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ABSTRACT

Recent studies have shown the successful implementation of clas-
sical model-based approaches (e.g. macroscopic traffic flow mod-
elling) and data-driven approaches (e.g. machine learning – ML) to
model freeway traffic patterns, while both have their limitations.
Even though model-based approaches could depict real-world traf-
fic dynamics, they could potentially lead to inaccurate estimations
due to traffic fluctuations and uncertainties. In data-driven models,
the acquisition of sufficient high-quality data is required to ensure
themodel performance. However, many transportation applications
often suffer fromdata shortageandnoises. Toovercome those limita-
tions, this study aims to introduce and evaluate a newmodel, named
as physics-guidedmachine learning (PGML), that integrates the clas-
sical traffic flow model (TFM) with the machine learning technique.
This PGML model leverages the output of a traffic flow model along
with observational features to generate estimations using a neural
network framework. More specifically, it applies physics-guided loss
functions in the learning objective of neural networks to ensure that
themodel not only consistswith the training set but also shows lower
errors on the known physics of the unlabelled set. To illustrate the
effectiveness of the PGML, this study implements empirical studies
with a real-world dataset collected from a stretch of I-15 freeway
in Utah. Experimental study results show that the proposed PGML
model could outperform the other compatible methods, including
calibrated traffic flow models, pure machine learning methods, and
physics unguided machine learning (PUML).
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1. Introduction

Accurate traffic information plays an important role in transportation management sys-

tems,whichhelps travelers plan their trips, allows transportation agencies to take actions to

mitigate traffic congestion, and therefore promotes amore efficient and safer driving envi-

ronment (Lv et al. 2014; Ma et al. 2015; J. Wang, Chen, and He 2019). Giving accurate and
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timely traffic information has always been complicated because of the stochastic nature of

the traffic patterns. In the literature, traffic state (i.e. flow, speed, and density) estimation

(TSE) is a method that can infer traffic information using partially observed and noisy data

from traffic sensors on the roadway system (Seo et al. 2017), which is the best way to tackle

the limitation of observed data.

Input data and estimation approaches are two essential parts of TSE (Xiao, Wei, and

Liu 2018). Regarding the technologies used for data collection, traffic data can be grouped

into stationary data and probe data. In practice, stationary data can be easily retrieved

because it is collected by fixed traffic detectors (e.g. inductive loops and radar detectors)

on freeways. Each stationary detector counts the number of vehicles that pass everyminute

and detects the speed of each vehicle. However, the data is only available at the locations

with the stationary detector installed. Probe data is a sample of information collected from

vehicle navigation systems, cell phone applications, and fleet vehicles (Z. Zhang, Yuan, and

Yang 2020). Compared to stationary data, probe data can provide traffic information (e.g.

speed and flow) on variable locations of statewide highways but are very likely to be biased

because of the low penetration rate (e.g. 3%).

In terms of the estimation approaches, previous studies have shown that model-based

and data-driven models are commonly used (Seo et al. 2017). The basic logic is that these

approaches can be used as prior knowledge of partial traffic observations to simulate

traffic dynamics, capture data noises, and predict unobserved traffic states. More specif-

ically, model-based approaches rely on physics principles to study traffic dynamics over

space and time. In the early stages, the fundamental diagram of traffic flow was discov-

ered by borrowing concepts from the fluid mechanism (Yuan et al. 2021). Following the

same line, macroscopic traffic flow models were developed with the conservation law

and momentum equation, and a set of kinematic wave models were also formulated (Seo

et al. 2017). However, most models require great efforts to calibrate parameters and are

challenging to apply to noisy and biased traffic data because they were derived under

some ideal theoretical assumptions. In general, model-based approaches can be classi-

fied into two categories: (a) continuous models, such as the Lighthill-Whitham-Richards

(LWR)model (Lighthill andWhitham1955; Richards 1956), the Payne–Whitham (PW)model

(Payne 1971; Whitham 1975), and the Aw-Rascle-Zhang (ARZ) model (Aw and Rascle 2000;

H. M. Zhang 2002); and (b) discretised models, which were presented to simulate traffic

states of subsegments and time intervals because of their tremendous computational effi-

ciency. METANET (Papageorgiou, Blosseville, and Hadj-Salem 1989), a discrete PW-like TSE

model, has been successfully applied bymany studies (Y. Wang and Papageorgiou 2005; Y.

Wang, Papageorgiou, andMessmer 2007, 2008; Z. Zhang, Yuan, andYang2020). The advan-

tages of model-based approach include: (1) it can estimate accurate traffic state with less

input data; (2) it has high explanatory power; and (3) it can be directly implemented on traf-

fic operations. However, themodel-basedmethodmay require plenty of time to select and

calibrate themodels based on different scenarios. In some applications, calibrating amodel

requires a tremendous amount of data.

With the development of data collecting, processing, and computation technologies

recently, data-driven approaches such as ML models have been widely developed and

implemented for TSE because they have the following benefits: (1) do not require clear

theoretical assumptions, and (2) low computational cost. Hence, ML models are prevail-

ing in utilising big data for TSE in recent years (Duan et al. 2016; Li, Li, and Li 2013;
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Ni and Leonard 2005; Polson and Sokolov 2017a, 2017b; Tak, Woo, and Yeo 2016; Tan

et al. 2013, 2014; Tang et al. 2015; Y. Wu et al. 2018; Yin, Murray-Tuite, and Rakha 2012;

Yuan et al. 2021; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020). However, the

performance of ML models depends on high-quality data due to their data-driven nature.

The deficiency of ML models includes: (a) scarce and insufficient training data to train the

model, (b) trainingdata containsnoisy/error information, (c) thepatternof test data is differ-

ent from the training set, and (d) the results of ML models are difficult to interpret because

they are developed as ‘black boxes’.

