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Data-driven identification of differential equations is an interesting but challenging 
problem, especially when the given data are corrupted by noise. When the governing 
differential equation is a linear combination of various differential terms, the identification 
problem can be formulated as solving a linear system, with the feature matrix consisting 
of linear and nonlinear terms multiplied by a coefficient vector. This product is equal to 
the time derivative term, and thus generates dynamical behaviors. The goal is to identify 
the correct terms that form the equation to capture the dynamics of the given data. We 
propose a general and robust framework to recover differential equations using a weak 
formulation with two new mechanisms, narrow-fit and trimming, for both ordinary and 
partial differential equations (ODEs and PDEs). The weak formulation facilitates an efficient 
and robust way to handle noise, and two new mechanisms, narrow-fit and trimming, 
improve the coefficient support and value recoveries respectively. For each sparsity level, 
Subspace Pursuit is utilized to find an initial set of support from the large dictionary. Then, 
we focus on highly dynamic regions (rows of the feature matrix), and error normalize the 
feature matrix in the narrow-fit step. The support is further updated via trimming the 
terms that contribute the least. Finally, the support set of features with the smallest Cross-
Validation error is chosen as the result. A comprehensive set of numerical experiments 
are presented for both systems of ODEs and PDEs with various noise levels. The proposed 
method gives a robust recovery of the coefficients, and a significant denoising effect which 
can handle up to 100% noise-to-signal ratio for some equations. We compare the proposed 
method with several state-of-the-art algorithms for the recovery of differential equations.
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1. Introduction

In recent years, there has been an increasing interest in discovering physical or biological dynamics from complex data. 
The discovery of differential equations can offer important insights into contemporary neuroscience [1], fluid mechanics, 
physical systems [2,3], and biology [4].

In this paper, we focus on the inverse problem of identifying a differential equation corresponding to given data cor-
rupted by noise. Given a time-dependent discrete data set, we aim to discover the underlying equation of the form

∂tu = f (u, ∂xu, . . . , ∂k
xu, . . . ,u2, ∂xu

2, ..., ∂k
xu

2, . . . ,u3, ∂xu
3, ..., ∂k

xu
3, . . .) (1)

where each differential term in the right hand side of (1) is called a feature in this prescribed dictionary. In particular, f is 
called the governing equation of (1). We assume that f in (1) is a linear combination of the features, so that this inverse 
problem becomes the identification of a sparse coefficient vector where both the support and the values of this coefficient 
vector are unknown. Since the features include linear and nonlinear terms, this f in (1) includes nonlinear differential 
equations. This model identification problem is very challenging when the given data are corrupted by noise.

Parameter identification in differential equations and dynamical systems has been studied by scientists in various fields. 
Earlier works include [5–7,2,8,3], where the differential equation (1) is considered in [6,8], symbolic regression is used in 
[2,3], and an optimization approach is taken in [5,6,8]. In recent years, sparse regression is incorporated into the model 
identification problem to promote sparsity in the coefficient recovery [9–24]. Representative works include Sparse Identi-
fication of Nonlinear Dynamics (SINDy) [9–12], Identifying Differential Equations with Numerical Time evolution (IDENT) 
[16,17], Weak SINDy [23,24], RGG [25] and many others [18,26,19,27]. The PDE and dynamics identification problem is also 
addressed by deep learning approaches [28–34].

The majority of existing works apply sparse regression on a linear system formed from (1) with differential features 
[9–12,16–18,20]. From the given data, differential features are approximated via numerical differentiation. When the given 
data contain noise, a denoising step is applied before numerical differentiation. Least-squares moving average is applied 
in [16], successively denoised differentiation is proposed in [17] and regularization is used in [35]. In terms of sparse 
regression, L1 or regularized L1 minimization has been widely used [9,16,18,26]; Sequentially thresholded least-squares 
is used in [11,13–15]; Greedy algorithms are used in [17]. More generally, the coefficients are allowed to be spatially 
dependent in [36,16], and the Group Lasso is used to promote group sparsity where each group represents a feature, which 
is also used for varying coefficient case in [16]. While these methods using differential features give good results, numerical 
differentiation can be unstable for high-order features, and the coefficient recovery may not be robust when the given data 
is corrupted by noise.

Recent progress using a weak/integral formulation [22,25,23,24] shows improvements in the robustness of the sparse 
coefficient identification. A weak form for (1) with a set of test functions gives rise to a linear system with integral features 
instead of differential features. Noise is tackled through the weak form, since a proper test function gives a denoising 
effect. The test functions are chosen to be localized smooth functions vanishing on the boundaries, thus resembling kernel 
functions commonly used in kernel denoising methods. It is shown in [23,24] that using the weak form with the standard 
sequentially threshold least-squares algorithm gives rise to superior numerical performance. Differential equations with 
high-order derivatives, including the Korteweg–De Vries (KdV) equation, the Kuramoto–Sivashinsky (KS) equation, and 2D 
reaction-diffusion equations can be recovered even with a significant amount of noise. A related work [37] focuses on the 
identification of advection-diffusion equations, and shows that a Galerkin-type algorithm using the weak form outperforms 
the collocation-type algorithm using a differential form.

In this paper, we propose a Weak formulation for Identification of Differential Equations with Narrow-fit and Trimming 
(WeakIDENT). To recover (1) where f is a linear combination of various differential terms, we construct a linear system: the 
feature matrix consisting of linear and nonlinear terms called features, multiplied by a coefficient vector, is set equal to the 
time derivative. We use the term coefficient support to refer to a collection of nonzero components in the coefficient vector, 
such that the linear system is composed of the collection of features that contribute to the dynamics represented by the 
data. For the weak formulation, we follow the derivation proposed in [23]. For our sparse coefficient recovery, we perform 
an iterative greedy support identification scheme as in [17] to find the support which gives the collection of linear and 
nonlinear differential terms. For each sparsity level, we use the Subspace Pursuit (SP) algorithm [38] to first find the initial 
guess of the coefficient support. We propose new narrow-fit and trimming steps which improve the support selection as 
well as coefficient value recovery. Among different sparsity results, we choose the one with the minimum Cross-Validation 
(CV) error as the final result. For Cross-Validation, we randomly separate the given data in half, use one set to find the 
coefficients, then use this coefficient vector with the other set of data to compute the error. We provide an error analysis 
in Theorem 1 to show that the error in the linear system under the weak form is significantly smaller than that under the 
differential form.

Our contributions can be summarized as follows:

1. Proposing WeakIDENT to robustly identify differential equations in (1) from highly corrupted noisy data. The weak form 
proposed in [23] allows us to move the derivative to the test functions and facilitates robustness against noise. We 
propose two new and novel mechanisms, narrow-fit and trimming, to improve the coefficient support value and the 
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coefficient support recovery, respectively. These mechanisms utilize a column-wise error normalization to improve the 
robustness of the coefficient recovery. Narrow-fit focuses on highly dynamic regions to reduce the size of the feature 
matrix, and trimming the features with small contributions to the result further contributes to the improvement.

2. We provide comprehensive numerical experiments for ordinary differential systems (ODEs) and partial differential equa-
tions (PDEs), and compare with existing methods such as [16,17,22–24].

We organize this paper as follows. In Section 2, we state the identification problem of differential equations, and give 
details about the feature formulation in the weak form, the choice of test functions, and provide an error analysis of 
the weak form. We present our WeakIDENT Algorithm in Section 3 with the details of error normalization, selection of 
highly dynamic regions with dominant contributions to the identification, and trimming of the features with the least 
contribution to the support. A comprehensive set of numerical experiments is provided in Section 4, including various 
comparisons against state-of-the-art algorithms. We conclude the paper in Section 5, and provide additional experiments in 
Supplementary Material 5.

2. Problem set-up, weak formulation and error analysis

In this section, we state the identification problem for differential equations and formulate a linear system in a weak 
form. We also discuss the choice of test functions and provide an error analysis of the weak formulation.

