t)
and broadcasts it to all participating TCLs. TCLs within their
dead-bands interpret this input as the desired probability of OFF
TCLs to switch ON when u(¢) > 0, and the desired probability
of ON TCLs to switch OFF when u(t) < 0. To determine
whether or not to switch, each TCL draws a random number
z%(t) from the uniform distribution on the interval [0, 1) and
compares it to the input u(¢). If it is OFF and 2%(¢) < u(t), then
it switches ON. If it is ON and z(t) < —u(t), then it switches
OFF.

In summary, the mode of the ith TCL is

1 if6i(t) > 9
m'(t) = {0 if 9'(t) < 6
m.(z%(t),u(t)) otherwise,

6:

i

3
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where m.(2*(t), u(t)) is equal to

1 ifm*(t—1)=0and z'(t) < u(t)
0 ifm(t—1) =1and 2*(¢) < —u(t)
mi(t —1) otherwise.

Note that, when positive (negative) u(t) is broadcast to
the TCLs, the fraction of the OFF (ON) TCLs within their
dead-bands that are switched is approximately u(t) (—u(z)).
Thus, |u(t)| can be interpreted by the aggregator as the ratio
of the power consumption increase (decrease) compared to
the maximal increase (decrease). Therefore, even though the
power consumption of each TCL is not directly controlled by
the aggregator, the aggregator can manipulate the aggregate
power consumption of the TCLs pqe,(t) by selecting the input
u(t) € U(t) that is likely to adjust pae,(t) to match the reference
signal pr¢(t) as closely as possible, i.e., the optimal input,

Uopt(t) = arg min, ) |E [Pagg (t)] — Pres(t)] , 4)

where U(t) is provided by the utility.

Since the aggregate power consumption of TCLs under com-
mand wu(t) is stochastic, there may be deviations from the
expected value. However, when a large number of TCLs par-
ticipate, by the central limit theorem, the aggregate power con-
sumption of the TCLs is usually close to the expected value and,
in turn, the reference signal. This claim is empirically verified
through the case study in Section V.

IV. UTILITY’S CONSTRAINT CONSTRUCTION METHOD

As mentioned in Section II, the utility computes a constraint
set U(t + 1), which should be a solution to Problem 1. This
requires the utility to be able to evaluate how the input (¢ + 1)
would affect the probability of network safety. In this section, we
first show how the voltage at each node is modeled as a random
variable. For ease of exposition, we consider only balanced
radial distribution networks. Then, we derive the probability
of network safety (i.e., the probability that no under-voltage
violations happen) as a function of the input w(¢ + 1) = u.

Next, we show how to verify whether or not the chance
constraint (1) is satisfied under w(¢ + 1) = v with a desired
confidence level, and how the utility can construct U (¢ + 1) to
ensure (1) is satisfied. We introduce a theorem establishing a
confidence interval for the success probability of a Bernoulli
random variable using Monte Carlo simulations. Using this
result, we leverage the bisection method to find the largest upper
bound on (¢ + 1) that guarantees (1) with a desired confidence
level. The largest upper bound gives the aggregator the greatest
possible flexibility in determining its input.

A. Modeling the Probability of Network Safety

We denote the active and reactive power consumption of
participating TCLs across all nodes by PT(t) and Q™(t) € R™.
The utility approximates the nodal values as

Pl(t) = 5;NN(t), Q)(t) =q;NN(t) YViem], (5

Authonized licensed use limited to: University of Michigan Library. Downloaded on February 26,2024 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.



JANG et al.: PROBABILISTIC CONSTRAINT CONSTRUCTION FOR NETWORK-SAFE LOAD COORDINATION

where NPN(t) and NP (t) are the number of ON and OFF
TCLs atnode 7, and p; and g; are the average active and reactive
power rating (i.e., the ON-mode consumption) of the TCLs at
node j. We additionally define diagonal matrices =, and =, €
R™ ™ whose jth diagonal elements are p; and g;, respectively.
Then, PT(¢) = E,NN(t) and Q"(t) = Z,N°N(t), and the
total active and reactive power consumption across all nodes is
P(t) = Z,NON(t) + PL(t) and Q(t) = E;NON(t) + QY(¢).

We first show how the one-step ahead number of ON TCLs
NON(t +1) € R" is modeled as a random variable under the
input u(t + 1) = u. The number N°N(¢ + 1) depends upon how
many TCLs are switched both by their thermostat (i.e., the first
and second cases of (3)) and by the aggregator’s input (i.e., the
third case of (3)). The number of TCLs at each node j that will
be switched ON, OFF by their thermostats is

SON(t +1) = wN(t + )N (1),
SPF(t+1) = wi™ (¢ + 1NN (@), (6)

where, as defined in Section II, w?N(¢ + 1) is the one-step
ahead fraction of OFF TCLs that will be switched ON and
w§™ (¢ + 1) is the one-step ahead fraction of ON TCLs that
will be switched OFF by their thermostats at bus ;. We assume
that the aggregator estimates w{™ (£ + 1) and w§™ (£ + 1) using
a model of the aggregate TCL dynamics and sends the esti-
mated values w§™ (¢ + 1) and @™ (¢ + 1) to the utility, which
corresponds to the TCL information illustrated in Fig. 1. The
utility uses these estimates to obtain realizations of SPN(t + 1)
and SP™ (¢ + 1) via Monte Carlo simulation, which will be
explained in Section IV-B.