Figure 1 summarises the existing research gaps and the proposed solutions. Herein,

model-based approaches are usually constructed with strong prior knowledge, require

great effort in parameter calibrations, and are difficult to capture data uncertainties,

even though they can present the underlying mechanisms of traffic flow. Data-driven

approaches such as ML models do not require clear theoretical assumptions, but their

performance depends heavily on data quality and the model results are unexplainable.

Therefore, recognising the advantages and deficiencies of model-based and data-driven

approaches, this research aims to develop an innovative framework, named as physics-

guided machine learning (PGML). More specifically, the PGML framework could incor-

porate physics knowledge into loss functions to help ML models capture generalisable

dynamic patterns, in consistent with established traffic physics laws. Figure 2 shows the

proposed PGMLmodel can leverage the advantages of bothmodel-based and data-driven

approaches bymaking efficient use of traffic data and existing physics relationships in traf-

fic flow, where the x-axis measures the use of traffic data and y-axis measures the use of

traffic physics models. This study makes significant contributions to the literature from the

following perspectives: (a) compared with traditional physics models, the PGML can use

the ML portion to capture the uncertainties in estimation and greatly reduces the effort

required to calibrate parameters; (b) compared to pure MLmodels, the PGML is more resis-

tant to data limitation as valuable knowledge from physics models can help guide the ML

training process; and (c) the model results are more interpretable by learning parameters

with physics meanings. This research is expected to bridge the gap between the research

Figure 1. Hybrid modelling in traffic flowmodelling domian.
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Figure 2. A presentation of model-based, data-driven, and PGML TSE approaches.

of transportation theoretical foundations and data-driven approaches proposed by the

innovative hybrid TSE framework.

The rest of this paper is organised as follows. Section 2 reviews existing studies related

to TSE and estimation methods. In Section 3, traffic flow fundamentals and a macroscopic

TSE model are introduced. The PGML framework and physics-guided loss function are pre-

sented in Section 4. Section 5 implements the case study on the real-world data from

interstate freeway I-15. The last section summarises the key findings and future research

directions.

2. Literature review

2.1. Classical traffic flowmodel

The importance and controllability of highways in transportation systems make TSE a vital

fundamental task of highway trafficmanagement systems. In the early stages, macroscopic

traffic flow was found to be similar to hydrodynamic theory (Seo et al. 2017). Based on that

finding, the fundamental diagram was defined as the relationship between traffic speed,

flow, and density. The fundamental diagram is one of the most basic concepts in traffic

flow theory, which is described in Equations (1)–(2).

v = V(ρ) (1)

q = ρV(ρ) (2)

where V represents the speed-density fundamental diagram.

According to the fundamental diagram,macroscopic traffic flowmodelsweredeveloped

using partial differential equations (PDE) to represent the aggregated traffic behaviour.

The traffic flow models can be generally classified into continuous models and discre-

tised models. The Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham 1955;
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Richards 1956) is a continuous first-ordermodel and can be formulated in Equations (3)–(4).

∂tρ + ∂x(ρv) = 0 (3)

v = V(ρ) (4)

The LWRmodel succeeds in mimicking simple traffic conditions (e.g. traffic jam and shock-

wave) but it cannot reproduce more complicated traffic phenomena well.

To tackle such limitations, the well-known second-order PW model (Payne 1971;

Whitham 1975) was developed by adding the momentum equation to capture complex

traffic behaviour. The PW model is formulated as Equations (5)–(6), where Equation (6) is

the momentum equation.

∂tρ + ∂x(ρv) = 0 (5)

∂tv + v∂xv = −
V − V(ρ)

τ
−

c20
ρ

∂x(ρ) (6)

where τ is the relaxation time and c20 is a parameter related to driver anticipation. Papa-

georgiou, Blosseville, andHadj-Salem (1989)proposedadiscretePW-like TSEmodel, named

METANET, which is an extension of PWmodel. It can reproduce complex traffic phenomena

but does not require tremendous computation efforts at a certain level.

2.2. Pure data-driven approach

In recent decades, more researchers began using data-driven methods (e.g. statistical and

ML methods) for TSE with the advancement of data collecting, processing, and computa-

tion technologies. In the existing literature, Support Vector Machine (SVM) (J. Wang and

Shi 2013; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020) and Random Forest (RF)

(Hamner 2010; Leshem and Ritov 2007; D. Wang et al. 2016; Z. Zhang and Yang 2020; Z.

Zhang, Yuan, and Yang 2020) have a great ability to capture the stochastic characteristics

of traffic flow. SVMmodels can effectivelymodel time series and regression problems since

they estimate the regression based on a number of kernel functions that can convert the

lower-dimensional data into a higher-dimensional feature space through a nonlinear rela-

tionship and then execute linear regression within this space (Smola and Schölkopf 2004).

Theeffectivenessof SVM-basedmodels for time series and regressionproblems in the trans-

portation field has been approved by several existing studies (Asif et al. 2013; C.-H. Wu,

Ho, and Lee 2004; Y. Zhang and Liu 2009). The RF model (Breiman 2001) can reduce vari-

ance by combining a set of ‘weak’ learners, which can overcome the over-fitting problem

through Breiman’s ‘bagging’ idea as it randomly selects features. The RF has been widely

implemented to predict traffic state (Hamner 2010; Leshem and Ritov 2007; Z. Zhang and

Yang 2020; Z. Zhang, Yuan, and Yang 2020). Moreover, the Artificial Neural Network (ANN)

is also considered as an effective method for TSE and traffic state prediction because it can

deal with multi-dimensional data, flexible model structure, strong generalisation, learning

ability, and adaptability (Karlaftis and Vlahogianni 2011). Compared with traditional sta-

tistical methods, ANN can effectively work with missing and noisy inputs since it doesn’t

have underlying assumptions (Karlaftis and Vlahogianni 2011). Many existing studies have

shown that ANN has a strong ability to predict traffic state (Taylor and Meldrum 1995; Van
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Lint, Hoogendoorn, and Zuylen 2005; Zeng et al. 2008; Z. Zhang and Yang 2020; Z. Zhang,

Yuan, and Yang 2020). In addition, graph neural networks (GNNs) have been conducted in

recent years and obtained superior performance in traffic state modelling for nested urban

networks (Jiang and Jiayun 2022).

