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ARTICLE INFO ABSTRACT

Communicated by Radu Balan Autoencoders have demonstrated remarkable success in learning low-dimensional latent features
of high-dimensional data across various applications. Assuming that data are sampled near
a low-dimensional manifold, we employ chart autoencoders, which encode data into low-
dimensional latent features on a collection of charts, preserving the topology and geometry of the
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Generalization error data manifold. Our paper establishes statistical guarantees on the generalization error of chart
Dimension reduction autoencoders, and we demonstrate their denoising capabilities by considering n noisy training
Manifold model samples, along with their noise-free counterparts, on a d-dimensional manifold. By training

autoencoders, we show that chart autoencoders can effectively denoise the input data with normal
noise. We prove that, under proper network architectures, chart autoencoders achieve a squared
generalization error in the order of ni log* n, which depends on the intrinsic dimension of
the manifold and only weakly depends on the ambient dimension and noise level. We further
extend our theory on data with noise containing both normal and tangential components, where
chart autoencoders still exhibit a denoising effect for the normal component. As a special
case, our theory also applies to classical autoencoders, as long as the data manifold has a
global parametrization. Our results provide a solid theoretical foundation for the effectiveness
of autoencoders, which is further validated through several numerical experiments.

1. Introduction

High-dimensional data arise in many real-world machine learning problems, presenting new difficulties for both researchers and
practitioners. For example, the ImageNet classification task [17] involves data points with 150,528 dimensions, derived from images
of size 224 x 224 x 3. Similarly, the MS-COCO object detection task [33] tackles data points with 921600 dimensions, stemming from
images of size 480 x 640 x 3. The well-known phenomenon of the curse of dimensionality states that, in many statistical learning and
inference tasks, the required sample size for training must grow exponentially with respect to the dimensionality of the data, unless
further assumptions are made. Due to this curse, directly working with high-dimensional datasets can result in subpar performance
for many machine learning methods.
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Fortunately, many real-world data are embedded in a high-dimensional space while exhibiting low-dimensional structures due
to local regularities, global symmetries, or repetitive patterns. It has been shown in Pope et al. [44] that many benchmark datasets
such as MNIST, CIFAR-10, MS-COCO and ImageNet have low intrinsic dimensions. In literature, a well-known mathematical model
to capture such low-dimensional geometric structures in datasets is the manifold model, where data is assumed to be sampled on
or near a low-dimensional manifold [56,48,19]. A series of works on manifold learning have been effective on linear dimension
reduction of data, including IsoMap [56], Locally Linear Embedding [48,63], Laplacian Eigenmap [3], Diffusion map [16], t-SNE
[601, Geometric Multi-Resolution Analysis [2,32] and many others [1]. As extensions, the noisy manifold setting has been studied in
[39,21,20,45].

In recent years, deep learning has made significant successes on various machine learning tasks with high-dimensional data sets.
Unlike traditional manifold learning methods which estimate the data manifold first and then perform statistical inference on the
manifold, it is a common belief that deep neural networks can automatically capture the low-dimensional structures of the data
manifold and utilize them for statistical inference. In order to justify the performance of deep neural networks, many mathematical
theories have been established on function approximation [25,62,52,49,53,11,15,40,35,38], regression [14,12,41,23], classification
[361, operator learning [37] and causal inference on a low-dimensional manifold [13]. In many of these works, a proper network
architecture is constructed to approximate certain class of functions supported on a manifold. Regression, classification, operator
learning and causal inference are further achieved with the constructed network architecture. The sample complexity critically
depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension.

Autoencoder is a special designed deep learning method to effectively learn low-dimensional features of data [9,30,24,34]. The
conventional autoencoder consists of two subnetworks, an encoder and a decoder. The encoder transforms the high-dimensional
input data into a lower-dimensional latent representation, capturing the intrinsic parameters of the data in a compact form. The
decoder then maps these latent features to reconstruct the original input in the high-dimensional space. Inspired by the traditional
autoencoder [4,46], many variants of autoencoder have been proposed. The most well-known variant of autoencoders is Variational
Auto-Encoder (VAE) [26,27,47], which introduces a prior distribution in the latent space as a regularizer. This regularization ensures
a better control of the distribution of latent features and helps to avoid overfitting. Recently, the excess risk of VAE via empirical
Bayes estimation was analyzed in Tang and Yang [55]. The Denoising Auto-Encoder (DAE) [61,5] was proposed to denoise the input
data in the process of feature extraction. By intentionally corrupting the input training data by noise, DAE has a denoising effect on
the noisy test data and therefore has improved the robustness over the traditional autoencoders.

Although autoencoders have demonstrated great success in feature extraction and dimension reduction, its mathematical and
statistical theories are still very limited. More importantly, the aforementioned autoencoders aim to globally map the data manifold
to a subset in R? where d is the intrinsic dimension of the manifold. However, a global mapping may not always exist for manifolds
with nontrivial geometry and topology. To address this issue, Schonsheck et al. [50] showed that conventional auto encoders using
a flat Eucildean space can not represent manifolds with nontrivial topology, thus introduced a Chart Auto-Encoder (CAE) to capture
local latent features. Instead of using a global mapping, CAE uses a collection of open sets to cover the manifold where each
set is associated with a local mapping. Their numerical experiments have demonstrated that CAE can preserve the geometry and
topology of data manifolds. They also obtained an approximation error of CAE in the noise-free setting. Specifically, Schonsheck
et al. [50] constructed an encoder & and a decoder 2 that can optimize the empirical loss with the approximation error satisfying
Supyep lV—20&(V)|l, < &, where M represents the low-dimensional manifold. In a recent work [51], CAE has been extended to semi-
supervised manifold learning and has demonstrated great performances in differentiating data on nearby but disjoint manifolds.

In this paper, our focus is on CAE and we aim to extend previous results in two ways. Firstly, we establish statistical guarantees
on the generalization error for the trained encoders and decoders, which are given by the global minimizer of the empirical loss.
Secondly, our analysis considers data sampled on a manifold corrupted by noise, which is a more practical scenario. To the best of
our knowledge, this type of analysis has not been conducted previously. The generalization error analysis is crucial in understanding
the sample complexity of autoencoders. Additionally, the inclusion of noise in the error analysis is significant as it allows us to
examine the impact of noise on CAE.

We briefly summerize our results as follows. To demonstrate the robustness of CAE, we allow for data sampled on a manifold
corrupted by noise. Namely, we assume n pairs of clean and noisy data for training, where the clean data are sampled on a d-
dimensional manifold, and the noisy data are perturbed from the clean data by noise. This setting is practically meaningful and has
been considered in DAE [61,5] and multi-fidelity simulations [29,6,43]. We show that CAE results in an encoder & and a decoder
9 that have a denoising effect for the normal noise. That is, for any noisy test data x, the output of $ob(x) is close to its clean
counterpart z(x), which is the orthogonal projection of x onto the manifold M. Our results, as summarized in Theorem 2, can be
stated informally as follows:

Theorem (Informal). Let M be a d-dimensional compact smooth Riemannian manifold isometrically embedded in R? with reach = > 0. Given
a fixed noise level q € [0, 1), we consider a training data set S = {(x,-,vi)}lf':1 where the v,’s are i.i.d. samples from a probability measure
on M, and x; = v; + w;’s are perturbed from the v,’s with independent random noise w; € T, éM (the normal space of M at v;) whose
distribution satisfies ||w||, < q. We denote the distribution of all x; by y. Using proper network architectures, the encoder & : RP — RO
and the decoder 9 : RO — RP, we solve the empirical risk minimization problem in (8) to obtain the global minimizer & and . Then the
expected generalization error of CAE satisfies

A A 2
EsEq., 1708 (x) — z(x)|[3 < CD*log® Dn™ 7+ log* n @
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where C is a constant independent of n and D.

This theorem highlights the robustness and effectiveness of CAE in learning the underlying data manifold. More specifically, with
increasing sample size n, the generalization error converges to zero at a fast rate and its exponent depends only on the intrinsic
dimension d, not the ambient dimension D. The theorem also shows that autoencoders have a strong denoising ability when dealing
with noise on the normal directions, as the error approaches zero as n increases. The latent feature in every chart has a dimension of
d, with the number of charts being dependent on the complexity of the manifold M. In special cases where the manifold is globally
homeomorphic to a subset of R?, this result can be applied to conventional autoencoders as described in Section 3.2.

Besides the case of normal noise in the aforementioned theorem, we also consider a general setting where the noise contains both
normal and tangential components. In Theorem 3, we prove that CAE can denoise the normal component of the noise. Specifically,
the squared generalization error is upper bounded by

>
C(D?log® Dyn™ 7+ log* n + C, o2,

where o2 is the second moment of the tangential component of the noise. Our result is consistent with the existing works in manifold
learning [21,45] which demonstrates that denoising is possible for normal noise but impossible for tangential noise. A detailed
explanation is given at the end of Section 3.3.

The rest of the paper is organized as follows: In Section 2, we introduce background related to manifolds and neural networks to
be used in this paper. In Section 3, we present our problem setting and main results including single chart case, multi-chart case and
extension to general noise. We defer theoretical proof in Section 5. We validate our network architectures and theories by several
experiments in Section 4. We conclude the paper in Section 6
Notation: We use lower-case letters to denote scalars, lower-case bold letters to denote vectors, upper-case letters to denote matrices
and constants, calligraphic letters to denote manifolds, sets and function classes. For a vector valued function f = [f},..., f,;]7 defined
on Q, we let ||f|| ;o0 1= sUpycq maxy | f5(X)].

2. Preliminary
In this section, we briefly introduce the preliminaries on manifolds and neural networks to be used in this paper.
2.1. Manifolds

We first introduce some definitions and notations about manifolds. More details can be found in [58,31]. Let M be a d-dimensional
Riemannian manifold isometrically embedded in R?. A chart of M defines a local neighborhood and coordinates on M.

Definition 1. A chart of M is a pair (U, ¢) where U C M is an open set, and ¢ : U — R? is a homeomorphism, i.e., ¢ is bijective and
both ¢ and ¢! are continuous. A C* atlas of M is a collection of charts {(Uy. ¢;)} ex Which satisfies U, U, = M, and are pairwise
C* compatible:

b, 0B 1 b, Ui, NUL) = b U NU)  and ¢y 08, 2y (U NUL) = by, Uy, U,

are both C* for any k,k, € K. An atlas is called finite if it contains finite many charts. Here C* denotes the space of functions with
continuous derivatives up to s order.