2.1. Problem set-up

We present the identification problem with one spatial variable for simplicity. It can be easily extended to multi-
variables, and numerical results are provided for the multi-variable case. We consider a spatial-temporal domain � =
[X1, X2] × [0, T ] with X1 < X2 and T > 0. We assume a set of discrete time-dependent noisy data is given:

D= {Ûn
i |i = 1,2, ...,Nx;n = 1, ...,Nt} ∈ R

Nx×Nt , (2)

where Nx , and Nt ∈ N are the size of discretization in spatial and temporal dimension respectively. The data point Ûn
i
is 

an approximation to the true solution of a differential equation

Ûn
i ≈ u(xi, t

n) for (xi, t
n) ∈ �,

at the spatial location xi = i�x ∈ [X1, X2] and tn = n�t ∈ [0, T ]. Here �x = (X2 − X1)/(Nx − 1) and �t = T /(Nt − 1). In the 
noisy case, we express the noisy data Ûn

i
in terms of the clean data Un

i
= u(xi, tn) as:

Ûn
i = Un

i + εn
i , (3)

where εn
i,
represents the noise at (xi, tn). The objective is to identify a differential equation in the form of (1) from the given 

data (2).
We assume that the governing equation f in (1) is a linear combination of linear and nonlinear terms including the 

derivatives of u. This covers a vast range of ODEs and PDEs in applications, e.g., the Lorenz equation, the Lotka-Volterra equa-
tion, transport equations, Burgers’ equation, the heat equation, the KS equation, the KdV equation, and reaction-diffusion 
equations. In this paper, to utilize the weak form, we consider the function f to be a linear combination of different 
derivatives of powers of u:

∂u

∂t
(x, t) =

L
∑

l=1

cl Fl with Fl =
∂αl

∂xαl
fl, where fl = fl(u) = uβl . (4)

The lth feature F l(u) represents the αth
l

spatial derivative of the monomial fl = fl(u) = uβl for some nonnegative integer 
βl . Let the highest order of derivative be ᾱ such that αl ∈ {0, . . . , ᾱ}, and the highest order of monomial be β̄ such that 
βl ∈ {0, . . . , β̄}. We use L to denote the total number of features in the dictionary, which depends on ᾱ and β̄ , since 
it includes all combinations. The formulation of (4) has the advantage in accurate feature approximation particularly for 
the weak form, since integration by parts moves the derivatives to the test function. When the spatial domain is multi-
dimensional, we consider fl as monomials in the multivariable case, and we allow F l to be partial derivatives of fl across 
different spatial dimensions.

In (4), the coefficient can be considered as a sparse vector

c = (c1, ..., cL)
T ∈ R

L (5)

which parametrizes the differential equation. The objective of this paper is to recover the differential equation from the 
given noisy data set D (2), by finding a sparse coefficient vector c (5) of the linear system (1).
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2.2. The weak formulation

The weak formulation of (4) is

∫

�h(xi ,t
n)

φh(xi ,t
n)(x, t)

∂u(x, t)

∂t
dxdt =

L
∑

l=1

cl

∫

�h(xi ,t
n)

φh(xi ,t
n)(x, t)Fldxdt, (6)

where the test function φh(x, t) is locally defined on a region �h(xi ,t
n) , which is centered at (xi, tn) and indexed by h. 

Specifically, each test function φh(x, t) is a translation of a fixed function φ(x, t) such that φh(xi ,t
n)(x, t) = φ(x − xi, t − tn). 

Integration by parts of (6) gives rise to

−

∫

�h(xi ,t
n)

u(x, t)
∂φh(x, t)

∂t
dxdt =

L
∑

l=1

cl

∫

�h(xi ,t
n)

(−1)αluβl
∂αlφh

∂xαl
dxdt, (7)

as long as φh and its derivatives up to order ᾱ vanish on the boundary of �h(xi ,t
n) . The lth term

∫

�h(xi ,t
n)

(−1)αluβl
∂αlφh(x, t)

∂xαl
dxdt

is the lth integral feature with the test function φh . Since the test function is smooth, the numerical integration can be 
carried out with higher order accuracy. With numerical integration, we obtain the following discrete linear system for 
WeakIdent:

Wc = b (8)

where

W = (wh(xi ,t
n),l) ∈ R

H×L, c = (cl) ∈ R
L, and b = (bh(xi ,t

n)) ∈ R
H ,

for

wh(xi ,t
n),l =

∑

(x j ,t
k)∈�h(xi ,t

n)

(−1)αl Ûk
j

∂αl

∂xαl
φh(x j, t

k)�x�t and bh(xi ,t
n) = −

∑

(x j ,t
k)∈�h(xi ,t

n)

Ûk
j

∂φh(x j, t
k)

∂t
�x�t. (9)

Here the numerical integration is computed with the data points (x j, tk) ∈ �h(xi ,t
n) , and wh(xi ,t

n),l represents an approx-
imation of the integral of the feature F l in the integral region �h(xi ,t

n) centered at (xi, tn). The numerical integration is 
computed from NxNt grid points.

For the test function, we follow the derivation and use φ(x, t) as in [23]:

φ(x, t) =

(

1−

(

x

mx�x

)2
)px

(

1−

(

t

mt�t

)2
)pt

, (x, t) ∈ �h(xi ,t
n) (10)

for i = 1, .., Nx, n = 1, ..., Nt where px and pt give the smoothness of φ in terms of x and t . The test function satis-
fies 

∫

�h(xi ,t
n)

φ(x, t)dxdt = 1 and φ(x, t) = 0 for (x, t) ∈ ∂�h(xi ,t
n) , with φ(x, t) localized around (xi, tn) and is supported 

on �h(xi ,t
n) = [xi − mx�x, xi + mx�x] × [tn − mt�t, tn + mt�t] for some positive integers mx and mt . The weak features 

wh(xi ,t
n) in (9) can be written into a convolution form U ∗ ∂αl

∂xαl
φ and calculated through Fast Fourier Transform in terms of 

F −1
(

F (U ) ◦F
(

∂αl

∂xαl
φ

))

, where ◦ denotes point-wise multiplication, and px , pt , mx and mt are carefully chosen to give a 

denoising effect depending on the frequency of the given data as in [23]. For the completeness, more details are presented 
in Supplementary Material 5.3.

The weak form (8) has NxNt rows. For computational efficiency, we subsample W to

H = NxNt ≤ NxNt, (11)

rows by uniformly subsampling Nx and Nt points in space and time respectively. Then, we consider highly dynamic regions 
to further reduce the size of W and b for an improved coefficient recovery (details in Subsection 3.2). In comparison, 
random subsampling is used in [25] for sparse regression, and regions with large gradients in time are considered in [24].
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2.3. Error analysis of the weak formulation

We next analyze the approximation error of the weak formulation in (7). Suppose the given noisy data D (2) has mean-
zero i.i.d. Gaussian noise, E[εn

i ] = 0, and Var(εn
i ) = σ 2 . Let cl be the lth true coefficient in the true support Supp∗ . The 

associated integral formulation using the test function (10) with the true coefficients from the true support becomes
∫

�h

u(x, t)
∂φh(x, t)

∂t
dxdt +

∑

l∈Supp∗

(−1)αlcl

∫

�h

fl(x, t)
∂αlφh(x, t)

∂xαl
dxdt = 0. (12)

We next analyze the error for the discretized system in (8) using the noisy data {Ûn
i
}, approximating the true equation 

(12). The hth row of the linear system (8) is obtained from the weak form with the test function φh . The error for the 
discretized system in (8) is defined as

e = Wc − b (13)

where the row-wise error is

eh =
∑

l∈Supp∗

∑

(x j,t
k)∈�h(xi ,t

n)

(−1)αlclÛ
k
j

∂αl

∂xαl
φh(x j, t

k)�x�t +
∑

(x j,t
k)∈�h(xi ,t

n)

Ûk
j

∂φh

∂t
(x j, t

k)�x�t.

