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We propose an effective and robust algorithm for identifying partial differential equations (PDEs) 
with space-time varying coefficients from the noisy observation of a single solution trajectory. 
Identifying unknown differential equations from noisy data is a difficult task, and it is even more 
challenging with space and time varying coefficients in the PDE. The proposed algorithm, GP-
IDENT, has three ingredients: (i) we use B-spline bases to express the unknown space and time 
varying coefficients, (ii) we propose Group Projected Subspace Pursuit (GPSP) to find a sequence 
of candidate PDEs with various levels of complexity, and (iii) we propose a new criterion for 
model selection using the Reduction in Residual (RR) to choose an optimal one among a pool 
of candidates. The new GPSP considers group projected subspaces which is more robust than 
existing methods in distinguishing correlated group features. We test GP-IDENT on a variety of 
PDEs and PDE systems, and compare it with the state-of-the-art parametric PDE identification 
algorithms under different settings to illustrate its outstanding performance. Our experiments 
show that GP-IDENT is effective in identifying the correct terms from a large dictionary, and our 
model selection scheme is robust to noise.

1. Introduction

Partial Differential Equations (PDEs) are indispensable and ubiquitous mathematical models articulating fundamental laws that 
govern various phenomena in physics, chemistry, biology, finance, and many other fields. Let the variable of interest be �(�, �) ∶
Ω × [0, �max] → ℝ, where Ω ⊂ ℝ

� is a �-dimensional spatial domain, and �max > 0 is the final time of the observation. An important 
class of models that describe the dynamical features of � is the evolution PDE [8,4,38]

�� =  (�, ���, �
2
��,⋯) (1)

with a functional  . In the multidimensional case with � > 1, the spatial location is given by � = (�1, … , �� ). We use the multi-indexing 
notation �	� � = {�
�� ∶= �


1
�1
�

2
�2

⋯ �
��� � , 
 = (
1, … , 
� ) , 
1 +⋯ +
� =	} to denote the collection of 	-order partial derivatives of �. The 
model (1) covers a wide range of important PDEs including the advection-diffusion equation for transferring physical quantities, the 
Kolmogorov-Petrovsky-Piskunov (KPP) equation [47] for population genetics, the incompressible Navier-Stokes equation [28], the 
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Fig. 1. The proposed algorithm, GP-IDENT, identifies the underlying PDE with space-time varying coefficients from a single trajectory of noisy observations.

Korteweg-de Vries (KdV) equation [33], and the Kuramoto-Sivashinsky (KS) equation [22] for fluid dynamics. For a vector-valued 
�, (1) also covers PDE systems such as the nonlinear Schrödinger equation [53] for light propagation. Model (1) can be regarded as 
an infinite dimensional dynamical system whose asymptotic properties such as attractors [4] and chaotic behaviors [38] have been 
extensively studied.

Classical approaches to derive PDEs for specific physical processes are based on physical laws and simplified assumptions. In 
modern science, data-driven PDE identification is explored to automatically identify such model (1) from the given observation. 
Such approaches allow scientists and engineers to discover non-linear and high-order complicated PDEs which are hard to model by 
empirical experience. In literature, various techniques have been developed to identify the active features, where sparse regression is 
one of the major frameworks for PDE identification [2,42,40,19,16,25,29,31,39,24,55,45]. Brunton et al. [2] studied the application 
of �1-norm regularization in the context of PDE identification and proposed the sequential thresholded least-squares to find the 
active features. Kang et al. [19] proposed to obtain a series of candidate models using LASSO [46] and then select the optimal 
model with the minimal time evolution error (TEE). Rudy et al. [40] penalized the coefficients using the �0-norm, and proposed 
sequential threshold ridge regression (STRidge) to solve the resulting problem. He et al. [9] proposed to use Subspace Pursuit (SP) [6]
with a series of sparsity levels to generate candidate models. They also proposed Successively Denoised Differentiation (SDD) for 
denoising the input, and cross-validation error evaluation and multi-shooting TEE for selecting the optimal candidate. Other sparsity 
promoting penalties are studied in [20,5,3]. A theoretical analysis for PDE identification can be found in [12,54,11]. Methods 
such as [30,31,45] used sequential least squares [30,31] and subspace pursuit [45] on a weak form of PDE instead of differential 
form which are more robust to noise. Another line of works is based on neural networks [27,50,51,37], where sparse regression is 
embedded for feature selection, and a sufficient amount of trajectories of data are required for training. Different frameworks such 
as symbolic regression [1,43,48,26] are also available. See [34] for a recent review.

PDEs with space and time varying coefficients are often used in real applications, such as optimal control [49,14,21], trajectory 
planning [32], studies of piezoelectricity [17], and electromagnetic eddy current problems [23]. In such cases, certain coefficients 
may depend on both time and space, and in some equations, parts of the coefficients may vary with time while the others vary with 
space. An effective and robust PDE identification scheme with the flexibility of handling space and time varying coefficients is in 
need. The goal of PDE identification in this paper is to find an expression of (1) in a parametric form

�� =

�∑

=1

�
(�, �)�
(�, �) (2)

based on single, possibly noisy, observations of a solution trajectory � in Ω × [0, �max]. The set of potential features  = {�
}
�

=1

forms 
a dictionary, which can include linear terms such as partial derivatives of � in various orders, and products of multiple linear terms, 
e.g., ��� and �2. The size of the dictionary � > 0 is sufficiently large, and �
 , 
 = 1, 2, … , �, represents a space-time dependent 
function. Fig. 1 provides an illustration: from the noisy observation of a single solution trajectory, the proposed method identifies 
the features ��� and ��� from a dictionary and reconstructs the respective space and time varying coefficients, i.e., �(�, �) and �(�, �).

There are few works dealing with space-time varying coefficients: [19,39] laid out a framework to identify varying coefficients 
and explored regularizers to encourage structural sparsity. Algorithms were numerically tested on PDEs with either space or time 
varying coefficients. In [19], the authors explored identification of spatially varying coefficients with Group-Lasso and proposed a 
Base Element Expansion (BEE) technique. In [10], the authors proposed a split Bregman method to identify interacting kernels in 
aggregation equations, where the kernel to be identified is space and time varying, yet the form of the equation is assumed to be 
given.

In this paper, we propose Group Projected subspace pursuit for IDENTification of variable coefficient PDEs (GP-IDENT) to identify 
parametric PDEs with space-time varying coefficients from a single trajectory of noisy data. After spanning the hypothesis space by 
B-spline bases [44], we generate a collection of candidate models by using different levels of group sparsity, then evaluate each 
candidate by considering the Reduction in Residual error (RR) to identify the optimal model. Since the candidate generation involves 
solving a non-convex, non-differentiable, NP-hard problem [6], we design a novel and effective Group Projected Subspace Pursuit 
(GPSP) greedy algorithm to produce candidate models with any specified level of group sparsity. We compare these methods on a 
variety of linear, non-linear PDEs and systems of differential equations with different levels of noise. Our experiments show that GP-
IDENT outperforms other methods in terms of effectiveness, efficiency, and robustness. Contribution can be summarized as follows.
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Fig. 2. Workflow of the proposed GP-IDENT for varying coefficient PDE identification from noisy observations. (a) Given the noisy observation of a single solution 
trajectory, we build the feature system (Section 2.1). (b) For � = 1, … , �max , we generate a candidate model by solving a group-�0 optimization problem, the proposed 
GPSP algorithm (Section 3). (c) We evaluate each candidate’s Reduction in the Residual error (RR) to select the optimal model among candidate models. (Section 2.3). 
(d) Reconstruct the coefficients by least square regression.

1. We propose a novel method, GP-IDENT, to identify parametric PDEs with variable coefficients which vary in space and time. 
We assume that the given data are noisy observations of a single solution trajectory. The proposed procedure integrating SDD, 
GPSP, and RR shows robust performances compared to other state-of-the-art approaches.

2. We propose a new Group Projected Subspace Pursuit algorithm, GPSP, for structured sparse regression with group �0-norm 
constraint. GPSP is efficient in searching for the correct features in the underlying PDE, and outperforms block subspace pursuit 
[18] especially when different groups or columns within a group are highly correlated.

3. We propose the Reduction in the Residual error (RR) to identify the optimal model. This criterion gives more stable identification 
results compared to AIC-based approaches [39,24] when the data are noisy or the dictionary is large.

