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Data-driven identification of differential equations is an interesting but challenging
problem, especially when the given data are corrupted by noise. When the governing
differential equation is a linear combination of various differential terms, the identification
problem can be formulated as solving a linear system, with the feature matrix consisting
of linear and nonlinear terms multiplied by a coefficient vector. This product is equal to
the time derivative term, and thus generates dynamical behaviors. The goal is to identify
the correct terms that form the equation to capture the dynamics of the given data. We
propose a general and robust framework to recover differential equations using a weak
formulation with two new mechanisms, narrow-fit and trimming, for both ordinary and
partial differential equations (ODEs and PDEs). The weak formulation facilitates an efficient
and robust way to handle noise, and two new mechanisms, narrow-fit and trimming,
improve the coefficient support and value recoveries respectively. For each sparsity level,
Subspace Pursuit is utilized to find an initial set of support from the large dictionary. Then,
we focus on highly dynamic regions (rows of the feature matrix), and error normalize the
feature matrix in the narrow-fit step. The support is further updated via trimming the
terms that contribute the least. Finally, the support set of features with the smallest Cross-
Validation error is chosen as the result. A comprehensive set of numerical experiments
are presented for both systems of ODEs and PDEs with various noise levels. The proposed
method gives a robust recovery of the coefficients, and a significant denoising effect which
can handle up to 100% noise-to-signal ratio for some equations. We compare the proposed
method with several state-of-the-art algorithms for the recovery of differential equations.
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1. Introduction

In recent years, there has been an increasing interest in discovering physical or biological dynamics from complex data.
The discovery of differential equations can offer important insights into contemporary neuroscience [1], fluid mechanics,
physical systems [2,3], and biology [4].

In this paper, we focus on the inverse problem of identifying a differential equation corresponding to given data cor-
rupted by noise. Given a time-dependent discrete data set, we aim to discover the underlying equation of the form

otu = f(u, axu,...,alfu,...,u2,axu2, a}ljuz,...,u3,8xu3,...,8§u3,...) (1)

where each differential term in the right hand side of (1) is called a feature in this prescribed dictionary. In particular, f is
called the governing equation of (1). We assume that f in (1) is a linear combination of the features, so that this inverse
problem becomes the identification of a sparse coefficient vector where both the support and the values of this coefficient
vector are unknown. Since the features include linear and nonlinear terms, this f in (1) includes nonlinear differential
equations. This model identification problem is very challenging when the given data are corrupted by noise.

Parameter identification in differential equations and dynamical systems has been studied by scientists in various fields.
Earlier works include [5-7,2,8,3], where the differential equation (1) is considered in [6,8], symbolic regression is used in
[2,3], and an optimization approach is taken in [5,6,8]. In recent years, sparse regression is incorporated into the model
identification problem to promote sparsity in the coefficient recovery [9-24]. Representative works include Sparse Identi-
fication of Nonlinear Dynamics (SINDy) [9-12], Identifying Differential Equations with Numerical Time evolution (IDENT)
[16,17], Weak SINDy [23,24], RGG [25] and many others [18,26,19,27]. The PDE and dynamics identification problem is also
addressed by deep learning approaches [28-34].

The majority of existing works apply sparse regression on a linear system formed from (1) with differential features
[9-12,16-18,20]. From the given data, differential features are approximated via numerical differentiation. When the given
data contain noise, a denoising step is applied before numerical differentiation. Least-squares moving average is applied
in [16], successively denoised differentiation is proposed in [17] and regularization is used in [35]. In terms of sparse
regression, L1 or regularized L1 minimization has been widely used [9,16,18,26]; Sequentially thresholded least-squares
is used in [11,13-15]; Greedy algorithms are used in [17]. More generally, the coefficients are allowed to be spatially
dependent in [36,16], and the Group Lasso is used to promote group sparsity where each group represents a feature, which
is also used for varying coefficient case in [16]. While these methods using differential features give good results, numerical
differentiation can be unstable for high-order features, and the coefficient recovery may not be robust when the given data
is corrupted by noise.

Recent progress using a weak/integral formulation [22,25,23,24] shows improvements in the robustness of the sparse
coefficient identification. A weak form for (1) with a set of test functions gives rise to a linear system with integral features
instead of differential features. Noise is tackled through the weak form, since a proper test function gives a denoising
effect. The test functions are chosen to be localized smooth functions vanishing on the boundaries, thus resembling kernel
functions commonly used in kernel denoising methods. It is shown in [23,24] that using the weak form with the standard
sequentially threshold least-squares algorithm gives rise to superior numerical performance. Differential equations with
high-order derivatives, including the Korteweg-De Vries (KdV) equation, the Kuramoto-Sivashinsky (KS) equation, and 2D
reaction-diffusion equations can be recovered even with a significant amount of noise. A related work [37] focuses on the
identification of advection-diffusion equations, and shows that a Galerkin-type algorithm using the weak form outperforms
the collocation-type algorithm using a differential form.

In this paper, we propose a Weak formulation for Identification of Differential Equations with Narrow-fit and Trimming
(WeakIDENT). To recover (1) where f is a linear combination of various differential terms, we construct a linear system: the
feature matrix consisting of linear and nonlinear terms called features, multiplied by a coefficient vector, is set equal to the
time derivative. We use the term coefficient support to refer to a collection of nonzero components in the coefficient vector,
such that the linear system is composed of the collection of features that contribute to the dynamics represented by the
data. For the weak formulation, we follow the derivation proposed in [23]. For our sparse coefficient recovery, we perform
an iterative greedy support identification scheme as in [17] to find the support which gives the collection of linear and
nonlinear differential terms. For each sparsity level, we use the Subspace Pursuit (SP) algorithm [38] to first find the initial
guess of the coefficient support. We propose new narrow-fit and trimming steps which improve the support selection as
well as coefficient value recovery. Among different sparsity results, we choose the one with the minimum Cross-Validation
(CV) error as the final result. For Cross-Validation, we randomly separate the given data in half, use one set to find the
coefficients, then use this coefficient vector with the other set of data to compute the error. We provide an error analysis
in Theorem 1 to show that the error in the linear system under the weak form is significantly smaller than that under the
differential form.

Our contributions can be summarized as follows:

1. Proposing WeakIDENT to robustly identify differential equations in (1) from highly corrupted noisy data. The weak form
proposed in [23] allows us to move the derivative to the test functions and facilitates robustness against noise. We

propose two new and novel mechanisms, narrow-fit and trimming, to improve the coefficient support value and the
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coefficient support recovery, respectively. These mechanisms utilize a column-wise error normalization to improve the
robustness of the coefficient recovery. Narrow-fit focuses on highly dynamic regions to reduce the size of the feature
matrix, and trimming the features with small contributions to the result further contributes to the improvement.

2. We provide comprehensive numerical experiments for ordinary differential systems (ODEs) and partial differential equa-
tions (PDEs), and compare with existing methods such as [16,17,22-24].

We organize this paper as follows. In Section 2, we state the identification problem of differential equations, and give
details about the feature formulation in the weak form, the choice of test functions, and provide an error analysis of
the weak form. We present our WeakIDENT Algorithm in Section 3 with the details of error normalization, selection of
highly dynamic regions with dominant contributions to the identification, and trimming of the features with the least
contribution to the support. A comprehensive set of numerical experiments is provided in Section 4, including various
comparisons against state-of-the-art algorithms. We conclude the paper in Section 5, and provide additional experiments in
Supplementary Material 5.

2. Problem set-up, weak formulation and error analysis

In this section, we state the identification problem for differential equations and formulate a linear system in a weak
form. We also discuss the choice of test functions and provide an error analysis of the weak formulation.