We decompose the error as

e = e
int + e

noise (14)

where

enoiseh = eh −

⎛

⎜

⎝

∑

l∈Supp∗

∑

(x j,t
k)∈�h(xi ,t

n)

(−1)αlclU
k
j

∂αl

∂xαl
φh(x j, t

k)�x�t +
∑

(x j,t
k)∈�h(xi ,t

n)

Uk
j

∂φh

∂t
(x j, t

k)�x�t

⎞

⎟

⎠

einth =

⎛

⎜

⎝

∑

l∈Supp∗

∑

(x j,t
k)∈�h(xi ,t

n)

(−1)αlclU
k
j

∂αl

∂xαl
φh(x j, t

k)�x�t +
∑

(x j,t
k)∈�h(xi ,t

n)

Uk
j

∂φh

∂t
(x j, t

k)�x�t

⎞

⎟

⎠

−

⎛

⎜

⎝

∑

l∈Supp∗

cl

∫

�h(xi ,t
n)

(−1)αluβl
∂αlφh

∂xαl
dxdt +

∫

�h(xi ,t
n)

u(x, t)
∂φh(x, t)

∂t
dxdt.

⎞

⎟

⎠
.

In this decomposition, eint represents the numerical integration error of the noise-free data U . It has been shown in [23]
that eint = O((�x�t)q+1), where q is the order of the numerical integration as in [23], if the decay of test function φ near 
the boundary of the test region satisfies max{φ(1 − 1/mx, 0), φ(0, 1 − 1/mt)} ≤ (

2max{mx,mt }−1
max{mx,mt }2

)q+1 .

The following Theorem 1 provides an estimate of the error enoise arising from noise.

Theorem 1. Consider a dynamical system

ut =
∑

l∈Supp∗

cl
∂αl

∂xαl
uβl

of one spatial variable where Supp∗ denotes the true support of the underlying differential equation. Assume the noise εn
i are i.i.d. 

and satisfies E[εn
i
] = 0, Var(εn

i
) = σ 2 , and |εn

i
| ≤ ε for all i and n. Each test region �h(xi ,t

n) for i = 1, ..., Nx, n = 1, ..., Nt has area 
|�h| =mxmtNxNt . Then,

1. In (14), the error from noise enoise for the discretized system satisfies

‖enoise‖∞ ≤ S̄∗|�h|ε +O
(

ε2
)

(15)

with a constant

S̄∗ = max
h

sup
(x j,t

k)∈�h

∣

∣

∣

∣

∑

l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1 ∂αlφ

∂xαl
(x j, t

k) −
∂φ

∂t
(x j, t

k)

∣

∣

∣

∣

. (16)
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Fig. 1. WeakIdent flowchart: Input weak formulation W and b in (8) subsampled as (11). [Step 1] SP for a given sparsity k gives the first candidate of 
coefficient support Ak

0 . [Step 2] Narrow-fit and [Step 3] Trimming improves the coefficient values c(k, j) and support Ak
j . Steps 2 and 3 are iterated at 

most k − 1 times. Finally, in [Step 4] the result c(k∗, Jk∗ ) with the minimum Cross Validation among all different sparsity level k give the identification of 
the differential equation.

2. The leading error in enoise
h

(that is linear in noise) for the test function φh has mean 0 and variance σ 2S∗
h
where

S∗
h = �x�t

∑

(x j,t
k)∈�h(xi ,t

n)

⎛

⎝

∑

l∈Supp∗

(−1)αlclβl(U
k
j )

βl−1 ∂αlφh

∂xαl
(x j, t

k) +
∂φh

∂t
(x j, t

k)

⎞

⎠

2

. (17)

Theorem 1 is proved in Supplementary Material 5.1. In summary, we prove that the error e in (13) for the discretized 
linear system under the weak formulation satisfies the following upper bound

‖e‖∞ ≤O((�x�t)q+1) + S̄∗|�h|ε +O(ε2) (18)

where q is the order of the numerical integration as in [23]. By comparison, the error for the discretized system under the 
differential form [16] is on the order of

O

(

�t + �xp+1−r +
ε

�t
+

ε

�xr

)

, (19)

where r is the highest order of derivatives for the features in the true support, and the numerical differentiation is carried by 
interpolating the data by a pth order polynomial. By comparing (18) and (19), we observe that the error for the discretized 
linear system in the weak form is significantly smaller than the error in the differential form.

3. WeakIdent algorithm

In this section, we present the details of the proposed Weak formulation for Identifying Differential Equation using 
Narrow-fit and Trimming (WeakIdent) model. There are mainly four steps to the algorithm: After the system is set-up as in 
(8),

[Step 1] For each sparsity level k, we use Subspace Pursuit (SP) [38] to find an initial choice of support Ak
0 from the 

dictionary of L features. SP finds the choice with the minimum residual from a column-wise normalized (21) linear 
system as in [17].

[Step 2] Narrow-fit. To recover the coefficient value using the support Ak
j
, we (i) identify highly dynamic regions of cer-

tain features of interest; (ii) normalize the reduced feature matrix according to the leading error term, then (iii) 
determine a coefficient value vector c(k, j) from this reduced narrow system (We set j = 0 on the first iteration).

[Step 3] Trimming. With the updated coefficient values c(k, j) in [Step 2], we identify a single feature with the least con-
tribution to f . If the contribution score is less than a preset trimming parameter T , we trim the corresponding 
coefficient. This trimming yields a new updated support Ak

j . We iterate [Step 2] and [Step 3], with increment j, 

until no change is made to Ak
j at j = Jk .

[Step 4] Cross Validation. With the final support Ak
Jk

and coefficient value vector c(k, Jk) for each different sparsity level k, 
we select the one c(k∗, Jk∗ ) with the minimum Cross-Validation error (30) as the final result.

A schematic of the algorithm is given in Fig. 1. From the weak form input W and b, for a fixed sparsity level k, SP is 
used to find the initial set of support Ak

0 . Then [Step 2] Narrow-fit and [Step 3] Trimming are iterated until the support 
does not change, where the number of iterations is at most k − 1. Here we use c(k, j) to indicate the coefficient vector 
for the sparsity level k and j iteration. The cross validation is used to select the optimal solution c(K , J K ) among all 
k ≤ L.

We present the details in the following subsections. In [Step 2], we normalize each column of the feature matrix ac-
cording to its leading error term, to balance the effect of noise perturbations across the features. The details for this error

6
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Fig. 2. Error normalization: (a) The given noisy data Û with σNSR = 0.5 in x − t plane. (b) The entry-wise magnitude of the matrix W . (c) The matrix 
W̃ narrow in (23). We use log10 scale in (b) and (c). The difference in scale has been reduced approximately from 1029 in the unnormalized matrix (b) to 
106 after normalization in (c). Our error normalization results in more uniform entry values with less variance across different columns.

normalization of the feature matrix are given in Subsection 3.1. We detail the implementation of Narrow-fit using the highly 
dynamic regions in Subsection 3.2. In [Step 3], we trim the support removing features with contributions below a threshold, 
as described in detail in Subsection 3.3. The algorithm is summarized Subsection 3.4.

3.1. Column-wise error normalized matrix

We use least squares for coefficient recovery. The accuracy of least squares is highly dependent on the conditioning of 
the feature matrix [39,40]. In this paper, we utilize two types of normalization for the columns of the feature matrix to 
improve the coefficient recovery. For the linear system (8), we introduce a diagonal matrix D = diag(d1, ..., dL) and solve

W D
−1

c̄ = b and then c = D
−1

c̄ (20)

instead.
The first type of normalization we consider is column normalization, which is applied to the feature matrix as an input 

to SP in [Step 1]. Denote W = [w1 w2 . . . w L]. We let D = diag(‖w1‖, ..., ‖w L‖) and each column of W is normalized by 
its own norm:

W
† =

[

w1

‖w1‖
,

w2

‖w2‖
, . . . ,

w L

‖w L‖

]

. (21)

We observe that the scale of the columns in the feature matrix usually varies substantially from column to column, which 
negatively affects the SP step. This column normalization helps to prevent a large difference in the scale among the columns. 
For example, in Fig. 2 (b) shows that the magnitude of the entries in W vary from 0 to 1029 .

In [Step 2], we introduce our second normalization – error normalization, which is particularly effective for coefficient 
recovery. The columns in W are given by certain derivatives of a monomial of u. When we compute the feature matrix 
with noisy data, the noise has different effects on different features. For the feature ∂α

∂xα

(

uβ
)

, the noisy data with noise ε in 
(3) give rise to the following integral feature:

∫

�h

(−1)α(u + ε)β
∂α

∂xα
(φh(x, t))dxdt =

β
∑

k=0

(−1)α
(

β

k

)

εβ−k

∫

�h

uk ∂α

∂xα
φh(x, t)dxdt.