This paper is organized as follows. In Section 2, we present the detailed procedure of the proposed method, GP-IDENT. In Section 3, 
we describe the new Group Projected Subspace Pursuit algorithm, GPSP, and explain the details, including comparisons with block 
subspace pursuit [18]. Following numerical implementation details in Section 4, we present numerical experiments to validate the 
effectiveness of the proposed GP-IDENT and compare it with the state-of-the-art methods on various types of PDEs in Section 5. We 
conclude the paper with some discussions in Section 6.

2. Group Projected subspace pursuit for IDENTification (GP-IDENT) of variable coefficient differential equations

The proposed method has four steps as illustrated by the flowchat in Fig. 2. [Step 1] From the noisy observation of a single 
solution trajectory, to amend the instability caused by noise, we employ the Successively Denoised Differentiation (SDD) [9] to 
smooth the given data and generate the feature system as in [39,19]. Each variable coefficient is represented by B-spline bases [44]
to account for the variation in space and time. The details are presented in subsection 2.1. [Step 2] To find candidate models of 
each sparsity level, we propose GPSP. We describe the procedure of GPSP in subsection 2.2 and the algorithmic details are presented 
in Section 3. [Step 3] Among the candidate models, we present the model selection criterion based on a Reduction in the Residual 
error (RR), detailed in subsection 2.3. [Step 4] Finally the coefficients are reconstructed. We summarize the proposed GP-IDENT 
algorithm in Algorithm 1.

Notation: In this paper, we use standard letters such as �, � for scalars. We use bold lowercase letters such as � for vectors, 
and bold uppercase letters such as � for matrices. For a matrix �, �⊤ denotes its transpose, and �† denotes its pseudo-inverse. A 

vector � ∈ℝ
� is viewed as a column vector, and �⊤ as its transpose is a row vector. ‖�‖1 =∑�

�=1 |��| and ‖�‖2 =
√∑�

�=1 �
2
� are �1 and 

�2-norm of �, respectively. We use supp(�) ∶= {� = 1, 2, … , �|�� ≠ 0} for the set of indices of the non-zero entries of �, and its �0-norm 
‖�‖0 is the number of elements in supp(�).

2.1. Setup: construction of the feature system

In the first step, we set up a feature system for feature identification and coefficient reconstruction. To simplify the notations, we 
focus on one-dimensional spatial domain in the description.

Consider the evolution PDE in (1) on the spatial and temporal domain �1 × [0, �max] with a periodic boundary condition in space. 
Denote the noisy observations of its solution trajectory by

 = {� (��, ��) = �(��, ��) + ��,�, � = 1,… , �, � = 1,… ,�}.
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Algorithm 1 The proposed GP-IDENT algorithm.
Require: Sampled trajectory data , over-complete dictionary , smoothing window size � ≥ 0, hypothesis space � , maximal sparsity level �max , threshold �, and 

selection window �
1: Construct the feature system (�, �) based on , � , and  using SDD with window size �.
2: for � = 1, … , �max do
3: Obtain an approximate solution �∗(�) with GPSP (Section 3) using � and �, which are normalized � and �, respectively.
4: end for
5: Compute  � in (12) for � = 1, … , �max −�, and select the optimal candidate with sparsity �∗ in (13).
6: Obtain �∗(�∗) by least square regression using partial columns of �

min
�
‖��− �‖2

2
subject to supp(�) = supp(�∗(�∗)),

or simply rescale �∗(�∗) according to the norms of columns of � and �.
7: return A PDE model specified by �∗(�∗).

Here ��,� is the noise. We assume that the underlying PDE is in the form of (2), i.e., it is a linear combination of features, e.g., �� and 
���, contained in an over-complete dictionary  = {�
 ∶ �

1 × [0, �max] ↦ℝ}�

=1

with coefficients that may depend on space and time. 
Note that (2) can represent nonlinear PDEs if  includes nonlinear features.

Let {�	(�, �)}�	=1 be a set of bases, and denote � = Span({�	(�, �)}�	=1) as a hypothesis space. We first approximate each variable 
coefficient �
(��, ��) by an expansion of the basis elements such that

�
(��, ��) ≈

�∑
	=1

�
,	�	(��, ��) ∈�

with constant coefficients �
,	 ∈ℝ for 
 = 1, 2, … , �. Then each term in (2) is represented as

�
(��, ��)�
(��, ��) ≈

�∑
	=1

�
,	�	(��, ��)�
(��, ��) , � = 1,… , �, � = 1,… ,�. (3)

Since the exact value of �
(��, ��) is unknown, we approximate it by the empirical counterpart �̂
(��, ��) estimated from the given data 
, which is detailed in Section 4. We express (3) in the matrix form:

�
(��, ��)�
(��, ��) ≈ �⊤
 (�, �)�
 , (4)

where

�⊤
 (�, �) =
[
�̂
(��, ��)�1(��, ��) ⋯ �̂
(��, ��)�� (��, ��)

]
∈ℝ

� (5)

and �
 =
[
�
,1 �
,2 ... �
,�

]⊤
∈ℝ

� . Define the 
-th group feature as

�
 =
[
�
(1,1) �
(2,1) ⋯ �
(�,�)

]⊤
∈ℝ

��×� .

We concatenate {�
}
�

=1

to construct the feature matrix:

� =
[
�1 �2 ⋯ ��

]
∈ℝ

��×�� , (6)

as illustrated in Fig. 2 (a). Similarly, we construct � from �
 via

� =
[
�⊤
1

�⊤
2

⋯ �⊤
�

]⊤
∈ℝ

�� . (7)

We approximate ��(�, �) by its empirical counterpart �̂�(�, �) based on the given data . We define the feature response as

� =
[
�̂�(�1, �1) �̂�(�2, �1) ⋯ �̂�(�� , �� )

]⊤
∈ℝ

�� , (8)

and refer to the pair (�, �) as a feature system derived from the given data  using the dictionary  and the hypothesis space � .

2.2. Candidate generation using GPSP

In the second step, we generate a sequence of candidate models with distinct levels of sparsity. Let �max be a fixed integer such 
that 1 ≤�max ≤�. For � = 1, 2, … , �max, we consider

min
�∈ℝ��

‖��− �‖2
2
subject to ‖�‖�0,1 = �, (9)

where � and � are obtained from � and � by normalizing each column, i.e., the column norms are 1, and the �0,1-norm of a vector 
� ∈ℝ

��

‖�‖�0,1 ∶=
‖‖‖
[‖�1‖1 … ‖��‖1

]‖‖‖0 (10)
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represents the number of groups with non-zero coefficients. The constraint enforces group sparsity by explicitly specifying that only 
� groups of features have nonzero coefficients. The solution of (9) corresponds to a PDE model with exactly � features that best 
fits the given data. However, due to the �0-norm constraint, exactly solving the non-convex and non-differentiable problem (9) is 
NP-hard [6].

We propose Group Projected Subspace Pursuit (GPSP) to find a group �-sparse vector �∗(�) for � = 1, 2, … , �max. Given a fixed �, 
the proposed GPSP iteratively searches for � groups highly correlated to the residuals in a greedy manner (See Section 3). For each 
sparsity level �, we denote the index set corresponding to the active group features by � (�) ⊆ {1, … , �}. We obtain �max candidate 
PDEs whose active features are indexed by � (�) for each sparsity level � = 1, … , �max respectively.

2.3. Model selection by Reduction in Residual (RR)

The third step is to select the optimal model from candidates specified by each sparsity level �. We design a new score using the 
sum of squared residuals (SSR)

#� = ‖��∗(�) − �‖2
2
, (11)

and compare the reduction of this residual for each � sparsity level. Let � ≥ 1 be a fixed integer. For � = 1, … , �max −�, we compute 
the Reduction in Residual (RR) as

 � =
#� −#�+�

�#1

, � = 1,… ,�max −�. (12)

This measures the average reduction of residual error as the sparsity level � increases. A small value in  � means there is a marginal 
gain in accuracy as sparsity level gets bigger than �. Here, using � = 1 is not reliable: using GPSP, for each sparsity level �, the 
computation of (9) is totally independent. The index set � (�) of the active features for the �-th candidate may not be a subset of 
� (� + 1), i.e., #� −#�+1 may be negative. By using the average of � in (12), we suppress the impact of fluctuation and improve the 
stability of model selection.