2.1. Problem set-up

We present the identification problem with one spatial variable for simplicity. It can be easily extended to multi-
variables, and numerical results are provided for the multi-variable case. We consider a spatial-temporal domain Q =
[X1, X2] x [0, T] with X1 < X2 and T > 0. We assume a set of discrete time-dependent noisy data is given:

D={0Mi=1,2,...,Nygn=1,.., N} € RNxNt, 2)

where Ny, and N; € N are the size of discretization in spatial and temporal dimension respectively. The data point 0? is
an approximation to the true solution of a differential equation

l:l? ~u(xi, t") for (x,t") € @,

at the spatial location x; = iAx € [X1, X3] and t" =nAt € [0, T]. Here Ax = (X3 — X1)/(Ny — 1) and At =T/(N; — 1). In the
noisy case, we express the noisy data U} in terms of the clean data U} =u(x;,t") as:

U =ul+eb, (3)

where 62 represents the noise at (x;, t"). The objective is to identify a differential equation in the form of (1) from the given
data (2).

We assume that the governing equation f in (1) is a linear combination of linear and nonlinear terms including the
derivatives of u. This covers a vast range of ODEs and PDEs in applications, e.g., the Lorenz equation, the Lotka-Volterra equa-
tion, transport equations, Burgers’ equation, the heat equation, the KS equation, the KdV equation, and reaction-diffusion
equations. In this paper, to utilize the weak form, we consider the function f to be a linear combination of different
derivatives of powers of u:

L
ou 0%
- — ; - _ — — B
9t (x,8) = 121 cF; with F= Y fi, where f; = fi(u) =u”. (4)

The I feature F;(u) represents the oz,th spatial derivative of the monomial f; = fi(u) = u? for some nonnegative integer
B. Let the highest order of derivative be & such that o € {0, ..., @}, and the highest order of monomial be 8 such that
B €{0,...,B}. We use L to denote the total number of features in the dictionary, which depends on & and f, since
it includes all combinations. The formulation of (4) has the advantage in accurate feature approximation particularly for
the weak form, since integration by parts moves the derivatives to the test function. When the spatial domain is multi-
dimensional, we consider f; as monomials in the multivariable case, and we allow F; to be partial derivatives of f; across
different spatial dimensions.
In (4), the coefficient can be considered as a sparse vector

c=(c,...cp)l eRt (5)

which parametrizes the differential equation. The objective of this paper is to recover the differential equation from the
given noisy data set D (2), by finding a sparse coefficient vector ¢ (5) of the linear system (1).
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2.2. The weak formulation
The weak formulation of (4) is

L
u(x, t
/ Bhixs.cmy (X, £) gt )dxdt=ch / Do (X, £) Frdxdt, (6)

I=1

Qpey.m) Qg )

where the test function ¢p(x,t) is locally defined on a region S, ), which is centered at (x;,t") and indexed by h.
Specifically, each test function ¢y (x,t) is a translation of a fixed function ¢ (x,t) such that ¢p, (X, 1) = d(x — x;, £ — ™).
Integration by parts of (6) gives rise to

L o
— [ u(x,t)%dxdt:Zq / (—1)“’uﬂ’aa;c—ihdxdt, (7)

=1

;i) ;i)

as long as ¢, and its derivatives up to order & vanish on the boundary of Qpy, ). The 1™ term

a t
/ (—])""uﬁfia Pn(x, )dxdt
ax%
Q1)

is the I integral feature with the test function ¢y. Since the test function is smooth, the numerical integration can be
carried out with higher order accuracy. With numerical integration, we obtain the following discrete linear system for
Weakldent:

Wc=bh (8)

W = (Wh,m,) € RPE e= () eRE, and b= (byy,m) € RY,
for

vk 0% k ~ 1k 0n (xj, 1)
Whami = D (=1 U #ni, EOAXAL and by ) = — Yoo U axar (9)

at
(Xj,tk)EQh(Xijn) (xj*tk)EQh(xi,tn)
Here the numerical integration is computed with the data points (xj,t") € Qpx;,my, and Wy, (ny) T€presents an approx-
imation of the integral of the feature F; in the integral region Qp, ) centered at (x;,t"). The numerical integration is

computed from NyN; grid points.
For the test function, we follow the derivation and use ¢ (x,t) as in [23]:

X 2\ Px ¢ 2\ Pt
() (R g

for i=1,..,Ny,n=1,..., N where py and p; give the smoothness of ¢ in terms of x and t. The test function satis-
fies '/Qh( 'tn)d)(x, tdxdt =1 and ¢(x,t) = 0 for (x,t) € 9Qn(x, ), With ¢(x,t) localized around (x;,t") and is supported

on Qe = [Xi — MxAX, X; + mAx] x [t" —meAt, " + mAt] for some positive integers m, and m;. The weak features
Whx,my in (9) can be written into a convolution form U * %qj and calculated through Fast Fourier Transform in terms of
F-1 (T(U) 07’(% )) where o denotes point-wise multiplication, and py, ps, my and m; are carefully chosen to give a

denoising effect depending on the frequency of the given data as in [23]. For the completeness, more details are presented
in Supplementary Material 5.3.
The weak form (8) has NyN; rows. For computational efficiency, we subsample W to

H = NyN; < NyN¢, (11)

rows by uniformly subsampling Ny and N; points in space and time respectively. Then, we consider highly dynamic regions
to further reduce the size of W and b for an improved coefficient recovery (details in Subsection 3.2). In comparison,
random subsampling is used in [25] for sparse regression, and regions with large gradients in time are considered in [24].

4
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2.3. Error analysis of the weak formulation

We next analyze the approximation error of the weak formulation in (7). Suppose the given noisy data O (2) has mean-
zero i.i.d. Gaussian noise, E[el.”] =0, and Var(e?) =02, Let ¢; be the I true coefficient in the true support Supp*. The
associated integral formulation using the test function (10) with the true coefficients from the true support becomes

/u( r)a¢h(x D dxdt + 3 - 1)“Iq/f(x r)aa g’“gf D dxdt = 0. (12)
n leSupp*

We next analyze the error for the discretized system in (8) using the noisy data {0?}, approximating the true equation
(12). The h™" row of the linear system (8) is obtained from the weak form with the test function ¢,. The error for the
discretized system in (8) is defined as

e=Wc-b (13)
where the row-wise error is
> > (=%e O’fa—alqs @, tHAxAt+ Y U= d’” - )y AxAt.
! J ax% hi&js I
1eSupp*™ (x;,tF) €y ;) ().t €, 1m)

We decompose the error as

e — elnt | gnoise (14)
where

el =gy — | S > (=nUquk 0% —pn(xj. ) AXAL+ Y U"ﬂ(x Y AxAL

h  —FCh I~ X hiA ) i

1€Supp™ (x;,t4)€Qypx, om) (¥;,tK) Ry, om)
= Yo =% U’sai¢ . tHAxAL+ Y u"ﬂ(x tyAxAt
h — l ]axotl hiXjs b
1ESUpp™ (x},t5) €Qyy, o) (¥j.t5) €@y, om)

- Z a f (—l)“luﬂ' d)hdxdt—i— / u(x,t)%dxdt

[€Supp* hy,tm) Chx,tn)

In this decomposition, el represents the numerical integration error of the noise-free data U. It has been shown in [23]
that el™ = O((AxAL)?t1), where q is the order of the numerical integration as in [23], if the decay of test function ¢ near
the boundary of the test region satisfies max{¢ (1 — 1/my,0), (0,1 —1/m;)} < (w)q“.

max{my,m;}2
The following Theorem 1 provides an estimate of the error e™is€ arising from noise.

Theorem 1. Consider a dynamical system

%
2 ¢ ub
ax™

leSupp*

of one spatial variable where Supp* denotes the true support of the underlying differential equation. Assume the noise ei" are i.i.d.
and satisfies E[€!'] = 0, Var(e") = 0%, and |€}'| < € for all i and n. Each test region Qpy, ) fori=1,...,Nx,n =1, ..., N; has area
|2n| = mym;NxNy. Then,

1. In (14), the error from noise e"°'s€ for the discretized system satisfies
€™ los < 5*|2nle +0(<?) (15)

with a constant

<l> ¢

$* = max sup o (Xt tky — t(Xj,tk). (16)

h (Xj, thyeQy,

Y (=D)%apUhH 1

leSupp*
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Step 4
Step 1 Step 2 Step 3 Identification
Input discrete SP(k) Narrow-fit | - -» Trimming Cross
Wand b A support c update | <~ ~| A support update Validation
— among all k
J iterations, J < k-1 Picke

Fig. 1. Weakldent flowchart: Input weak formulation W and b in (8) subsampled as (11). [Step 1] SP for a given sparsity k gives the first candidate of
coefficient support .92[’5. [Step 2] Narrow-fit and [Step 3] Trimming improves the coefficient values c(k, j) and support :7(’;. Steps 2 and 3 are iterated at
most k — 1 times. Finally, in [Step 4] the result c(k*, Ji+) with the minimum Cross Validation among all different sparsity level k give the identification of
the differential equation.