The leading coefficient in the error (that is linear in ε) in this integral feature is obtained for k = β − 1:

s(h, l) = β

∣

∣

∣

∣

∣

∣

∣

∫

�h

uβ−1 ∂α

∂xα
(φh(x, t))dxdt

∣

∣

∣

∣

∣

∣

∣

, h = 1,2, ..., H, β ≥ 1. (22)

When α = β = 0, we set s(h, l) = 1. This leading coefficient s(h, l) depends on the row index h and the column index l. For 
the lth column, we define

〈s(h, l)〉h =
1

H

H
∑

h=1

s(h, l)

as an average of these leading coefficients over the rows.

7
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Fig. 3. Highly dynamic regions for an experiment using the KdV equation (33) with σNSR = 0.5. (a) The given noisy data Û with σNSR = 0.5 in x − t plane. 
(b) The separation point 
 (black) for H (24) is found, from the accumulated function B( j) (blue) and the fitted piecewise linear function r( j) with one 
junction at 
 (red). (c) The location of highly dynamic regions in the x − t plane. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

By error normalization, we normalize W with the diagonal matrix D = diag(〈s(h, 1)〉h, . . . , 〈s(h, L)〉h) such that W is 
normalized to

W̃ =

[

w1

〈s(h,1)〉h
,

w2

〈s(h,2)〉h
, . . . ,

w L

〈s(h, L)〉h

]

(23)

Fig. 2 shows an example, with the given noisy data in (a) and the unnormalized feature matrix W in (b). Fig. 2 (c) shows 
the normalized matrix W̃ after the error normalization. We use log 10 scale in Fig. 2. The difference in scale has been 
reduced approximately from 1029 in the unnormalized matrix (b) to 106 after normalization in (c). Our error normalization 
results in more uniform entry values with less variation across different columns.

In the following Subsection, we further discuss how error normalization is used to select the highly dynamic regions.

3.2. Highly dynamic regions: choice of the domain �h(xi,t
n)

One of the benefits of using the weak form is to consider the influence of different regions on the integral computation. 
We take advantage of this and choose a subset of test functions indexed by {h|h = 2, . . . , H} to improve the coefficient 
recovery. We propose the following Narrow-fit procedure: (i) define the features of interest, (ii) determine the highly dy-
namic regions of the chosen features, and then (iii) use the subsampled matrix based on the highly dynamic regions for the 
coefficient recovery. This Narrow-fit procedure focuses on the regions with higher dynamical behaviors for the features of 
interest, so that these regions play a larger role in the coefficient recovery.

Features of interest: We focus on a small group of features which give the variation information for the differential 
equation, thus highlighting which rows to choose for the coefficient recovery. In this paper, we choose the features of 
interest to be the terms corresponding to u and first derivatives consistently for all experiments. We simply utilize the high 
variance region of the function value u and the first derivative, e.g., a term such as uux which gives a combined information, 
since they would likely represent a broad range of dynamical behavior observed in the data. We explored including other 
terms as features of interest, but they did not provide consistent improvements.

Details are as follows: In 1D, we choose the features with (α, β) = (1, 2) for the case of one variable in 1D which 

corresponds to 
∂

∂x
u2 , this term is uux. For a system with two variables u, v in 1D, (α, βu, βv) = (1, 2, 0), (1, 0, 2), they are 

∂

∂x
u2 and 

∂

∂x
v2 . In 2D, we choose the features with (αx, αy, β) = {(1, 0, 2), (0, 1, 2), (1, 1, 3)} for a scalar equation in 2D, 

i.e., the features of interest are 
∂

∂x
u2 , 

∂

∂ y
u2 and 

∂2

∂x∂ y
u3 . For the case of 2 variables (u and v) in 2D, (αx, αy, βu, βv ) =

{(1, 0, 2, 0), (0, 1, 2, 0), (1, 0, 0, 2), (0, 1, 0, 2), (1, 0, 2, 1), (0, 1, 1, 2)}, that is there are six features of interest: 
∂

∂x
u2 , 

∂

∂x
v2 , 

∂

∂ y
u2 , 

∂

∂ y
v2 , 

∂

∂x
u2v , and 

∂

∂ y
uv2 . For each feature of interest, we utilize the leading coefficient error (22) to select highly 

dynamic regions. For multiple features of interest with indices l = l1, l2, ..., lL , we take the average over l, and let

s̄(h) =
1

L

L
∑

i=1

|s(h, li)|,

with s = s̄ for L = 1.

8
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Highly dynamic regions: We consider the set S = {s̄(h)|h = 1, . . . , H}, which is the collection of averaged leading co-
efficient errors over the features of interest. We divide the set S into mildly and highly dynamic regions, automatically 
identifying the transition point 
 between these two types of dynamics as follows.

After partitioning the histogram of S into NS bins (b1, b2, ..., bNS), we consider the cumulative sum of the bins B( j) =
∑ j

i=1 bi . We used NS = 200 for PDEs and NS = 100 for ODEs in this paper. We fit the function B( j) with a piecewise linear 
function r( j) with one junction point, using the cost function 

∑

j(B( j) − r( j))2/B( j)2 . The junction point 
 separates the 
highly dynamic and mildly dynamic regions. Any h with s̄(h) ≥ 
 gives the highly dynamic region �h which we include for 
the coefficient recovery. Let the collection of the row indices of highly dynamic regions be an ordered set:

H = {hi | s̄(hi) ≥ 
, hi < h j for i < j}. (24)

Fig. 3 illustrates how the transition point 
 is computed in (b) from the given data in (a). Fig. 3 (c) shows the locations 
in x − t plane of the highly dynamics regions with the index set H.

Narrow-fit: We consider a submatrix using only the ordered rows from the highly dynamic region H, indicated by a 
subscript H, for both W and b:

W narrow := W H and bnarrow := bH.

We also error normalize this matrix, using the rows in H:

W̃ narrow =

[

w1H

〈s(h,1)〉H

,
w2H

〈s(h,2)〉H

, . . . ,
w LH

〈s(h, L)〉H

]

, (25)

where w iH represents the ith column with the rows indexed by H, and 〈s(h, l)〉H takes the average of s(h, l) for h ∈ H. 
This matrix is represented in Fig. 2 (c). Let b̄ = 〈bnarrow〉 be the average of the entries of bnarrow . After narrow-fitting, we
solve:

W̃ narrow c̃ = b̃narrow where b̃narrow = bnarrow/b̄. (26)

We then compute the coefficient c by rescaling c̃ back:

c = b̄ c̃ diag

{

1

〈s(h,1)〉H

,
1

〈s(h,2)〉H

, . . . ,
1

〈s(h, L)〉H

}

. (27)

3.3. Trimming the support

After the coefficient values in c are recovered, some features give very small contributions to ut . We further trim the 
support by eliminating these features corresponding to small contributions.

From the solution c̃ of the linear equation (26), we define a contribution score ai of each feature as

ai =
ni

maxi≤L ni
where ni = ||w̃ i ||2|c̃i |, i = 1,2, . . . , L. (28)

Here w̃ i denotes the ith column of W̃ narrow . We consider the L2 norm of this column multiplied by the coefficient value of 
the ith component of c̃. Since ai is normalized by the maximum value of ni , ai gives the score of the contribution of the ith

feature relative to the contribution of the feature with the largest contribution.
We trim the coefficient, thus the feature, when the contribution score of that feature is below T , i.e. ai < T . Typically, 

we set T = 0.05 to trim the features with contributions less than 5% of ut . Each time [Step 3] is called to trim the support 
set Ak

j to the new support set Ak
j+1 , and [Step 2] narrow-fit is called to find the updated coefficient value c(k, j + 1).

Fig. 4 shows the effect of trimming. For each sparsity level k in x-axis, the bar shows the cross validation value (30) of 
the recovered coefficient c(k∗, Jk∗). For a large sparsity level, thanks to the trimming step, the correct support and coefficient 
values are found.

3.4. Algorithms

Our WeakIdent algorithm is summarized in Algorithm 1. From the linear system in (8)

Wc = b,

we input b and W computed through (9), with subsampling in (11). For each sparsity level k = 1, 2, . . . , K ,

[Step 1] First, Subspace Pursuit (SP) [38] is applied to find Ak
o = supp{S P (W †, ̃b, s)} using the column normalized matrix 

W † in (21) and b̃ = b/||b||.