A smooth manifold is a manifold with a C* atlas. Commonly used smooth manifolds include the Euclidean space, torus, sphere
and Grassmannian. C* functions on a smooth manifold M can be defined as follows:

Definition 2 (C* functions on a smooth manifold). Let M be a smooth manifold and f : M — R be a function on M. The function f
is a C* function on M if for every chart (U, ¢) of M, the function fo¢~! : ¢(U) = R is a C* function.

We next define the C* partition of unity of M.

Definition 3 (Partition of unity). A C* partition of unity of a manifold M is a collection of C* functions {p; },cx With p, : M — [0,1]
such that for any x € M,

1. there is a neighborhood of x where only a finite number of the functions in {p, },cx are nonzero, and
2. Dyer k) =1.

We say an open cover is locally finite if every v € M has a neighborhood that intersects with a finite number of sets in the cover.
It is well-known that for any locally finite cover of M, a C* partition of unity that subordinates to this cover always exists [54,
Chapter 2, Theorem 15].

Reach is an important quantity of a manifold that is related to curvature. For any x € R?, we write d(x, M) :=inf,c,, [Ix - v||, the
distance from x to M. Reach is defined as follows:
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Slow Change: Large 7 Rapid Change: Small 7

Fig. 1. llustration of manifolds with large and small reach.

Definition 4 (Reach [18,42]). The reach of M is defined as
7= nf g = v @
where G = {x € RP : 3 distinct p,q € M such that d(x, M) = |[x —pll, = ||x — q||2} is the medial axis of M.

Roughly speaking, a manifold with a small reach can “bend” faster than that with a large reach. For example, a plane has a reach
equal to infinity. A hyper-sphere with radius r has a reach r. We illustrate manifolds with a large reach and small reach in Fig. 1.

We denote the reach of M by z, the tangent plane of M at ve M by T,M and its orthogonal space by TVLM. Define the
g-neighborhood of M by

— D . : _ <
M(@)=(x€R”: inf x—vl, <q). ©)
When ¢ < 7, by the property of reach, every x € M(q) has a unique decomposition

x=n(X)+w “®

where 7(x) = argmin, ¢ |V - x||, and w € T;}* M [42,15].
2.2. Neural networks

In this paper, we consider feedforward neural networks (FNN) with the rectified linear unit ReLU(a) = max{a,0}. An FNN with L
layers is defined as

Ffx)=W, -ReLU (W,_ - ReLUW x+b))+ - +b;_)+b;, (5)

where the W,’s are weight matrices, the b;’s are bias vectors, and ReLU is applied element-wisely. We define a class of neural
networks with inputs in R” and outputs in R¢ as

F(D,d;L,p,K,x,R)={f : RP - R? | f has the form of (5) with L layers and width bounded by p,

L
1/l < R, D IWillg + by llg < K.

i=1

[Willooo £ K. 1Ibjllq <k fori=1,...L},

where || H ||y, o, =max; ; |H;;| for a matrix H and || - ||, denotes the number of non-zero elements of its argument. Above, the width of
a network is the largest output dimension among all layers.

3. Main results
3.1. Problem setup for bounded normal noise

We consider the noisy setting where training data contain » pairs of clean and noisy data:

Setting 1. Let M be a d-dimensional compact smooth Riemannian manifold isometrically embedded in R” with reach . Given a
fixed noise level q € [0, 7), we consider a training data set S = {(xi,v,v)}’f':I where the v;’s are i.i.d. samples from a probability measure
on M, and the x,’s are perturbed from the v;’s according to the model such that

X=V+W 6)

where w € TVLM (the normal space of M at v) is a random vector satisfying ||w||, < q. We denote the distribution of x by y. In
particular, we have x; =v; + w;, where the w;’s are independent.

Setting 1 has two important implications:
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(i) M is bounded: there exists a constant B > 0 such that for any x € M(q),

Ixlle < B. @

(ii)) M has a positive reach [57, Proposition 14], denoted by 7 > 0.

The v,’s in Setting 1 represent the noise-free training data, and the x;’s are the noisy data perturbed by the normal noise w;,’s.
This noisy setting shares some similarity to the Denoising Auto-Encoder (DAE) [61,5] and multifidelity simulations [29,6,43]. DAE
is widely used in image processing to train autoencoders with a denoising effect. In the DAE setting, one has clean samples, and then
manually adds noise to the clean samples to obtain noisy samples. During training, the noisy samples are taken as the inputs and
the clean samples are the outputs, such that the autoencoder is trained to denoise the noisy samples. In uncertainty quantification
and prediction of random fields, it is expensive to simulate high-fidelity solutions. A popular strategy is to use a cheaper low-fidelity
simulation as a surrogate and then a correction step is applied to modify the surrogate towards high-fidelity data. The correction
operations are determined using both low-fidelity and high-fidelity data. Such a strategy is similar to our Setting 1: one can take the
high-fidelity data as noise-free data and low-fidelity data as noisy data.

We first consider normal noise on the manifold M in Setting 1. Given a training data set S = {(x;,V;) }i,, our goal is to theoretically
analyze how the manifold structure of data can be learned based an encoder & : M(g) » R°@ and the corresponding decoder
9 : RO@ _ RD by minimizing the empirical mean squared loss

@.5= argmin = Y |Iv, - Zosx))I2, ®

2 & n¥
@eFNN,éfeFNN i=1

for properly designed network architectures FfN and 7’1\%. We evaluate the performance of (%, &) through the squared generalization
error

EsEy., | 906 x) - zx)|I2, ©)

at a noisy test point x sampled from the same distribution y as the training data. This paper establishes upper bounds on the squared
generalization error of CAE with properly chosen network architectures. We first consider the single-chart case in Section 3.2 where
M is globally homeomorphic to a subset of R?. The general multi-chart case is studied in Section 3.3. In Section 3.4, we will study a
more general setting that allows high-dimensional noise in the ambient space, under Setting 2.

3.2. Single-chart case

We start from a simple case where M has a global low-dimensional parametrization. In other words, data on M can be encoded
to a d-dimensional latent feature through a global mapping.

Assumption 1 (Single—chart case). Assume M has a global d-dimensional parameterization: There exist A >0 and smooth maps
f: M—[-A,Al¢ and g : [-A,A]Y > M such that

v =gof(v), (10)

for any ve M.

Assumption 1 implies that there exists an atlas of M consisting of only one chart (M,f). This single-chart case serves as the
mathematical model of autoencoders where one can learn a global low-dimensional representation of data without losing much
information.

Our first result gives an upper bound on the generalization error (9) with properly chosen network architectures.

Theorem 1. In Setting 1, suppose Assumption 1 holds. Let 8.9 be a global minimizer in (8) with the network classes FfN =
F(D,d;Léo,péo,Kéo,Kg,Réo) and FI\%\I = F(d,D;L@,p@,K@,K@,R@) where

d d
Le :O(log2n+10gD), Pe :O<Dnd_+2>, Kg:O<Dnmlog2n+DlogD>,
2
Kg:o<nd+z>, Rg =A, an

d d 1
Ly =0(ogn), pyy =0 <nm> , Ky =0 <nm 10g2n> , k=0 (nd_+2> , Ry =B. 12)
Then, we have the following upper bound of the squared generalization error

A A 2
EsEq., | Z08(x) — z(x)||3 < C (D*log” D) n~ @2 log* n (13)
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Fig. 2. An illustration of the network architectures in Theorem 1, where & is the estimated encoder, 9 is the estimated decoder, 7 is the encoded latent feature, V is
the decoded vector.

for some constant C depending on d, B,t,q, the Lipschitz constant of f and g, and the volume of M. The constants hidden in the O depend
ond, B, A,t,q, the volume of M and the Lipschitz constant of f and g.

We defer the detailed proof of Theorem 1 in Section 5.1. Theorem 1 has several implications:

(i) Fast convergence of the squared generalization error and the denoising effect: When the network architectures are properly
set, we can learn an autoencoder and the corresponding decoder so that the squared generalization error converges at a fast rate

in the order of n_diﬁ log* n. Such a rate crucially depends on the intrinsic dimension d instead of the ambient dimension D, and
therefore mitigates the curse of ambient space dimensionality. In addition, the error bound also suggests that the autoencoder
has a denoising effect as the network output @oé“‘A(X) converges to its clean counterpart z(x) as n increases.

(ii) Geometric representation of data: When the manifold M has a global d-dimensional parameterization, the autoencoder &
outputs a d-dimensional latent feature, which serves as a geometric representation of the high-dimensional input x.

(iii) Network size: The network size critically depends on d, and weakly depends on D.

Remark 1. We remark that the constant hidden in the upper bound in Theorem 1 (and for the constant in Theorem 2) depends on
1/(z — q): as g gets closer to 7, the constant factor becomes larger. This is easy to understand: if g is very close to z, some data are
close to the medial axis of M (see Definition 4). Assume x =v+w for v € M and w € T;* M with ||w||, being very close to . Then
there exists v/(# v) on M such that ||v' —x||, is very close to ||v — x||,. Thus, a small perturbation in x might lead to a big change in
7(x), which makes the projection unstable.

We briefly introduce the proof idea of Theorem 1 in four steps.
Step 1: Decomposing the error. We decompose the squared generalization error (9) into a squared bias term and a variance term.
The bias term captures the network’s approximation error and the variance term captures the stochastic error.
Step 2: Bounding the bias term. To derive an upper bound of the bias term, we first define the oracle encoder and decoder.
According to Assumption 1, f is an encoder and g is a decoder of M. However, since the input data is in M(q), we cannot directly
use f as the encoder since f is defined on M. Utilizing the projection operator =, we define the oracle encoder as & = for, and
simply define the oracle decoder as & = g. Based on Cloninger and Klock [15], we design the encoder network to approximate the
oracle encoder for. The decoder network is designed to approximate g. Our network architecture is illustrated in Fig. 2. Based on our
network construction, we derive an upper bound of the bias term showing that our encoder and decoder networks can approximate
the oracles & and 2 respectively to an arbitrary accuracy ¢ (see Lemma 1).
Step 3: Bounding the variance term. The upper bound for the variance term is derived using metric entropy arguments [59,22],
which depends on the network size (see Lemma 2).
Step 4: Putting the upper bound for both terms together. We finally put the upper bounds of the squared bias and variance term
together. After balancing the approximation error and the network size, we can prove Theorem 1.