2. The leading error in eEOise (that is linear in noise) for the test function ¢, has mean 0 and variance 025;1‘ where

2
% ¢y

ax%

¢

Sp=AxAt Y > ()M UkA (xj,t")+8—t"(xj,t") . (17)

(.t €@y, ny \lESUpP*

Theorem 1 is proved in Supplementary Material 5.1. In summary, we prove that the error e in (13) for the discretized
linear system under the weak formulation satisfies the following upper bound

lelloo < OU(AXADITY) + §¥|Qple + O(e?) (18)

where q is the order of the numerical integration as in [23]. By comparison, the error for the discretized system under the
differential form [16] is on the order of

€ €
0 (At AxPHIT L © ) , 19

+ + At + AX" (19)
where r is the highest order of derivatives for the features in the true support, and the numerical differentiation is carried by
interpolating the data by a pth order polynomial. By comparing (18) and (19), we observe that the error for the discretized
linear system in the weak form is significantly smaller than the error in the differential form.

3. Weakldent algorithm

In this section, we present the details of the proposed Weak formulation for Identifying Differential Equation using
Narrow-fit and Trimming (Weakldent) model. There are mainly four steps to the algorithm: After the system is set-up as in

(8),

[Step 1] For each sparsity level k, we use Subspace Pursuit (SP) [38] to find an initial choice of support 5‘(’5 from the
dictionary of L features. SP finds the choice with the minimum residual from a column-wise normalized (21) linear
system as in [17].

[Step 2] Narrow-fit. To recover the coefficient value using the support ﬂ’;, we (i) identify highly dynamic regions of cer-
tain features of interest; (ii) normalize the reduced feature matrix according to the leading error term, then (iii)
determine a coefficient value vector c(k, j) from this reduced narrow system (We set j =0 on the first iteration).

[Step 3] Trimming. With the updated coefficient values c(k, j) in [Step 2], we identify a single feature with the least con-
tribution to f. If the contribution score is less than a preset trimming parameter 7, we trim the corresponding
coefficient. This trimming yields a new updated support .7{’;.. We iterate [Step 2] and [Step 3], with increment j,

until no change is made to _71’} at j= Ji.

[Step 4] Cross Validation. With the final support ﬂ’jk and coefficient value vector c(k, Ji) for each different sparsity level k,
we select the one c(k*, Ji+) with the minimum Cross-Validation error (30) as the final result.

A schematic of the algorithm is given in Fig. 1. From the weak form input W and b, for a fixed sparsity level k, SP is
used to find the initial set of support &’{’6. Then [Step 2] Narrow-fit and [Step 3] Trimming are iterated until the support
does not change, where the number of iterations is at most k — 1. Here we use c(k, j) to indicate the coefficient vector
for the sparsity level k and j iteration. The cross validation is used to select the optimal solution c(K, Jx) among all
k<L.

We present the details in the following subsections. In [Step 2], we normalize each column of the feature matrix ac-
cording to its leading error term, to balance the effect of noise perturbations across the features. The details for this error
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Fjg. 2. Error normalization: (a) The given noisy data 0 with onsg = 0.5 in x — ¢ plane. (b) The entry-wise magnitude of the matrix W. (c) The matrix
W parrow in (23). We use log 10 scale in (b) and (c). The difference in scale has been reduced approximately from 1029 in the unnormalized matrix (b) to
108 after normalization in (c). Our error normalization results in more uniform entry values with less variance across different columns.

normalization of the feature matrix are given in Subsection 3.1. We detail the implementation of Narrow-fit using the highly
dynamic regions in Subsection 3.2. In [Step 3], we trim the support removing features with contributions below a threshold,
as described in detail in Subsection 3.3. The algorithm is summarized Subsection 3.4.

3.1. Column-wise error normalized matrix
We use least squares for coefficient recovery. The accuracy of least squares is highly dependent on the conditioning of

the feature matrix [39,40]. In this paper, we utilize two types of normalization for the columns of the feature matrix to
improve the coefficient recovery. For the linear system (8), we introduce a diagonal matrix D = diag(d1, ...,d;) and solve

WD '¢=b andthen c=D"'¢ (20)
instead.

The first type of normalization we consider is column normalization, which is applied to the feature matrix as an input
to SP in [Step 1]. Denote W =[w{ w; ... w;]. We let D =diag(||w1], ..., |w¢]|) and each column of W is normalized by
its own norm:

w w w
WTZ[ o=z =t ] (21)
lwill~ w2 lwel

We observe that the scale of the columns in the feature matrix usually varies substantially from column to column, which
negatively affects the SP step. This column normalization helps to prevent a large difference in the scale among the columns.
For example, in Fig. 2 (b) shows that the magnitude of the entries in W vary from 0 to 10%°.

In [Step 2], we introduce our second normalization - error normalization, which is particularly effective for coefficient
recovery. The columns in W are given by certain derivatives of a monomial of u. When we compute the feature matrix
with noisy data, the noise has different effects on different features. For the feature % (uﬂ), the noisy data with noise € in
(3) give rise to the following integral feature:

B
o 301 o 'B — K aa

/(—1) (u—i—e)ﬁm(m(x,t))dxdt:’; 0:(—1) (k)eﬁ k/u’ w4>,1(x,t)dxdr.

Qn =

Qp

The leading coefficient in the error (that is linear in €) in this integral feature is obtained for k=8 —1:

sth,l) =B /uﬂ—la%@h(x, t))dxdt|, h=1,2,...H, B> 1. (22)
h

When o = 8 =0, we set s(h,l) = 1. This leading coefficient s(h,[) depends on the row index h and the column index l. For
the I column, we define

H

1
(s(h, D)p = > s(h,D

h=1

as an average of these leading coefficients over the rows.
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Fig. 3. Highly dynamic regions for an experiment using the KdV equation (33) with onsg = 0.5. (a) The given noisy data U with onsg = 0.5 in x —t plane.
(b) The separation point I (black) for H (24) is found, from the accumulated function B(j) (blue) and the fitted piecewise linear function r(j) with one
junction at ' (red). (c) The location of highly dynamic regions in the x —t plane. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

By error normalization, we normalize W with the diagonal matrix D = diag({(s(h, 1))y, ..., (s(h, L))y) such that W is
normalized to
~ w1 wy wp
W= , e (23)
[(S(h, Din (s(h, 2))n (s(h, L))h]

Fig. 2 shows an example, with the given noisy data in (a) and the unnormalized feature matrix W in (b). Fig. 2 (c) shows
the normalized matrix W after the error normalization. We use log10 scale in Fig. 2. The difference in scale has been
reduced approximately from 10%° in the unnormalized matrix (b) to 108 after normalization in (c). Our error normalization
results in more uniform entry values with less variation across different columns.

In the following Subsection, we further discuss how error normalization is used to select the highly dynamic regions.

3.2. Highly dynamic regions: choice of the domain Qpx, )

One of the benefits of using the weak form is to consider the influence of different regions on the integral computation.
We take advantage of this and choose a subset of test functions indexed by {hlh = 2,..., H} to improve the coefficient
recovery. We propose the following Narrow-fit procedure: (i) define the features of interest, (ii) determine the highly dy-
namic regions of the chosen features, and then (iii) use the subsampled matrix based on the highly dynamic regions for the
coefficient recovery. This Narrow-fit procedure focuses on the regions with higher dynamical behaviors for the features of
interest, so that these regions play a larger role in the coefficient recovery.