9
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Fig. 4. Trimming is demonstrated in an experiment using the KS equation (34). For each sparsity level k in x-axis, the bar shows the cross validation (30)
of the recovered coefficient c(k∗, Jk∗ ). Notice for most sparsity levels 5 and above the correct support is found. After SP finds k supports, the trimming 
step reduces the support until only the correct ones are left. Here σNSR is the noise-to-signal ratio (44), TPR is true positive rate (47) and PPV is positive 
prediction value (48).

[Step 2] Narrow-fit. To recover the coefficient values using the support Ak
j , we find the row index set H of highly dynamic 

regions in (24), and solve

W̃ narrowc̃ = b̃narrow

in (26) and get c(k, j) in (27).
[Step 3] Trimming. Update to Ak

j+1 , if there is any column with the contribution score in (28) below T , i.e. ai < T . If 
trimmed, move to [Step 2] to get a new updated c(k, j + 1). If no column is trimmed, move to [Step 4] and set 
Jk = j.

[Step 4] Cross Validation. With the support c(k, Jk) computed for each sparsity level k = 1, . . . , K , we select the final sup-
port by finding the k∗ which gives the minimum cross-validation error. For a sparsity level k, we randomly sample 
regions from the NxNt regions and equally partition these regions into two sets indexed by A and B respectively. 
We consider the linear system in (26):

W̃ =

[

w1

〈s(h,1)〉H

,
w2

〈s(h,2)〉H

, . . . ,
w L

〈s(h, L)〉H

]

, and b̃ = b/b̄ (29)

utilizing the highly dynamic region error normalization for the large full matrix. Here H indicates ordered row 
index from the set H, and 〈s(h, l)〉H taking the average of s(h, l) for h ∈ H. We solve least square problems 
W̃ A c̃A = b̃A and W̃ B c̃B = b̃B , where W̃ A and B contain the rows of W̃ indexed by A and B respectively. 
Then, we compute the cross validation (CV) error

CV(k) = λ||W̃ Ac̃B − b̃A||2 + (1 − λ)||W̃ B c̃A − b̃B||2, (30)

where we set λ = 1/100. In practice, for each k, we generate 30 different random partitions of H to A and B, 
then select the minimum:

c(k∗, Jk∗) = argmin
k

{CV(k)|k = 1,2, ..., L}. (31)

Here K ≤ L, since L is the total number of features in the dictionary. In practice, a small K is needed. Fig. 4
illustrates that for (small) values of K around K = 10 and below, the correct coefficients are found, thanks to the 
trimming step.

4. WeakIDENT results and comparisons

In this section, we provide detailed experimental results. We summarize a list of PDEs and ODE systems in Table 1 and 
Table 2. For the systems of ODEs, we consider features with polynomial order between 3 and 5, with L ≤ 21 for all the 
cases. For the systems of PDEs, we consider features with both polynomial order and derivative order between 4 and 6, 
which gives a dictionary of size L ≤ 65 for the 1 spatial dimension and L ≤ 190 for 2 spatial dimensions. Simulation and 
feature details are presented in Table 1 and 2 for each experiment.

For PDEs, Nx and Nt are chosen such that NxNt ∈ (1, 000, 3, 000) to reduce the computational cost. In particular, we set

Nx = �
Nx − 2mx − 1


Nx/N�
+ 1� and Nt = �

Nt − 2mt − 1


Nt/N�
+ 1�, (38)

10
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Algorithm 1: WeakIdent Algorithm.

Input: W ∈ RH×L , b ∈ RH , from (8) uniformly subsampled as (11); Parameter T = 0.05
for k = 1,2,...,K do

[Step 1] Ak
0 = supp{SP(W †, ̃b, s)} use SP [38] and set j = 0;

[Step 2] Find c(k, j) by narrow-fit (26);
while there exists ai < T as in (28) do

[Step 3] Trim as in Subsection 3.3 and set j = j + 1 ;
[Step 2] Find c(k, j + 1) by Narrow-fit (26);
end

end

Among k = 1, . . . , K , find c(k∗, Jk∗ ) by Cross Validation in (31).
Output: c = c(k∗, Jk∗ ) ∈ RL such that Wc ≈ b.

Table 1

A list of PDEs considered in this paper. Here L is the total number of features, ᾱ is the highest order of partial derivative, β̄ is the highest degree used in 
fl in (4), [X1, X2] is the range of the spatial domain, T is the final time for simulation. �x and �t are the spatial and temporal increment of the given 
data. The set up of (33), (34), (35), (36), and (37) are identical to [23].

Equation Parameters

Transport equation

∂u

∂t
= −

∂u

∂x
+ 0.05

∂2u

∂x2
(32)

L = 43, ᾱ = 6, β̄ = 6, [X1, X2] = [0, 1], �x = 0.039, T = 0.3, 
�t = 0.001

u(x, 0) = sin(4π/(1 − T )x)3 cos(π/(1 − T )x)

for x < 1 − T , and 0 otherwise

Korteweg-de Vires (KdV)

∂u

∂t
= −0.5u

∂u

∂x
−

∂3u

∂x3
(33)

L = 43, ᾱ = 6, β̄ = 6, [X1, X2] = [−π , π ], �x = 0.0157,

T = 0.006, �t = 10−5

u(x, 0) = 3.0 × 252 ∗ sech(0.5 × (25 × (x + 2.0)))2

+3.0 × 162 ∗ sech(0.5 × (16 ∗ (x + 1.0)))2

Kuramoto-Sivashinsky (KS)

∂u

∂t
= −u −

∂2u

∂x2
−

∂4u

∂x4
(34)

L = 43, ᾱ = 6, β̄ = 6, [X1, X2] = [0, 100.53],
�x = 0.3927, T = 150, �t = 0.5

u(x, 0) = cos(x/16)(1 + sin(x/16)).

Nonlinear Schrodinger (NLS) (1D)
⎧

⎪

⎨

⎪

⎩

∂u

∂t
= 0.5

∂2v

∂x2
+ u2v + v3

∂v

∂t
= −0.5

∂2u

∂x2
− uv2 − u3

(35)

L = 190, ᾱ = 6, β̄ = 6

[X1, X2] = [−5, 5], �x = 0.0391

T = 3.1416, �t = 0.0126

Anisotropic Porous Medium (PM) (2D)

∂u

∂t
= +0.3

∂2u2

∂2 y
− 0.8

∂2u2

∂x∂ y
+

∂2u2

∂2x
(36)

L = 65, ᾱ = 4, β̄ = 4

[X1, X2] = [−5, 5], �x = 0.0503

T = 5, �t = 0.0503

Reaction-Diffusion (2d)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂u

∂t
= 0.1

∂2u

∂2x
+ 0.1

∂2u

∂2t
+ u + v3 − uv2 + u2v − u3

∂v

∂t
= 0.1

∂2v

∂2 y
+ 0.1

∂v2

∂2x
+ v − v3 − uv2 − u2v − u3

(37)

L = 155, ᾱ = 4, β̄ = 5, [X1, X2] = [−10, 10]
�x = 0.0781, T = 9.9219, �t = 0.0781

u(x, y, 0) = tanh(
√

x2 + y2 cos(θ(x + iy) − π
√

x2 + y2),

v(x, y, 0) = tanh(
√

x2 + y2 sin(θ(x + iy) − π
√

x2 + y2)

with N = 50 as a default choice. Here �·� and 
·� denotes the ceiling and floor operator. In Table 1, (38) is used for the 
transport question (32), the KS equation (34) and the nonlinear Schrodinger equation (35). For certain cases such as the KdV 
equation (33) where |H| is very small, we increase Nx and Nt , e.g., using N = 70, such that |H| > 800. For the spatially 2 
dimensional cases, we use N = (25, 25) for the anisotropic porous medium equation (PM) (36), and N = (19, 16) for the 2D 
reaction-diffusion equation (37) to reduce the time of computation. For the ODEs listed in Table 2, we choose Nt ≈ 1000 by 
default with N = 1000. Since we use different subsampling, we present additional comparisons in Section 4.5 to demonstrate 
that the effect of subsampling on the result is minimal.