However, the performance of those models would be significantly reduced when the

training data is too scarce and the pattern of testing data is geographically far away from

the training set. In addition, the results of ML models are challenging to interpret because

they are developed as ‘black boxes’.

2.3. Hybrid physicsmachine learning

Both model-based approaches and data-driven approaches have their advantages and

drawbacks.Model-basedapproaches can simulate traffic dynamics andpredict unobserved

spatiotemporal traffic states with a limited amount of traffic observations. Data-driven

approaches are prevailing in capturing the stochastic characteristics of traffic flow based

on a massive amount of historical data. The estimation methodology and the data quality

are the two essential parts in TSE (Xiao, Wei, and Liu 2018). Hence, to overcome the limita-

tion of both types of approaches, data expansion, data fusion, and hybrid approaches were

developed in the literature. Those hybrid concepts can partially combine the advantages of

different data sources and different methods (Z. Zhang, Yang, and Yang 2023). The hybrid

data-driven and model-based approaches for traffic time estimation and forecasting were

implemented and evaluated by a group of studies (Allströmet al. 2016; Anusha, Anand, and

Vanajakshi 2012; Hofleitner, Herring, and Bayen 2012; Kumar et al. 2017; Sharmila, Velaga,

and Kumar 2019; You and Kim 2000; Yu et al. 2010; Z. Zhang, Yuan, and Yang 2020; Zhu

et al. 2018). Furthermore, other studies (Willard et al. 2021b) point out that a variety of

methodologies are needed to integrate physics theory intoMLmodels in different subjects

and applications because of different forms of scientific knowledge in various disciplines.

This paper further indicated that feeding the output of a physics model as input into anML

model is one direct and effective way to combine the physics model and ML models.

2.4. Physics-guidedmachine learning

Scientific problems usually exhibit high complexity because physics variables vary with

spatial and temporal on different scales. Standard ML models usually fail to generalise to

scenarios not experienced in training data because they tend to fail to capture spatio-

temporal relationships, especially in the case of incomplete data. Hence, people started

to integrate physics knowledge into the loss functions to help ML models capture gener-

alisable dynamic patterns that are consistent with known physical laws. Daw et al. (2017)

stated that physics-guided machine learning (PGML) is one of the most effective ways to

make ML models align with physical laws by integrating physical constraints into the loss

function ofMLmodels. Recently, the effectiveness of PGMLmodels in improving the perfor-

manceof standardMLmethods in various fieldshasbeen recognised (Dawet al. 2017;Doan,

Polifke, andMagri 2019; Jia et al. 2018; Kahanaet al. 2020; YangandPerdikaris 2018; L. Zhang

et al. 2018). In transportation field, physics informedmachine learning (PIML) developed by

Huang and Shaurya (2022) and Shi et al. (2021), refers to training an ML model to solve for

TSE problemwhile respecting the physics law inside of continuous traffic flowmodel, such
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as LWR and LWR, given by general nonlinear partial differential equations (PDE). Hence,

these models only work for continuous TSE problem. To tackle this problem, this paper

attempts to propose a PGML that integrates the physics law from the METANET model to

solve the discrete TSE problem, which could speed up the estimation process.

In summary, a hybrid framework that integrates physics knowledge and data-driven

methods with low computational cost for discrete TSE problem is still lacking. This paper

focuses on filling the gap by proposing an ANN-based PGMLmodel for TSE.

3. Fundamentals and review of macroscopic TSEmodels

To facilitate the convenience of reference, Table 1 provides a concise summary of the key

notations used in the proposed PGMLmodel.

As an existing influential study, Papageorgiou, Blosseville, and Hadj-Salem (1989) devel-

oped a discrete macroscopic traffic flow model, METANET, which conceptually subdivides

the target freeway segment into n subsegments with a unit length of �L (500m). Figure 3

shows the template freeway segment. For each subsegment i, the mean density, di(k), can

be determined by the difference between the input and output flows by Equation (7).

di(k + 1) = di(k) +
T

λi�L
[qi−1(k) − qi(k) + ri(k) − si(k)] (7)

The departure flow is assumed to be a portion of the flow at the segment in Equation (8).

The ramp flow is captured by the sensors installed at the ramps.

Table 1. Key notations of proposed PGML model.