According to (3), the numbers of TCLs at each node j that
will be switched ON and OFF by the aggregator’s input follow
binomial distributions,

CON(t+1) ~ B (NY™(t) — SPN(E+1),ut),
Cof(t+1) ~B(NN@) — St +1),u7), (D

where ut := max(u,0) and v~ = max(—u, 0). Therefore, the
number of ON TCLs given the input u(¢ 4+ 1) = u is

NNt +1)= NN@t)+ 8Nt +1)
—SOF(t+1)+CMN(t+1)-CTF (t+1). (8)

Since the distributions of C{(¢ + 1) and CP™F (¢ + 1) depend
on u, the active and reactive power consumption across all nodes
P(t+ 1) and Q(¢ + 1) also depend on u. Therefore, from now
on, we denote these random variables under the input u(¢ + 1) =
uas Py(t+1)and Q,(t+1).

The next step is to model the one-step ahead voltage V; (¢ + 1)
ateach node j as arandom variable. Suppose that v; is the voltage
magnitude at node j; p'J’- and q_;-’ are the active and reactive power
flowing through the branch whose receiving end is node j; and
the resistance and reactance of the brancharer; > Oand z; > 0,
respectively. Then, the DistFlow equations [31] corresponding to
a single-phase equivalent model of a radial three-phase balanced
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network are
pj= Y B+t
kee(s)
= > @ +q+d
kee(s)
vy = ey — 2y +254p) + (2Dl )

where e(j) and ¢(j) are the parent node and set of child nodes
of node j, respectively, and |¢}| = ((p})* + (47)?)/v;, is the
square of the magnitude of the current flowing through the
branch whose receiving end is node j. Given active and reactive
power consumption p and g € R" and substation voltage vg,
we let fy.(p,q,vo) be the voltage solution of (9), which can
be obtained by various algorithms such as Backward-Forward
Sweep [32]. Then, the one-step ahead voltage at node j under the
input w(t+1)=wu is Vy;(t+1) = fo,(Pu(t+1),Qu(t+
1), vo). Note that we cannot obtain an explicit pdf of V,, (¢ + 1)
since there is no closed-form solution of fUJ.. Instead, we can
obtain a realization of V,, (¢ + 1) by solving (9) for a set of
realizations p and § of P, (¢t + 1) and Q, (¢ + 1).

Finally, we define a Bernoulli random variable that indicates
whether or not an under-voltage violation exists,

Xy (t+1) =1 (minje Vo j(t+1) >2),  (10)

whose success probability v, (t + 1) = Pr(X, (¢ + 1) = 1) cor-
responds to the one-step ahead probability of network safety
under input u(¢ + 1) = w. Thus, the utility’s problem is to find a
setU(t + 1) such that, forany u € U(t + 1), vy, (t + 1) is larger
than 1 — e with confidence level over 1 — 3. The solution to this
problem is explained in the next section.

B. Probabilistically-Safe Set Construction

In this section, we first present a theorem on computing a
confidence interval for the success probability of a Bernoulli
random variable via a Monte Carlo simulation. Based on this
theorem, we then show how the utility can test whether an
input u(t + 1) = w is probabilistically safe and how this test
procedure can be used to construct the set (¢ + 1) of all
commands that satisfy the chance constraint.

Theorem I: Suppose that X (1), ... X (™) are i.i.d. samples
of a random variable X following Bernoulli distribution B(1, /)
for a positive v (i.e. Pr(X® =1) = v, P(XD =0)=1—v
forany i € [n]). Let M, = Y"1, X (@) /ng be the estimator of
v, and 1y, a realization of M, . If the following inequalities
hold,

(1)

Mp, >1—¢

1 1
ne > o (,8) (i + ) Mn(im, £ 6) — (m +e—1)” 0
then [1 — €, 1] is a confidence interval for the success probability
v of X with the confidence level over 1 — 3.

The proof is given in Appendix A.. In our problem, 1, is a
realization of an estimator of the success probability v, (t + 1)
obtained from realizations of X, (¢ 4 1). This theorem implies
that, if both m,,_ and the number of samples n, are sufficiently
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Fig. 2. Flowchart of the test procedure to check if an input u(t +1) =u
satisfies the chance constraint. The information required for each step is in
orange.

large, then v, (¢ + 1) is larger than 1 — e. Thus, to verify whether
or not v, (t + 1) is larger than 1 — ¢, the utility can obtain a
number of realizations of X, (¢ + 1) and check if inequalities
(11) and (12) hold.