The experiments are performed on both clean data and noisy data with various Noise-to-Signal Ratio, σNSR defined as 
follows:

11
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Table 2

A list of ODEs considered in this paper. This table includes the initial condition, the temporal increment �t , the total 
simulation time T , the total number of features L and the highest degree of polynomials β̄ in (4) for each equation. The 
Solution is simulated with RK45 with tolerance 10−10 .

Name Equation Parameters

2D Linear 
System

d

dt

[

x

y

]

=

[

−0.15 2.5
−2.5 −0.15

][

x

y

]

(39)
(x0, y0) = (2, 50),
�t = 0.01, T = 10

L = 21, β̄ = 5

2D Nonlinear
(Van der Pol) d

dt

[

x

y

]

=

[

0 1 0
4 −1 −4

]

⎡

⎣

x

y

x2 y

⎤

⎦ (40)
(x0, y0) = (0, 1)
�t = 0.001, T = 15

L = 21, β̄ = 5

2D Nonlinear
(Duffing)

d

dt

[

x

y

]

=

[

0 1 0
−0.2 −0.05 −1

]

⎡

⎣

x

y

x3

⎤

⎦ (41)
(x0, y0) = (0, 2)
�t = 0.01, T = 10

L = 21, β̄ = 5

2D Nonlinear
(Lotka-Volterra)

d

dt

[

x

y

]

=

[

0.67 0 −1.33
0 −1 1

]

⎡

⎣

x

y

xy

⎤

⎦ (42)
(x0, y0) = (10, 10)
�t = 0.05, T = 50

L = 21, β̄ = 5

3D Nonlinear
(Lorenz)

d

dt

⎡

⎣

x

y

z

⎤

⎦=

⎡

⎣

−10.2 10.2 0 0 0
29 −1 0 0 −1
0 0 −2 1 0

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎣

x

y

z

xy

xz

⎤

⎥

⎥

⎥

⎥

⎦

(43)

(x0, y0, z0) = (−8, 7, 10)
�t = 0.001, T = 15

L = 20, β̄ = 3

σNSR =
εn
i

1
NtNx

∑

i,n

|Un
i − (max

i,n
Un

i +min
i,n

U i)/2|
2

(44)

for i = 1, ..., Nx , n = 1, ..., Nt . Note that our definition of NSR reflects the local variation of the given data. This is different 
from the absolute variation (absolute root mean squared of Un

i
) σNR used in [23], and this σNSR value tends to be smaller 

than the σNR value. We also mention the σNR value in the following experiments when it is relevant. We use Gaussian 
noise, such that εn

i
∼N(0, σNSR) for εn

i
, and Ûn

i
in (3). For the case of multiple variables, we compute (44) for each variable.

Error measures: To quantify the quality of the recovery, we utilize different error measurements listed in Table 3. The 
relative coefficient errors E2 in (45) and E∞ in (46) measure the accuracy of the recovered coefficients c against the true 
coefficients c∗ in terms of the l2 and the infinity norm, respectively. We introduce two new measures to quantify the 
accuracy of the support recovery. The True Positive Rate (TPR)4 (47) measures the fraction of features that are found out 
of all features in the true equation, and is defined as the ratio of the cardinality of the correctly identified support over 
the cardinality of the true support. The TPR is 1 if all the true features are found. The Positive Predictive Value (PPV) (48)
indicates the presence of false positives: it is the ratio of the cardinality of the correctly identified support over the total 
cardinality of the identified support. The PPV is 1 if the recovered support is also in the true support. The residual error Eres

in (49), which is also used in [17], measures the relative difference between the learned differential equation and the given 
data. To show the effectiveness of WeakIdent in the recovery of the dynamics, we define the dynamical error Edyn in (50)
to measure the difference between the true dynamics and the expected dynamics simulated from the recovered equation. 
In (50), we use Un

i,forward and Un
i,clean to denote the simulated data and the true data without noise. We simulate ODEs using 

RK45 with the relative error tolerance to be 10−10 . This is measured for ODEs only, due to restricted stability conditions for 
PDEs. If the identified equation blows up before the final time T is reached, we compare Un

i,forward and Un
i,clean just before 

the blow-up.

4.1. WeakIdent results and comparisons for PDEs

We present the WeakIdent and comparisons in this subsection for PDEs, and in subsection 4.2 for ODEs. We compare 
with existing methods, such as the IDENT in [16], the Robust Ident, with Subspace pursuit Cross validation (SC) and Subspace 
pursuit Time evolution (ST) in [17], SINDy [9], and methods using the weak form such as RGG [25], Weak SINDy for first 
order dynamical systems (WODE) [24], and Weak SINDy for PDEs (WPDE) [23].

4 The definition of TPR in (47) is different from that used in [23].
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Table 3

Error measurements used for comparisons.

Relative coefficient Error l2 E2 = ||c∗ − c||2/||c
∗||2 (45)

Relative coefficient Error l∞ E∞ = max
l

{|c∗(l) − c(l)|/|c∗(l)| : c∗(l) �= 0} (46)

True Positive Rate TPR = |{l : c∗(l) �= 0, c(l) �= 0}|/|{l : c∗(l) �= 0}| (47)

Positive Predictive Value PPV = |{l : c∗(l) �= 0, c(l) �= 0}|/|{l : c(l) �= 0}| (48)

Residual Error Eres = ||Wc − b||2/||b||2 (49)

Dynamic Error Edyn =
∑

1≤i≤Nx,1≤n≤Nt

(|Un
i,forward − Un

i,clean|
2)/(NxNt) (50)

For fair comparisons, when available, we used the same underlying equations provided by SINDy [9], WODE [24], WPDE 
[23] or RGG [25] provided in their respective Githubs.5 WeakIdent and WPDE use the same dictionary of features as well 
as the same parameters for the weak form (a system with the same number of variables and dimensions in the spatial 
domain) to each other. RGG [25] uses a subset of features (e.g. 8-14 features), which is different from other methods which 
use the full feature matrix (L = 21 to 190 features). For each experiment in the comparison, we specify which features are 
used for RGG. In many of the PDE experiments in this section, we show comparisons only between our proposed WeakIdent 
and WPDE [23], since these two methods give the best results compared to others, based on the error measures in Table 3.

4.1.1. Transport equation
The first set of results in Fig. 5 shows results for the transport equation (32) with clean and noisy data. (a), (b) and (c) 

compare the recovery results with clean data, and (d), (e) and (f) compare the results with highly corrupted data where 
σNSR = 100%. For the case of clean data, RGG [25], WPDE [23] and the proposed WeakIdent find the correct support ux, uxx , 
while the latter two methods have higher accuracy. In the noisy case of σNSR = 100%, only WeakIdent is able to identify the 
correct support with the E2 value as low as 0.008.

In Fig. 6, we provide statistical comparisons between our proposed WeakIdent and WPDE [23] applied to the transport 
equation (32) for different levels of σNSR . We show box-plots for the distribution of the identification errors E2, E∞ , TPR 
and PPV over 50 experiments for each level of σNSR ∈ {0.01, 0.1, 0.2, ..., 0.9}. The WeakIdent results are robust even for large 
noise levels: Panels (a3) and (a4) show that in the majority (> 75%) of the cases, a correct support is found by WeakIdent 
with low E2 error in Panel (a1).

4.1.2. Anisotropic Porous Medium (PM) equation
In Fig. 7, we compare the recovery results for the 2D anisotropic porous medium equation (PM) (36), which includes a 

feature with the cross-dimensional derivative uxy . Fig. 7 (a) shows Û (x, 0) and (b) shows Û (x, T ), where the given noisy 
data has noise-to-signal ratio σNSR = 0.08. This noise level is equivalent to σNR = 0.4139 as defined in WPDE [23]. We show 
different recovered equations with the identification error E2 in (c). WeakIdent is able to identify the correct support with 
the coefficient error E2 = 0.0056, demonstrating WeakIdent’s capability to identify features across multiple dimensions on 
2D spatial domain.