When the value  � is already small, we choose the smallest sparsity �, rather than choosing � with the smallest  �. We introduce 
a threshold � > 0, and pick the optimal sparsity as follows:

�∗ =min{� ∶ 1 ≤ � ≤�max −�,  � < �}. (13)

This is the smallest sparsity index � where  � is below �. The motivation of this criterion is to find the simplest model, where RR 
does not reduce further by considering more complex models.

We find that GP-IDENT is not sensitive to the choice of � > 1 and �, and we fix � = 5 and � = 0.015 in this paper. We illustrate the 
effect of RR with an example in Appendix B.

2.4. Reconstruction of the coefficients

In the fourth step, we reconstruct the coefficients of the identified PDE. After obtaining the optimal level of sparsity �∗ in Step 3, 
we reconstruct the coefficients �∗(�∗) by solving

min
�∈ℝ��

‖��− �‖2
2
subject to supp � = supp �∗(�∗), (14)

where we recall that �∗(�∗) is the approximate solution of (9) given by GPSP with the optimal group sparsity �∗ selected in subsec-
tion 2.3. (14) is equivalent to a least square regression using the group features indexed by � (�∗). Alternatively, we can reconstruct 
�∗(�∗) by properly rescaling �∗(�∗) by the norms of columns of � and �. In particular, the 	-th entry �∗(�∗) is equal to the 	-th entry 
of �∗(�∗) divided by the norm of the 	-th column of � then multiplied by the norm of �.

3. Group Projected Subspace Pursuit (GPSP)

We propose the Group Projected Subspace Pursuit (GPSP) to generate candidates with � features. For Group-LASSO (GLASSO) [52]
and the grouped version of STRidge, Sequential Grouped Threshold Ridge Regression (SGTR) [39], the sparsity level is implicitly 
controlled by a regularization parameter. GPSP allows one to explicitly specify the sparsity level, which makes the generation of the 
candidate models more efficient. Compared to Block Subspace Pursuit (BSP) [18], GPSP is numerically more stable when co-linearity 
occurs, and we show this in numerical experiments.

For the simplicity of notation, only in this section, we use � and � instead of � and �, as the proposed GPSP is applicable in both 
cases and the normalization is used to make the algorithm numerically robust.

3.1. GPSP algorithm

For a fixed level of group sparsity � ≥ 1, suppose the set of group indices selected by the ($− 1)-th iteration is � $−1, and denote as

�$−1% = resid(�,�� $−1 ) = � − proj(�,�� $−1 ) = � −�� $−1�
†

� $−1
� (15)
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Algorithm 2 Group Projected Subspace Pursuit (GPSP) for (9).
Require: Feature system (�, �), specified level of group sparsity � ≥ 1, maximal number of iterations Itermax ≥ 1.
1: Set $ = 0.
2: Set � $ = {� largest indices of & (�, �
 ), 
 = 1, 2, … , �} in (16).
3: Set �$

%
= resid(�, �� $ ) in (15), �� $ concatenates {�
}
∈� $ vertically.

4: for $ = 1, … , Itermax do
5: �̃ $ = � $−1 ∪ {� largest indices of & (�$−1

%
, �
 ), 
 = 1, 2, … , �}.

6: Compute �$
(
=�

†

�̃ $
�.

7: Set � $ = {� largest indices of ‖�
�
$
(
[
]‖2 , 
 ∈ �̃ $}, where �$

(
[
] is the subvector of �$

(
corresponding to the 
-th group.

8: Compute �$
%
= resid(�, �� $ ).

9: if ‖�$
%
‖2 > ‖�$−1

%
‖2 then

10: Set � $ = � $−1 and terminate.
11: end if
12: end for
13: return The optimal group indices � $ and the estimated coefficient �†

� $
�

the residual of fitting the data using groups specified by indices in � $−1. Here �� $−1 is obtained by concatenating the group features 
{�
}
∈� $−1 horizontally. The proposed scheme consists of two stages in each iteration: expanding and shrinking.
[Stage 1] Expand � $−1 to �̃ $. For the $-th iteration, we first compute

& (�$−1% ,�
) =

|||proj(�$−1% ,�
)
⊤�$−1%

|||
‖proj(�$−1% ,�
)‖2‖�$−1% ‖2

(16)

for 
 = 1, 2, … , �. Note that & (�$−1% , �
) measures the correlation between �$−1% and its projection to the column space of �
 . We take 
the union of � $−1 with the set of � groups with the highest � values in (16), and denote the union set as �̃ $ .
[Stage 2] Shrink �̃ $ to � $. Let �$( =�

†

�̃ $
�. We project � to the column space of �

�̃ $ with decomposition

�( = proj(�,��̃ $ ) =
∑

∈�̃ $

�
�
$
([
],

where �$([
] is the subvector of �
$
( corresponding to the 
-th group. For 
 ∈ �̃ $ , its norm ‖�
�

$
([
]‖2 provides a measure of the 

importance of the 
-th group. Hence, from �̃ $ , we keep indices of � most important groups and remove the others. The refined set of 
indices is � $ .

After the $-th iteration, we compute �$% = resid(�, �� $ ). If ‖�$%‖2 > ‖�$−1% ‖2, we set � $ = � $−1 and take the groups indexed by � $ as 
our final selection; otherwise, we repeat the procedure described above. We summarize the GPSP scheme in Algorithm 2.

3.2. Related algorithms

GPSP is closely related to Subspace Pursuit (SP) [6] and Block Subspace Pursuit (BSP) [18]. SP is a greedy algorithm for sparse 
regression. It iteratively expands the pool of � candidate covariates by considering potential features highly correlated to the residual, 
then refines the choices by reducing the extended pool back to � covariates by eliminating those with less importance. At each 
iteration, SP expands � nonzero entries to 2� nonzero entries by adding the � indices whose columns are highly correlated with the 
residual, and then refines the choice by eliminating the � indices with smaller coefficient values. From this perspective, both BSP and 
GPSP can be regarded as generalizations of SP where the covariates, i.e., individual columns of the system matrix, are replaced by 
groups of features. However, BSP and GPSP have different interpretations about the correlation between the residual and a feature 
group.

When expanding the pool of candidates from � to 2�, BSP measures the correlation between the residual �% and the 
-th feature 
group �
 by the �2-norm of the inner product between �% and the columns of �
 ,

‖��

 �%‖2 =

√√√√ �∑
	=1

(�⊤

 [	]�%)

2, (17)

where �
[	] denotes the 	-th column of the 
-th feature group. In GPSP, we use the inner product between �% and its projection to 
the column space of �
 to quantify the correlation

& (�%,�
) =

|||(�
�
†

�%)

� �%
|||

‖�
�
†

�%‖2‖�%‖2

. (18)

Comparing (17) with (18), we note that GPSP is less sensitive to co-linearity than BSP. If some columns of �
 are co-linear, BSP (17)
considers that they all contribute to the correlation between �% and �
 , whereas GPSP (18) ignores the co-linear columns as they are 
redundant when representing the information contained in the group. See Fig. 3 for an illustration. Notice that if �� only has one 
column, both (17) and (18) are identical to SP.



Journal of Computational Physics 494 (2023) 112526

7

Y. He, S.H. Kang, W. Liao et al.

Fig. 3. An illustrative comparison between GPSP and BSP [18]. (a) In GPSP, the group’s importance is evaluated by the correlation between �% and its projection 
to the column space of �
 . (b) In BSP, the group’s importance is evaluated by the correlation between the residual �% and the columns (blue arrows) in �
 . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1
Comparison of two stages in BSP and GPSP (Algorithm 2). In [Stage 1] Expand (the first 
row), BSP chooses the groups �
 whose columns are highly correlated with the residual 
�$−1
%
, whereas GPSP chooses the groups whose column spaces are close to the residual. In 

[Stage 2] Shrink (the second row), BSP selects the groups with large coefficients, while 
GPSP selects the groups whose projected residual is significant.

Criterion BSP [18] GPSP (Proposed)

Expand ‖�⊤


�$−1
%

‖2 |||(�
�
†


�$−1
%

)⊤�$−1
%

|||∕(‖�
�
†


�$−1
%

‖2‖�$−1
%

‖2)
Shrink ‖�$

(
[
]‖2 for 
 ∈ �̃ $ ‖�
�

$
(
[
]‖2 for 
 ∈ �̃ $

When reducing the expanded pool of candidates of size 2� to �, BSP keeps the � groups whose reconstructed coefficients have the 
largest magnitudes, whereas GPSP uses each group’s contribution measured by the norm of the response vector. Table 1 summarizes 
the differences between BSP and GPSP.