Now, we introduce the procedure the utility uses to obtain
realizations of X, (¢ + 1) given some u € [—1,1]. The utility
first computes the probability mass function (pmf) of NN(¢)
given the observed p(¢) and g(¢) as follows,

Pr (NON(t) = n® | (P(1) = p(1)) N (Q(1) = q(¢))
= Pr (P (1) = p(t) — Z,n™) N (Q“(1)=q(t)~E,n)
| (P(t) = p(H)) N (Q(t) = q(t)))

fer.qe (p(t) — Epn, q(t) — Z4nN)

TS e Frrgr (p(2) — Ep, q(f) — Eqn)’

where NON := {nN | n9N € [y Vj € [n]} is the set of all
possible vectors for NON(¢). Then, the utility obtains a realiza-
tion T, (¢t + 1) of X, (¢ + 1) through the following sampling
procedure, illustrated in Fig. 2.
1) a. Obtain a realization 7~ (t) of N°N(t) by sampling
from its pmf derived through (13), and compute 7 °FF (t) =
nT™L — A%N(¢). b. Obtain realizations p-(¢ + 1) and
G"(t + 1) of PL(t + 1) and Q"(¢ + 1) by sampling from
feqe(t+1).
2) Obtain realizations 3°N and 3°7 of S°N(t+ 1) and
SOFF(t + 1) by computing their elements per (6) as

(13)

9N+ 1) = a8 DO i €
-OFF(t +1) = ’“OFF(t + l)n N(t) Vi € [n].

3) Obtain realizations &N(t+1) and &9FF(t+1) of
CN(t + 1) and COF (¢ + 1) by sampling their elements
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per (7) from the binomial distributions B(n{™ (t) —
SON(t + 1),ut) and BRON(t) — 397 (¢ + 1), u”).

4) Obtain realizations of NON(¢ 4+ 1), Py(t+ 1), Qu(t +
1), Vu(t+1),and X, (¢t + 1) as

AN (t+ 1) = a%™(t) + 3Nt +1) — 3% (¢ +1)
+eENE+1) — et +1)
Pu(t+1) =P (t +1) + EpnpN (¢ +1)
d,(t+1)=q“(t+1) +EnMN(t+1)
Bu,j(t+1) = fo, (Pu(t + 1), qu(t +1),v0) ¥j € [n]
Fu(t+ 1) = 1(minjepdu;(t + 1) > v).

The utility can obtain multiple realizations of X, (¢+1)
by iterating this sampling procedure. Denote each realization
i of Xy(t+1) as :ng)(t—r 1), where i € [ns]. In each itera-
tion, the utility updates the realization of the estimator 1, =
Yy "(1)(t + 1)/ns and checks if the inequalities (11), (12)
hold. If they do, (¢ + 1) = wu satisfies the chance constraint with
confidence level over 1 — [3; otherwise, the utility continues to
iterate until ns reaches some pre-determined upper bound 7, as
shown in Fig. 2. We note that an input u(¢ + 1) = u that passes
the test procedure ensures satisfaction of chance-constraint (1)
with a confidence level over 1 — S even in the presence of
random responses from TCLs under input u, since those random
responses are also sampled in Step 3.

Next, we construct a one-step ahead constraint set U (¢ + 1).
We first make an assumption on the monotonicity of v, (¢ + 1).

Assumption 1: The one-step ahead probability of network
safety v, (¢ + 1) monotonically decreases with respect to w.

The intuition behind this assumption is that the active and
reactive power consumption at each node is likely to increase as
u increases, which is also likely to lead to a voltage decrease at
every node. We acknowledge that Assumption 1 may not hold
for every distribution network under every loading condition.
In Appendix B., we justify this assumption by showing that an
approximation of v, (¢ + 1) (derived from LinDistFlow [33]) is
a monotonically decreasing function with respect to u. We also
demonstrate monotonicity empirically using DistFlow. Further-
more, in Appendix C., we propose an alternative method that
does not rely on Assumption 1, but is overly conservative.

Under Assumption 1, the following holds.

Theorem 2: Suppose that Assumption 1 holds and letf: (1) (t +
1),.. ”(“’)(t + 1) be n, realizations of X+(¢ + 1) for an input
e [—1, 1]. If g and riv,, = 37, 0 (¢ + 1) /ms satisfy (11)
and (12), thenU(t + 1) = [—1,7] is a solution to the Problem 1
with confidence level over 1 — .

Proof: By Theorem 1, the interval [1 — ¢,1] is a confidence
interval for vz(¢t 4 1) with confidence level over 1 — 3. Also,
under Assumption 1, (¢ + 1) > vg(t + 1) holds for any u €
U(t+1) = [-1,7]. Thus, v, (¢ + 1) is greater than or equal to
1 — eforany u € U(t + 1) with confidence level over 1 — 5. [

This theorem means that, if the probability of network safety
under the input u(¢ + 1) =% is greater than or equal to the
desired safety probability, then any less aggressive input, i.e.,
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one in the range [—1,7], also satisfies the chance constraint.
Therefore, a solution to Problem 1 is the interval [—1, %], where
7 passes the test procedure in Fig. 2.

The choice of probabilistically-safe setl/ (¢ + 1) is notunique.
AlargerU(t + 1) gives more flexibility to the aggregator, poten-
tially improves the quality of balancing services, and reduces the
conservativeness of our approach. Therefore, the utility should
find the largest possible @ that passes the test procedure. This
can be achieved using the bisection method [34], starting with
T=1.

Remark 1: To restrict the probability of over-voltage vio-
lations, we can also apply the monotonicity assumption; the
probability of over-voltage violations increases as the input u
decreases. In this case, we can use the bisection method to obtain
alowerbound on u(¢ 4 1). Then, the utility can send both a lower
and upper bound on u(¢ + 1) to restrict the probability of over-
and under-voltage violations.