4.1.3. Reaction-diffusion equation
In Fig. 8, we compare the recovery results for the 2D reaction-diffusion equation (37). These systems can generate a 

variety of patterns such as dots, strips, waves and hexagons. The Laplacian (diffusion) features �u, �v in this equation may 
be difficult to identify in general, particularly in the case where the diffusion coefficients are small compared to those of 
other features, and accumulated noise can be emphasized. We use the spiral pattern data set from [23]. Fig. 8 (a) shows 
Û (x, 0) and (b) shows Û (x, T ), where the given noisy data has σNSR = 0.08 (equivalent to σNR = 0.08 defined in [23]). We 
show different recovered equations with the E2 identification error in Fig. 8 (c). WeakIdent finds the correct terms with a 
small coefficient error.

In Fig. 9, we present the statistical results of WeakIdent over 50 experiments for the 2D reaction-diffusion equation (37).

4.1.4. PDEs and systems of PDEs with higher order features
In Fig. 10, we show the average errors of WeakIdent and WPDE over 50 experiments on the PDEs and systems of PDEs 

in Table 1 with different noise levels. Each column gives the E2 error, TPR and PPV respectively. In each row, we present the 

5 SINDy and WODE at https://github .com /dm973 /WSINDy _ODE, WPDE at https://github .com /dm973 /WSINDy _PDE, and RGG at https://github .com /
pakreinbold /PDE _Discovery _Weak _Formulation.
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Fig. 5. Transport equation with diffusion (32): clean data case in (a), (b) and (c), and noisy data with σNSR = 100% in (d), (e) and (f). WeakIdent is compared 
with WPDE [23], RGG [25], IDENT [16], SC [17], and ST [17]. The error measures are in Table (b) and (e) and the recovered equations are in (c) and (f).

results from the transport equation (32), KdV equation (33), the KS (34), the nonlinear Schrodinger (35), the anisotropic PM 
equation (36), and the 2D reaction-diffusion equation (37). In the first column, we present the ratio σ̃ = σNSR/σNR where 
σNR denotes the noise ratio in WPDE [23]. (The upper bounds of the noise ratio σNR [23] are 1.07, 0.78, 0.9, 0.81, 0.78, 
0.1 for each equation.) Here the KdV (33) and KS equations (34) include higher order derivative features uxxx and uxxxx . 
These features are in general difficult to recover, especially from highly corrupted noisy data. Each plot gives comparisons 
between WeakIdent (Red) and WPDE (blue), with σNSR on the x-axis. The y-axis is the E2 error, TPR, or PPV averaged over 
50 experiments for a given σNSR . According to the E2 error shown in the first column, WeakIdent has smaller E2 errors 
than other methods, showing that WeakIdent is more accurate in the coefficient recovery. According to the TPR and PPV in 
the second and third column, WeakIdent is more accurate in support recovery since the TPR and PPV values of WeakIdent 
are closer to 1.

4.2. WeakIdent results and comparisons for ODEs

Since ODE systems do not include spatial derivatives, they have lower computational cost in feature computation. We 
consider polynomial terms with the highest order being 5. Table 2 presents details of the parameters used for simulation. In 
Fig. 11, we show the identified dynamics and various identification errors obtained from WeakIdent on the 5 ODE systems 
listed in Table 2. The noise-to-signal ratio is σNSR = 0.2 for the linear system (39), the Van der Pol nonlinear system (40)
and σNSR = 0.1 for the rest of the systems. Fig. 11 (a)-(e) show the phase portraits of the given noisy data for the different 
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Fig. 6. Transport equation (32), statistical comparison between WeakIdent (the top row) and WPDE [23] (the second row). The errors E2, E∞ , TPR and PPV 
are shown from 50 experiments for each σNSR ∈ {0.01, 0.1, 0.2, ..., 0.9} using box-plots. The E2 and E∞ errors by WeakIent are lower than the errors of 
WPDE, with less variations. The TPR and PPV by WeakIdent are closer to 1 with less variations as well.

Fig. 7. Anisotropic Porous Medium (PM) equation (36) on a 2-D spatial domain with cross derivative feature. We set σNSR = 0.08, which is equivalent to 
σNR = 0.4139 in WPDE [23]. (a) Given noisy data Û (x, 0) and (b) Û (x, T ). (c) Identified equations with the E2 error.

ODEs (red) superimposed on the simulated true data (black). Fig. 11 (f)-(j) show the WeakIdent results (green) compared to 
the true solution (black). WeakIdent is able to find the correct support in the majority of the cases with E2 ≤ 0.088.

Fig. 12 compares the recovery results for the Lotka-Volterra (LV) system (42) across different methods, showing results 
for the given data sets with various noise levels. The methods we compare include WODE [24], SINDy [9], Robust IDENT 
SC [17] and ST [17]. Each column is associated with an error type and each row gives results from one method. WeakIdent 
is able to capture the correct support with a low coefficient error in the last rows. WODE, SINDy, SC and ST has larger 
coefficient errors with incorrect support in many cases. A similar statistical comparison between these methods on the 
Lorenz system (43) is shown in Figure 19 in the Supplementary Material 5.2.2. We refer to Table 5 and Table 6 for the 
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Fig. 8. Reaction-diffusion equation (37) on a 2D spatial domain with σNSR = 0.08 (equivalent to σNR = 0.08 defined in [23]). (a) Given noisy data Û (x, 0)
and (b) Û (x, T ). (c) The identified equations and the E2 errors. WeakIdent finds the correct terms with a small coefficient error.

Fig. 9. The Identification results from WeakIdent for the reaction diffusion equation (37): The E2, E∞ errors, TPR and PPV are shown from 50 experiments 
for each σNSR ∈ {0.01, 0.02, ..., 0.1} using box-plots.

recovery results of the Lotka-Volterra system (42) and the Lorenz system (43) from two noisy data sets with σSNR = 0.1. We 
also provide a comprehensive comparison on all ODE systems listed in Table 2 in Supplementary Material 5.2.2 (See Figure 
18 for the details).

4.3. Influence of the initial condition in WeakIdent

Fig. 13 shows comparisons of WeakIdent and WPDE for the KS equation (34) on noisy data with σNSR = 0.6, using 5 
different initial conditions: (1) u(x, 0) = cos(x/16). ∗ (1 + sin(x/16)), (2) u = cos(x/4). ∗ (1 + sin(x/5)), (3) u = cos(x/10). ∗
(1 + cos(x/5)), (4) u = sin(x/4). ∗ (1 + cos(x/5)), (5) u = sin(x.2/4). The top row illustrates the given clean data from the 
different initial conditions yielding different pattern evolution. In each box plot, the x-axis gives the indices of the initial 
condition (1)-(5). WeakIdent recovery is robust across these different patterns in recovering this system with higher order 
features.
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Fig. 10. The identified PDEs in Table 1 for different noise levels. We compare WeakIdent (Red) and WPDE (Blue). The x-axis is σNSR , while the y-
axis is the average E2 error, TPR and PPV over 50 experiments. The relative noise ratio σ̃ = σNSR/σNR compares our noise level σNSR vs. σNR in 
[23]. We present results for the transport equation (32), the KdV equation (33), the KS equation (34), the NLS equation (35), the PM equation (36), 
and the reaction-diffusion (2D) equation (37). The noise-to-signal ratio σNSR ranges in {0, 0.1, 0.2, ..., 0.9}, {0.01, 0.02, 0.04, ..., 0.24}, {0, 0.1, 0.2, ..., 0.9}, 
{0.01, 0.1, 0.2, ..., 0.5}, {0.01, 0.03, 0.05, ..., 0.15}, and {0.01, 0.02, ..., 0.1} for each equation respectively.

4.4. The choice of the trimming parameter T

In Fig. 14, we present the coefficient E2 error (y-axis) against different values of the trimming parameter T (x-axis) for 
different noise-to-signal ratios (different color curves) for (a) the KdV equation (33) and (b) the KS equation (34). In general, 
we use T = 0.05 as a default for all equations in Table 1 and Table 2, except for the KS equation (34) and the PM equation 
(36) for which we use T = 0.2. Our experiments use the same distribution of seeds for the noise with different variances. 
Different color curves represent the different values of noise-to-signal ratio σNSR ∈ {0, 0.1, ..., 1}. For example, when there is 
no noise, σNSR = 0 (the lowest blue curve), it gives the lowest recovery error (compared to other colored curves) over the 
widest range of allowable T . There is a wide range of T that yields the same recovery. We use T = 0.2 for the KS and 
PM equations, by choosing a value of T from a large plateau. This makes the algorithm more robust. In general, since the 
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Fig. 11. WeakIdent results for ODE systems in Table 2. (a)-(e): Given noisy data compared to the true dynamics. (f)-(j): Recovered systems via WeakIdent 
using true initial conditions. WeakIdent recovers the dynamics close to the true dynamics with a small identification error.