3.3. Multi-chart case

We next consider a more general case where the manifold has a complicated topology requiring multiple charts in an atlas.
Consider an atlas {(Uk,d)k)}kcf1 of M so that each U, is a local neighborhood on the manifold homeomorphic to a subset of R9.
Here C,, denotes the number of charts in this atlas. In this atlas, each U, has a d-dimensional parametrization of M and data can
be locally represented by d-dimensional latent features. In this general case, we prove the following upper bound of the squared
generalization error (9) for CAE.

Theorem 2. Consider Setting 1. Let £, 9 be a global minimizer of (8) with the network classes PlfN =F(D,Cp(d+1);Lg,pe,Ke,ke,Re)
and FZ, =F(Cpy(d +1).D; Lgy. poy. K. K, Rgy) Where C = O((d log d)(4/7)%),

d d
Lg =0(log? n+1log D), pg =0(Dn+2), Ko = O((Dlog D)na+ log? n),
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o)
N)
)

L)

Latent

Fig. 3. Illustration of the network architectures in Theorem 2. Here & is the estimated encoder, & is the estimated decoder. The output of & gives rise to the latent
feature Z, and the final output of the decoder 2 gives rise to v as an approximation of the clean sample v.

2
kg =0(nd+2), Rgo =max{r/4,1}, a4
d d
Lo = O(log? n+10g D), pgy, = O(Dn@+2), Ko = O(Dna+ log? n+ Dlog D),
1
Kg =0(nd+2), Rg = B. (15)

Then, we have the following upper bound of the squared generalization error

PPN 2
EsExny 1706 (x) = 20|15 < C(D*log> D)n” %2 log* n 16)

for some constant C depending on d,z,q, B,C,, and the volume of M.

2
Theorem 2 indicates that for a general smooth manifold, the squared generalization error converges in the order of n~ @+2 log* n.
In the case of multiple charts, the manifold has a more complicated structure than the single-chart case. Compared to the network
architectures in Theorem 1, the network architecture specified in Theorem 2 has the following changes:

+ The output of encoder has dimension C,,(d + 1) instead of d. Such an increment in dimension is due to that C,, charts are
needed to cover complicated manifolds.

+ The encoder network uses more parameters: The number of nonzero parameters K has an additional factor log D.

 The decoder network is deeper, wider and uses more parameters: The depth has an additional factor logn, the width has an
additional factor D, and the number of nonzero parameters has an additional factor D.

We remark that the number of charts C,, = O((d log d)(4/7)?) occurs in the worst case scenario. If M has some good properties so
that fewer charts are needed to cover M, the result in Theorem 2 holds by replacing C,, by the actual number of charts needed.
We defer the detailed proof of Theorem 2 to Section 5.2. The proof idea of Theorem 2 is similar to that of Theorem 1. We also
decompose the squared generalization error into a squared bias term and a variance term. The bias term is controlled by neural
network approximation theories of the oracles. We briefly discuss the oracles and our network construction in Theorem 2 here. Let
{Uj.¢; }/Ci‘f be an atlas of M and {p; }IC:? be the partition of unity that subordinates to the atlas. For any x € M(g), we have
Cm
v=r(x)= Z [q_');lodjjo;t(x)] X [pjom(x)] . a7
j=1
If z(x) is on the jth chart, (17) gives rise to an encoding of x € M(g) to the local coordinate ¢;oz(x) € R¢ and the partition of unity

value p om(x) €R. We consider [(¢ jon')T p; ox]' as the oracle encoder on the jth chart, and the collection of {[(¢ jon’)T p; ozr]T}jCﬁ
as the global encoder. The latent feature on a single chart is of dimension d + 1, and the latent feature on the whole manifold is of
dimension C,,(d + 1) with C,, charts. For any latent feature {z ;€ R+ }_C:T‘, we consider the oracle decoder ZC:? qb;l (Z)1:a) X (2)) 441
where (z;),., and (z;),,, represent the first d and the (d + 1)th entries of z; respectively. To bound the bias in Theorem 2, we design
neural networks to approximate the oracle encoder and decoder with an arbitrary accuracy ¢ (see Lemma 4 and its proof). The
overall architecture of the encoder and decoder is illustrated in Fig. 3.
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Table 1

Summary of the results on manifold learning with noise-free data. In the table, M
denotes the manifold learned from training data, dist(x, M) denotes the distance from
x to M, Proj ;(x) denotes the projection of x onto M.

Reference Method Error measurements Upper bound
[10] k-Means EsEyep[dist®(x, M W
[101 k-Flats E s Eyepldist>(x, M)] e
[32] Multiscale EsExer[IProj) — x| n77
[50] Chart Auto-Encoder  sup,c [|Z0&(x) — |12 e
Theorem 2 Chart Auto-Encoder  EgE,_, || Dol(v)— vl W

We next discuss the connection between our results and some existing works. Low-dimensional approximations of manifolds have
been studied in the manifold learning literature, with classical methods, such as k-means and k-flats [10], multiscale linear approx-
imations [39,32]. Canas et al. [10], Liao and Maggioni [32] and [50] consider the noise-free setting, where training and test data
are exactly located on a low-dimensional manifold. This is comparable to our noise-free setting with ¢ = 0. We summarize the upper

1
bounds in these works and our Theorem 2 in Table 1. While the rate from Liao and Maggioni [32] is faster than ours, O <nm > local

tangent planes are used to approximate M. In comparison, our Theorem 2 requires a fixed number C,, (at most O((d logd)(4/7)?))
local pieces (charts), which is independent of the sample size n. [50] first considers a Chart Auto-Encoder where their analysis is for
an approximation error. Given n data samples uniformly distributed on M, Schonsheck et al. [50] explicitly constructs the encoder
& and decoder 7 and shows that with high probability, the constructed autoencoder gives rise to the approximation error in Table 1.
Our analysis in this paper extends the theory to the noisy setting and establishes a statistical estimation theory with an improved
rate of convergence on the mean squared generalization error, which is beyond the approximation error analysis.

Our noisy setting shares some similarities with [21] and [45], which focuses on manifold learning from noisy data. [21] assumes
that the training data are corrupted by normal noise. In their setting, the noise follows a uniform distribution along the manifold
normal direction and only noisy data (without the clean counterparts) are given for training. The authors proved that the lower

2
bound measured by Hausdorff distance is in the order of n~ 2+, while no efficient algorithm is proposed to achieve this error bound.
Recently, [45] considers a more general distribution of noise (not restricted to normal noise) but assumes the noise magnitude decays
with a certain rate as n increases. In comparison, our work and [21] do not require the noise magnitude to decay as » increases.
The great advantage of [45], as well as [21], is that only noisy data are required for training. [45] also derived a lower bound
2
232 2.2 e
b 7<logn \ d+4 .
07 -1 (L ogn , where b denotes an upper bound of the magnitude of
T n
the tangential component of noise. The lower bound is different from the one in [21], because the existence of tangential noise, even
with very small magnitude. Our work requires both clean and noisy data for training, which is possible when the training data are
well-controlled. Our goal is to establish a theoretical foundation for the widely used autoencoders.

measured by Hausdorff distance in the order of

3.4. Extension to general noise with bounded normal components

We consider a more general setting in which the noise includes both normal and tangential components.

Setting 2. Let M be a d-dimensional compact smooth Riemannian manifold isometrically embedded in R? with reach 7. Given a
fixed noise level g € [0, 7), we consider a training data set S = {Ge v}, where the v,’s are i.i.d. samples from a probability measure
on M, and the x,’s are perturbed from the v;’s according to the model such that

X=vV+n (18)

where n € R is a random vector satisfying

IProjry ol <q. E[IProjr, y@I3Iv] <o

with o > 0. Here Projr, ,(n) and Projy. ,,(n) denote the orthogonal projections of n onto the tangent space T, M and the normal space
v
T} M respectively. We denote the distribution of x by y. In particular, we have x; = v, + n;, where the n,’s are independent.

For any noise vector n, we can decompose it into the normal component Proj. ,,(n) and the tangential component Projy_,,(n):
v v

n= ProijlM(n) + ProijM(n).
Setting 2 requires the magnitude of the normal component to be bounded by ¢, and for any v € M, the second moment of the
tangential component is bounded by 2. In particular, if we further have E [ProjTV M(n)lv] =0, Setting 2 implies for any v € M, the

tangential component has variance no larger than o2.
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Table 2
Comparison of the network architectures in Theorem 1, 2 and 3.
Theorem 1 Theorem 2, 3
dim. of input, output D, d D, Cy(d+1)
Lg (log n+logD) (log n+logD)
& o (Dn =l ) (Dn = )
Fix re
Kg O(Dn i log? n+DlogD) ((DlogD)nM log® n)
Kg o (n ax ) (n 2
Re max{z/4,1}
dim. of input, output d, D Cyd+1), D
Ly O (logn) O (log* n+log D)
4
: ofr) o{or)
7DNN P2 Y R
K O(nﬁlog'n) O(Dn i log? n+DlogD)
Kg o (n I ) o (n I )
Rgy B B

Under Setting 2, the squared generalization error (9) is not appropriate any more, since our goal is to recover v and z(x) is not
necessarily equal to v. Instead, we consider the following squared generalization error

EsEye, 1708 x) - V13-

We have the following upper bound on the squared generalization error

Theorem 3. Consider Setting 2. Let é?’ Jbea global minimizer of (8) with the network classes FfN =FD,Cpy(d+1);Lg.pe,Ke,kg,Re)
and FZ, = F(Cpy(d + 1), D; Ly, psy. K. Ky, Rey) where Cy = O((d log d)(4/ 7)),

Le= O(log2 n+logD), pe = O(Dndd? ), Ke =0O((Dlog D)nd%2 log2 n),

Kg=0(nﬁ), Rg =max{z/4,1}, (19

Lo =O0(log” n+log D), pgy = O(Dn), Ko = O(Dnis log? n+ Dlog D),

Koy = OmT), Ry =B. (20)
We have

Do (x) - V|2 < C(D?log’ Dy~ P log*n+ Cy6? (21)

XNV

for some constant C depending on d,z,q,B,C,, and the volume of M, and C, depending on t,q. The constant hidden in O depends on
d,,q,B,C,, and the volume of M.

Theorem 3 is proved in Section 5.3. Theorem 3 is a straightforward extension of Theorem 2 to Setting 2 with general noise. The
network architecture in Theorem 3 has a similar size as that in Theorem 2. We summarize the network architectures specified in
Theorem 1, 2 and 3 in Table 2. Compared to the upper bound in Theorem 2, Theorem 3 has an additional term C;¢? which comes
from the tangential component of noise. If tangential noise exists, a given point x may correspond to multiple (and probably infinitely
many) points on M. Therefore the generalization error cannot converge to 0 as the sample size increases. This fundamental difficulty
of high-dimensional noise is also demonstrated by our numerical experiments.