Remark 2: Since the utility approximates PT and QT in
(5) and uses estimates of w°N and wF in Step 2 of the
sampling procedure, Theorem 2 holds only if those approxi-
mations/estimates are accurate. We will justify the use of these
approximations/estimations through simulation in Section V.

V. CASE STUDY

We next present the result of a case study in which we compare
the proposed approach with two benchmark approaches. We
examine the reference tracking and safety performance of each
algorithm under scenarios in which the balancing service ca-
pacity committed by the aggregator must be reduced to preserve
network safety during a period with large differences between
real-time network conditions and their forecasts.

The proposed algorithm is benchmarked against two algo-
rithms: a tracking controller benchmark and a robust OPF bench-
mark. The tracking controller benchmark does not take into ac-
count network safety. It picks the optimal input uep(t) using (4)
with U(t) = [—1, 1], where E[P,g, ()] is the expected aggregate
power of the TCLs under u(¢) = w, which is computed with the
same approximate aggregate TCL model. This benchmark aims
to verify the occurrence of significant under-voltage violations
when the aggregate power consumption of the TCLs closely
tracks the regulation signal, which demonstrates the need for a
network-safe approach.

The robust OPF benchmark approximately enforces network
safety assuming linearized power flow. It solves the following
mixed integer linear program at each time step to compute the
optimal one-step ahead mode of each TCL,

min |Pagg — Dre| (14a)
m:

n'TtL

S.L. Pagg = Z pim! (14b)
i=1

pj =) _p'm', gf=> g'm’, Vje[n] (l40)

icl; icL;
TCL temperature dynamics (2), Vi€ [nTY] (14d)

4479
6 € [0°,67], Vie[n™Y (14e)
v==&,(p" +p"™) + B4(q¢" +¢"™) + B, (14)
v<w, (14g)

where 7; is the set of indices of TCLs connected to j and (14f) is
the linearized power flow developed in [1] under the maximum
active and reactive power consumption of the non-participating
loads, which makes its solution robust to load forecast error.
This benchmark aims to produce “best-case” results but is in-
consistent with the coordination scheme in Fig. 1; it requires
the optimizing entity to have full information from both the
utility and the aggregator (e.g., this would be possible if the
utility were the aggregator). Incorporating accurate one-step
ahead power consumption forecasts from the non-participating
loads and using the nonlinear AC power flow equations could
potentially yield less conservative and more accurate “best-case”
solutions. However, this is unrealistic as load forecasts are
imperfect and using the nonlinear AC power flow equations
leads to a non-convex mixed-integer nonlinear programming
problem that we have found exceedingly challenging to solve
with modern solvers.
The experiments were carried out on two radial distribution
networks:
1) A 56-bus balanced distribution network from [35] derived
from the IEEE 123-node test feeder [36]
2) A 116-bus balanced distribution network from [37] that
is an electrically-equivalent model of the IEEE European
Low Voltage Test Feeder [38].
Section V-A presents the results for the 56-node network and
Section V-B presents the results for the 116-node network.

A. Results for the 56-Node Network

For the 56-node network, we assume the aggregator com-
mits +0.91 MW of frequency regulation capacity to the ISO
anticipating nominal network loading (2.62 MW, which would
enable TCLs to deliver their full frequency regulation capacity);
however, real-time network loading is much higher than usual
(3.78 MW on average) and if the aggregation were to closely
track the frequency regulation signal it would cause under-
voltage violations. We first describe our simulation setup and
detail the benchmark approaches. Then, we present our results.

We denote the nominal active and reactive power con-
sumption at node j by pi" and g}", respectively. We set
the safe lower bound on the voltage to v = 0.95 pu. TCL
parameters are randomly sampled,' and the TCLs are dis-
tributed throughout the network so that the aggregate TCLs’
nominal active power consumption at node j is approx-
imately 0.25p1:“. For simplicity, we assume that the ac-
tive and reactive power consumption of the non-participating

1Ea(:h parameter is sampled from uniform distributions with inter-
vals: 6% € [29,31] °C, ¢} € [1.5,2.5]kWh/°C, r} € [1.2,2.5]°C/kW, p. €
[-18,—14] kW, ¢ € [2.3,2.7], 6% € [20,25]°C, ' — 6" € [1.5,2]°C, and
w' = tan(arccos(¢’)), where ¢* € [0.95,0.99].
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Fig. 3. Actual and estimated fractions of TCLs switched ON (left) and OFF
(right) by their thermostats, in the proposed approach (e = 0.02), onthe 56-node
network.