Table 4

Typical examples of the feature matrix size and the reduction in narrow-fit. The given data is of size NxNt and it is 
subsampled to H = NxNt rows for W . We use σNSR = 0.1 for the RD equation (37) and σNSR = 0.2 for the rest of the 
equations. For systems of equations, the size of the feature matrix for each dependent variable is identical.

Equation Nx Nt Nx Nt W size(H × L) W̃ narrow size

Linear Equ. (32) 257 300 36 39 1404 × 43 824 × 43
KdV Equ. (33) 400 601 71 65 4615 × 43 1367 × 43
KS Equ. (34) 256 301 46 43 1935 × 43 916 × 43
NLS Equ. (35) 256 251 39 42 1225 × 190 159 × 190
PM Equ. (36) 200 × 200 128 14 × 14 16 3136 × 65 1349 × 65
RD Equ. (37) 256 × 256 201 13 × 13 14 2366 × 155 2271 × 155

Linear Equ. (39) - 1001 - 851 877 × 21 127 × 21
VdP Equ. (40) - 15001 - 958 958 × 21 295 × 21
Duffing Equ. (41) - 1001 - 915 915 × 21 57 × 21
LV Equ. (42) - 1001 - 947 947 × 10 338 × 10
Lorenz Equ. (43) - 15001 - 983 983 × 20 930 × 20

colored curves are decreasing functions in terms of T , if the given data is highly corrupted by noise, using a larger T can 
help with the identification.

4.5. Effects of subsampling in data acquisition and the feature matrix W

In Fig. 15, we show the effects of changing the final time T (the top row), and of changing �x and �t for NxNt (the 
second row), and of changing the uniform subsampling in (11), i.e., �t∗ and �x∗ for the generation of the feature matrix 
(the third row). We compare for the KS equation (34), the 2D linear ODE system (39), the Van der Pol equation (40), and 
the Duffing equation (41) to illustrate the effects. The noise level is σNSR = 0.1 for each example. We present the average 
of the E2 error, the TPR and PPV values from 20 independent experiments for one varying variable among the variables 
{T , �t, �x, �t∗, �x∗} while fixing the rest. The first row shows that the recovery by WeakIdent is robust as long as T
is above a sufficiently large value (e.g. 100 or 10), which indicates that there is a time T such that the solution of the 
differential equations contains enough dynamics up to time T . The second row shows that WeakIdent gives a smaller error 
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Fig. 12. The Lotka-Volterra equation (42). Statistical comparisons between (a1)-(a4) WeakIdent, (b1)-(b4) WODE [24], (c1)-(c4) SINDy [41], (d1)-(d4) SC [17]
and (e1)-(e4) ST [17]. The E2, Eres errors, TPR and PPV are shown from 50 experiments for each σNSR ∈ {0.01, 0.02, ..., 0.1} using box-plots. Notice that for 
WeakIdent, the E2 error is lower with less variations, and the TPR and PPV are closer to 1 as compared with that obtained from other methods.

with smaller �x and �t . The bottom row shows that the size of uniform subsampling in space and time of the feature 
matrix does not affect the recovery.

In Table 4, we show an example of the size reduction from W to Wnarrow for the PDEs and ODEs considered in this paper. 
We use σNSR = 0.1 for the RD equation (37) and σNSR = 0.2 for the rest of the equations. The given data is of size NxNt

and it is subsampled to H = NxNt number of rows for W . The narrow-fit further reduces the feature matrix to W̃narrow for 
computational accuracy.

4.6. Speed of WeakIdent

We perform experiments using Matlab on the Apple M1 processor with 8-core CPU and 16 GB of RAM. The computational 
cost of WeakIdent is typically about 1-5 seconds for an ODE system or a PDE with one dependent variable in a 1D spatial 
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Fig. 13. The KS equation (34) using five different initial conditions (1)-(5) with the noisy level of σNSR = 0.6. In (a)-(f) the x-axis is the index of initial 
conditions (1)-(5). For each initial condition, the box plot represents the statistical results over 50 experiments. WeakIdent gives a smaller E2 error, and 
PPV is closer to 1 with less variations.

Fig. 14. The coefficient E2 error (y-axis) versus the trimming parameter T (x-axis) for the identification of (a) the KdV equation (33) and (b) the KS 
equation (34). Different color curves represent results for various noise-to-signal ratios σNSR ∈ {0, 0.1, ..., 1}. Notice a wide range of T gives the same 
recovery.

domain. For example, the cpu times to recover the Lotka-Volterra system (42) and the KdV equation (33) are 1.11 and 0.63 
seconds, respectively. For the cases in 2D spatial domains, such as the anisotropic PM equation (36) with one variable, and 
the 2D reaction-diffusion equation (37) with two variables, the recovery can take about 3 and 35 seconds, respectively. 
The speed is comparable with WPDE [23], which takes 16 and 75 seconds for these two examples. We note that the main 
difference in computation comes from using modified sequential thresholding least-squares (MSTLS) and Subspace Pursuit 
as in this paper. For the methods using MSTLS, thresholding lease square is performed for a large number (e.g., 50) of 
different λ (a parameter in MSTLS) to seek for a good threshold, so that the solutions are computed many times, while SP 
doesn’t require to do this. For the computational cost scaling as the number of feature increases, with the trimming step, 
as in the case of Fig. 4, typical examples converged to the correct support for a smaller sparsity then L. One may be able to 
stop SP after a reasonable sparsity k is reached to reduce unnecessary computation.

In Supplementary Material 5, we present additional results and more comparisons. The additional results for PDEs are in 
Subsection 5.2.1 and additional results for ODEs are in Subsection 5.2.2. Details about how to construct test functions are 
given in Supplementary Material 5.3.

5. Conclusion and discussion

We propose a new method WeakIdent for identifying both PDEs and ODE systems from noisy data using a weak for-
mulation. The proposed WeakIdent does not require prior knowledge of the governing features, but uses all features up to 
certain polynomial order, and up to certain order of derivatives. We first use Subspace Pursuit to find a candidate support, 
then propose two novel techniques called narrow-fit and trimming to improve both the support identification and the coef-
ficient recovery. A careful design of the test functions helps with the recovery, and a proper normalization of the columns in 
the feature matrix improves the results in the implementation of least-squares. The proposed WeakIdent requires at most L
sparsity iterations (or including the sub-iteration of narrow-fit and trimming, at most L2

2 iterations), where L is the number 
of features. At the same time the trimming step improves the recovery and gives good results after a fraction of L is used 
to identify the correct support, as shown in Fig. 4. Narrow-fit based on highly dynamic regions also makes the computation 
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Fig. 15. Effects of the final time T (the top row), �t, �x for NxNt of the given data (the second row), and subsampling �t∗, �x∗ in (11) in the third 
row. Each graph shows the average of the E2 error, the TPR and PPV values over 20 experiments for one varying variable among the variables in 
{T , �x, �t, �x∗, �t∗} while the rest is fixed. The noise level is σNSR = 0.1. The left column gives the PDE results for the KS equation while both �t, �x

are shown. The right columns show �t only for ODEs, including the 2D Linear system (39), the Duffing equation (41) and the Lotka-Volterra equation (42). 
There is a transition point in T such that the given data up to T contain enough dynamics. The recovery is in general better with smaller �t and �x, and 
the rate of uniform subsampling has a minimal effect on the results.

more efficient, and with error normalization of the feature matrix, the coefficient recovery is improved. Comprehensive nu-
merical experiments on various equations/systems are provided, showing the robust performance of WeakIdent compared 
to other state-of-the-art methods. The Weak form in general is effective when the noise level is high, at the same time, 
to take advantage of the weak form, the possible features in the differential equation must be in a specific form for the 
integration of parts.
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