4. Numerical experiments

In this section, we conduct a series of experiments on simulated data to numerically verify our theoretically analysis. We consider
three surfaces listed in the first column of Fig. 4. The noisy data with normal noise are displayed in the middle column of Fig. 4. We
use the code in [50] to implement chart autoencoders. It is important to prescribe a reasonable number of charts to appropriately
reflect the topology of the manifold. During training, chart autoencoders segment manifolds into largely non-overlapping charts.
Further in some cases, chart autoencoders perform automatic chart pruning if too many charts are prescribed. This is done by
contracting excess charts to a trivial or nearly trivial patch when there is already a sufficient number of charts present to capture
the manifold’s topology. The number of charts is prescribed to be 4 for the sphere and Genus-2 double torus and 8 for the Genus-3
pyramid. In Fig. 4, we visualize the sphere as decomposed by 2 charts, a Genus-3 pyramid as decomposed by 6 charts, and a Genus-2
double torus as decomposed by 4 charts after training. We use the network architecture such that the encoder is composed of 3 linear
layers with ReLU activations, and the decoder has 3 linear layers with ReLU activations and a width (hidden dimension) of 50. In
training, the batch size is 512, the learning rate is 3e — 6, and weight decay is 3e — 1.
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(f) Reconstruction

(g) Genus-2 (h) Noisy data (i) Reconstruction

Fig. 4. Reconstructions of three noisy manifolds rescaled to lie inside the [-50,50]° cube centered at the origin.

4.1. Sample complexity

We first investigate the sample complexity of chart autoencoders. We train chart autoencoders with » training points randomly
sampled from the Genus-3 pyramid and evaluate the squared generalization error on held-out test data. The training data contain
clean and noisy pairs and the test data are noisy. Let {(x;,v j)};."jl‘ be the set of test data where v; is the clean counterpart of x;. The
squared generalization error is approximated by the following squared test error:

1 Myest N
S NG x;) - v, I13.

Mest 557

For each n, we perform 5 runs of experiments and average the squared test error over these 5 runs of experiments.
According to our Theorem 2, if the training data contain clean and noisy pairs with normal noise, including the noise-free case,
we have

2
Squared generalization error < C(D?log> D)n™ 4+2 loghn (22)

10
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Clean Data
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Fig. 5. Squared test error versus the training sample size » for clean data on the Genus-3 pyramid with intrinsic dimension ¢ =2 and ambient dimension D = 3. The
horizontal line of “Min Error” represents the minimum squared testing error observed among all sample sizes.

If the training data contain clean and noisy pairs with high-dimensional noise where the second moment of the tangential component
is bounded by o2, Theorem 3 implies that

2 4
Squared generalization error < C;(D*log® D)n™ 772 ¢ " 4 C,62. (23)

We start with the noise-free case where both training and test data are on the Genus-3 pyramid. Fig. 5 shows the log-log plot
of the squared test error versus the training sample size n. Our theory in (22) implies that a least square fit of the curve has slope
_d%z = —% since d =2. Numerically we obtain a slope of —0.532, which is consistent with our theory. Due to the optimization error
in training, we do not observe convergence to 0 in either the training or the test loss. The “Min error” is the minimum squared test
error achieved among all sample sizes.

We next test the noisy case with normal noise and gaussian noise respectively. Fig. 6 displays the log-log plot of the squared
test error versus the training sample size n with normal noise (left column) and gaussian noise (right column). The noise level is
measured by the variance of the noise distribution. Specifically, for the normal noise w in Setting 1, we set E[w|v] = 0 and refer the
noise level as E||w||2. For the gaussian noise n, we set n ~ N'(0,52I), such that E||n||?> =52, which is referred to be the noise level.
In this experiment, we set the noise level to be 1. The Genus-3 surface is embedded in R? with D = 3,5, 10 respectively. In Fig. 6,
the “Min error” is the minimum squared test error achieved among all sample sizes. The “Noise Free Error” is the squared test error
achieved when training on the entire clean dataset.

In the case of normal noise, we observe a convergence of the squared test error as n increases. The “Min error” is close to
the “Noise Free Error”, which shows that training on noisy data almost achieves the performance of training on clean data. This
demonstrates autoencoders’ denoising effect for normal noise. The slope of the line obtained from a linear fit is around —0.5, which
is consistent with our theory in (22).

In the case of gaussian noise, the squared test error first converges when n increases but then stagnates at a certain level. The
“Min error” is much larger than the “Noise Free Error” which shows training on noisy data can not achieve similar performance on
clean data. This is expected as our theory implies that autoencoders do not have a denoising effect for the tangential component of
the noise.

4.2. Effects of the ambient dimension, the number of charts and noise levels

We next investigate how the squared generalization error of chart autoencoders depends on the ambient dimension, the number
of charts, and noise levels.

Our theory in (22) shows that, when the ambient dimension D varies, the squared generalization error grows at most in D?log® D.
This bound may not be tight on the dependence of D. In Fig. 7 (a), we plot the squared test error for chart autoencoders with clean
data on the Genus-2 and Genus-3 surfaces. We observe that, in these simulations, the squared test error almost grows linearly with
respect to D. Note that the upper bounds in our theorems are for the global minimizer of the empirical loss (8). In practice, due to the
complicated structure of networks, the training process may easily get stuck at a local minimizer and it is difficult to get the global
minimizer. Nevertheless, our numerical results still give an approximate linear relation between the test error and D. We leave it as
a future work to investigate the optimal dependence of the squared generalization error on D.

In Fig. 7 (b), we plot the squared test error for chart autoencoders with clean data on the Genus-2 and Genus-3 surfaces versus
the number of charts. We observe that, when the number of charts is sufficiently large to preserve the data structure, the squared
test error stays almost the same, independently of the number of charts.

In Fig. 7 (c), we plot the squared test error versus various noise levels of both normal and gaussian noise. We observe that the
squared test error is much higher in the gaussian case for both manifolds.

11
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(e) Normal noise, D = 10
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Fig. 6. Squared test error versus the training sample size n on the Genus-3 pyramid with intrinsic dimension d =2 and ambient dimension D € {3,5,10}. The left
column shows the results of normal noise and the right column shows the results of Gaussian noise. The “Min error” is the minimum squared test error achieved
among all sample sizes. The “Noise Free Error” is the squared test error achieved when training on the entire clean dataset.

5. Proof of main results

For the simplicity of notations, for any given F& and FZ, we define the network class

FE =19=908|2eFL.6 €Fs)

and denote & = o8&, where &, are the global minimizers in (8).

12
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Fig. 7. Effects of the ambient dimension, the number of charts and noise levels for the Genus-3 and Genus-2 data.

5.1. Proof of Theorem 1

Proof of Theorem 1. To simplify the notation, we denote the Lipschitz constant of f by C, i.e., for any v,v, € M,

1£Cv) = £Vl S Cpllvy = Vallp S Cpd (V15 V5), (25)

with d,,(v,,v,) denoting the geodesic distance on M between v, and v,, and denote the Lipschitz constant of g by C,, i.e., for any
z;,2, Ef(M),

lla(z) — 82l < Cgllz = 2,1l (26)
Our proof idea can be summarized as: We decompose the generalization error (9) into a bias term and a variance term. The bias

term will be upper bounded using network approximation theory in Lemma 1. The variance will be bounded in terms of the covering
number of the network class using metric entropy argument in Lemma 2.

We add and subtract two times of the empirical risk to (9) to get

EsExe, 1900 - 701

=2E ﬁ D90 = 7013 | +EsEyy [1900 - 2 01] - 265 | 5 ¥ 19x) = 7 x)IE | - @27)
i=1 i=1

J/
T T,

The term T, captures the bias of the network class Flfﬁ\] and T, captures the variance. We then derive an upper bound for each term
in order.
« Bounding T,

We derive an upper bound of T, using the network approximation error. We deduce

n
1 A~
T, =2E | - Y9 x) - z(x)12
i=1

13
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_ . 1 v 2
=2E¢ glnf@ [; 21 19/ (x;) _Vi||2:|

EFNN i=
1 n
<2 inf Eg |- Y 9x)-v,|?
Gerd, S [n IZ:‘ ! 2
=2 inf E_, [|¢x) -zx)|?]. (28)
L B | 2

The following Lemma 1 shows that by properly choosing the architecture of & and 72, there exist ge F&, and Je FZ, so
that @oz?(x) approximates z(x) with high accuracy:

Lemma 1. Consider Setting 1 and suppose Assumption 1 holds. For any 0 < € < min{1,7/2}, there exist two network architectures FI\‘faN =
F(D.d;Lg.pg.Kg.xg,Rg) and FZ =F(d,D; Lg.py.Kg. kg, Rgy) with

Lg=0(log?e +logD), pg =0 (De™), Kg=0(De"log’e + DlogD), kg =0 (%), Rg =A (29)
and

Ly =0 (loge™), py=0(De™?), K =0 (De ™ loge), k=0 (e7'), Ry = B, (30)
where the constant hidden in O depends on d, B, A, 7,q,C ' Cq and the volume of M. These network architectures give rise to & M(q) —» R?
in &, and 7 : RY - RP in FZ, so that

sup | Z0E(x) — 1(X)|lo < €. (31)
XEM(q)

Lemma 1 is proved in Appendix A.1. The proof is based on the approximation theory in [15].
Let & and 2 be the networks in Lemma 1 with accuracy £. We have

T, <2 inf E,_, [|9x)—=zx)|?
1 %GTI% X y[ 2]

<., 1708 x) - 03]

=4Ex~y

<2D sup [|ZoE(x) -2 X|I2,
XEM(q)

<2Dé€>. (32)

« Bounding T,. The term T, is the difference between the population risk and empirical risk of the network class Fg\l, except the
empirical risk has a factor 2. We will derive an upper bound of T, using the covering number of F;ﬁl. The cover and covering number
of a function class are defined as

Definition 5 (Cover). Let F be a class of functions. A set of functions S is a 5-cover of F with respect to a norm || - || if for any f € F,
one has

inf |lu— f|| <6.
;gsllu VA

Definition 6 (Covering number, Definition 2.1.5 of [59]). Let F be a class of functions. For any 6 > 0, the covering number of F is
defined as

NG, F, |l -II)=min{|S,| : S/ is a 6-cover of F under || - | },

where |S/| denotes the cardinality of S,.
The following lemma gives an upper bound of T,:

Lemma 2. Consider Setting 1. Let 0 < 6 < 1 and T, be defined as in (27). We have

Foll- Nl oo ) +65. (33)

35DB? 5
T, < log N' (—
2= 8N DB

Lemma 2 is proved in Appendix A.2
« Putting both gradients together. Putting (32) and (33) together, we have

~ ) »  35DB? 6 @
EsEy., [||g¢(x) - n(x)||2] 2D+ = log N (ﬁ,rw, - 1l poose ) +66. (34)

14
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The following lemma gives an upper bound of N <%*?ﬁ<§\1’

Appendix A.3):

|- ||°om) in terms of the network architecture (see a proof in

(!f . . g .
Lemma 3. Let 7 be defined in (24). The covering number of Fy is bounded by

N (8 FE N Ml o) <

(35)

<2(Lg + L) max{pg,pe) B+2)(max{ke, kg D6 +Eo (max(pg, py HEe+lot] >2<Ké”*"@)
- .