Features of interest: We focus on a small group of features which give the variation information for the differential
equation, thus highlighting which rows to choose for the coefficient recovery. In this paper, we choose the features of
interest to be the terms corresponding to u and first derivatives consistently for all experiments. We simply utilize the high
variance region of the function value u and the first derivative, e.g., a term such as uu, which gives a combined information,
since they would likely represent a broad range of dynamical behavior observed in the data. We explored including other
terms as features of interest, but they did not provide consistent improvements.

Details are as follows: In 1D, we choose the features with (o, 8) = (1,2) for the case of one variable in 1D which

a3
corresponds to auz, this term is uuy. For a system with two variables u, v in 1D, (&, By, Bv) = (1, 2,0), (1,0, 2), they are

ad ad
&uz and avz. In 2D, we choose the features with (ay, ary, B) ={(1,0,2), (0,1, 2), (1,1, 3)} for a scalar equation in 2D,
9 ] 2
i.e, the features of interest are —u?, —u? and u3. For the case of 2 variables (u and v) in 2D, (ax, ay, Bu, Bv) =
ax ay axdy
Rl a
{1,0,2,0),(0,1,2,0),(1,0,0,2),(0,1,0,2),(1,0,2,1),(0,1,1, 2)}, that is there are six features of interest: &uz, —v2,

ax
d d a a
@uz, @vz, &uzv, and a—uvz. For each feature of interest, we utilize the leading coefficient error (22) to select highly
dynamic regions. For multiple features of interest with indices I =11, 1, ..., Iz, we take the average over I, and let

1 L
Sthy= 7 > _Isth. b,

i=1

with s =5 for £L=1.
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Highly dynamic regions: We consider the set S = {s(h)|[h =1, ..., H}, which is the collection of averaged leading co-
efficient errors over the features of interest. We divide the set S into mildly and highly dynamic regions, automatically
identifying the transition point I between these two types of dynamics as follows.

After partitioning the histogram of S into Ns bins (b1, b2, ..., bng), we consider the cumulative sum of the bins B(j) =
Z{:] b;. We used Ng =200 for PDEs and Ng = 100 for ODEs in this paper. We fit the function B(j) with a piecewise linear
function r(j) with one junction point, using the cost function Zj(B(j) —r(j))?/B(j). The junction point I'" separates the
highly dynamic and mildly dynamic regions. Any h with 5(h) > T" gives the highly dynamic region €, which we include for
the coefficient recovery. Let the collection of the row indices of highly dynamic regions be an ordered set:

H = {h; |5(h)) > T, hj <hj fori < j}. (24)

Fig. 3 illustrates how the transition point I' is computed in (b) from the given data in (a). Fig. 3 (c) shows the locations
in x —t plane of the highly dynamics regions with the index set H.

Narrow-fit: We consider a submatrix using only the ordered rows from the highly dynamic region H, indicated by a
subscript HI, for both W and b:

Wharrow :=Wm  and  bparrow := by

We also error normalize this matrix, using the rows in H:

(25)

~ WiH WoH WiH
Wnarrow = |: :| s

(sth, D)ym " (sh,2)m” " (sth. D)m

where w;yy represents the i column with the rows indexed by H, and (s(h, D)) takes the average of s(h,l) for h € H.
This matrix is represented in Fig. 2 (c). Let b = (bngrrow) be the average of the entries of bparrow. After narrow-fitting, we

solve:

Wnarrowé = Bnarrow where Bnarrow = bnarrow/5~ (26)

We then compute the coefficient ¢ by rescaling ¢ back:

c—EZ‘dia{ ! ! ! } (27)
=P sty s 2ym T s Dy |

3.3. Trimming the support

After the coefficient values in ¢ are recovered, some features give very small contributions to u;. We further trim the
support by eliminating these features corresponding to small contributions.
From the solution ¢ of the linear equation (26), we define a contribution score a; of each feature as

nj

=——— where nj=||Wil|2IGi], i=1,2,...,L. (28)
maxXj<y nj

ai
Here w; denotes the i column of W parow. We consider the L, norm of this column multiplied by the coefficient value of
the it component of . Since a; is normalized by the maximum value of n;, a; gives the score of the contribution of the ith
feature relative to the contribution of the feature with the largest contribution.

We trim the coefficient, thus the feature, when the contribution score of that feature is below 77, i.e. a; < 7. Typically,
we set 7 =0.05 to trim the features with contributions less than 5% of u;. Each time [Step 3] is called to trim the support
set ﬂlj‘- to the new support set 5‘(’;“, and [Step 2] narrow-fit is called to find the updated coefficient value c(k, j + 1).

Fig. 4 shows the effect of trimming. For each sparsity level k in x-axis, the bar shows the cross validation value (30) of
the recovered coefficient c(k*, Ji+). For a large sparsity level, thanks to the trimming step, the correct support and coefficient
values are found.

3.4. Algorithms

Our Weakldent algorithm is summarized in Algorithm 1. From the linear system in (8)

Wce=hb,
we input b and W computed through (9), with subsampling in (11). For each sparsity level k=1, 2, ..., K,

[Step 1] First, Subspace Pursuit (SP) [38] is applied to find yz’g = supp{SP(WH, b, s)} using the column normalized matrix
Wi in (21) and b = b/||b||.
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(@) onsr = 0.1 (b) onsk = 0.5
1 151
(79 —= |dentified support is correct (TPR = PPV = 1) [ —= |dentified support is correct (TPR = PPV = 1)
—= TPR <1 and PPV <1 1, - —2 TPR <1 and PPV <1
G050 || 3
0.5
0 jdiddaEaEARARAAAEAAAAAAAAAAAAAAAAARAAS) 0 [H [H HHHHHHHHHHHHHH
o] o [Tl o Tl o Yo} o o] o Te} o Yol o Yo} o
~ -~ N N ™ (3] < ~ -~ N N ™ 3] <
sparsity sparsity

Fig. 4. Trimming is demonstrated in an experiment using the KS equation (34). For each sparsity level k in x-axis, the bar shows the cross validation (30)
of the recovered coefficient c(k*, Ji+). Notice for most sparsity levels 5 and above the correct support is found. After SP finds k supports, the trimming
step reduces the support until only the correct ones are left. Here oysg is the noise-to-signal ratio (44), TPR is true positive rate (47) and PPV is positive
prediction value (48).

[Step 2] Narrow-fit. To recover the coefficient values using the support ﬂ’;, we find the row index set H of highly dynamic
regions in (24), and solve

W narrow€ = Bnarrow

in (26) and get c(k, j) in (27).

[Step 3] Trimming. Update to ﬂjﬂ, if there is any column with the contribution score in (28) below 7T, i.e. a; < 7. If
trimmed, move to [Step 2] to get a new updated c(k, j + 1). If no column is trimmed, move to [Step 4] and set
Je=1].

[Step 4] Cross Validation. With the support c(k, Jx) computed for each sparsity level k =1,..., K, we select the final sup-
port by finding the k* which gives the minimum cross-validation error. For a sparsity level k, we randomly sample
regions from the NyN; regions and equally partition these regions into two sets indexed by A and B respectively.
We consider the linear system in (26):

~ w1 w2 wp z r

= , , and b=b/b (29)
[(S(h, Dim (sth,2))m (s(h, L))]HIi|

utilizing the highly dynamic region error normalization for the large full matrix. Here H indicates ordered row

index from the set H, and (sth,D)m takmg the average of s(h,l) for h € H. We solve least square problems

Waés =by and Wgég = bg, where W 4 and B contain the rows of W indexed by A and B respectively.

Then, we compute the cross validation (CV) error

CV(k) = A||W o€p — ball2 + (1 — 1)||WgEa — bpl2, (30)

where we set A = 1/100. In practice, for each k, we generate 30 different random partitions of H to A and B,
then select the minimum:

c(k*, Ji+) = argmin{CV(k)|k=1,2, ..., L}. (31)
k

Here K < L, since L is the total number of features in the dictionary. In practice, a small K is needed. Fig. 4
illustrates that for (small) values of K around K = 10 and below, the correct coefficients are found, thanks to the
trimming step.