TABLE1
REFERENCE TRACKING AND SAFETY PERFORMANCE OF EACH ALGORITHM ON
THE 56-NODE NETWORK

Track Ctrl  Robust OPF Proposed Approach

Benchmark  Benchmark e =0.05 €= 0.02
RMSE (kW) 77.05 168.3 102.8 118.8
Safety Probability 0.908 1.00 0.981 0.986

loads at each node PJ(t) and Q}(t) follow normal distribu-
tions A (ﬁ';“(t),(o.wpgﬂ_)?) and N (g;"(t), (0.15¢5")?) trun-
cated by the intervals [p;™", pi™*] = [—0.25p}", 0.675p%"] and
[¢;™", ¢;™] = [—0.25¢}",0.6754;"], respectively. We conduct
2 h simulations (13h-15 h) and let p}"(t) and g}"(t) linearly
increase from 0.5 to 0.65 of their nominal values from 13.0 h to
13.9 h, stay constant from 13.9 h to 14.1 h, and linearly decrease
to 0.5 of their nominal values from 14.1 hto 15.0 h. The reference
signal prr(t) is a scaled and shifted 2 h segment of a PJM RegD
signal [39]. We use the desired safety probabilities 1 — € = 0.95
and 0.98, the desired confidence level 1 — 8 = 0.999, and the
upper bound on the number of samples 7 = 140, 000. The
aggregator obtains the estimates @™ (t + 1) and @Y (¢ + 1)
for each node leveraging an approximate model of the dynamics
of the TCL aggregation. The model was developed in past work,
e.g., [6], and so not detailed here. While we could identify
different models for each node, here we use the same model
for each node j € [n] and so w§™ (¢ + 1) and @™ (¢ + 1) are
identical across nodes. Fig. 3 demonstrates the model’s estima-
tion performance, showing the actual and estimated fractions of
TCLs outside of their dead-bands. Although the estimates do not
perfectly track the actual values, they capture the overall trends.

Fig. 4 illustrates the results of the comparison between the
two benchmarks and our proposed approach with e = 0.05 and
0.02. Table I shows the root mean squared error (RMSE) of the
aggregate power from the reference signal, along with the em-
pirical safety probability computed as the fraction of time steps
in which under-voltage violations (computed with the nonlinear
power flow equations) do not happen. The tracking controller
benchmark has the best tracking performance, but frequently
causes under-voltage violations. This demonstrates the need to
employ network-safe DER control strategies. In contrast, the
OPF benchmark avoids under-voltage violations, but has the
worst tracking performance, demonstrating that approaches that
(approximately) enforce network safety will at times have poor
balancing service performance.
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TABLE 11
REFERENCE TRACKING AND SAFETY PERFORMANCE OF EACH ALGORITHM ON
THE 116-NODE NETWORK

Track Cirl  Robust OPF  Proposed Approach

Benchmark  Benchmark e =0.05
RMSE (kW) 28.51 71.14 48.26
Safety Probability 0.891 1.00 0.991

Our approach achieves a better trade-off between tracking
performance and network safety; specifically, it achieves better
tracking performance than the OPF benchmark and satisfies the
chance constraint on network safety, resulting in fewer under-
voltage violations than the tracking controller benchmark. As
shown in Table I, the empirical safety probabilities are over the
target values 1 — e. The RMSE increases as e decreases, which is
expected since higher 1 — € results in more conservative bounds
on the input commands. The results also verify that the model
error shown in Fig. 4 does not degrade the tracking results in a
significant way.

The average computation time for constraint set construction
was 33 s, which is longer than the length of each time step At =
10 s. However, the algorithm implementation was not optimized
for computational efficiency, which means the computation time
could be reduced. In addition, the sampling procedure could
be efficiently executed in parallel across multiple processors,
allowing the approach to achieve the required computation time.
For larger networks, the computational requirements of Step 4 of
the test procedure (i.e., solving the DistFlow equations via e.g.,
Forward-Backward Sweep) would increase proportionally to the
number of nodes in the network. This means that parallelization
would be key to ensuring applicability in real distribution net-
works.

B. Results for the 116-Node Network

For the 116-node network, we assume the aggregator com-
mits +0.20 MW of capacity. The real-time network loading is
1.29 MW on average exceeding the expected network loading of
0.98 MW. We set the lower bound on the voltage to v = 0.97 pu
and assume that Pj(t) and Q%(t) follow normal distribu-
tions NV (p%", (‘0.1;)?1)2) and V(g;", (0.1¢5")?) truncated by the
intervals [p;™", p;™>] = [0.3p}",1.6p}"] and [¢;™", g;™] =
[0.3¢5", 1.6¢}"], respectively. The desired safety probability is
1 — e = 0.95 with desired confidence level 1 — 8 = 0.999. The
other settings including the TCLs’ parameters and regulation
signal are the same as in Section V-A.

Table II shows the result of the experiment. Similar to the
results of the 56-node network, these results show that our ap-
proach satisfies the chance constraint, unlikely the tracking con-
troller benchmark, while achieving better tracking performance
than the robust OPF benchmark. The average computation time
for constraint set construction was 90 s.
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Fig. 4.
56-node network.

VI. CONCLUSION

This article proposed an approach to coordinate a collection
of TCLs to provide balancing services while guaranteeing net-
work safety with high probability. In particular, we proposed
a constraint construction method that would allow the utility
to constrain the input commands of an aggregator providing
balancing services like frequency regulation. The approach im-
poses a chance constraint on network safety, wherein both the
violation probability and confidence level are design parameters
that can be selected by the utility. We used the bisection method
to compute the largest possible constraint set, which provides
the most flexibility to the aggregator.