Substituting (29) and (30) into Lemma 3, we have

4 @
IOgN (ﬁ’FNN’ || . ”Lcc.oo)
=0 ((Lg + Ly)Kg +Kg) (log(Lg + L) +logmax{pg, psy }) + log(max{k s,k }) +log6™'))
=0 ((log2 e~ +log D)(De ¢ loge™! + Dlog D) (log e~ +log D +log 5! ))
<O ((Dlog? D)~ log* e7! + (Dlog? D)~ log® e log 671). (36)
1
Substituting (36) into (34) and setting 6 =& =n~ 4+2 gives rise to

~ 2
EsExey |90 - 20| < CD? (log? D) n 77 log*n 37)

X~y

for some constant C depending on d,C +,Cqs B, Ry, T and the volume of M. The network sizes for T’IfN and T’I{I’N are given as
) d_ 4, 2
Lg=0(log’n+logD), pg=0 <Dnd+2 , Kg =0 Dnda+2 log n+DlogD> , kg =0 nda2 > s
d_ 4, e
Lo =0(logn), py =0 <nd+2 > , Ky =0 (nd+2 log n) , kg =0 (nd+2 > . O
5.2. Proof of Theorem 2

Proof of Theorem 2. The proof of Lemma 2 is similar to that of Lemma 1, except extra efforts are needed to define the oracle
encoder and decoder.
Similar to the proof of Theorem 1, we decompose the generalization error as

EsEvey [I1900 - 2013]

=2E [% 319 - n<x,->||§] +EgEy., [||s?(x) - n(x)ng] -2 [ﬁ 3 19, - n(x,-)||§] : (38)
i=1 i=1

«

Ty Ty

« Bounding T,. We derive an upper bound of T, using network approximation error.
Following (28), we have

19x) - z(x)Il3] - (39)

T; <2 inf E.. [l
GeFrd,

The following Lemma shows that by properly choosing the architecture of FlfN and FZ,, then there exist & and & that Zoé&(x)

NN’
approximates =(x) with high accuracy:

Lemma 4. Consider Setting 1. For any 0 < e < min{1,7/2}, there exist two network architectures PrfN(D, Cpyd+1);Le,pe,Keg, ke, Re)
and FZ(Cpy(d + 1), D; Lgy. pop. Ky, K9, Rey) with

Lg =0(log’e™ +log D), pg =0(De™?), Kg = O((Dlog D)e~?log? ™),

kg =0(2), Rg =max{zr/4,1}, (40)
and

Lo =O0(log? ™! +log D), pgy = O(De™), Ko = O(De~ 10g? € + Dlog D),

Ky =01, Ry =B. (41)

15
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The constant hidden in O depends on d,t,q,B,C,, and the volume of M. These network architectures give rise to é: M(q) - R? in PIfN

andé:RdeRDinPb%\lsothat

sup |08 (x) — a(X)leo < €.
xEM(q)

(42)

Lemma 4 is proved by carefully designing an oracle encoder and decoder and showing that they can be approximated well be

neural networks. The proof of Lemma 4 is presented in Appendix A.4.
Let & and Z be the networks in Lemma 4 so that

sup | Z0E(x) — (%)l < €.
XEM(q)

We can bound T, as

. 2
T, <2 glen;% Eyy [19x0) — z(0)113]

<., 170800 - 23]

<2D sup ||§05’N(x)—7z(x)||§o
XEM(q)

<2Dée>.

« Bounding T,. By Lemma 2, we have

T, <

35DB? s
1 =5

n eV (ZDB
« Putting both ingredients together. Combining (44) and (45) gives rise to

FE ol Nl oo ) +65.

5 35DB? s
EsErey 1900 - 2013 | <2De? + 222 log N (m”’ﬁw I s ) +65.

The covering number can be bounded by substituting (40) and (41) into Lemma 3:

[

log./\/(m,

Pl s )

=0 ((Lg +Lgy)Kge +Kg) (log(Lg + Lg)+log(max{pe,py})+logimax{k e, k5 }) + logﬁ_l))

=0 ((log” e~ +log D)((Dlog D)~ loge™") (loge™" +log D +logs™"))

=0 ((Dlog® D)e™log* e™! + (Dlog® D)™ log® e~ log67").
Substituting (47) into (46) and setting e =6 = n_ﬁ give rise to

EsEr (1900 - 2(0I13] < (D7 tog® D)7 log* n

for some constant C depending on d,7,4, B,C,, and the volume of M.

Consequently, the network architecture Plf (D,Cpy(d+1);Lg,pe,Kg,ke,Re) has

N
L =0(og?n+10g D), pg = O(Dn+2), K 5 = O((Dlog Dyn+ log* ),
Ke = O(n#), R =max{z/4,1},
and the network architecture FI\%(CM(d +1),D;Lg,pyp.Kgy.kq9,Ry) has
Ly = 0(og? n+1og D), pgy = O(Dn1), Ko = O(Dns? log n + Dlog D),
Ko = O(nd+r2 ), Ry =B.

The constant hidden in O depends on d,7,4, B,C,, and the volume of M. [

5.3. Proof of Theorem 3

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Proof of Theorem 3. Theorem 3 can be proved by following the proof of Theorem 2. We decompose the generalization error as

EsEyey 1900 - Vi3]

16
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=2Es [% 29 - v,-||§] +EsEy, (1900 - 2001] - 265 [% 29 - v,-||§] : (51)
i=1 i=1

< v

T, T,

« Bounding T,. Denote w = Projr. ,,(n) as the component of n that is normal to M at v, and u= Proj, ,(n) as the component that is
in the tangent space of M at v. Using Lemma 4 and the data model in Setting 2, we have

19x) - vI3]

T, <2 glen;% Ex, |

NN
<2E,., [2||f§o£~(x) — 2|3 +2[|z(x) - v||§]
<4D||Z0& (%) = 7)1, +4Ey, [l = VI
<4De +4E, ., [lz(v+w+w) — z(v+ W3]
<4DE +4L,E,, [Ilul?]
=AD& +412E,E, [IIProjy, )1 1v]
<4De? +4L% 6%, ©2

where L, denotes the Lipschitz constant of z. In (52), the fourth inequality uses Lemma 4, the fifth inequality uses the fact that
(v +w)=n(v).
The following Lemma gives an upper bound of L :

Lemma 5 (Lemma 2.1 of [15]). Let M be a connected, compact, d-dimensional Riemannian manifold embedded in R? with a reach = > 0.
Let & be the orthogonal projection onto M. For any q € [0, ), we have

lz(x;) = (xx)ll2 <

1
gy lIx; — %115 (53)

for any x,,x, € M(q).

According to Lemma 5, L, only depends on r and g4. Therefore we have

T, <4D&’ + C;o° (54

for some C; depending on 7 and gq.
« Bounding T,. By Lemma 2, we have

5
2DB’
« Putting both ingredients together. Combining (54) and (55) gives rise to

35DB?
n

T, < log N ( FE - Nl oo ) +66. (55)

o
2DB’

35DB?
n

EsEy, [||<f(x)—n(x)||§] <4De’ + logN( FO - ||Lm) +66+C, 0% (56)

1
An upper bound of the covering number is given in (47). Substituting (47) into (56) and setting e =n" 2,6 = % give rise to

E<E 19x) - 2 21003 Py T 1o 2
sExey | 116 zX)||5| < C(D*log’ D)n” 42 log* n+ Cyo (57)

for some constant C depending on d,7,q, B,C,, and the volume of M.

Consequently, the network architecture FfN(D, Cpyd+1);Le.ps.Ke,kg,Rg) has

Lg =0(log*n+logD), pe = O(Dndd? ), Kg =0((Dlog D)ndiﬂ log? n),

Kg :O(nﬁ), Rg =max{r/4,1}, (58)
and the network architecture PI\%(CM(d +1),D;Ly,pyp.Kgy.k9,Ry) has

Lo =O(log? n+1log D), poy = O(Dni3), Ko = O(Dn 3 log? n + Dlog D),

Kgp= O(nﬁ ), Rgy=B. (59

The constant hidden in O depends on d,7,q, B,C,, and the volume of M. []
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6. Conclusion

This paper studies the generalization error of Chart Auto-Encoders (CAE), when the noisy data are concentrated around a d-
dimensional manifold M embedded in R”. We assume that the training data are well controlled such that both the noisy data and
their clean counterparts are available. When the noise is along the normal directions of M, we prove that the squared generalization

error converges to 0 at a fast rate in the order of n_2+Ld log* n. When the noise contains both normal and tangential components, we
prove that the squared generalization error converges to a value proportional to the second moment of the tangential noise. Our
results are supported by experimental validation. Our findings provide evidence that deep neural networks are capable of extracting
low-dimensional nonlinear latent features from data, contributing to the understanding of the success of autoencoders.

Data availability
Data will be made available on request.
Appendix A. Proof of lemmas

A.1. Proof of Lemma 1

Proof of Lemma 1. We show that there exist & € FIfN and 9 Fl\% that approximate for and g with the given accuracy e. The
following lemma shows the existence of a network architecture with which a network & approximates for with high accuracy.

Lemma 6. Consider Setting 1 and suppose Assumption 1 holds. For any 0 < & < t/2, there exists a network architecture f €
F(D,d;L,p,K,«x,R) so that

sup [Ifx) — for(®)l, <e.
XEM(q)

Such a network architecture has
L=0(log?¢! +logD), p=0(De™?), K=0 (De‘dlog25+ DlogD), k=0 (5‘2) , R=A,
where the constant hidden in O depends on d, B,A,t,q,C I and the volume of M.
Lemma 6 can be proved using Cloninger and Klock [15, Theorem 2.2]. One only needs to stack d scalar-valued networks together.