4. WeakIDENT results and comparisons

In this section, we provide detailed experimental results. We summarize a list of PDEs and ODE systems in Table 1 and
Table 2. For the systems of ODEs, we consider features with polynomial order between 3 and 5, with L <21 for all the
cases. For the systems of PDEs, we consider features with both polynomial order and derivative order between 4 and 6,
which gives a dictionary of size L <65 for the 1 spatial dimension and L < 190 for 2 spatial dimensions. Simulation and
feature details are presented in Table 1 and 2 for each experiment.

For PDEs, Ny and N; are chosen such that NyN; € (1,000, 3, 000) to reduce the computational cost. In particular, we set

N_fw_f_ﬂ andN—(M—i—ﬂ (38)
T NN T NN ’

10
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Algorithm 1: Weakldent Algorithm.

Input: W € RF*L p e RH, from (8) uniformly subsampled as (11); Parameter 7~ = 0.05
for k=12,.,K do
[Step 1] AL = supp{SP(W, b, 5)} use SP [38] and set j=0;
[Step 2] Find c(k, j) by narrow-fit (26);
while there exists a; < 7 as in (28) do
[Step 3] Trim as in Subsection 3.3 and set j=j+1 ;
[Step 2] Find c(k, j + 1) by Narrow-fit (26);
end
end
Among k=1,..., K, find c(k*, Jg«) by Cross Validation in (31).
Output: ¢ = c(k*, Ji+) € RE such that We ~b.

Table 1

A list of PDEs considered in this paper. Here L is the total number of features, & is the highest order of partial derivative, 8 is the highest degree used in
fi in (4), [X1, X2] is the range of the spatial domain, T is the final time for simulation. Ax and At are the spatial and temporal increment of the given
data. The set up of (33), (34), (35), (36), and (37) are identical to [23].

Equation Parameters
Transport equation L=43,a=6, B=6, [X1,X2]=1[0,1], Ax=0.039, T =0.3,
. ) P At =0.001
u u u .
— =—— 40.05— (32) u(x,0) = sin(4m /(1 — T)x)3 cos(rr /(1 — T)x)
ot ax 9x2

for x <1—T, and 0 otherwise

Korteweg-de Vires (KdV)

L=43,@=6, =6, [X1,X2] = [—7, 7], Ax=0.0157,

au ou  ou T =0.006, At =107
P it (33) U(x, 0) = 3.0 x 25 % sech(0.5 x (25 x (x + 2.0)))2
+3.0 x 162 % sech(0.5 x (16 * (x + 1.0)))?
Kuramoto-Sivashinsky (KS) L=43,&=6, B =6, [X1, X2] =[0,100.53],
u 2u 9tu Ax=0.3927, T =150, At =0.5
B T e (34) u(x, 0) = cos(x/16)(1 + sin(x/16)).
Nonlinear Schrodinger (NLS) (1D)
2 -
W 059 2y 3 L=190,&=6,f=6
5]15 8x322u (35) [X1, X2]1=[-5,5], Ax=0.0391
o :_O‘SW —uv? - T =3.1416, At =0.0126
Anisotropic Porous Medium (PM) (2D) L=65a=4 =4
ou 103 92u? 0.8 %u?  9%u? 36) [X1, X2]1=[-5,5], Ax=0.0503
at T a2y axdy  0%x T =5, At =0.0503
Reaction-Diffusion (2d) L=155 & =4, B =5, [X1, X2]=[-10,10]
Ju 92y 920 Ax=0.0781, T =9.9219, At =0.0781
3 2 2 3
% 0.1 Zx T 0.1 o7 TUTV ouvtHutv—u u(x, y, 0) = tanh(y/x2 + y2 cos(0 (x + iy) — w/x2 + y2),
37 . .
dv —Olazv 4—018‘/2 v —v3 —uv? — 2y — sl G v(x, y,0) = tanh(y/x2 + y2 sin(0 (x + iy) — wy/x% + y?)
at a2y T ax

with N =50 as a default choice. Here [-] and |-] denotes the ceiling and floor operator. In Table 1, (38) is used for the
transport question (32), the KS equation (34) and the nonlinear Schrodinger equation (35). For certain cases such as the KdV
equation (33) where |H| is very small, we increase Ny and N¢, e.g., using N = 70, such that |H| > 800. For the spatially 2
dimensional cases, we use N = (25, 25) for the anisotropic porous medium equation (PM) (36), and N = (19, 16) for the 2D
reaction-diffusion equation (37) to reduce the time of computation. For the ODEs listed in Table 2, we choose N; =~ 1000 by
default with N = 1000. Since we use different subsampling, we present additional comparisons in Section 4.5 to demonstrate
that the effect of subsampling on the result is minimal.

The experiments are performed on both clean data and noisy data with various Noise-to-Signal Ratio, onsg defined as
follows:

11
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Table 2

A list of ODEs considered in this paper. This table includes the initial condition, the temporal increment At, the total
simulation time T, the total number of features L and the highest degree of polynomials 8 in (4) for each equation. The
Solution is simulated with RK45 with tolerance 10710

Name Equation Parameters
2D Linear g Mx] _ [—0.15 25 X (39) (X0, Yo) = (2,50),
System dt|y|] | -25 —015]|y At=0.01,T=10
L=21,=5
2D Nonlinear ., X (%0, y0) = (0, 1)
d[x 0 1 0
(Van der Pol) — = 40 — —
aily]= e - _4] Ly } (40) At_0.0_Ol,T—15
y L=21,8=5
2D Nonlinear dlx1 T o 1 0 X (%0, yo) = (0,2)
Duffin; — =
(bufing) i |y|~|-02 -0.05 —1} 5 @D ar=o001,7=10
L=21,8=5
2D Nonlinear -4 r X (X0, yo) = (10, 10)
d _
(Lotka-Volterra) m ; = 0'37 _01 11'33:| [ y i| (42) At=0.05,T =50
T Xy L=21,=5
3D Nonlinear X (X0, Y0, 20) = (—8,7,10)
(Lorenz) d [ x -10.2 102 0 O O y At=0.001,T =15
Zlyl=] 29 -1 0 0 -1|| z]| @3 I
de | 7 0o 0o 21 0 |x L=20.p=3
Xz
&
ONSR = (44)

NN; Z U}~ (max U} + min U2
nn

fori=1,...,Ny, n=1, ..., N;. Note that our definition of NSR reflects the local variation of the given data. This is different
from the absolute variation (absolute root mean squared of UT) ong used in [23], and this onsg value tends to be smaller
than the ong value. We also mention the ong value in the following experiments when it is relevant. We use Gaussian
noise, such that €' ~ N (0, onsg) for €', and 0{’ in (3). For the case of multiple variables, we compute (44) for each variable.

Error measures: To quantify the quality of the recovery, we utilize different error measurements listed in Table 3. The
relative coefficient errors E; in (45) and E in (46) measure the accuracy of the recovered coefficients ¢ against the true
coefficients ¢* in terms of the I, and the infinity norm, respectively. We introduce two new measures to quantify the
accuracy of the support recovery. The True Positive Rate (TPR)* (47) measures the fraction of features that are found out
of all features in the true equation, and is defined as the ratio of the cardinality of the correctly identified support over
the cardinality of the true support. The TPR is 1 if all the true features are found. The Positive Predictive Value (PPV) (48)
indicates the presence of false positives: it is the ratio of the cardinality of the correctly identified support over the total
cardinality of the identified support. The PPV is 1 if the recovered support is also in the true support. The residual error Eeg
in (49), which is also used in [17], measures the relative difference between the learned differential equation and the given
data. To show the effectiveness of WeakIdent in the recovery of the dynamics, we define the dynamical error Eqy, in (50)
to measure the difference between the true dynamics and the expected dynamics simulated from the recovered equation.