Future work will extend the proposed approach to incor-
porate different types of DERs, such as stationary batteries,
electric vehicles, and curtailable solar photovoltaics, into the
framework. We already have some preliminary work along this
direction; specifically, [40] proposes a method to extend the
proposed approach to include battery energy storage. In addition,
we will also explore methods to improve the computational
performance of our approach and test the approach on realis-
tic/real networks. Furthermore, we plan to compare our proposed
utility-aggregator coordination strategy with other coordination
approaches that achieve network awareness such as the use of
operating envelopes [41].

APPENDIX

A. Proof of Theorem 1

Proof: By Theorem 4.1 in [42], the following inequality is
derived from the Chernoff bound for any 0 < § < 1_7”,

(1+8)n.1 5
Pr(M,, > (1+6)) < (1_+5) onev

— "s¥(6—(1+48) In(1+8)) (15)
We substitute ¢/v, with ¢ € [0, 1 — v/, for 4 and obtain
Pr(M, —v>c)< en;(c—(u—i—c} In(1+£))
= Pr(v>M, —c)>1—ex(cram+s)) (16)

15 135 14 145 18 135 14 145 15

Time (h} Time (h}

Reference signal and the TCLs" aggregate power (top), and the minimum network voltage and the safe lower bound (bottom) for each algorithm on the

Hence, [, — c, 1]is aconfidence interval for » with confidence
level over 1 — ens(e=(v+e)In(1+3)) Thus, if there exists ¢ > 0
that satisfies 7, —c > 1—€ and 1 — e™(c-(+a)n(1+3)) >
1 — (3, then [1 — ¢, 1] is a confidence interval for v with confi-
dence level over 1 — 3. Next, we show that such a c exists. First,
we derive a lower bound on 1 — (¢~ (*+)In(1+$))  Focusing
on the exponent, observe that

%(c—(v+c)h1(1+§)) :_h(1+§)+5' 17)

Ifwelethy(x) := —In(1 + x) 4 z, theright side of (17) is equal
to hi(c/v). From hy(0) = 0 and 8h,(z)/0z = —1/(1 + =) +
1>0 ¥z €[0,00), we have hy(z) > 0 for all z € [0,00),
which means hi(c/v) is non-negative. Hence, the exponent is
increasing with respect to v, and thus achieves its maximum at
v = 1. Therefore,

Pr(v>M, —c)>1— eMs(c—(1+c) In(1+e)) (18)

Since v <1, (18) implies that [, — ¢, 1] is a confidence
interval for v with confidence level over 1 — e™(c~(1+¢)In(1+¢))

Now, suppose that (11), (12) hold and define ha(x) :=
z— (1+x)In(1 +x); the exponent on the right side of
(18) is ngha(c). From hg(0) =0 and Ohg(x)/0x <0 for
all z € (0,00), we have ho(z) <0 for all z & (0,00).
Since 1p, — (1 —€) > 0 by (11), (n, +€—1) — (1, +
€) In(ri,, + €) = ha(m,, — (1 —€)) is negative. Also, substi-
tuting ¢ with 7, — (1 — €), the right side of (18) becomes
1 — ens((Mnste-1)=(Mn, +€) In(ins+€)) which is less than 1 —
e ™3 =1 B, per (12). Hence, 1 — ens(c-(1+)In(1+¢)) >
1 — [ and, thus, the interval [1 — €, 1] = [y, — ¢, 1] is a confi-
dence interval for v with confidence level over 1 — 3. O

B. Justification of Assumption 1

In this section, we justify Assumption 1 by showing that an ap-
proximation of v, (¢ + 1) is a monotonically decreasing function
with respect to u. We consider the LinDistFlow equations [33],
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which drop the nonlinear terms of (9), i.e.,

Z Py + D @?Z Z dr + 95
kee(g) kee(j)

0] = b5 (19

where variables with hats correspond to approximations of the
original DistFlow variables. Let fU (p, q,vp) be the voltage

solution of (19), i.e., Vu,:,.(t +1) = fvj (Pu(t+1),Qu(t+
1), wp) is the approximate voltage at node ;. Also, let

— 2(ry8) + 54},

Xu(t+1)=1 (min Vait+1)> y) (20)
j&ln]

whose success probability D, (t + 1) := Pr(X, (¢ + 1) = 1) ap-

proximates v, (¢ + 1). To show that 2, (¢ + 1) is decreasing with

respect to u, we start with a proposition.

Proposition 1: Suppose that p, p® € R™and ¢V, ¢? €
R™ are different instances of active and reactive power con-
sumption where pm <p (2) and q(l) < qu)‘v’J € [n]. Then,
fo, (@D, gD, v) > fw(p(z), q?,vp) forall j € [n].