To construct a network to approximate g, first note that g is defined on f(M) C [-A, A]¢. The following lemma shows that g can
be extended to [—-A, A]¢ while keeping the same Lipschitz constant:

Lemma 7 (Kirszbraun theorem [28]). If E C RY, then any Lipschitz function g : E — RP can be extended to the whole R? keeping the
Lipschitz constant of the original function.

By Lemma 7, we extend g to [—A, A]? so that the extended function is Lipschitz continuous with Lipschitz constant C,. When there
is no ambiguity, we still use g to denote the extended function. The following lemma shows the existence of a network architecture
with which a network 2 approximates g on [-A, A]? with high accuracy.

Lemma 8. Consider Setting 1 and suppose Assumption 1 holds. For any 0 < € < 1, there exists a network architecture’g € F(d, D; L, p,K,x, R)
so that

sup  [[g(z) — @)l <& (60)
ze[-A A

Such a network architecture has
L=0(loge™"), p=0(De™?), K=0(De"loge), k=0 (¢7'),R=B, (61)

where the constant hidden in O depends on d, C,. B,A.

Lemma 8 can be proved using [62, Theorem 1]. One only needs to stack D scalar-valued networks together.
For a constant ¢, € (0,min{1,7/2}), we choose FIfN =F(D,d;Lg,pe.Kg.kg, Rg) with

Lg=0(og’ ;") +1og D, pg =O0(De;"), Kz =0(De;"log’ ) + Dlog D), kg =¢€;2, Rg =A, (62)

and FZ =F(d,D; Lg.po. Kg. k5. Ry) with
Lg =0(loge"), pg = O(De]?), Ky = O(De loge)), kg =€7', Ry = B. (63)
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According to Lemma 6, there exists & € FfN such that

sup [|EX) = For(X)||, <& (64)
XEM(q)

According to Lemma 8, there exists Je Fﬁ{l such that

sup 1 2(2) - g@)llos <. (65)
ze[-AAJ4

Putting (64) and (65) together and setting &, = , give rise to

£
14+C, Vd

sup | Z06(x) = 1(®)llee = sup [ F0E(x) — gofor(X)]l
XEM(q) XEM(q)

< sup (1708) - gof W)l + lIgoF () — gofor(ll, )
XeM(q)

<€, +C, sup I1Ex) = For )l
Xe q

e +C, \/gel
=¢.

The lemma is proved. []
A.2. Proof of Lemma 2

Proof of Lemma 2. Denote

h) = 19x) - 212

We have ?z(x) <4DB? for any x € M(q) due to the definition of 4. We bound T, as
~ 2 - A~
T, =Eg [[EX [h(x)] -2y h(x,.)]
i
~ I -~ A~ 1 7~
=2E [[Ex [co] -+ gl hox) - 3 Ex [h(x)]]

<2E [[Ex [?z(x)] - % Zn:?z(xi) - 81)17[E" [?,2(x)]] , (66)
i=1

where in the last inequality we used A(x) <4DB? and

1

5 [?z%x)] <E, [?z(x)] _

Let S= {X;}_, be a ghost sample set that is independent to S. Define the set

H=1{h:hx =9 -zx)|? for 4 € FZ}.
We have

T, <2Es sup [[Ex [h(x)] - % > hx) - WIBZEEX [hz(x)]]
i=1

<2Eg 5 sup [% > (h&) - hx)) - ml;—thEx,; [R*®) + h%x)]] (67)
i=1

Denote the §—covering number of H by N'(6, . || - Ilo,) and let 7* = {h%} ;e n5.00.,) e a 6-cover of H, namely, for any h € H,
there exists 4* € H* so that ||h — h*||, < 6. Therefore, we have

hX) — h(x) =hX) — K*(X) + h*(X) — h*(X) + h* (X) — h(x)
<h*(X) — h*(x) + 26, (68)

and
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RA®) + h*(x) = [R2®) — (B* )’ ®)] + [(h*F* @) + (B x)] = [(R*)2(x) = B2 (x)]
=(h")*®) + (h")*x) + [A®) - h*®)] [AE) + A*®)] - [*(x) — hX®)] [7* &) + Ax)]
2(h*)*®) + (h* (%) = [hE) = i*®| |h&) + h*®)| - |h* (x) = k)| [* (%) + h(x)|
>(h*)*(X) + (h*)*(x) — 16DB*§ (69)
Substituting (68) and (69) into (67) gives rise to

T, SZ[ES*ghflelfw [% Z (h*&) - h*(x)) -

2 ——Ex (")’ ® + (h*)%m]] +66

16DB

_ - l c * _ ok 1 #\2 32
=2E ; g max [n ;(hj(ii) R (%) ) —==Exs [(h P&+ (h) (x)]] +66 70)

Denote 7;(X;,x;) = h;f(i,.) — R (x;). We can check that Esw§[7’j(§i’xz’)] =0 forany j=1,..,N(,H,| - |ls)- We compute the variance of
n;(X;,x;) as

2
Varln, (., %)1 = Eg 5 | & x)| =Eq 5 [(h;‘f(i-)—h;f(x,-)) ] <2Eg; [( ) &)+ ) x )] 71)
We thus have
T,<T,+66 (72)
with
T, =2E, gmax [1 ;(mx,,x) 1133 Var[n,(&x)])] (73)
We next derive the moment generating function of njf X;). For 0 <1< 37,we have
r £k k(~l
ss[exp(tnj(x x))] $.3 1+tr/j(x x)+2 a ]
k=2 :
- itk 2(‘[7 ‘)(4DBZ)k 2:|
<Eoz|l+tmEx)+y ————
s.S i -
o = 2% 3k-2

r 2,205
- t )1.(X[-,X,») e Ik_2(4DBz)k_2
.8 [ T+m(Xx)+ 4 z

| 2 “ 3k=2
=E _1+t &, )+t2”/2(§i’xi) 1
e | e X 2 1-4DB%/3
=1+ 1> Var[; & x)];
152X 2-8DB%t/3
- 312
<exp| Var[n;X;,x;,)] ———— ), 74
p( [n;(X; ’)]6—8Dth> 74

where in the first inequality we used |n; (X,x)| <4DB>.

Sett=7/n. For 0 <t< we have

4DB’ ’

T ~ o ( - 1
exp <72) :exp< [Es,§m?x [; z <11j(x,-,x,-) 32D32 Var[n/(ii,xi)]
i=1

[ (- 1% - 1
S[ES,§ exp<tmjax [;, 1 <11j(xi,x,~) anr[ﬂj(i,, ,)])])]

s Zexp<t. 1< o) - 321)32 Varln (. XH))]

u 32
< exp (Z <V“[”I(X"X )]m 321)32 pg N )]>>

i=1
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_ c ~ 3t 1
—;exp (t; <Var[n,(x,-,x,->1 <76—8D321 SoF ))) (75)

where the first inequality follows from Jensen’s inequality and the third inequality uses (74). Setting

3t 1
- = 76
6—-8DB?t 32DB? (76)
gives t = ﬁ < ﬁ and 7= 5. Substituting the value of 7 into (75) gives rise to
T,
- <log <; eXp(0)> =log N6, H, | - lloo)- 77)
implying that
= 2 104DB
T, <Zlog NG - ll) = 1og N (3. H, 11 - Ilo), 78)
and
2
T, < M8 o0 6Tl +66  22E 100 N6 701 - 1) 465 79)
n
We next derive the relation between the covering numbers of X and 72 . For any h,h' € H, we have
h(x) = |9 (x) - z(x)|[3, and 7’ = |’ (x) — z(x)[|3 (80)
for some 4,94’ Flff\]. We can compute
llh = 1l = sup |I14(x) — 20013 = 19" (0 = 2013
o =sup [|¥(x) — z(X)|; = |9 (x) — z(X)l;
=sup ‘ (9x)-9'(®),9(x)+ ¥ (x) — 27r(x)>|
<sup ||9(x) -9 ®)||, |9 + 9 x) - 2x(x)]||,
<V4DBsup VD||#x) - %' )|,
X
=2DB||9x) = %' ®)|| 100 - (81)
Therefore, we have
2
NEH Nl <N (555 Pl - e ) (82)
and
35DB? b
< 00,00 .
T, <225 1o N(ZDB Pl s ) +65. O (83)

A.3. Proof of Lemma 3

Proof of Lemma 3. We first show that there exists a network architecture F(D, D; L, p,K,«, R) so that any ¥ € F;ﬁv can be realized
by a network with such an architecture. Then the covering number of T’;ﬁ\] can be bounded by that of (D, D; L,p, K, k, R).

For any & € %, there exist £ € F,&, and 2 € FZ, so that & = Po&. Denote the set of weights and biases of & by {(Wk‘g,b,‘f)},’:f1

and the set of weights and biases of 2 by {(W9 hg)}Lj We construct F as
F(x) = F30F,0F;(x) (84)
where

Fi(x)=ReLU (W} | - ReLUW Ex+b)) + - +bF ) (85)

consists of the first L — 1 layers of &,

— 2 Z Z 2
F® =W -RelU (W2 _, - ReLUW, t +by)+ - +bf_ ) +b7 (86)
consists of the 2 to Ly, layers of 2.
Note that we have
G(x) = FyoReLUW,” - (W°_ - Fi(x) +b} ) +b{) (87)
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We will design F, to realize the connection between F, and F; in ¢ while keeping similar order of the number of parameters. We
construct F,as

wé b¢
Fz(r)=ReLU<[Wl@ -w7| -ReLU<[_uf§ ] T+ [_bLgf ]>+b?>. (88)
Le Le

Here F, is a two-layer network, with width of O(max{pg,p ¢ }), number of nonzero parameters of O(max{Kg, K¢ }), and all parame-
ters are bounded by max{x e,k }. Furthermore, we have
_ 2 & & 2
FoF,(x)=ReLUW,” - (W_- F{(x)+ by )+b?). (89)
Fy0F,0F,(x) = G(x). (90)
We next quantify the network size:
* F, has depth L — 1, width dp, number of weight parameters no more than K, and all parameters are bounded by k.
+ F, has depth 2, width max{pg,pg}, number of weight parameters is bounded by two times the number of parameters in

(WLé; ,bfg) and (W1@ ,b?), and all parameters are bounded by max{kg,Kg}.
* F; has depth L, — 1, width Dpg,, number of weight parameters no more than K, and all parameters are bounded by «g,.