In (50), we use Uirfforward and Ugdean to denote the simulated data and the true data without noise. We simulate ODEs using

RK45 with the relative error tolerance to be 10~1. This is measured for ODEs only, due to restricted stability conditions for
PDEs. If the identified equation blows up before the final time T is reached, we compare U, . and U} ... just before
the blow-up. ' '

4.1. Weakldent results and comparisons for PDEs
We present the Weakldent and comparisons in this subsection for PDEs, and in subsection 4.2 for ODEs. We compare
with existing methods, such as the IDENT in [16], the Robust Ident, with Subspace pursuit Cross validation (SC) and Subspace

pursuit Time evolution (ST) in [17], SINDy [9], and methods using the weak form such as RGG [25], Weak SINDy for first
order dynamical systems (WODE) [24], and Weak SINDy for PDEs (WPDE) [23].

4 The definition of TPR in (47) is different from that used in [23].

12
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Table 3

Error measurements used for comparisons.
Relative coefficient Error I E> = [Ic* — cll2/1Ic¥ ]2 (45)
Relative coefficient Error [, Epo = mlax{lc* O —cl/Ic* D] : ¢* (1) # 0} (46)
True Positive Rate TPR = [{I: ¢*(1) # 0, e(l) # O} /I{L: ¢* (1) # O} (47)
Positive Predictive Value PPV = |{l: c* (1) #£0, c(l) # 0}|/|{l : c(l) # 0}] (48)
Residual Error Eres = |We = bll2/IIBll> (49)

Dynamic Error

Edyn = Z (luirjforward - Ugclean ‘2)/(Nfo) (50)
1<i<Ny,1<n<N;

For fair comparisons, when available, we used the same underlying equations provided by SINDy [9], WODE [24], WPDE
[23] or RGG [25] provided in their respective Githubs.” Weakldent and WPDE use the same dictionary of features as well
as the same parameters for the weak form (a system with the same number of variables and dimensions in the spatial
domain) to each other. RGG [25] uses a subset of features (e.g. 8-14 features), which is different from other methods which
use the full feature matrix (L =21 to 190 features). For each experiment in the comparison, we specify which features are
used for RGG. In many of the PDE experiments in this section, we show comparisons only between our proposed Weakldent
and WPDE [23], since these two methods give the best results compared to others, based on the error measures in Table 3.

4.1.1. Transport equation

The first set of results in Fig. 5 shows results for the transport equation (32) with clean and noisy data. (a), (b) and (c)
compare the recovery results with clean data, and (d), (e) and (f) compare the results with highly corrupted data where
onsr = 100%. For the case of clean data, RGG [25], WPDE [23] and the proposed Weakldent find the correct support uy, Uxy,
while the latter two methods have higher accuracy. In the noisy case of onsg = 100%, only Weakldent is able to identify the
correct support with the E; value as low as 0.008.

In Fig. 6, we provide statistical comparisons between our proposed Weakldent and WPDE [23] applied to the transport
equation (32) for different levels of onsg. We show box-plots for the distribution of the identification errors E;, Eo,, TPR
and PPV over 50 experiments for each level of onsg € {0.01,0.1,0.2, ..., 0.9}. The Weakldent results are robust even for large
noise levels: Panels (a3) and (a4) show that in the majority (> 75%) of the cases, a correct support is found by Weakldent
with low E; error in Panel (al).

4.1.2. Anisotropic Porous Medium (PM) equation

In Fig. 7, we compare the recovery results for the 2D anisotropic porous medium equation (PM) (36), which includes a
feature with the cross-dimensional derivative uyy. Fig. 7 (a) shows U(x,0) and (b) shows U(x, T), where the given noisy
data has noise-to-signal ratio onsg = 0.08. This noise level is equivalent to ong = 0.4139 as defined in WPDE [23]. We show
different recovered equations with the identification error E; in (c). Weakldent is able to identify the correct support with
the coefficient error E; = 0.0056, demonstrating Weakldent’s capability to identify features across multiple dimensions on
2D spatial domain.

4.1.3. Reaction-diffusion equation

In Fig. 8, we compare the recovery results for the 2D reaction-diffusion equation (37). These systems can generate a
variety of patterns such as dots, strips, waves and hexagons. The Laplacian (diffusion) features Au, Av in this equation may
be difficult to identify in general, particularly in the case where the diffusion coefficients are small compared to those of
other features, and accumulated noise can be emphasized. We use the spiral pattern data set from [23]. Fig. 8 (a) shows
U(x,0) and (b) shows U(x, T), where the given noisy data has onsg = 0.08 (equivalent to ong = 0.08 defined in [23]). We
show different recovered equations with the E, identification error in Fig. 8 (c). Weakldent finds the correct terms with a
small coefficient error.

In Fig. 9, we present the statistical results of Weakldent over 50 experiments for the 2D reaction-diffusion equation (37).

4.14. PDEs and systems of PDEs with higher order features

In Fig. 10, we show the average errors of Weakldent and WPDE over 50 experiments on the PDEs and systems of PDEs
in Table 1 with different noise levels. Each column gives the E, error, TPR and PPV respectively. In each row, we present the

5 SINDy and WODE at https://github.com/dm973/WSINDy_ODE, WPDE at https://github.com/dm973/WSINDy_PDE, and RGG at https://github.com/
pakreinbold/PDE_Discovery_Weak_Formulation.
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(a) U (b) onsr = 0
Weakldent | WPDE [23] | RGG[25] | IDENT[16] | SC[17] | ST[17]
E, 0.001 0.001 0.001 - 2.26 2.24
E. 0.001 0.001 0.001 - - 3.08
Ees 0.001 0.001 0.001 0.98 0.03 0.03
TPR 1.0 1.0 1.00 - 0.00 0.50
PPV 1.0 1.0 1.00 0.00 0.00 0.20
(c)onsg =0
True equation | u, = —1.00000u, + 0.05000u
WeakIdent u, = —1.00145u, + 0.04999u,,
WPDE [23] u = —1.00144u, + 0.05000uy
RGG [25] u, = —1.00119uy, + 0.04999u,,
IDENT[16] u; = —0.0006 + 0.0036u + 0.0244u> — 0.9992u, + 0.0004(14,)? + ...
SC[17] u; = +1.74039u% — 1.03236u, + 0.05168u,, + 0.00298uus,,
ST[17] u, = +1.73061u% — 1.01121u, — 0.10390uus, + 0.05167u,, + 0.00298 1.,
@?u (e) onsr = 1
O p— Weakldent | WPDE [23] | RGG [25] | IDENT [16] | SC[17] | ST[17]
1 E, 0.008 0.184 135.33 - 17.43 20.32
05 1, Eo 0.008 1.129 0.13 - - 18.23
) Eres 0.811 0.830 0.95 0.82 0.91 0.89
1 TPR 1.0 1.0 0.50 0.00 0.00 0.50
! PPV 1.0 0.5 0.25 0.00 0.00 0.20
() onsr =1
True equation | u, = —1.00000u, + 0.05000u,,
WeaklIdent u; = —1.00792uy + 0.05029u,,
WPDE [23] u; = —1.02983u, + 0.10647u,, — 0.15741(1%) . + 0.07197(ub)
RGG [25] u; = —0.000031 1 — 0.8753 11, + 44.7014612 — 127.91622:°
IDENT[16] u; = —0.2710 + 6.1120u — 3.4346u% — 0.0000u, + 0.0000(u,)* + ...
SC[17] u; = —3.35704u — 17.09628u% — 0.2665%u,
ST[17] u; = +0.60609 — 4.44906u — 19.79311u? — 0.17997u, — 0.86156u14,

For RGG [25), we use 8 default features {uity, Uy, Urxrs Us Uy, Urrx, U2, 1>} and the parameters py = 4, p; = 3, Ny = 100, D = (40, 20) are used. For
IDENT [16], we use A = 200 for the sparse regression algorithm, and the dictionary is set to be {1, u, w2, uy, u)z(, Ully, Uy, uf.x, Ullyy, UyUyy}. SC and
ST [17] use the same dictionary as IDENT. For SC, we use @ = 100 and for ST, we use s = 20 and n = 5. These parameters are from the original
papers.