Notation Definition

D the training data set
S stationary data points
T traffic flowmodel data points
Y target values
i the index of sub-sections of a freeway segment
j the index of the physics data points in the data set
k the index of the time step
m the number of observations on each segment
n the number of segments on the highway
qi(k) the total flow at the end of segment i
ri the inflow of vehicles at on-ramps
si the outflow of vehicles at off-ramps
λi number of lanes in subsegment i
ui(k) the average speed at segment i
uf the free-flow speed
a the exponent of the stationary speed equation
βi(k) the departure rate
�L the segment length at the segment
di(k) the density at the end of segment i
dcr the critical density
τ , γ , κ positive physics model parameters
α hyper-parameter of empirical error in the loss function
β hyper-parameter of physics inconsistency in the loss function
λ hyper-parameter of structural error in the loss function
X the data input vectors of size n ∗ m
Yphy traffic physics inconsistency vectors of size n ∗ m

Ŷ the model estimation vectors of size n ∗ m
Y the data output vectors of size n ∗ m
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Figure 3. Freeway stretch example.

si(k) = βi(k) × qi−1(k) (8)

For dynamically updating the average speed, ui(k), a well-developed equation proposed

by the METANET model (Papageorgiou, Blosseville, and Hadj-Salem 1989) is adopted by

Equation (9).

ui(k + 1) = ui(k) +
�T

τ
[Vi(di(k)) − ui(k)] +

�T

Li
ui(k)(ui−1(k) − ui(k))

−
γi�T

τ�L

di+1(k) − di(k)

di(k) + κ
−

δ�T

�Lλi

ri(k), ui(k)

di(k) + κ
(9)

where V[di(k)] is the static speed for segment i at time k with respect to the density di(k):

V[di(k)] = uf exp

[
−
1

a

(
di(k)

dcr

)a]
(10)

Also, the relationship between flow, density, and speed is given by Equation (11):

qi(k) = di(k)ui(k)λi (11)

where Equations (7)–(11) are the conservation equation, dynamic speed equation, station-

ary speed equation, and flow equation, respectively; τ , γ , κ , dcr , uf , a are positive model

parameters which are given the same values for all segments. Using the traffic flow and

speed from traffic sensors at upstream and downstream stations, on-ramps, and off-ramps,

one can directly use Equations (7)–(11) to estimate the traffic speed evolution on the target

freeway section.

4. Physics-guidedmachine learning algorithm

LetD denote the set of freeway segments i at various time step k:D = {xi,k | i ∈ [0, n], ∀ k ∈

[0, t]} (k denotes the time interval (5-min)). Let S and T be two subsets ofD, asD = S ∪ T .

S = {xs
i,k

| i = 1, . . . , ns} is composed of the observed traffic information from stationary

sensors. T = {xT
j,k

| i = 1, . . . , nT } is composed of generated TFM estimates based on the

upstream and downstream stationary data [xs
1,k
, xs

n,k
]. Then, the training data for PGML

model consist of (1) stationary data points is denoted by S = {xs
i,k

| i = 1, . . . , ns}; (2) TFM

data points T = {xT
j,k

| i = 1, . . . , nT }; and (3) target values Y = {yi,k | i = 1, . . . , ns} (i.e. the

true traffic states at the stationary points), where i and j are the indexes of stationary points

and TFMdata points. S andY have the same index i in the case of the target valueY paired

with stationary pointS . In experiments, the stationary data points are usually limited by the

availability of traffic sensors (e.g. probe and sensor detectors). Hence, the traffic state canbe

observed only in limited locations. An estimation method is needed to infer the unknown
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traffic state in locations without traffic sensors installed. In this study, the traffic flowmodel

is utilised to construct traffic state for those locations based on limited traffic informa-

tion from S , named TFM data points T . The input of TFM includes speed and flow from

upstream, off-ramp, on-ramp, and downstream segments. Then, unobserved traffic states

could be estimated by TFM for all segments by Equation (12). In particular, the METANET

model is chosen as the traditional TFMmodel to estimate traffic speeds and flows for target

locations. Detailed procedures of the METANET model are shown in Equations (7)–(11).

⎡
⎢⎢⎢⎢⎢⎢⎣

xs1,1 qoni,1 qoffi,1 xsn,1

xs1,2 qoni,2 qoffi,2 xsn,2

...
...

...
...

xs1,t qoni,t qoffi,t xsn,t

⎤
⎥⎥⎥⎥⎥⎥⎦
t×4

TFM
−−→

⎡
⎢⎢⎢⎣

xT1,1 xT2,1 . . . xTn,1
xT1,2 xT2,2 . . . xTn,2
...

...
...

...

xT1,t xT2,t . . . xTn,t

⎤
⎥⎥⎥⎦

t×n

(12)

TFM data points could overcome both location and measurement limitations, which also

can reflect the real traffic physics truth. The parameters of traffic flow models need to be

calibrated by the ground truth data and this process is similar to the training process of

machine learning. The TFM model can offer available data for a freeway segment based

on the upstream and downstream traffic information. However, the output of TFM may

include incomplete information of the target traffic state because of simplified or miss-

ing information in T . Hence, the PGML model is constructed with an ML portion based on

the output from TFM. Figure 4 presents the framework of the proposed PGML model for

TSE, which includes two key steps: (1) build up a hybrid physics neural network, termed

as HP-NN, and (2) substitute the HP-NN output into a traffic physical law to obtain the

physics inconsistency on target freeway segments and develop a physics-based loss func-

tion. Then, the model training process would be guided by the new loss function. The

basic logic of the proposed PGML for TSE is presented in Algorithm 1. The unobserved

traffic states can be estimated by PGML using Equation (16), based on the samples in Equa-

tions (13)–(15). Herein, the inputX represents time t, distance d, on-ramp flowqon , off-ramp

flow qoff , TFM speed uT and flow qT , the Yphy represents the traffic physics inconsistency in

flow and speed, the output Y represents the corresponding vector of flow and speed. The

Yphy are used as a guide, making the estimation of PGML more consistent with the traffic

Figure 4. The Diagramof Physics-guidedMachine Learning (PGML)model,Y refers to the observed sta-
tionary values, Y� refers to the predicted value, and Yphy refers to the physics value on the intermediate
subsegment.
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physics knowledge. The detailed calculation procedures of traffic physics inconsistency are

described in the following section.