In summary, F € Fi = Fyn(D. D; L, p. K.k, R) with

L=Lg+L@,p=max{pg,p@}, K=2(Kg +K@), K'=maX{Kg,K@}, R=B. (91)

£ F
Therefore FJ|, C Fyy and

N (8, FZ

e I s ) SN (8 F G Il Hl oo ) - (92)

We next derive an upper bound for N (8, Ff

e 1l Lom). We will use the following lemma:

Lemma 9. Let Fyn(d.dy; L,p,K,k,R) be a class of network: [-B, B]Yt - [-R,R]%2. For any 6 > 0, the 6—covering number of
Fan(dy,dy; L,p, K, k, R) is bounded by

2L2(pB + )xcLpt1\ K
N (6, Fg(dyrdyi L p. Ko, R) |- [l e ) < <%) : ©3)
Lemma 9 can be proved by following the proof of [12, Lemma 6].
By (92) and Lemma 9, we have
N (8. Fygo Il ll oo ) <
<2(Lg + Loy (max{pg.pey ) B+ 2)(max{kg. k) D) 612 (max(p g, poy )1 +Eo*! >2<Ké”*"@) - o4)
3 .

A.4. Proof of Lemma 4

Proof of Lemma 4. We first show that there exist an encoder & : M(q) —» R“M@*D and a decoder 2 : REmU+D — M satisfying

Do&(x) = m(X) (95)

for any x € M(q). We call &(x) and 2 as the oracle encoder and decoder. Then we show that there exists networks & and 9
approximating & and Z so that Db approximates Zo& with high accuracy.
« Constructing & and 2. The construction of & and & relies on a proper construction of an atlas of M and a partition of unity of
M(q). We construct & and Z using the following three steps.

Step 1. In the first step, we use the results from [15] to construct a partition of unity of M(q).

Define the local reach [7] of M at ve M as

Tp(¥) = inf [Ix = ll, (96)

where G = {x € RP : 3 distinct p,q € M such that d(x, M) = ||lx — pll, = |Ix — ql|, } is the medial axis of M. We have
Ty =vienLTM(v)'

Let {v; };=1 be a 6-separated set of M for some integer ¢ > 0. Define p= %(1 +q/7), h If § satisfies

- _6
1-q/(pr)"
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s5<C(—-gq/t)’r 97)

for some absolute constant C, Cloninger and Klock [15, Proposition 6.3] constructs a partition of unity of M(q), denoted by {n Il };_'=1,
defined as

7i(x)
[EeS] (P

0f, )= (98)

2
Ix= v/l 2 ||AI;(X—V;)||2
- hé

f;(x) =max4|1- <

Pty (V;-)

where 7 = [#j;,...,7.]", and A, denotes the D x d matrix containing columnwise orthonormal basis for the tangent space M at v;.. In
(98), j is the index of each C(;mponent of this partition of unity, and the construction of {#; }5:1 only depends on the §—separated set
{v; };=1 and properties of M. With this construction, the cardinality of {#; };= , (and thus the corresponding atlas of M) depends on
g, which goes to infinity as g approaches z.

Step 2. In the second step, we apply a grouping technique to {#; }5=1 to construct a partition of unity of M(g) and an atlas of M
so that their cardinality only depends on M itself.

We use the following lemma:

Lemma 10. For any M in Setting 1, there exists two atlases {I7j,¢j}f="f and {I7j,qﬁj}jci’11 with C,, = O((d log d)(4/7)?) so that for each
j=1,..,Cy,, it holds

(ORZAS7
(ii) inf _ d,(¥,V)>7/8, where d,,(-,-) denotes the geodesic distance on M.
vev; yedV;

(iii) We have

l; (V) = (VDo S HIVy = Vally £dyy(v1,V2),
lo; (VDo <7/4,

for any vl,vzel7j. B
(iv) Forany j=1,...,Cy, and z,,2, € ¢;(V;), we have

67" @) = 67 @)l < 2l12) =2, -

Lemma 10 is proved in Appendix A.5.
We next construct an atlas {V}, ¢; ,C:T of M using Lemma 10, as well as a partition of unity { pj}jci’l‘ defined on M(q) so that
{rjlm }IC:? is a partition of unity subordinate to {V},¢; }JC:I‘

Let U, be the support of 5; defined in (98). Then {U; }5:1 forms a cover of M(q). According to Cloninger and Klock [15, Proposition
6.3], we have

U;nM)c BMJ(V;) with r=¢;6 99)

for some constant ¢; depending on ¢ and 7, where B, ,(v) denotes the geodesic ball on M centered at v with radius r.
For j=1,...,C,,, we sequentially construct

L={k:UnMNV,#Fand kgL, forall j <j}, V;= ] UnM).
kel;

Such a construction ensures that k only belongs to one /;. According to (99) and Lemma 10(ii), as long as 2¢;6 < 7/8, we have V; C 17']
Therefore ¢; is well defined on V;. As a result, {V;,¢; }jci’l‘ is an atlas of M. The relation among I7j V;,V; and V;’s is illustrated in
Fig. 8.

Define

pix) =D m(x). (100)
ke,
Then {p; ,C:f is a partition of unity of M(q) and {p;| }Icﬁ is a partition of unity of M subordinate to {V; }f:ll

We define the oracle encoder & : M(g) - REm@+D a5
T
E(x)= [f1 ® - A, (x)] . with £ =[@,@E)" p;@] R, (o1
and the corresponding decoder 2 : REmU@+D — A as
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Fig. 8. Illustration of the relation among V, 17J v, and Uy’s. In the left figure, V, C 17J and 0V, is away from 617/ according to Lemma 10. For all U,’s (white regions)
that intersect ¥, (blue region), they are inside V; (green region). The set V; (purple region) is the union of all such U,’s that are not included in V), for j’ <. After
transformation ¢;, the relation among these sets is illustrated in the right figure.

Cum
9@ =Y, 67" (@)1:0) X @415

J=1

where (z),.4 = [(zj)1 (zj)d]. For any x € M(q), we can verify that

Cm
ZoE(x)= Y, b} 0 (x(x)) X p; (%)
j=1

= D w0xp®

xesupp(p;)

=r(x).

« Constructing & and 7. ~ _ o
The following lemma shows that there exist network & approximating & and network 2 approximating 2 so that & = Yo&
approximate ¢ with high accuracy.

Lemma 11. ConsiNder Setting 1. For any 0 < € < t/2, there exists a network architecture FfN =FD,Cpy(d+1);Le,pe, {(5 Ke,Rg) giving
rise to a network &, and a network architecture PN@N =F(Cy(d+1),D;Ly,pp, Ky, kg, Ry) giving rise to a network 2, so that

sup [F(x)— ZoE®)lq <€
XEM(q)

with & = Jo&. The network architectures have
Lg =0(og’ ™! +1og D), pp =O0(De™?), Ko =O((Dlog D)e? log?e™"),
kg =0("%), Rg =max{z/4,1},

and
Lg =0(log? ™! +log D), pgy = O(De™), Koy = O(De~“ 10g? € + Dlog D),
kp=0(""), Ry =B.

Lemma 11 is proved in Appendix A.6.
Let & and & be defined in Lemma 11 so that

sup [9(x) = ZoEX)|l < €
XEM(q)

For any x € M(g), we have

19() - 70|l = 19(X) = ZoE®)l o <e. O
A.5. Proof of Lemma 10

Proof of Lemma 10. We construct {I7j,¢ j}jc;"l‘ and {I7j,¢ ! }C:M by covering M using Euclidean balls. We first use Euclidean balls
with radius r; = 7/8 to cover M. Since M is compact, the number of balls is finite. Denote the number of balls by C,, and the centers
by {¢; }jcz”l1 We define

V= B, (c)NnM.
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llz1 — Za||2

T, M

c; Z1 Z2 / parallel to

—  TM

v\
_ P
[vi—vall2 \ L(vy— V1>Tc,'M)
-

Fig. 9. Illustration of the last equality in (103).

C

Then {V; },=1

is a cover of M. The following lemma shows that C,, is a constant depending on d and r.

Lemma 12. Let M be a d-dimensional compact Riemannian manifold embedded in RP. Assume M has reach t > 0. Let {Vj}jcﬁ be a
- . _ Cp

minimum cover of M with V; = M n B,(c;) for a set of centers {c; }1:1‘ For any r < 7 /2, we have

IM|

L<—, (102)
cosd(arcsin 5-)| BY|

Cum
where | M| denotes the volume of M, and |Bf| denotes the volume of the d-dimensional Euclidean ball with radius r.

Lemma 12 is proved in Appendix A.7. By Lemma 12, C,, is proportional to |M|/r¢.

Let P; be the orthogonal projection from V; to the tangent plane of M at ¢;. By Chen et al. [12, Lemma 4.2], V; is diffeomorphic
to a subset of R and PJ is a diffeomorphism.

With the same set of centers, we use Euclidean balls with radius r, = 7/4 to cover M. Define

V= B,z(cj) nM

and 131 be the orthogonal projection from 17/ to the tangent plane of M at ¢;. As 171 is bounded and C,, is finite, there exists a constant
A depending on 7 so that ||13j(v)||oo < A. Setting 13] so that E(cj) =0, we have A <7/4. Again by Chen et al. [12, Lemma 4.2], 1~’] isa
diffeomorphism between I7J and R?. We set ¢; = f’j Since ¥, ¢ V,, ¢, is well defined on V;. We have
inf _dy,(@,V)> inf _|[V=Vl,>r,—r =1/8.
vev, .vedV; vev, eV,

Since ¢;’s are diffeomorphisms, there exist constants C " and C, so that item (iii) and (iv) hold.
We next prove the Lipschitz property of ¢; and d)lT]. For ¢; and any v,v, € I7j, we have

(V1) = & (V)llgo = 1P,V = VD)lloo < I1P;(v) = Vllp < I1V) = Vally < dpy (V). V).
We then focus on ¢~!. Denote the tangent space of M at v € M by T, M, and the principal angle between two tangent spaces

T, M, T,, M by £(T; M, T,, M). We will use the following lemma

sl

Lemma 13 (Corollary 3 in [8]). Let M be a d-dimensional manifold embedded in RP. Denote the reach of M by t. We have
ATy M T, M lvi = vally

2 - 27
for any v,,v, € M.

sin

We have

llzy — 251l

—1 0y _ gl —1y gl v _
l9; 1) — &) @)lle < NP @) — & @2 =V = V2ll2 = €OV, — V. T M|

(103)

where the last equality is due to ¢; being an orthogonal projection and some geometric derivation, see Fig. 9 for an illustration.
The denominator in (103) can be lower bounded as

| cos(«(v) — vz,ch M))| =\/1 — sinz(A(vl —Vy, TC/M))

2\/1 — max sinz(A(TvM,ch M)

vey;
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LT M, T, M)
>4 |1 - max4sin? [ ——————
\ vevy; 2

Iv—c;l,\?
2 l—maNx4<7jz>
\ ver 2T

T 2
( ‘L')

4
>1/2, (104)

where in the third inequality Lemma 13 is used.
Substituting (104) into (103) gives rise to

67" @) = ¢} @)l <2ll2 =250l O
A.6. Proof of Lemma 11

Proof of Lemma 11. We will construct networks & and & to approximate & and &, respectively.
« Construction of &.