In general, GPSP is better suited for identifying PDEs with varying coefficients which are approximated by a basis expansion. As 
we allow the coefficients to vary both in space and time, some columns in the feature matrix can be highly correlated. We observe 
that GPSP is more effective than BSP when some columns within the same group are highly correlated. We illustrate this using the 
transport equation with constant speed � ≠ 0, ��(�, �) = ���(�, �) in Appendix C. We numerically justify the advantages of GPSP over 
BSP with more examples in Section 5, and discuss computational efficiency of two methods in Appendix D.

4. Numerical implementation details

In this section, we present computational details for B-spine set-up and details of SDD used in this paper.

4.1. Approximation of varying coefficients by B-splines

For some fixed integer � ≥ 1, we define � = {
∑�

	=1 �	�	 ∶ �	 ∈ ℝ} as our hypothesis space, where the basis function �	 ∈

�
1 × [0, �max] ↦ ℝ is compactly supported and 

∑�
	=1�	(�, �) = 1 for all (�, �) ∈ �

1 × [0, �max]. The function space � is used to 
approximate the varying coefficients in the PDE, and we use the basis functions �	 ’s given by B-splines [36].

Without loss of generality, we consider [0, 1] as the spatial domain of interest. For a fixed integer ( ≥ 1, we consider a uniform 
knot sequence 0 = )0 < )1 <⋯ < )$ = 1 for some $ ≥ (. Denote the knot spacing by Δ). The �-th B-spline basis function �(� of order ( is 
constructed according to the Cox-de Boor recursion formula [7]

�0�()) =

{
1 if )� ≤ ) < )�+1,

0 otherwise,
(19)

�(�()) =

(
)− )�

)�+( − )�

)
�(−1� ()) +

(
)�+(+1 − )

)�+(+1 − )�+1

)
�
(−1

�+1
()), (20)

for 0 ≤ � ≤ $ − ( − 1. We note that �(� is non-zero on [)�, )�+(+1), and there are at most ( + 1 non-zero basis functions over any interval 
[)�, )�+1). Suppose the knot spacing is Δ), depending on different boundary conditions for the functions to be approximated, we 
supplement {�(�}

$−(−1

�=0
with more basis functions. For this purpose, it is convenient to uniformly extend the knot sequence to infinity 

⋯ < )−2 < )−1 < )0 <⋯ < )$ < )$+1 <⋯ where �(� is defined for � ∈ℤ.

• Periodic boundary condition. Add ( functions ̃�(� for � = −(, −( + 1, … , −1 defined as

�̃(�()) =

⎧
⎪⎨⎪⎩

�
(
�()) if 0 ≤ ) < (�+ (+ 1)Δ),

�
(
�()− 1) if 1 + �Δ) ≤ ) ≤ 1,

0 otherwise.

(21)
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• Neumann boundary condition. Add two functions

�
(

�
()) =

{∑−1
�=−( �

(
�()) if 0 ≤ ) < (Δ),

0 otherwise,
(22)

�
(

#
()) =

{∑$−1
�=$−( �

(
�()) if 1 − (Δ) ≤ ) ≤ 1,

0 otherwise.
(23)

It is easy to check that 
∑$−(−1

�=0
�
(
�()) +

∑−1
�=−( �̃

(
�()) = 1 and 

∑	−(−1

�=0
�
(−1
� ()) + �

(

�
()) + �

(

#
()) = 1 when ) ∈ [0, 1], and {�(�}

$−(−1

�=0
∪ {�̃

(
�}

−1
�=−(

serve as a set of B-spline basis functions of order ( for �1.
In this paper, we assume periodic boundary condition in space. In the time direction, we assume the Neumann boundary condition 

so that the underlying coefficients do not have significant changes at the first nor the last moment of the observation. Suppose 
{�	1

(�)}
�1

	1=1
is a set of B-spline bases constructed for �1, and another set {�	2

(�)}
�2

	2=1
is constructed for [0, �max] with supplementary 

elements for the Neumann boundary condition. We obtain a set of B-spline bases on the spatio-temporal domain �1 × [0, �max] by 
taking tensor products, that is,

�	(�, �) ∈ {�	1
(�)�	2

(�) ∶	1 = 1,… ,�1, 	2 = 1,… ,�2}

for 	 = 1, 2, … , � , where � =�1�2.

Remark 1. Our algorithm can be adapted to handle different boundary conditions, provided that the feature terms in the dictionary 
can be computed accurately. One may consider computing partial derivatives with high accuracy on a truncated domain then 
interpolate to the entire domain, or use additional information of the coefficients to compute high order partial derivatives. The 
accuracy of the computed partial derivatives is important for the success of GP-IDENT and the accuracy of the recovered coefficients.

4.2. SDD for robust feature approximation

To robustly approximate �
 (respectively ��) with �̂
 (respectively �̂�) using noisy observations of � (4), we suppress the noise 
amplification during the process of numerical differentiation. We apply the Successively Denoised Differentiation (SDD) [9], which 
approximates ����

	
� �(�, *) for any integers 	, � ≥ 0 by

(�+�)
�(�+�)

	��� (�, *)

where � and � are 1-D smoothing operators along space and time respectively, +� and +� are numerical differentiation operators 
with respect to space and time respectively, and (⋅)	 means applying the operator repeatedly for 	 times.

In this paper, we assume that the grid is uniform with step size Δ� > 0 in space and Δ� > 0 in time. We use 5-point-central 
difference for both +� and +�, that is

+�� (��, ��) =
−� (��+2, ��) + 8� (��+1, ��) − 8� (��−1, ��) +� (��−2, ��)

12Δ�

and similarly for +�. Here periodic boundary condition is applied in space, and Neumann boundary condition is applied in time. To 
reduce the influence of the approximation errors near boundary, we only use the interior data for feature construction. As for the 
smoothing operator in time and space, we use the Savitzy-Golay filter [41], which is a convolution version of the local polynomial 
fitting. For example, when the boundary condition is periodic, the spatial smoothing operator with the Savitzy-Golay filter is

�� (�, �) =

�−1
2∑

$=
1−�
2

-$� (�+ $, �), (24)

where the integer � ≥ 1 is the window size, the convolution weights -$ are derived by fitting local data using degree / polynomials 
for some integer 0 ≤ / < �, and they are tabulated in [41]. This filter is available, e.g., using savgol_filter from the scipy
package in Python. In the following numerical section, we use the notation such as SDD-15 to represent using SDD with a window 
width � = 15 in (24). In this paper, we find that more accurate coefficient reconstruction is obtained if �� is approximated by +��

without the second smoothing, thus we modify SDD as such in our experiments.

5. Numerical experiments

For all experiments, we consider general dictionaries parameterized by two positive integers: the highest order of partial deriva-
tive, and the maximal number of multiplication of terms. For example, a dictionary that contains partial derivatives of � up to the 
first order and the products of no more than 2 terms consists of the following features 1, �, ��, �2, ���, and �2�. Our default dictionary 
contains 56 terms including all partial derivatives of � up to order 4 and the products of no more than of 3 features. Our experiments 
in subsubsection 5.3.3 and Table 5 are performed on larger dictionaries to show the stability against dictionary size.
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Table 2
A list of PDEs tested in Section 5.