Algorithm 1 PGML algorithm

Results: Estimated traffic states

1: Pick a freeway segmentwith point data available at upstreamanddownstream stations

2: Set the length of each sub-segment to 500m

3: Run TFM to produce estimates for all sub-segments: [xs1,t , x
s
n,t]

TFM
−−→ [xs1,t , x

s
2,t , . . . , x

s
n,t]

4: for sub-segment i = 1, . . . , n do

5: if sub-segment i without point data then

6: Group the TFM estimates and point data of its nearby sensor stations:

[tn,t , dn,t , q
on
n,t , u

off
n,t , q

phy
n,t , u

phy
n,t ] ⇒ [qn,t , un,t]

7: Build upphysics-based loss function:PGLoss = α ∗ 1
n∗m

∑n
i=1

∑m
k=1(x

S
i,k

− Ŷ)2 +

β ∗ 1
n∗m

∑n
i=1

∑m
k=1 |Y

phy
i,k

− Ŷ| + λ ∗ R(f )

8: Train PGML model with the grouped dataset.

9: Use the trained model to estimate traffic state for sub-segment i: f̂ =[
µ(q)(X)&µ(u)(X)

]T
2×1

10: end if

11: end for

X =
[
x1 x2 . . . xn

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1,1 d1,1 qon1,1 qoff1,1 uT1,1 qT1,1
t1,2 d1,2 qon1,2 qoff1,2 uT1,2 qT1,2
...

...
...

...
...

...

t1,t d1,t qon1,t qoff1,t uT1,t qT1,t
t2,1 d2,1 qon2,1 qoff2,1 uT2,1 qT2,1
t2,2 d2,2 qon2,2 qoff2,2 uT2,2 qT2,2
...

...
...

...
...

...

t2,t d2,t qon2,t qoff2,t uT2,t qT2,t
...

...
...

...
...

...

tn,t dn,t qonn,t qoffn,t uTn,t qTn,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n×t)×6

(13)

Y =
[
y1 y2 . . . yn

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 q1,1
u1,2 q1,2
...

...

u1,t q1,t
u2,1 q2,1
u2,2 q2,2
...

...

u2,t q2,t
...

...

un,t qn,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n×t)×2

(14)
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Yphy =
[
y
phy
1 y

phy
2 . . . y

phy
n

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
phy
1,1 q

phy
1,1

u
phy
1,2 q

phy
1,2

...
...

u
phy
1,t q

phy
1,t

u
phy
2,1 q

phy
2,1

u
phy
2,2 q

phy
2,2

...
...

u
phy
2,t q

phy
2,t

...
...

u
phy
n,t q

phy
n,t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n×t)×2

(15)

f̂ =
[
µ(q)(X) µ(u)(X)

]T
2×1

(16)

4.1. Physics-guidedmachine learningmodel structure

In this study, a basic ANN is utilised to regress the traffic state, Y. The relationship between

the input features, X, and target prediction, Ŷ for a fully connected neural network withm

hidden layers can be described as:

z1 = Wk
1X + b1 (17)

zi = Wk
i X + bi, ∀ i ∈ [2,m] (18)

ai = f (zi), ∀ i ∈ [1,m] (19)

Ŷ = Wk
m+1al + bm+1, ∀ i ∈ [2,m] (20)

where {Wi, bi}
m+1
1 denotes the weight and bias parameters in hidden and output layers; f

is the activation function in hidden layers.

The proposed PGML uses the ANN as base machine learning model with hybrid data,

which combines the observed data and TFM estimates as the input to train the neural net-

work. Hence, the PGML can also be termed as a physics-guided neural network (PGNN).

The structure of The PGNN is depicted in Figure 5. The PGNN not only uses additional TFM

estimates as input, but also adds the traffic physics knowledge as additional term in the loss

function so that it can guide the entire training process. The loss function of PGML is termed

as a physics-guided loss function.

4.2. Physics-guided loss function

The objective of the training procedure of pure machine learning model is to minimise the

empirical loss of its model estimations, Ŷ, to maintain lowmodel complexity as follows:

Loss =
1

N

n∑

i=1

(̂Y − Y)2 (21)
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Figure 5. The deep structure for PGNN.

TSE problems often involve a high degree of complexity because of relationships between

physics variables (e.g. flow, density, and speed) are varying spatially and temporally at dif-

ferent scales. Those relationships are usually difficult to be captured directly by the training

data, using pure-ML models. Hence, the proposed PGML framework will offer a new solu-

tion to model the stochastic correlations between traffic states by incorporating physics

knowledge into loss function. The corresponding physics-based loss function would con-

vert physics constraints into the ANN loss function, which is one of the most efficient

methods tomakemodel estimations consistent with physics laws (Willard et al. 2021a). The

physics-guided loss function is described as:

PGloss = α ∗ Loss(̂Y , Y)︸ ︷︷ ︸
empirical error

+β ∗ Loss(̂Y , Yphy)︸ ︷︷ ︸
physical inconsistency

+λ ∗ R(f )︸︷︷︸
structural error

(22)

where the training Loss(̂Y , Y) measures the empirical error (e.g. MSE) between labels Y

and predictions Ŷ ; Loss(̂Y , Yphy) denotes the physics inconsistency (also termed as physics-

based loss) that aims to keep the consistency between predictions and physics laws. R(f )

denotes the model structural error that measures the model complexity; α, β , and λ repre-

sent the trade-off hyper-parameters of empirical error, physics inconsistency, and structural

error respectively. The detailed description of how to establish the physics-based loss is as

follows.