Proof: First let fp; (p,q,vo) and fq; (p, g,vo0) be the solu-
tions of (19) corresponding to p} and ¢} when the active and
reactive power consumption at each node are p and q, and the
substation voltage is vg. Then, for all j € [n] [33]

fpg(p':qjvﬂ): Z Pk, fq}(p)Q':UO): Z qk

ked(j) ked(j)

fii;(p': q:UD) = 1}3 —2 Z (kapi(p': q,'UD)

kea(j)

2n

where d(j) := c(7) U {7} is the set of indices of all descendants

of node j including itself, and a(j) is the set of indices of

all ancestors of node j including itself. Hence, fu.(p,q,vo)
3

+Ik‘fq?€ (p': q, UD)) 1

and fqg (p,q,vo) are increasing as pi and g increase for
all k € [n], and fp;(p(l),q(”,vg) < fp:}(p(z),q(z),vu) and
fq? (M, g, w) < fqg(p(z),q(z),vo) for all j € [n]. Also,
since all r and z; are positive, f:}j (p, g, vp) is decreasing as
fp’;’c (p,q,v) and f@‘;’c (p, g, vg) increase for all k € [n]. There-
fore, fu, M, qM,00) 2 fo, PP, ¢, v0)¥jieM]. O

This proposition states that fvj_ (p, g, vo) monotonically de-
creases as the active and reactive power consumption p; and g;
at every node increase for all j € [n]. Since the one-step ahead
active and reactive power consumption of the TCLs at each node
are likely to increase as u increases (recall that in Section III
we made the realistic assumption that TCLs have constant
lagging power factors, and so their active and reactive power
consumption change in the same direction), this proposition
implies that the probability of under-voltage violations increases
as u increases. This is stated in the following theorem.

Theorem 3: The approximate probability of network safety
Uy (t + 1) under the one-step ahead input « is a monotonically
decreasing function of w.
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To prove Theorem 3, we first introduce and prove Lemma 1,
which is required for the proof of Lemma 2. Then, we prove
Lemma 2, which is used in the proof of Theorem 3. Finally, we
prove Theorem 3.

Lemma 1: Suppose that ay(x),by(z) : X — RT are non-
negative functions with parameter w € R, and {Z1,...,Zn}
(£1 < ... < Zpy)isafinite subset of the domain X'. Also, assume
that the following two conditions hold: 1) 37 _, a,, (%) is a
decreasing function with respect to w for any j € {1,...,N},
and 2) b, () is decreasing function with respect to both x and
w.Then, g(w) := Zszl aw (Zx )by (Zr ) is a decreasing function
with respect to w.

Proof: We prove the lemma by showing that, for w <,
k=1 aw(Tk)bw (k) > X%y aw(Zx)bw(Tx) for any j € [N]
and w1y, wy € R as follows:

J J
D aw(@r)buw(Er) > Y aw(@r)bo(@) (22a)
k=1 k=1
j—1 k
= be(75) Z aw(@x) + Y Abp(Ex) Y aw(E) (22b)
k=1 k=1 =1
J Jj-1
> bu(Z;) Y aw(ix) + Y Abg(i) Z aw(®) (22¢)
k=1 k=1 =1
J
(22d)

=) aw(Zx)bw(Zx)
k=1
where Abg(Tr) = (bw(Zx) — bw(Tr+1)), (22a) holds by con-
dition 2 and (22c) holds by condition 1. 0

Lemma 2: Suppose that Y, Y9 (e [n]) is a discrete ran-
dom variable with the finite sample space Y9 = {47, ..., ¥}

@ <...< y;?i ) with parameter w € R having the following
properties: 1) Y, (1), . 1{;”) are independent of each other, and
2) the cdf Fy-;) (y; w) of Y isa decreasing function with re-
specttow foranyy € Y¥). Then, foranyz(Y) € R(i € [nc])and
non-negative coefficients a;; € R¥, Pr(Ajs; (327, a,JYw
z(1)) monotonically decreases as w increases.

Proof: LetY ,, = (Ylgl), . Y(“))T be a multivariate ran-
dom variable with elements Y(:" ) and P = {y| Ay <Z}bea
polyhedron with elements a;;. Then,

/\ Z“ Y9 <50

i=1 \ j=1

=Pr(Y, €eP).

Note that P is a lower polyhedron in IT}_, [, ¥, ify e P,
then y' € P also holds for any ¢’ < y. Thus, it is sufficient to
show that Pr(Y ,,, € P') > Pr(Y y, € P')Vw; > wy and any
lower polyhedron P’, which we do as follows:
1) Let n=1and Pj C [¢1,9x ] be a 1-dimensional lower
polyhedron. Then, there exists 7 such that P} = [%{,7],
Pr(Ys, € P}) = Fyo (Tiw) > Fyo (Trws) =
Pr(YZE) € 'P}), which proves the statement for n = 1.

and
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2) Let n = k and suppose Pr(le ePr) > Pr(Y(1 *) ¢
P,) holds Vw; > wy and for any k- dlmen510nal
lower  polyhedron P C II5_;[f],9] ].  Define
Pe (ye+1) = {15 96) " | (W1, 9k, yk41) | €
Pri1}- Then, Pr(yky1) is a lower polyhedron for
any yey € [fF1, 451 ]. Therefore, Pr(Y ("™ e

,y%ctrll) k 1 (1: -‘c)
K
Pri1) = 2554 Pr(Yu, HPr(Y w,

P, (yk+1)) for any k + 1-dimen510nal lower polyhedron
Pri1 C Herll [y'},y,g ]. This is greater than or equal to
S Pr(Yuy T = g € Pe@ith) by
Lemma 1, which in turn equals Pr(YE.}ZHI) € Pry1)-
This proves the statement for n =k + 1.