PDE Model

Advection diffusion equation �� = ��(�(�)�) + ����
Fisher’s equation �� = ���� + �(�)�(1 − �)

Viscous Burgers equation �� = �(�, �)��� + �(�)���
Korteweg–De Vries (KdV) equation �� = �(�, �)��� + �(�, �)���
Kuramoto–Sivashinsky (KS) equation �� = �(�)��� + �(�, �)��� + �(�, �)�����
Schrödinger equation ��� = ���� + �(�, �)�

Nonlinear Schrödinger (NLS) equation ��� = ���� + �(�, �)|�|2�

For hyper-parameters, we fix �max = 15, � = 0.015, and � = 5 in all experiments, since we find that GP-IDENT is not sensitive to the 
choice of � > 1 and �. We illustrate the effect of RR and � with an example in Appendix B. We consider data with (% Gaussian noise. 
The noisy data takes the form � (��, ��) = �(��, ��) + ��,� for � = 1, … , � , � = 1, … , � , with Gaussian noise ��,� ∼ (0, 02), � = 1, … , � , 
� = 1, … , � , where

0 = (%× std({�(��, ��) | � = 1,… , �, � = 1,… ,�}). (25)

Here std(⋅) stands for the standard deviation of a collection of data.
For the PDE examples, we generate the solution data by the spectral method analogous to [39]. The equation is discretized in 

space, where the partial derivatives are computed using Fast Fourier Transform (FFT), then the solution is obtained by integrating 
in time using LSODA [13]. As for examples of PDE systems, i.e., Schrödinger and Nonlinear Schrödinger equations, we generate the 
data by implicit-explicit finite difference methods where second order partial derivatives are treated implicitly, and the zero-th order 
terms are treated explicitly. To represent the change in the coefficients, for some fixed time �max > 0, we define

1±(�;  , ��) =
1

2
+

1

2
tanh

(
±
 (�− ��)

�max

)
, � ∈ [0, �max] (26)

to reflect a smooth transition with rate  between different states separated by the break point ��.
We present numerical experiments to justify the effectiveness of GP-IDENT and compare it with the state-of-the-art identification 

methods for PDEs with varying coefficients: GLASSO [52], SGTR [39], and rSGTR [24].1 In [24], DLrSR was proposed to handle 
sparse noise added to the measurements in a linear system. We note that the selection criteria for GLASSO, SGTR, and rSGTR are 
based on minimum AIC value, and they are essentially parameter-free. We also compare GP-IDENT with BSP-IDENT, where GPSP 
is replaced by BSP [18] in GP-IDENT. To show the effectiveness of GP-IDENT, we test it on various types of equations [40,39,24,9]
listed in Table 2.

To evaluate the reconstruction accuracy, we calculate the discrete relative �1-error to measure the coefficient error:

2(�
) =

∑�
�=1

∑�
�=1

|||�̂
(��, ��) −�
(��, ��)
|||∑�

�=1

∑�
�=1

|||�
(��, ��)
|||

× 100% (27)

where �̂
 is the reconstruction of �
 . To quantify the coefficient support identification accuracy, we use the Jaccard index [15]
defined as

3 (�̂ , � ∗) =
|�̂ ∩ � ∗|
|�̂ ∪ � ∗|

, (28)

where �̂ denotes the group index set in the identified model, � ∗ is the group index set in the true equation, and | ⋅ | gives the number 
of elements in the set. Note that 3 (�̂ , � ∗) = 1 if and only if �̂ = � ∗, i.e., the underlying model is exactly identified.

For all the compared methods, the codes are available in Python. For BSP-IDENT and GP-IDENT, we implement the generation 
of feature system in Python, and the BSP as well as GPSP algorithms and the identification process in C++. We run the experiments 
using a laptop with 12th Gen Intel(R) Core (TM) i7-12800H, 2400 Mhz, and 14 cores.

5.1. GP-IDENT results on PDEs with space and time varying coefficients

We experiment on several PDEs with space and time dependent coefficients, including the KdV equation, KS equation, Schrödinger 
equation (Sch), and Nonlinear Schrödinger (NLS) equation. We note that Sch and NLS equations can be regarded as PDE systems for 
the real and imaginary components of a complex system. For the KdV and KS equations, we use the default dictionary containing 56 
terms. As for the PDE systems (Sch and NLS), we use the dictionary containing linear features of partial derivatives of the real and 
imaginary components up to order 3, and the products up to 3 terms, leading to a total of 165 features. Table 3 shows the trajectories, 
equations, the coefficient reconstruction errors (27) with clean and noisy data. We present the details of these experiment settings 

1 For GLASSO [52] and SGTR [39], we used the code available at https://github .com /snagcliffs /parametric -discovery; and for rSGTR, https://github .com /
junli2019 /Robust -Discovery -of -PDEs.
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Table 3
GP-IDENT results for equations and systems with space and time varying coefficients. The first column 
shows the solution trajectory for each equation. For the Schrödinger and NLS equations, the real and 
imaginary components of � are plotted, respectively. The second column shows the true equations, 
and GP-IDENT finds the correct features, i.e., the identified equations match the true equations. Once 
the feature terms are identified, least-square is used to recover the coefficient values. In the third 
column, we report the relative �1 errors (27) for the recovered coefficients. For the noisy case (1%
noise), we conduct 10 independent experiments and record the mean and standard deviation of the 
errors.

Trajectory Equation Coef. error no noise, 1% noise

KdV �� = �(�, �)��� + �(�, �)����
���� ∶ 4.09%, 20.49 ± 0.16%

��� ∶ 0.54%, 20.37 ± 0.18%

KS
�� = �(�)��� + �(�, �)���

+ �(�, �)�4
�
�

��� ∶ 2.03%, 19.21 ± 0.31%a

�4
�
� ∶ 2.12%, 18.92 ± 0.30%a

��� ∶ 1.05%, 25.61 ± 0.21%a

Sch ��� = 0.5��� + �(�, �)�

4 ∶ 3.80%, 5.34 ± 0.12%

� ∶ 3.93%, 4.14 ± 0.11%

4�� ∶ 0.78%, 0.87 ± 0.03%

��� ∶ 0.81%, 0.73 ± 0.03%

4 = Re(�),� = Im(�)

NLS ��� = −0.5��� + �(�, �)|�|2�

4�� ∶ 1.74%, 21.48 ± 0.05%

��� ∶ 1.97%, 21.16 ± 0.04%

43 ∶ 0.39%, 2.67 ± 0.01%

42� ∶ 0.40%, 2.76 ± 0.04%

4�2 ∶ 0.50%, 2.61 ± 0.02%

�3 ∶ 0.36%, 2.44 ± 0.01%

4 = Re(�),�= Im(�)

a To identify KS equation from noisy data, we used � = 0.05 for model selection.

including the coefficients, grid, number of bases, and window size for SDD in Appendix A Table A.8. We note that for the KS equation, 
a different threshold � = 0.05 is used.

5.2. Viscous Burgers’ equation with space-time dependent coefficients

Consider the following viscous Burgers’ equation

��(�, �) = �(�, �)�(�, �)��(�, �) + �(�)���(�, �) , � ∈ [−2,2), � ∈ (0,0.02] (29)

with the initial condition

�(�,0) =sin(5(2�− 0.1)) + cos(5(5�− 0.2)) + cos(5(3�− 0.3)) cos(5(�+ 0.1))

+ sin(5(4�+ 0.5)) + 5 (30)

and space-time dependent coefficients

�(�, �) = 4
(
1 + 1+

(
�,10,

0.02

3

))
(2 + sin(5�)) , �(�) = 0.8

(
1 + 1−

(
�,10,

0.02

2

))
, (31)

We numerically solve (29) on a 256 × 256 grid. Fig. 4 (a), (b), and (c) show the trajectory data, the true coefficient for ��� , and that 
for ���, respectively.

5.2.1. GP-IDENT result
We use 4 bases in space and 7 bases in time to approximate the coefficients. Fig. 4 (d) shows the absolute error of the trajectory 

simulated by the identified PDE by GP-IDENT, which is close to the true trajectory. Fig. 4 (e) and (f), display the relative �1 errors 
(%) for the reconstructed coefficients of ��� and ���, respectively. These figures demonstrate an accurate coefficient recovery of (29). 
In (g)-(i), we show the absolute error of the simulated trajectory and the relative �1 errors (%) of the reconstructed coefficients 
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Fig. 4. GP-IDENT result on viscous Burgers equation (29). (a) The true clean trajectory, (b) the true coefficient for ���, and (c) the true coefficient for ��� . The second 
row shows GP-IDENT for clean data: (d) the absolute error of simulation from the identified model, (e) the relative �1 coefficient error in percentage of the coefficient 
for ��� , and (f) the relative �1 coefficient error in percentage for ���. The third row shows GP-IDENT for the data with 2% noise: (g) the absolute error of simulation 
from the identified model, (h) the relative �1 coefficient error in percentage of the coefficient for ���, and (i) the relative �1-error in percentage of the coefficient for 
��� .

when the given data have 2% noise and SDD-9 is used for denoising. GP-IDENT successfully identified the underlying PDE, and the 
simulated trajectory remains close to the true one. We note that the reconstructed coefficient for ��� deviates from the true ones 
when � ∈ (0.015, 0.02) because the observed trajectory in (a) is mostly flat in this region. The flatness (derivatives being close to zero) 
causes a lack of local dynamics and leads to numerical instability. The coefficient identification on this region is ill-posed.