Traffic physics relationships inside of TFM could be used to build up physics incon-

sistency for target segments once the traffic information of upstream and downstream

segments is available. Figure 6 illustrates the detailed procedures of calculating the physics

inconsistency by traffic physics law. An algorithmic description of physics inconsistency is
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Figure 6. The diagram of physics inconsistency calculation.

presented in Algorithm 2. The preliminary traffic state estimates of all segments have been

obtained by TFM andHPMLmodel. Then, those estimates are used to construct the physics

inconsistency by traffic physics law. The utilised traffic physics law is a converted form of

TFM, which is introduced as:

d
phy
i,k

= d
hpml
i,k+1

−
�T

λi�L

[
q
hpml
i−1,k

− qTi,k

]
(23)

u
phy
i,k

= u
hpml
i,k+1

−
�T

τi

[
V{d

phy
i,k

} − uTi,k

]
+

�T

Li
uTi,k

[
u
hpml
i,k−1

− uTi,k

]
+

γi�T

τi�L

d
hpml
i,k+1

− d
phy
i,k

d
phy
i,k

+ κ

(24)

q
phy
i,k

= d
phy
i,k

u
phy
i,k

λi (25)
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V[d
phy
i,k

] = uf exp

⎡
⎣−

1

a

⎛
⎝d

phy
i,k

dcr

⎞
⎠

a⎤
⎦ (26)

where d
phy
i,k

, u
phy
i,k

, and q
phy
i,k

are values of physical laws;uT
i,k

and qT
i,k

denotes TFM estimates

from TFM; and d
hpml
i,k+1

, q
hpml
i−1,k

, and u
hpml
i,k−1

denote HPML predictions.

Algorithm 2 Traffic physics law algorithm

Results: physics inconsistency

1: Set the length of each sub-segment to 500m

2: for sub-segment i do

3: Run TFMmodel: [xs1,t , x
s
n,t]

TFM
−−→ [xs1,t , x

s
2,t , . . . , x

s
n,t]

4: end for

5: Group the training dataset: [tn,t , dn,t , q
on
n,t , q

off
n,t ] ⇒ [qn,t , un,t]

6: for sub-segment i = 1, . . . , n do

7: if sub-segment i without point data then

8: Train HPML model with grouped dataset: Loss = α ∗ Loss(̂Y , Y) + λ ∗ R(f )

9: Use the trained HPML model to estimate traffic state for sub-segment i,

[u
hpml
n,t , q

hpml
n,t ]

10: end if

11: end for

12: for sub-segment i = 1, . . . ,N do

13: Y
phy
i,k

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u
phy
i,k

= u
hpml
i,k+1

− �T
τi

[
V{d

phy
i,k

} − uT
i,k

]
+ �T

Li
uT
i,k

[
u
hpml
i,k−1

− uT
i,k

]

+
γi�T
τi�L

d
hpml
i,k+1

−d
phy
i,k

d
phy
i,k

+κ

q
phy
i,k

= d
phy
i,k

u
phy
i,k

λi

14: calculate �i,k = |Y
phy
i,k

− Ŷ|

15: end for

16: physics violations: PHY .Loss(̂Y) = 1
n∗m

∑n
i=1

∑m
k=1 �i,k

17: Physics-guided loss function: PGLoss = α ∗ 1
n∗m

∑n
i=1

∑m
k=1(x

S
i,k

− Ŷ)2 + β ∗

1
n∗m

∑n
i=1

∑m
k=1 |Y

phy
i,k

− Ŷ| + λ ∗ R(f )

Physics value for all target segments could be computed by Equations (23)–(26) with

both TFM and HPML model estimates. To ensure model estimates comply with traffic flow

physics laws, Yphy , this research first calculates the difference between physics values and

model estimates during time-step k at segment i:

�i,k = |Y
phy
i,k

− Ŷ| (27)

Apositive valueof�i,k canbe viewedas a violationof physics laws at segment iduring time-

step k. Hence, the mean of physics violations across all observations can be considered as
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an additional term in the physics-based loss function:

PHY .Loss(̂Y) =
1

n ∗ m

n∑

i=1

m∑

k=1

�i,k (28)

Adding the term into the original ANN loss function, the physics-guided loss function can

be expressed as:

PGLoss = α ∗
1

n ∗ m

n∑

i=1

m∑

k=1

(xSi,k − Ŷ)2 + β ∗
1

n ∗ m

n∑

i=1

m∑

k=1

|Y
phy
i,k

− Ŷ| + λ ∗ R(f ) (29)

where xS
i,k
denotes the ground truth from stationary data; Y

phy
i,k

denotes the physical values

(e.g. flow and speed) from converted TFM.

Note that the selection of hyper-parameters, α and β , can affect the performance of

PGML. To reduce the number of hyper-parameters to be calibrated or optimised, the

physics-based loss function could be simplified as:

J(ρ) = ρ ∗
1

n ∗ m

n∑

i=1

m∑

k=1

(xSi,k − Ŷ)2 +
1

n ∗ m

n∑

i=1

m∑

k=1

|Y
phy
i,k

− Ŷ| + λ ∗ R(f ) (30)

where ρ equals α/β . To optimise the value of ρ, a stochastic approximation approach is

developed as:

ρ∗ = argmin J(ρ) (31)

Then, the optimal value, ρ∗, could be obtained by the iterative process:

ρk+1 = ρk −
J(ρk + δkei) − J(ρk − δkei)

2δk
(32)

where, δk is a small positive number that decreases with the iteration index, k; and ei is the

unit vector in the searching process.