Fig. 5. Transport equation with diffusion (32): clean data case in (a), (b) and (c), and noisy data with onsg = 100% in (d), (e) and (f). Weakldent is compared
with WPDE [23], RGG [25], IDENT [16], SC [17], and ST [17]. The error measures are in Table (b) and (e) and the recovered equations are in (c) and (f).

results from the transport equation (32), KdV equation (33), the KS (34), the nonlinear Schrodinger (35), the anisotropic PM
equation (36), and the 2D reaction-diffusion equation (37). In the first column, we present the ratio & = onsg/0ONR Where
onr denotes the noise ratio in WPDE [23]. (The upper bounds of the noise ratio ong [23] are 1.07, 0.78, 0.9, 0.81, 0.78,
0.1 for each equation.) Here the KdV (33) and KS equations (34) include higher order derivative features uyxy and Uxxxx.
These features are in general difficult to recover, especially from highly corrupted noisy data. Each plot gives comparisons
between Weakldent (Red) and WPDE (blue), with onsg on the x-axis. The y-axis is the E; error, TPR, or PPV averaged over
50 experiments for a given oysg. According to the E, error shown in the first column, Weakldent has smaller E, errors
than other methods, showing that Weakldent is more accurate in the coefficient recovery. According to the TPR and PPV in
the second and third column, Weakldent is more accurate in support recovery since the TPR and PPV values of Weakldent
are closer to 1.

4.2. Weakldent results and comparisons for ODEs

Since ODE systems do not include spatial derivatives, they have lower computational cost in feature computation. We
consider polynomial terms with the highest order being 5. Table 2 presents details of the parameters used for simulation. In
Fig. 11, we show the identified dynamics and various identification errors obtained from Weakldent on the 5 ODE systems
listed in Table 2. The noise-to-signal ratio is onsg = 0.2 for the linear system (39), the Van der Pol nonlinear system (40)
and onsg = 0.1 for the rest of the systems. Fig. 11 (a)-(e) show the phase portraits of the given noisy data for the different
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Fig. 6. Transport equation (32), statistical comparison between Weakldent (the top row) and WPDE [23] (the second row). The errors E, E~, TPR and PPV
are shown from 50 experiments for each onsg € {0.01,0.1,0.2, ...,0.9} using box-plots. The E; and E., errors by Weaklent are lower than the errors of
WPDE, with less variations. The TPR and PPV by Weakldent are closer to 1 with less variations as well.
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(C) ONSR = 0.08
True equation | u, = +0.30000(u2)yy - 0.80000(u2)xy + 1.00000(1%)

WeakIdent | u; = +0.29912(u?)y, — 0.79416(u?),y + 0.99568(u?)y E, = 0.0056
WPDE u = +0.29928(u?),y — 0.79362(u?)y, + 0.99512(u)x, E> = 0.0061
RGG[25] u, = +0.00028 +0.23457u — 6.28949u% + 21.31151u> — 0.36341(u?), + | E, = 8.9376

0.48573(u*)y, — 0.12914(u?),, + 1.34146(u?),, — 1.18102(u?),, +
0.03796u, — 0.03006u, + 0.06174u,, — 0.04775u,, + 0.06238u,,

For RGG [25], we use a dictionary of 14 features {1, u, 2,03, )y, (uz)y, ) xx, (uz)yy, (uz)xy, Uy, Uy, Uyy, Uyy, Uy} adding the true features, and the
parameters p, = 2, p; = 1,Ng = 100, and D = (20, 10).

Fig. 7. Anisotropic Porous Medium (PM) equation (36) on a 2-D spatial domain with cross derivative feature. We set onsg = 0.08, which is equivalent to
onr = 0.4139 in WPDE [23]. (a) Given noisy data U(x,0) and (b) U(x, T). (c) Identified equations with the E; error.

ODEs (red) superimposed on the simulated true data (black). Fig. 11 (f)-(j) show the Weakldent results (green) compared to
the true solution (black). Weakldent is able to find the correct support in the majority of the cases with E; < 0.088.

Fig. 12 compares the recovery results for the Lotka-Volterra (LV) system (42) across different methods, showing results
for the given data sets with various noise levels. The methods we compare include WODE [24], SINDy [9], Robust IDENT
SC [17] and ST [17]. Each column is associated with an error type and each row gives results from one method. Weakldent
is able to capture the correct support with a low coefficient error in the last rows. WODE, SINDy, SC and ST has larger
coefficient errors with incorrect support in many cases. A similar statistical comparison between these methods on the
Lorenz system (43) is shown in Figure 19 in the Supplementary Material 5.2.2. We refer to Table 5 and Table 6 for the
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0.95450u%v — 0.93750uv?

For RGG [25], the provided default features for reaction-diffusion type equation in [25] is used: for u, the dictionary is

(Vu, u, u®,u3, v, v2, v, uv, u?v, uv?} and for v, the dictionary is {Vv, u, W, i3, v, v2 03, uv, utv, u?), and parameters py = 2,p; = 1,Ng = 100,D =
(20, 10).

Fig. 8. Reaction-diffusion equation (37) on a 2D spatial domain with onsg = 0.08 (equivalent to ong = 0.08 defined in [23]). (a) Given noisy data fl(x, 0)
and (b) U(x, T). (c) The identified equations and the E; errors. Weakldent finds the correct terms with a small coefficient error.
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Fig. 9. The Identification results from Weakldent for the reaction diffusion equation (37): The E;, Eo, errors, TPR and PPV are shown from 50 experiments
for each onsg € {0.01,0.02, ..., 0.1} using box-plots.

recovery results of the Lotka-Volterra system (42) and the Lorenz system (43) from two noisy data sets with osng = 0.1. We
also provide a comprehensive comparison on all ODE systems listed in Table 2 in Supplementary Material 5.2.2 (See Figure
18 for the details).

4.3. Influence of the initial condition in WeakIdent

Fig. 13 shows comparisons of Weakldent and WPDE for the KS equation (34) on noisy data with onsg = 0.6, using 5
different initial conditions: (1) u(x, 0) = cos(x/16). x (1 + sin(x/16)), (2) u = cos(x/4). * (1 + sin(x/5)), (3) u = cos(x/10). *
(1 + cos(x/5)), (4) u =sin(x/4). * (1 + cos(x/5)), (5) u = sin(x.2/4). The top row illustrates the given clean data from the
different initial conditions yielding different pattern evolution. In each box plot, the x-axis gives the indices of the initial
condition (1)-(5). Weakldent recovery is robust across these different patterns in recovering this system with higher order
features.
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Fig. 10. The identified PDEs in Table 1 for different noise levels. We compare Weakldent (Red) and WPDE (Blue). The x-axis is onsg, while the y-
axis is the average E, error, TPR and PPV over 50 experiments. The relative noise ratio & = onsg/ONr compares our noise level onsg VS. onr in
[23]. We present results for the transport equation (32), the KdV equation (33), the KS equation (34), the NLS equation (35), the PM equation (36),
and the reaction-diffusion (2D) equation (37). The noise-to-signal ratio onsg ranges in {0,0.1,0.2,...,0.9}, {0.01,0.02,0.04, ..., 0.24}, {0,0.1,0.2, ...,0.9},
{0.01,0.1,0.2, ...,0.5}, {0.01,0.03,0.05, ...,0.15}, and {0.01,0.02, ..., 0.1} for each equation respectively.

4.4. The choice of the trimming parameter 7~

In Fig. 14, we present the coefficient E; error (y-axis) against different values of the trimming parameter 7~ (x-axis) for
different noise-to-signal ratios (different color curves) for (a) the KdV equation (33) and (b) the KS equation (34). In general,
we use 7 =0.05 as a default for all equations in Table 1 and Table 2, except for the KS equation (34) and the PM equation
(36) for which we use 7= 0.2. Our experiments use the same distribution of seeds for the noise with different variances.
Different color curves represent the different values of noise-to-signal ratio onsgr € {0, 0.1, ..., 1}. For example, when there is
no noise, onsg = 0 (the lowest blue curve), it gives the lowest recovery error (compared to other colored curves) over the
widest range of allowable 7°. There is a wide range of 7~ that yields the same recovery. We use 7 = 0.2 for the KS and
PM equations, by choosing a value of 7~ from a large plateau. This makes the algorithm more robust. In general, since the
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(f) 2D Linear System (39) 0.2 0.006 0.063 0.061 0.484 1 1
(g) Van der Pol (41) 0.2 0.055 0.080 0.042 0.120 1 1
(h) Duffing (40) 0.2 0.088 0.204 0.048 0.156 0.75 1
(i) Lotka-Volterra (42) 0.1 0.013 0.023 0.120 0.365 1 1
(j) Lorenz (43) 02 0.011 0.041 0.032 2.380 1 1

Fig. 11. Weakldent results for ODE systems in Table 2. (a)-(e): Given noisy data compared to the true dynamics. (f)-(j): Recovered systems via Weakldent
using true initial conditions. Weakldent recovers the dynamics close to the true dynamics with a small identification error.