5.2.2. Robustness against various level of noise
We demonstrate the robustness of GP-IDENT and compare with SGTR and BSP-IDENT for various noise levels. Fig. 5 (a) shows 

the relative �1 coefficient error for ��� and ���, and the relative �1 error between simulated trajectory using the model identified by 
GP-IDENT and the true trajectory (green). The coefficient identification for ��� is robust to noise, yet the coefficient reconstruction 
for ��� is an ill-posed problem, since the dynamics are flat at some regions, as shown in Fig. 4. Despite that the coefficient error for 
��� is relatively large, the simulated trajectory matches the PDE solution with less than 1% error. The reduction of the error in the 
early stage is caused by over-smoothing of SDD-9 when the noise level is very low.

Fig. 5 (b) shows the Jaccard index between the exact support and the recovered one by SGTR, BSP-IDENT and GP-IDENT. Both 
SGTR and BSP-IDENT fail to identify the correct features, while GP-IDENT successfully finds the correct model when the noise is 
below 4%. We note that for SGTR, the optimal model is selected by the minimum of the loss function based on AIC.

5.3. Advection-diffusion equation with space-dependent coefficients

Consider the following advection-diffusion equation [39] with spatially dependent coefficients, for � ∈ [−5, 5), and � ∈ (0, 5],

��(�, �) = ��(�(�)�) + 0.1��� = ���(�)�+ �(�)�� + 0.1��� (32)

with initial condition �(�, 0) = cos(25�∕5), and �(�) = −1.5 + cos(25�∕5). This PDE is solved over a 256 × 256 (space × time) grid. 
When the given data are noisy, SDD plays a critical role. We show in Appendix A Fig. A.9 that noise is significantly amplified in the 
finite difference scheme; whereas SDD effectively suppresses the perturbation in partial derivatives, thus it helps to identify the true 
dynamics.



Journal of Computational Physics 494 (2023) 112526

12

Y. He, S.H. Kang, W. Liao et al.

Fig. 5. Varying noise level comparison for the viscous Burgers equation (29): (a) Relative �1 error for the coefficient for ��� (blue) and ��� (orange). Green curve 
shows relative �1 error between the true trajectory and the simulated trajectory of the identified model by GP-IDENT at various noise levels. Although the coefficient 
error for ��� is large due to ill-posedness, the simulated trajectory matches with less than 1% error. (b) Accuracy of support identification measured by Jaccard index 
under various levels of noise. For each noise level, we ran 20 independent experiments using the default dictionary with 56 terms. For BSP-IDENT and GP-IDENT, we 
used SDD-9 for all levels of noise. GP-IDENT successfully finds the correct model when the noise is below 4%.

Fig. 6. GP-IDENT result for the advection-diffusion equation (32): (a) observed clean trajectory. (b) and the second row (d)-(f) shows results from the clean data, and 
(c) and the third row (g)-(i) shows results from the given data with 1% noise (SDD-15 is applied for denoising). The first row shows absolute difference between the 
true (a) and the trajectory simulated by GP-IDENT. (d) and (g) are reconstruction of the coefficient of �, (e) and (h) of ��, (f) and (i) of ��� .

5.3.1. GP-IDENT result
For this experiment, we assume that we a priori know that coefficients only vary in space. Using 7 bases in space for the coefficient 

approximation, GP-IDENT successfully identified the equation (32). Fig. 6 (b) and the second row, (d)-(f) show the reconstruction 
results with clean data, which stay close to the true coefficient values. We also test GP-IDENT when the data has 1% noise using 
SDD-15 (Section 4.2). (c) shows the absolute error of the simulated trajectory, and the third row, (g)-(i) show the reconstructed 
coefficients. GP-IDENT yields robust recovery.
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Table 4
Applying GP-IDENT using three different types of bases: only varying in space 
(S), only in time (T) and both (ST) to the space varying coefficient advection-
diffusion equation (32) with and without noise. We present the identified features 
and sum of squared residual (SSR). For both clean and noisy data, correct features 
are found with the minimal SSR for varying only in space (S), which is consistent 
with (32).

Only in space (S) Only in time (T) Both (ST)

No noise

features �,�
�
,�

��
��, �

2, ���, �
2��, �

3
�

1, �, ��
SSR �.		 × �
−	 9.58 × 10−2 1.63 × 10−2

1% noise

features �,�
�
,�

��
��, �

2, ���, �
2��, �

3
�

1, �, ��
SSR �.�� × �
−	 9.95 × 10−2 2.13 × 10−2

Table 5
The advection-diffusion equation (32) identification comparisons: GLASSO [52], 
SGTR [39], rSGTR [24], BSP-IDENT, and GP-IDENT with three dictionaries and various 
noise levels. For BSP-IDENT and GP-IDENT, SDD-15 is applied for denoising. Dictionary I 
has 35 features, II has 56 features, and III has 330 features. Correct support identifications 
are marked in bold. GLASSO does not converge when Dictionary III is used. GP-IDENT 
consistently identifies the correct terms.

No noise

Method GLASSO SGTR rSGTR BSP-IDENT GP-IDENT

Dict. I �,�
�
,�

��
�,�

�
,�

��
�,�

�
,�

��
�,�

�
,�

��
�,�

�
,�

��

Dict. II �,�
�
,�

��
�,�

�
,�

��
�,�

�
,�

��
�,�

�
,�

��
�,�

�
,�

��

Dict. III − �,�
�
,�

��
�,�

�
,�

��
�,�

�
,�

��
�,�

�
,�

��

1% noise

Method GLASSO SGTR rSGTR BSP-IDENT GP-IDENT

Dict. I 4 terms �, �� �, �� �,�
�
,�

��
�,�

�
,�

��

Dict. II �,�
�
,�

��
�, �� �, �� �,�

�
,�

��
�,�

�
,�

��

Dict. III − �, �� �, �� �,�
�
,�

��
�,�

�
,�

��

3% noise

Method GLASSO SGTR rSGT BSP-IDENT GP-IDENT

Dict. I �, �� , �
3
�
� 5 terms 5 terms �,�

�
,�

��
�,�

�
,�

��

Dict. II �, �� , �
3
�
� 5 terms 5 terms �,�

�
,�

��
�,�

�
,�

��

Dict. III − 5 terms 5 terms �,�
�
,�

��
�,�

�
,�

��

6% noise

Method GLASSO SGTR rSGTR BSP-IDENT GP-IDENT

Dict. I �, �� , �
3
�
� 18 terms 18 terms �,�

�
,�

��
�,�

�
,�

��

Dict. II �, �� , �
3
�
� 10 terms 10 terms �,�

�
,�

��
�,�

�
,�

��

Dict. III − 6 terms 6 terms �,�
�
,�

��
�,�

�
,�

��

5.3.2. Space, time or space and time varying coefficients
In Fig. 6, we assumed that we already know the coefficients depend only on space, and we used the bases only varying in space. 

Although it is not necessary, the prior knowledge about whether the coefficients of the unknown PDE vary in space, in time, or in 
both, helps to reduce the complexity and to improve the accuracy of coefficient recovery. In Table 4, we present an experiment, 
using three different assumptions on the bases, (S) varying only in space, (T) varying only in time, and (ST) space- and time-varying 
coefficients, and we record the sum of squared residuals (SSR) (11) resulted from these settings. In the first setting (S), we used 7
bases in space; in the second setting (T), we used 5 bases in time; and in the third setting (ST), we took 5 bases in space and 3 bases in 
time, and used the tensor products of them for the time-space bases. For this example, GP-IDENT identifies the correct three features 
of (32) in the setting (S), and achieves the minimal SSR, as shown in Table 4. Also, notice that using only in time (T) gives the largest 
error compared to using both (ST), and it identifies only 1 correct feature with 4 additional wrong ones. This is consistent with the 
fact that (T) cannot identify spatially varying coefficient values well.

5.3.3. Stability against dictionary sizes
We present the results with three dictionaries of different sizes. In Dictionary I, we include partial derivatives of � up to order 3

and their products of no more than 3 terms, in total of 35 features. In Dictionary II, we include partial derivatives of � up to order 4
and their products of no more than 3 terms, in total of 56 features. In Dictionary III, we include partial derivatives of � up to order 6
and their products of no more than 4 terms, in total of 330 features. With each of these dictionaries, we apply GLASSO, SGTR, rSGTR, 
BSP-IDENT and GP-IDENT to identify (32) from a trajectory of data with or without noise. Table 5 compares the identified features 
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Fig. 7. The advection-diffusion equation (32) identification comparisons with varying noise with Dictionary II. (a) elative �1 error for the coefficient for � (blue), ��
(orange), and ��� (green). Red curve shows relative �1 error between the true trajectory and the simulated trajectory of the identified model by GP-IDENT at various 
noise levels. (b) Jaccard index showing correct support identification with various levels of noise. For BSP-IDENT and GP-IDENT, we used SDD-15 at all levels of 
noise.