4.3. Problem statement summary of PGMLmodel for TSE

This subsection briefly summarises the PGML model for TSE problem. For a discrete spa-

tiotemporal traffic state points D = {xi,k | i ∈ [0, n], ∀ k ∈ [0, t]}, given limited observation

points S , the fully-covered estimated traffic state can be obtained by TFM:

{xsi,k | i = 1, . . . , ns}
traffic flow model
−−−−−−−−−−→ {xTj,k | i = 1, . . . , nT } (33)

Then the data set are ready for PGML as below:
⎧
⎪⎪⎨
⎪⎪⎩

D = {xs
i,k

| i = 1, . . . , ns}

Y = {ys
i,k

| i = 1, . . . , ns} ∈ D

T = {xT
i,k

| i = 1, . . . , nT } ∈ D

(34)

With the design of PGMLmodel based on a neural network, the loss function include three

parts: (a) empirical error between prediction Ŷ on S and label values Y ; (b) physics incon-

sistency between predictions Ŷ and physics values�, and (c) structural error thatmeasures
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the model complexity. Then a general PGML for TSE is to solve the problem:

min J(ρ) =
ρ

n ∗ m

n∑

i=1

m∑

k=1

(xSi,k − Ŷ)2 +
1

n ∗ m

n∑

i=1

m∑

k=1

|Y
phy
i,k

− Ŷ| + λ ∗ R(f ) (35)

5. Experimental study with field data

5.1. Case setting

To evaluate the effectiveness of the proposed PGML framework, field data are obtained

from a stretch of interstate freeway I-15 (mileposts 299.68 – 304) in Salt Lake City, Utah.

The studied freeway stretch is presented in Figure 7, where the observed data are available

at the stations, indicated by blue and yellow icons, and the probe data can be collected

over the entire segment. Seven blue icons (three detectors located on normal segments,

two detectors located on off-ramps, and two detectors located on on-ramps) represent

the detectors for training and the three yellow icons (one detector located on a normal

segment, one detector located on an off-ramp segment, and one detector located on an

on-ramp segment) represent the detectors for testing.

Data from the Performance Measurement System (PeMS) and Utah ClearGuide

databases managed by the Utah Department of Transportation (UDOT) are used for model

development and evaluations. The PeMS traffic information is collected by detectors

installed every few miles along the freeway. Each detector counts the number of vehicles

that pass every minute and detects the speed of each vehicle. Stationary point data is only

available at the locations with detectors installed, but it can provide more precise traffic

information. Probe speed data collected from the Clearguided database that is the esti-

mated information collected from vehicle navigation systems, cell phone applications, and

fleet vehicles. The probe data have a relatively low resolution because of the low pene-

tration rate (e.g. 3%) of probe vehicles. but it can provide full-field speed information on

Figure 7. The deployment of freeway corridor and stations.
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Figure 8. Sample data in the studied cases. (a) Observed flow. (b) Observed speed.

statewide freeways. The real-time traffic data and roadway geometry design information

can be retrieved by the public online. Formodel evaluation, the time range of the data used

is between January 4, 2021, and January 10, 2021. There are 288 observations per detec-

tor per day because the data is collected every 5-min. PeMS data with 5-min time intervals

are widely utilised for TSE by many existing studies (Duan et al. 2016; Xu et al. 2020; Yuan

et al. 2021; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020). All obtained station-

ary point data, including both flow and speed information from stationary detectors, are

shown in Figure 8. Notably, such data are collected from stationary traffic detectors and

are only available in limited locations. In this research, two cases with different datasets are

analysed for model evaluations: (1) Physics unguided neural network (termed PUNN) that

utilises hybrid spatiotemporal information and the TFM data as input and treats observed

traffic state as the label; and (2) physics-guided neural network (termed as PGNN) that uses

spatiotemporal information and the TFM data as the input and treats observed traffic state

as the label. Three benchmarkmachine learningmodels (e.g. RF, SVM, and ANN) and PUNN

are utilised for evaluating the PGML performance.

In this study, the calibrated initial METANET model parameters are listed in Table 2. The

performance of the proposed system for TSE is evaluated and compared by three common

statistical indicators, including root meaning square Error (RMSE), mean absolute percent-

age error (MAPE), andmean absolute error (MAE), which are defined in Equations (36)–(38):

RMSE =

√√√√ 1

N

N∑

i=1

(ŷ − yi)
2

(36)

MAPE =
1

N

N∑

i=1

∣∣∣∣
ŷ − yi

yi

∣∣∣∣ ∗ 100% (37)

MAE =
1

N

N∑

i=1

| ŷ − yi | (38)

where yi is the observed traffic speed and flow and ŷ is the estimated traffic speed and flow.
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Table 2. The parameters of
traffic flowmodel.

Parameter Value

n 9
λi 4
�T 1/360 (h)
uf 120 (km/h)
γ 35 (km2/h)
�L 0.5 (km)
δ 1.4
τ 0.05 (h)
α 1.4324
dcr 36.85 (veh/km)
κ 13 (veh/k)m)

5.2. Results analysis

5.2.1. Estimation results on normal segment

Table 3 summarises the TSE results from TFM, pure-ML models, PUNN, and PGNN of nor-

mal freeway segment. Among all three pure-ML models, the lowest flow RMSE, MAPE, and

MAE are 95.30 vehicles/5-minutes, 26.09%, 65.86 vehicles/5-minutes, respectively, and the

lowest speed RMSE, MAPE, andMAE are 2.56mph, 2.04%, and 1.38mph, respectively, while

TPM can generate lower RMSE,MAPE, andMAE of both flow and speed estimates. It yields a

2.40mph of RMSE, a 1.91% ofMAPE, and 1.30mph ofMAE for speed and a 56.28 vehicles/5-

minutes of RMSE, a 14.80% of MAPE, and 38.14 vehicles/5-minutes of MAE for flow, while

TPM can generate lower RMSE, MAPE, and MAE of both flow and speed estimates. These

results indicate that pure-ML cannot reach an acceptable estimation accuracy with limited

information. It demonstrates that the TPM data could be a fully covered traffic informa-

tion for ML model training. Hence, the PGNN is developed for TSE problem with TFM data

as an additional information. PGNN generates a 1.90mph of RMSE, a 1.64% of MAPE, and