Therefore, by mathematical induction, Pr(Y ,, € P') >

Pr(Y , € P’) holds for any lower polyhedron P’.[1
Proof of Theorem 3: From (21), we obtain

V2,(t+1) = f2(Pu(t +1),Qu(t +1),v)

_QZ

kea(j)

(rkfpi(Pu(H 1), Qu(t +1),w)

+2ufy (Pt +1),Qult+ 1)) )

=vg—2 Z Z (rie Pu,i(t+1)+ x5 Qu i (t+1)).

keca(j)led(k)
(23)

Substituting Py, (t+1) with Pl(t+1) +5 NN (t+1),
Qua(t +1) with Q1 (¢ +1) + N (¢ + 1), N (£ 4 1) with
the right side of (8), and leveraging (23) we obtain

Vaj(t+1) > p <= V2t +1) > 22

= g;(Cu(t+1)) < hy(R),

where  vector R:=(NON(#)",PL(t+1)",Q%(t+1)",
SNt +1)T,89F(t+1)T)T  collects random variables,
C,(t+1):=CNt+1)— COF(t + 1) is the net number of
TCL OFF to ON switches by the aggregator’s input, and the
functions g; and h; are

9 (Cu(t+1)):=2 > > (repy + zq;) Cua(t + 1),
keca(j) led(k)

hy(R) = v} — o
—2 > > (Pt +1) +mQp(t+1)
kea(j) led(k)

+(riBy + o) (NP (@) + SN (E+1) = ST (E+ 1)) -
Note that g; is a non-negative linear combination of Cy, ;(t + 1)
forall j € [n], i.e., thereexista;; > Oforany j,! € [n] such that
g;(Cu(t+1))isequalto Y ;" a;Cuyu(t +1).
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Fig. 5. Demonstration of the monotonicity of v (t + 1) with respect to wu.

Let R be the sample space of R and fg be the joint probability
density function of R. Then, we have

Du(t +1) =Pr

Z\( Vuglt+1) > )

= / Pr /\(gj(cu(t+1)J5hj(f))‘R=f fr(F)dF.
TE j=1

(24)
For any realization, 7 := (A°N(¢)",p (¢t +1)7,q" (¢t +
DTEMNE+1)7, 3 (¢ +1)")T e R,  Cug(t+1) =CN
(t+1) when u >0, and Cyy(t+1) = —CIF(t + 1) when
u < 0. Thus, by (7), the conditional cdf of Cy;(t+ 1) is
computed as Pr(Cy,(t+1) < k|R=7) = Fa(k;al (t) —
§N(t+1),u) when u>0, and Pr(Cy,u(t+1) <klR=
7)=1— Fa(—k;a?N(t) — 577 (¢ + 1), —u) when u < 0. In
addition, from [43], the cdf of a binomial random variable
B(n;v) is

Falk;n,v) = (n— k) (:) /DH k11— )k,

which is a monotonically decreasing function with respect to /.
Thus, Pr(Cy (¢t + 1) < k| R = 7) monotonically decreases as u
increases, and Cy 1 (t + 1)|7, ..., Cyun(t +1)|7 forany 7 € R
satisfies the conditions on the random variables in Lemma 2.

Thus, Pr(/\;;l(gj(Cu(t +1)) < hj(F)’R = 7)) is a decreas-

ing function with respect to u. Therefore, by (24), 7, (¢t + 1) is
also a decreasing function with respect to u. O

While Theorem 3 justifies Assumption 1 for the approxima-
tion 2, (¢t + 1), we also empirically validate that v, (f + 1) is a
monotonically decreasing function of u for both the 56-node
network and the 116-node network. We first randomly chose 50
combinations of non-participating load power consumption and
TCL modes (P(t), Q"(t), N°N(t)). For each combination,
we generate 30,000 realizations of X, (¢ + 1) for each of 101
uniformly spaced points of u from -1 to 1 and empirically
estimated v, (¢ + 1). Through the experiment, we verified that
vu(t + 1) is monotonically decreasing for all of the combina-
tions. Fig. 5 demonstrates the empirically-measured v, (t + 1)
of one combination on the 56-node network.
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C. Alternative to Assumption 1

Leveraging the monotonicity of 2, (¢ + 1), we can modify the
test procedure in Fig. 2 to remove the need for Assumption 1
as follows. We first assume that the error between LinDistFlow
and DistFlow solutions is bounded; similar assumptions have
been used in prior work [1], [44]. We then modify the sampling
procedure to obtain an estimator of the approximate safety
probability 2, (t 4 1) with an increased voltage lower bound,
v + +, where ~ is the bound on the error between LinDistFlow
and DistFlow solutions, and test whether 2,,(¢ + 1) is greater
than 1 — e. For a sufficiently large -, we can demonstrate that
Uy (t + 1) is smaller than the actual safety probability 2, (t + 1)
so that the constraint set obtained from the bisection method
using the modified test procedure is a solution of Problem 1.
However, in numerical experiments, we found that this modified
approach can lead to excessively conservative constraint sets
U(t + 1). Given that the original approach is already generally
conservative as evidenced by the case study results, we do not
include further details on the modified approach and associated
results here.
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