Table 6
Comparison of the computation time for identifying the advection-diffusion equation (32) by 
GLASSO [52], SGTR [39], rSGTR [24], BSP-IDENT, and GP-IDENT with clean data and different 
dictionary sizes. GLASSO fails to converge when Dictionary III is used. GP-IDENT and BSP-IDENT 
show fast convergence.

Identification time (sec)

Method GLASSO SGTR rSGTR BSP-IDENT GP-IDENT

�max − − − 10 15 10 15

Dict. I 258.49 7.88 9.45 4.06 7.39 2.71 7.00

Dict. II 356.34 12.77 15.19 2.98 6.98 3.61 9.24

Dict. III − 145.60 229.46 5.73 9.82 4.19 8.30

of these methods with different noise levels. In this example, GLASSO does not converge when Dictionary III is used, and except for 
this, all methods have correctly identified the true PDE, when the data has no noise. When the given data have 1% noise, GLASSO 
identifies the correct features for Dictionary II but not Dictionary I, which suggests that Dictionary II is more co-linear. SGTR fails 
to identify the correct terms in all cases. We note that in [39], (32) is identified with a smaller dictionary. We find that rSGTR has 
identical performances as SGTR in terms of feature selection. Both BSP-IDENT and GP-IDENT yield the correct model.

5.3.4. Robustness against noise
We demonstrate the robustness of GP-IDENT and compare with SGTR and BSP-IDENT for various noise levels. Fig. 7 (a) shows 

the relative �1 coefficient error for �, ��, and ���, and the relative �1 error between simulated trajectory using the model identified 
by GP-IDENT and the true trajectory (red). The coefficient identification for �� is robust to noise. Analogous to the case of Burgers’ 
equation, the coefficient reconstruction for ��� is more challenging. Despite that the coefficient error for ��� is relatively large, the 
simulated trajectory closely matches the PDE solution.

Fig. 7 (b) shows the Jaccard indices of the identified features by these methods with various noise levels when Dictionary II is 
used. Overall GP-IDENT and BSP-IDENT outperform the other methods. When the noise level is high, GP-IDENT yields better results 
than BSP-IDENT.

5.3.5. Computation efficiency
Table 6 shows the computation time for various methods on clean data. For BSP-IDENT and GP-IDENT, the left column of each 

method records the computation time when �max = 10 and the right column records the time for �max = 15. GP-IDENT and BSP-IDENT 
show fast convergence. We investigate BSP and GPSP with greater details in Appendix D.

5.4. Fisher’s equation with time-dependent coefficients

Consider the Fisher’s equation with time-dependent growth rate [35] widely studied in physics and genetics

��(�, �) = 0.5���(�, �) + �(�)�(�, �)(1 − �(�, �)) , � ∈ [−5,5), � ∈ (0,0.8] (33)

where

�(�) = 1 + 1−

(
�;  ,

0.8

3

)
+ 1+

(
�;  ,

1.6

3

)
(34)

and 1± is defined in(26). We take the initial condition
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Fig. 8. GP-IDENT result on the Fisher’s equation (33): (a) observed clean trajectory. (b) and the second row (d)-(f) shows GP-IDENT results from the clean data, and 
(c) and the third row (g)-(i) shows results from the given data with 2% noise (SDD-15 is applied for denoising). The first row shows absolute difference between the 
true (a) and the trajectory simulated by GP-IDENT. (d) and (g) are reconstruction of the coefficient of �, (e) and (h) of ���, (f) and (i) of �2 .

�(�,0) = 52−�2 + 32−(2�+4)
2
+ 22−(3�−3)

2
+ 42−(2�+8)

2
+ cos(4(�+ 1)5∕10), (35)

and numerically solve it on a 256 × 512 grid for   = 10.

5.4.1. GP-IDENT result
For this experiment, we assume that we a priori know that the coefficients are only varying in time. We apply GP-IDENT with 9

bases in time to approximate the coefficients. Fig. 8 (a) shows the clean trajectory, (d)-(f) present the identified coefficients compared 
to the true coefficients when the given data are clean, and (b) shows the absolute error of the trajectory simulated from the identified 
model. GP-IDENT identifies varying coefficients accurately. When the data have 2% noise, we apply SDD-15 for denoising, and GP-
IDENT identifies the correct model. (c) shows the absolute error of the trajectory simulated from the identified model, and (g)-(i) 
display the identified coefficients. GP-IDENT is robust to noise.

5.4.2. Comparisons
In Table 7, we compare GLASSO, SGTR, rSGTR, BSP-IDENT, and GP-IDENT for identifying the Fisher’s equation (33) with the 

default dictionary using clean and noisy data. When the given data are clean, all methods identify the correct model. For the data 
perturbed by noise, GLASSO identifies extra terms, and both SGTR and rSGRT fail to find the correct terms. We note that when 
the noise level is 1%, all methods identify 3 terms, yet SGTR and rSGTR find wrong terms, and BSP-IDENT and GP-IDENT yield the 
correct terms. BSP-IDENT and GP-IDENT identify the correct model up to 3% noise. Even with the correct number of terms identified, 
SGTR and rSGTR may identify wrong features. The performances of both BSP-IDENT and GP-IDENT are more robust.

6. Conclusion

We propose an effective and efficient method, GP-IDENT, for identifying parametric PDEs with space and time-dependent coeffi-
cients. Our method generates a few candidates by a greedy algorithm called GPSP at various levels of group sparsity. GPSP algorithm 
finds a sparse solution to the feature system for any given group sparsity. After generating the candidates, we find the optimal model 
by considering the smallest sparsity � with a small RR, i.e.  � < �. This motivates to find simple equations where RR does not reduce 
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Table 7
Comparison result for Fisher’s equation (33). Table shows identified features of GLASSO, SGTR, 
rSGTR, BSP-IDENT, and GP-IDENT for data with several levels of noise. For both BSP-IDENT 
and GP-IDENT, SDD-15 was applied for all levels of noise. Correct identifications are marked in 
bold. Both BSP-IDENT and GP-IDENT consistently identifies the correct terms.

Method GLASSO SGTR rSGTR BSP-IDENT GP-IDENT

No noise �,�
��
,�



�,�

��
,�



�,�

��
,�



�,�

��
,�



�,�

��
,�




1% noise 4 terms ��� , �
2 , �3 ��� , �

2 , �3 �,�
��
,�



�,�

��
,�




2% noise 5 terms 6 terms 6 terms �,�
��
,�



�,�

��
,�




3% noise 5 terms �2 �2 �,�
��
,�



�,�

��
,�




Fig. A.9. For advection-diffusion equation (32), influence of noise and effectiveness of SDD: (a) A noisy trajectory with 10% noise, (b) �� and (c) ��� computed from 
the noisy data without denoising. With SDD-15 in the second row, (d) denoised �, (e) denoised �� , and (f) denoised ��� are more stabilized.

further by adding more complex terms. We demonstrate the effectiveness and efficiency of GP-IDENT on various types of PDEs and 
compare it with the state-of-the-art methods for PDE identification with varying coefficients. In our experiments, GP-IDENT consis-
tently yields accurate and robust results. To further improve the identification accuracy, especially with high levels of noise, a model 
selection criterion which is adaptive to noise level may need further investigation.

GP-IDENT can be extended to higher dimensions by expanding the dictionary as well as the basis functions to represent variations 
in the additional dimensions. For example, in the case of 2D space, if we use 5 bases in both dimensions in space and 5 bases 
in time, and we consider partial derivatives up to order 4 and their products of no more than 3 terms, the size of the dictionary 
grows to 816, and the feature system has 816 × 5 × 5 × 5 = 102, 000 columns. When extending to higher dimensions, one may consider 
local polynomial approximation to reduce the complexity. This method may be applicable to more general PDEs, also to the case of 
scattered data (not sampled on a uniform grid), which we will investigate in the future.
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Table A.8
Details of equations tested in Table 3. The Grid column shows the space mesh size × the time mesh size 
on top, and the space domain × the time domain on the bottom. The Bases column shows the number of 
bases used for space and time respectively. The SDD column records the smoothing window size of SDD 
for the noisy data in each case.