Table 4

Typical examples of the feature matrix size and the reduction in narrow-fit. The given data is of size NyN; and it is
subsampled to H = NxN; rows for W. We use onsg = 0.1 for the RD equation (37) and onsg = 0.2 for the rest of the
equations. For systems of equations, the size of the feature matrix for each dependent variable is identical.

Equation Ny N; Ny N; W size(H x L) W parrow Size
Linear Equ. (32) 257 300 36 39 1404 x 43 824 x 43
KdV Equ. (33) 400 601 71 65 4615 x 43 1367 x 43
KS Equ. (34) 256 301 46 43 1935 x 43 916 x 43
NLS Equ. (35) 256 251 39 42 1225 x 190 159 x 190
PM Equ. (36) 200 x 200 128 14 x 14 16 3136 x 65 1349 x 65
RD Equ. (37) 256 x 256 201 13 x 13 14 2366 x 155 2271 x 155
Linear Equ. (39) - 1001 - 851 877 x 21 127 x 21
VdP Equ. (40) - 15001 - 958 958 x 21 295 x 21
Duffing Equ. (41) - 1001 - 915 915 x 21 57 x 21

LV Equ. (42) - 1001 - 947 947 x 10 338 x 10
Lorenz Equ. (43) - 15001 - 983 983 x 20 930 x 20

colored curves are decreasing functions in terms of 77, if the given data is highly corrupted by noise, using a larger 7 can
help with the identification.

4.5. Effects of subsampling in data acquisition and the feature matrix W

In Fig. 15, we show the effects of changing the final time T (the top row), and of changing Ax and At for NyN; (the
second row), and of changing the uniform subsampling in (11), i.e.,, At* and Ax* for the generation of the feature matrix
(the third row). We compare for the KS equation (34), the 2D linear ODE system (39), the Van der Pol equation (40), and
the Duffing equation (41) to illustrate the effects. The noise level is onsg = 0.1 for each example. We present the average
of the E, error, the TPR and PPV values from 20 independent experiments for one varying variable among the variables
{T, At, Ax, At*, Ax*} while fixing the rest. The first row shows that the recovery by Weakldent is robust as long as T
is above a sufficiently large value (e.g. 100 or 10), which indicates that there is a time T such that the solution of the
differential equations contains enough dynamics up to time T. The second row shows that Weakldent gives a smaller error
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Fig. 12. The Lotka-Volterra equation (42). Statistical comparisons between (a1)-(a4) Weakldent, (b1)-(b4) WODE [24], (c1)-(c4) SINDy [41], (d1)-(d4) SC [17]
and (e1)-(e4) ST [17]. The E3, Eres errors, TPR and PPV are shown from 50 experiments for each onsg € {0.01,0.02, ..., 0.1} using box-plots. Notice that for
Weakldent, the E; error is lower with less variations, and the TPR and PPV are closer to 1 as compared with that obtained from other methods.

with smaller Ax and At. The bottom row shows that the size of uniform subsampling in space and time of the feature
matrix does not affect the recovery.

In Table 4, we show an example of the size reduction from W to Wparow for the PDEs and ODEs considered in this paper.
We use onsg = 0.1 for the RD equation (37) and onsg = 0.2 for the rest of the equations. The given data is of size NyN;
and it is subsampled to H = NyN; number of rows for W. The narrow-fit further reduces the feature matrix to Wnarrow for
computational accuracy.

4.6. Speed of WeaklIdent

We perform experiments using Matlab on the Apple M1 processor with 8-core CPU and 16 GB of RAM. The computational
cost of Weakldent is typically about 1-5 seconds for an ODE system or a PDE with one dependent variable in a 1D spatial
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conditions (1)-(5). For each initial condition, the box plot represents the statistical results over 50 experiments. Weakldent gives a smaller E, error, and
PPV is closer to 1 with less variations.
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Fig. 14. The coefficient E, error (y-axis) versus the trimming parameter 7 (x-axis) for the identification of (a) the KdV equation (33) and (b) the KS
equation (34). Different color curves represent results for various noise-to-signal ratios onsg € {0, 0.1, ..., 1}. Notice a wide range of 7~ gives the same
recovery.

domain. For example, the cpu times to recover the Lotka-Volterra system (42) and the KdV equation (33) are 1.11 and 0.63
seconds, respectively. For the cases in 2D spatial domains, such as the anisotropic PM equation (36) with one variable, and
the 2D reaction-diffusion equation (37) with two variables, the recovery can take about 3 and 35 seconds, respectively.
The speed is comparable with WPDE [23], which takes 16 and 75 seconds for these two examples. We note that the main
difference in computation comes from using modified sequential thresholding least-squares (MSTLS) and Subspace Pursuit
as in this paper. For the methods using MSTLS, thresholding lease square is performed for a large number (e.g., 50) of
different A (a parameter in MSTLS) to seek for a good threshold, so that the solutions are computed many times, while SP
doesn’t require to do this. For the computational cost scaling as the number of feature increases, with the trimming step,
as in the case of Fig. 4, typical examples converged to the correct support for a smaller sparsity then L. One may be able to
stop SP after a reasonable sparsity k is reached to reduce unnecessary computation.

In Supplementary Material 5, we present additional results and more comparisons. The additional results for PDEs are in
Subsection 5.2.1 and additional results for ODEs are in Subsection 5.2.2. Details about how to construct test functions are
given in Supplementary Material 5.3.

5. Conclusion and discussion

We propose a new method Weakldent for identifying both PDEs and ODE systems from noisy data using a weak for-
mulation. The proposed Weakldent does not require prior knowledge of the governing features, but uses all features up to
certain polynomial order, and up to certain order of derivatives. We first use Subspace Pursuit to find a candidate support,
then propose two novel techniques called narrow-fit and trimming to improve both the support identification and the coef-
ficient recovery. A careful design of the test functions helps with the recovery, and a proper normalization of the columns in
the feature matrix improves the results in the implementation of least-squares. The proposed Weakldent requires at most L
sparsity iterations (or including the sub-iteration of narrow-fit and trimming, at most % iterations), where L is the number
of features. At the same time the trimming step improves the recovery and gives good results after a fraction of L is used
to identify the correct support, as shown in Fig. 4. Narrow-fit based on highly dynamic regions also makes the computation
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Fig. 15. Effects of the final time T (the top row), At, Ax for NyN; of the given data (the second row), and subsampling At*, Ax* in (11) in the third
row. Each graph shows the average of the E, error, the TPR and PPV values over 20 experiments for one varying variable among the variables in
{T, Ax, At, Ax*, At*} while the rest is fixed. The noise level is onsg = 0.1. The left column gives the PDE results for the KS equation while both At, Ax
are shown. The right columns show At only for ODEs, including the 2D Linear system (39), the Duffing equation (41) and the Lotka-Volterra equation (42).
There is a transition point in T such that the given data up to T contain enough dynamics. The recovery is in general better with smaller At and Ax, and
the rate of uniform subsampling has a minimal effect on the results.

more efficient, and with error normalization of the feature matrix, the coefficient recovery is improved. Comprehensive nu-
merical experiments on various equations/systems are provided, showing the robust performance of Weakldent compared
to other state-of-the-art methods. The Weak form in general is effective when the noise level is high, at the same time,
to take advantage of the weak form, the possible features in the differential equation must be in a specific form for the
integration of parts.
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