The encoder & is a collection of f;’s, which consist of ¢;,7 and p;. We show that these functions can be approximated well be
networks. By Lemma 10(iii), ¢; is Lipschitz continuous with Lipschitz constant 1. According to Lemma 6, for any 0 <e < 1, there

exists a network architecture F(D.d; L, p,.K,.«,, R,) that gives rise to a network ¢ ; satisfying
sup [|¢; (%) — dpjon(X)le, <. (105)
Xev;
Such an architecture has
Ly =0 (log*e;" +log D), p; =0 (De[), K; =0 (De;log’ e, + Dlog D), ;=0 (£,%), R, =7/4.
The following lemma shows that p; can be approximated by a network with arbitrary accuracy (see a proof in Appendix A.8):

Lemma 14. Consider Setting 1. For any 0 <e <1 and j =1,...,Cy,, there exists a network architecture F(D,1;L,p, Kk, 1) giving rise to a
network /7J so that

sup 17,0 = p,(0)| <e.
xeM(q)

Such a network architecture has
L=0(og?e™" +log D), p=0(De™"), K =0((Dlog D)e~" log? e "),k = O(e72).
By Lemma 14, there exists a network 17, €F(D,1;L,,p,,K,, k5, Ry) so that

sup [7;(x) — p;(X)| < €. (106)
XEM(q)

Such a network architecture has

L, =0(og* ;! +log D), p, = O(De}"), K, =O0((Dlog D)e;' log?e3"),k, = O(e7), Ry = 1.
Define
]T

~ ~ ~ ~ ~ T
Fo=[@0" 7®] and Fw=[fe - T,®] . (107)

We have & € FE(D,Cp(d +1); Lg.pe. Kg, kg, Rg) with
L =0(log*e;" +log D), pg = O(De;"), Kg =O((Dlog D)e;” log e} ),
ke =0(e7%), Rg =max{z/4,1}.

The constant hidden in O depends on d, 7,4, B,C,, and the volume of M.
« Construction of 7.

By Lemma 10(iv), q.')Jfl is Lipschitz continuous with Lipschitz constant 2. Although ¢j?‘ is only defined on ¢ j(I7j) C[-7/4,7/419,
we can extend it to [-7/4,7/4]¢ by Lemma 7. Such an extension preserves the property Lemma 10(iv).
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For any 0 < ¢, < 1, by Lemma 8, there exists a network g; € F(d, D; L3, p3, K3, k3, R3) 50 that

swp 118,@ -7 @l <er:
z€[—1/4,7/4]4

Such a network architecture has
Ly=0(log’e;") +log D, py = O(De;"), K3 =0(De;* log> e, + Dlog D), k3 =¢,', Ry =B.

Note that the input of g; is in R? while the input to the decoder is in R©@*+D, We will append g; by a linear transformation

that extract the corresponding elements (i.e., the first d element in the output of fj) from the input of the decoder. Define the matrix
A; € RXCul@+D) with

0 otherwise.

(Aj)i,k:{l ifh=(G-1d+1)+1i,

We define the network

Ej(z) =g;(A;z)
for any z € REm(@+D),

The following lemma shows that the multiplication operator x can be well approximated by networks:

Lemma 15 (Proposition 3 in [62]). For any B> 0 and 0 < ¢ < 1, there exists a network X so that for any |x,| < B and |x,| < B, we have

[X(x1,%5) — X1 X x5| <&, X(x1,0) =X(0,x,) =0.

Such a network has O(loge~!) layers and parameters. The width is bounded by 6 and all parameters are bounded by B>.
Based on Lemma 15, it is easy to derive the following lemma:

Lemma 16. For any B> 0 and 0 < € < 1, there exists a network X so that for any x € R? with ||x||., < B and |y| < B, we have

IX(x, ») — yXllo <&

and (X(x,y)); = 0 if either x; =0 or y =0, where x; denotes the i-th element of x. Such a network has O(loge~!) layers, O(Dloge™")
parameters. The width is bounded by 6D and all parameters are bounded by B>.

Lemma 16 can be proved by stacking D networks defined in Lemma 15. The proof is omitted here.
Let X be the network defined in Lemma 16 with accuracy &,. We construct the decoder 2 as

m
Dz) = Z; (Ej(z),/ijz),
=1
where A; € RIXCmU@+D s a weight matrix defined by
_ 1 ifk=jd+1),
(Apii =
Lk {0 otherwise.

Let Q, = ([—7/4,7/4] X ([0, 1]))°M. Setting &, = % we deduce that
M

Cm
sup | 7(@) ~ 2@l < sup Y, [% (&2 4,2) = 87" (@)1.0) X @) |
72€Q, ZGsz:l o
Cm
= su{[; Z ”; (gNJ»(z),/sz) - ¢j‘l(Ajz)>< (Ajz)”oo
2€8, j=|

Cam
Sféi%’,; (k@@ .42) -5 @x A

+g@xdm -6 AnxA)|_ )
Cum

< 2(52 +&;)
j=1

:éCMQ
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-, (108)

« Error estimation of 4. We have

sup [9(X) = GX)l = sup [[Z08(x) — ZoEX)llo

XEM(q) XEM(q)
< sup [|DoBX) = DoEX)|| o+ sup | ZoEX) = DoEX)|,
XEM(q) xeEM(q)
<es+ sup [|Z08(x) - Z0EX)| - (109)
XEM(q)

We next derive an upper bound of the second term in (109). Recall the definition of f ! andfj in (101) and (107), respectively. Plugin
the expression of Z into the second term in (109), we have

sup | Z08(x) ~ Z0EX)lo = sup
XEM(q) X (q)

Cm - - m
D7 @)1 X gt = 287 (ED1:0) X )y
=1 j=1

J

)

Cut

m
< sup Z(Hqﬁ;‘(@,)l;d)x(ﬁ)dﬁ—¢;'«E>1;d>x(f,)d+l|)m

XeM(9) j=

7 @) X @it = 07 @) X g \L)

m
< sup Z(nqb;l((f,-)l:d>||m||<f,~)d+1—<fj>d+1||w

XEM(9) =)

+ 201 g1 oo 1FD1 4 —(f,~>1;d||2)

Cum
T o~ ~
< sup TN ED a1 = Earilleo + 20D 0 — EDygll
XEM(q)j;<4 j/d+1 j/d+11lco j/1:d j/l:d 2)

m
< sup (217,00 - 5l + 216, - 40501 )

XeM(9) i

M
< Z (%sl +2\/E£1)
Jj=1

SCM(£+2\/E)£1. (110)

In the above, we used qb;l is Lipschitz continuous in the third inequality, d)JT] is bounded by i and |p;| <1 in the fourth inequality,
the definition of Fj, f; ((107) and (101), respectively) in the fifth inequality, and (105) and (106) in the sixth inequality.

Substituting (110) into (109) and setting £, = —————— and &; = £/2 give rise to
g (110) (109) g & 222V 3=¢/28
sup ||§4~(x) -Gl < Eif=e
XEM(q) 2 2

« Network architectures. For &, we have & € F€(D,C(d +1); Lg,pg,Kg, kg, Rg) with

Lg =0(og? ™! +1og D), pp =O0(De™?), Ko =O((Dlog D)e? log?™"),
kg =02, Rg =1/4.

The constant hidden in O depends on d, 7,4, B,C,, and the volume of M.
For &, it consists of X and g;:

« X: It has depth of O(loge~!), width bounded by 6D and O(Dloge™") parameters. All parameters are bounded by B>.
» &;: It has depth O(log? ¢™!) + log D, width of O(De~%) and O(De ¢ log® & + Dlog D). All weight parameters are bounded by £~2.

Therefore, we have 7 € F2(C,(d + 1), D; Loy, pgy» K- Ky, Rey) With
Lo =0(log?e™! +1log D), pgy = O(De™), Koy = O(De~“ 10g? € + Dlog D),
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kp =01, Ry =B.

The constant hidden in O depends on d, 7,4, B,C,, and the volume of M. []
A.7. Proof of Lemma 12

Proof of Lemma 12. Denote the packing number of M using sets in the form of M N B,(c) for ¢ € M by P,,(r). By Niyogi et al. [42,
Lemma 5.3], we have

|M|
P <— 111
() < cos9 (arcsin i)lBﬁl (111)
According to Niyogi et al. [42, Lemma 5.2], we get
Ca S Py(r/2) < M| =o(r™. O (112)

cos (arcsin t)lBﬁ’l
A.8. Proof of Lemma 14

Proof of Lemma 14. Define 5(x) = [nl(x) nc(x)]T. By Cloninger and Klock [15, Lemma 15], for any 0 < £ < 1, there exists a
network architecture F(D,c; Ly, p;, K, k;, 1) giving rise to a network 7 so that

sup [l7(x) = n(x)ll; <e.
XEM(q)

Such a network has

L, =0(log?e~! +log D), p, =0(De™"), K, = O(Dlog D)e ' log?e™"),x, = O(7?).

The constant hidden in O depends on ¢,d, 7,4, B,C,, and the volume of M.

Note that p; is the sum of the elements in the output of » that have index in I;,. We construct p; by appending # by a layer
summing up the corresponding elements. Let w € R¢ so that w, = 1 if k € 7;, and w; = 0 otherwise. The definition of w is an indicator
for the k’s in I;. For different j’s, we have different /,’s and thus different w’s. We construct p; as

7,(x) = w - ReLU((x)).

We have 5, eF(,L,p,K,k,1) for F(1,L,p,K,x,1) defined in Lemma 14 and

sup 15, —p;l= sup D [ —ml
XEM(q) xeM() (7,

c
< sup 2 (% = i)
XEM(9) =]

<e. O
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