Model Coefficients Grid Bases SDD

KdV

⎧⎪⎪⎨⎪⎪⎩

�(�) = 0.5 ⋅ (2 + 0.3cos(5�∕2))⋅

(1 + 1+(�; 10,0.05))

�(�, �) = 0.01 ⋅ (0.5 + 0.1 sin(5�∕2))⋅

(1 + 1−(�; 10,0.05))

256 × 512

[−2,2) × [0,0.1]
5,5 5

KS

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�(�) = 2 + sin(25�∕30)∕4

�(�, �) = (−1 + 2−(�−2)
2∕5∕4)⋅

(2 + 1+(�,5,30))

�(�, �) = (−1 − 2−(�+2)
2∕5∕4)⋅

(2 + 1+(�,5,30))

512 × 512

[−30,30) × [0,60]
9,5 15

Sch
�(�, �) = −5cos(5�∕2)⋅

(0.5 + 1+(�; 5,0.2))

100 × 2000

[−2,2) × [0,2]
5,5 7

NLS
�(�, �) = (1 + 0.2cos(5�∕2))⋅

(1 + 0.51+(�; 5,0.2))

100 × 2000

[−2,2) × [0,0.5]
5,5 7
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Appendix A. Effect of SDD, and the experiment settings for Table 3 with space and time varying equations

Fig. A.9 shows that when the given data are noisy, it is significantly amplified in the finite difference scheme. SDD effectively 
suppresses the perturbation in partial derivatives, and helps to identify the true dynamics.

In Table A.8, we present the details of these experiment settings including the coefficients, grid, number of bases, and window 
size for SDD for the experiments in Table 3.

Appendix B. Effects of Reduction in Residual (RR)

In this paper, we propose the RR scores (12) to select the identified PDE from a pool of candidates given by GPSP at various 
levels of sparsity. Using the Burgers’ equation (29) as an example, Fig. B.10 demonstrates that the RR scores are effective in selecting 
the correct model. For both (a) and (b), the black curves are when there is no noise, and the gray curves are for 2% noise. (a) 
shows residuals for each sparsity level. As the sparsity level gets bigger, the residual curves fluctuate since different sparsity levels 
are produced by GPSP individually. For example, when the sparsity is 1, the candidate contains ��. When the sparsity is 2, �� is 
removed, and the correct features ���, ��� are included. If the sparsity level is 3, the correct feature ��� is not selected, which leads 

Fig. B.10. Effects of RR for the viscous Burgers’ equation (29). For both graphs, the black curve is when there is no noise, and the gray curve is for 2% noise. (a) 
Residuals of the candidate models from GPSP of various sparsity levels (�max = 15). (b) RR score in (12) for candidates generated by GPSP using � = 5. The red dashed 
curve represents the default threshold � = 0.015, and the identified model is the one whose score first hits below �. The correct features are marked in red in (b).
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to an increment of residuals. The residual curves do not give clear indications about the optimal models. In (b), we show the RR 
curves as well as the threshold � = 0.015 used in (13) marked by the dashed red line. Note that after sparsity 2, more complex models 
do not contribute to significant reduction in the residuals. When the given data have noise, the candidates’ RR scores become less 
oscillatory, and the score for the correct model approaches the threshold � = 0.015. This is commonly observed in other PDEs as well.

Appendix C. Explanation of GPSP over BSP in PDE identification

Consider the transport equation with a constant speed � ≠ 0

��(�, �) = ���(�, �) (C.1)

and its solution � (� + ��) for some smooth function � , which is nowhere zero. If the hypothesis space contains � (� + ��) and the 
dictionary contains ��, ���, it is possible to confuse (C.1) with

��(�, �) =
�

� (�+ ��)
�(�, �)��(�, �) or ��(�, �) = �1��(�, �) +

�2
� (�+ ��)

�(�, �)��(�, �) (C.2)

where �1 + �2 = � and �1, �2 ≠ 0, in which case, all these PDE models are valid.
In practice, the dimension of the hypothesis space � is finite, and the hypothesis space is confined by the resolution of the 

sampling grid for numerical stability. Ideally, the PDE model with the least coefficient approximation error by the hypothesis space 
should be selected, and this is where GPSP differs from BSP.

We denote 
(�, �) = 1

� (�+��)
and decompose 
(�, �) = 
� (�, �) + 2� (�, �) where 
� is the orthogonal projection of 
 to � , and 

2� ⟂� denotes the residual. For simplicity, we assume normalization is applied and the dictionary is simply {��, ���}. We compare 
GPSP with BSP when the sparsity level is fixed at 1, that is, each method selects just one feature, and we focus on the selection in the 
initial step. In BSP, we are comparing

√√√√ �∑
	=1

(⟨��,�	��⟩
)2

with

√√√√ �∑
	=1

(⟨��,�	���⟩
)2

(C.3)

where {�	}
�
	=1

are basis functions and the inner product is understood as operations over the grid points, for example,

⟨��,�	��⟩ =
�∑

�=1

�∑
�=1

��(��, ��)�	(��, ��)��(��, ��) (C.4)

By the hypothesis space approximation, (C.1) and (C.2), we have

⟨��,�	��⟩ = �⟨(
� + 2� )���,�	��⟩ = �⟨
� ,�	��
2
�⟩+ �⟨2� ,�	��

2
�⟩ (C.5)

⟨��,�	���⟩ = �⟨��,�	���⟩ = �⟨
� ,�	��
2
�⟩+ �⟨1 − 
� ,�	��

2
�⟩ (C.6)

thus

⟨��,�	���⟩− ⟨��,�	��⟩ = �⟨1 − 
,�	��
2
�⟩. (C.7)

It indicates that in the first step of BSP, the choice between �� and ��� is independent of the approximation error 2� ; instead, the 
sign of � as well as the magnitude of the trajectory affects the choice. As for GPSP, we compare

⟨Proj(��, span	�	��), ��⟩
‖⟨Proj(��, span	�	��)‖2 =

⟨Proj(���, span	�	��), ��⟩
‖⟨Proj(���, span	�	��)‖2 = ‖��‖2 (C.8)

with

⟨Proj(��, span	�	���), ��⟩
‖⟨Proj(��, span	�	���)‖2 ≤ ‖��‖2 (C.9)

where Proj(��, span	�	��) denotes the projection of �� to the column space spanned by {�	��}
�
	=1

. In (C.8), since �� ∈ span	�	��, the 
projection of ��� to span	�	�� is ��� = ��. In (C.9), we used the Cauchy-Schwarz inequality. We note that in (C.9), the equality holds 
if and only if 2� = 0. Therefore, we conclude that GPSP will choose �� over ��� if the approximation error for the finite dimensional 
hypothesis space is non-zero. In other words, the choice of GPSP is dependent on the approximation error.

Appendix D. Computation efficiency comparison between BSP and GPSP

In Table 6, we compared the identification time for the advection-diffusion equation in (32) with clean data. When �max = 10, 
both BSP-IDENT and GP-IDENT are faster than the other methods, and when �max = 15, they require more time as more candidates 
are generated. We note that typically a single iteration of BSP is faster than a single iteration of GPSP, as BSP only computes vectors’ 
inner products while GPSP involves least-square regressions. In the expanding step, GPSP needs to solve linear systems for vector 
projections while BSP only computes vector-matrix product. In the shrinking step, GPSP computes vector-matrix product while BSP 
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Fig. D.11. For the advection-diffusion equation (32), difference between the number of iterations (NoI) taken till the termination of BSP and GPSP. The blue curve 
represents the number of iterations of BSP minus that of GPSP. The first row shows using Dictionary I with (a) 1%, (b) 5% and (c) 10% noise. The second row with 
Dictionary II with (d) 1%, (e) 5% and (f) 10% noise. The third row with Dictionary III with (g) 1%, (h) 5% and (i) 10% noise. Each figure shows the average difference 
between the number of BSP iterations and the number of GPSP iterations as the sparsity level varies. The dashed black line is the mean of NoI when the data is clean, 
and the dashed red line is the mean of NoI when there is noise.

only computes �2 norm of vectors. However, the speed also depends on the number of iterations, the data, the equation, and the 
dictionary. The total cost of GP-IDENT is comparable to or lower than BP-IDENT. In Fig. D.11, we report the difference of the number 
of iterations for BSP and GPSP with different noise levels and dictionaries. We observe that in general, GPSP requires fewer iterations 
than BSP when the noise level is high, and the dictionary size has an effect on this difference.
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