1.17mph of MAE for speed and a 40.96 vehicles/5-minutes of RMSE, a 10.81% ofMAPE, and

27.85 vehicles/5-minutes of MAE for flow. This finding indicates that TSE accuracy by PGNN

is within an acceptable range. To further confirm this finding, Table 4 shows the improve-

ment percentage of TSE results from TFM, PUNN, and PGNN. Compared with the results

from TFM and the best pure-ML model (ANN), the RMSE, MAPE, and MAE are improved by

PUNN. It indicates that TFM estimates can be valid additional training variables to improve

TSE accuracy. Furthermore, ThePGNN is themost effectivemodel for TSEbecause thePGNN

obtains the largest improvement. Figure 9 show the comparison of estimated flow and

speed by TFM, pure-ML models, PUNN, and PGNN with ground truth. It can be clearly seen

Table 3. Estimation results of on freeway normal segment.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE

TFM 56.28 14.80% 38.14 2.40 1.91% 1.30
SVM 106.73 26.09% 68.08 2.56 2.04% 1.38
RF 103.25 26.50% 71.19 2.80 2.57% 1.78
ANN 95.30 31.17% 65.86 2.68 2.43% 1.68
PUNN 45.10 12.46% 31.82 2.38 1.74% 1.17
PGNN 40.96 10.81% 27.85 1.90 1.64% 1.17

Note: Flow: veh/5-min; Speed: mph.
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Table 4. The performance improvement of TFM and PGNN compared with pure-ML.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE

TFM 40.94% 52.52% 42.09% 10.45% 21.40% 22.62%
PUNN 52.68% 60.03% 11.19% 11.2% 28.40% 30.36%
PGNN 57.02% 65.32% 57.71% 29.10% 32.51% 30.36%

Figure 9. TSE estimates vs. ground truth on normal segment. (a) Estimated flow of normal segment and
(b) Estimated speed of normal segment.

that the line of PGNN better fits the ground truth, which demonstrates that PGNN could

accurately estimate speed and flow. To further confirm this finding, the TSE results obtained

by PGNN are compared to the observed data. In Figure 10, the estimation results will be

seen as fitting the ground truth well if the coefficient of the trend line is close to one and

the intercept is close to zero. In this case, the coefficient is 0.95 and the intercept is 11.49 for

flow estimation, and the coefficient is 0.36 and the intercept is 47.33 for speed estimation.

It proves that PGML could achieve relatively higher TSE accuracy.

To further illustrate the variationofMAPEs of differentmodels, Figure 11 shows the violin

plots of MAPEs on the test set by different models. In each ‘violin’, its margin shows the

Gaussian distribution of the dataset, and a box plot is drawn inside. In Figure 11, it is noted
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Figure 10. Estimated flow and speed by PGML vs. ground truth on normal segment. (a) Estimated flow
of normal segment and (b) Estimated speed of normal segment.

Figure 11. MAPE distribution of different models on test set of normal segment. (a) MAPE of estimated
flow and (b) MAPE of estimated speed.

that PGNN generally has a lower MAPE value. All results proved that PGNN could perform

well for flow and speed estimation and especially for flow estimation.

5.2.2. Estimation results on on-ramp and off-ramp segment

Tables 5–6 show the TSE results from TFM, pure-ML models, PUNN, and PGNN of freeway

on-ramp and off-ramp segments. Compared with Table 3, the conclusion can be reached

that the performance of pure-MLmodels on on-ramp and off-ramp segments is better than

normal segments. The RMSE, MAPE, and MAE for both flow and speed of PGNN on on-

ramp and off-ramp segments are lower than those for normal segments. It indicates that

PGNNalso performs better on on-ramp andoff-ramp segments. Compared TSE results from

TFM, pure-ML, and PUNN, the RMSE, MAPE, and MAE for both flow and speed of PGNN

are greatly decreased, especially for the flow. It indicates that TSE accuracy can be signif-

icantly enhanced by PGNN on normal, on-ramp, and off-ramp segments. Figure 12 show

the comparison of estimation results of TFM, pure-ML, PUNN, and PGNNwith ground truth

on on-ramp and off-ramp segments. The lines of TFM, pure-ML, and pure-ML with probe
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Table 5. Estimation results of on freeway on-ramp.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE

TFM 64.47 21.74% 51.12 1.92 2.02% 1.46
SVM 72.74 24.89% 50.20 1.99 2.17% 1.56
RF 50.82 20.01% 33.66 3.85 2.81% 2.03
ANN 55.08 26.91% 40.83 2.22 2.39% 1.72
PUNN 35.04 11.71% 24.03 1.82 1.99% 1.44
PGNN 31.37 11.38% 21.78 1.41 1.44% 1.04

Note: Flow: veh/5-min; Speed: mph.

Table 6. Estimation results of on freeway off-ramp.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE

TFM 40.01 12.73% 26.82 2.04 1.98% 1.44
SVM 57.95 26.53% 41.70 2.00 1.67% 1.19
RF 52.00 20.37% 34.71 2.64 1.92% 1.37
ANN 55.87 24.06% 40.68 2.23 1.96% 1.41
PUNN 34.99 12.86% 23.89 1.75 1.54% 1.10
PGNN 31.98 11.23% 21.90 1.69 1.46% 1.05

Note: Flow: veh/5-min; Speed: mph.

do not fit the ground truth well. It can be clearly seen that the line of PGNN better fits the

ground truth, which indicates that PGNN also performs well on the on-ramp and off-ramp

segments. It further demonstrates that PGNN could reach an acceptable TSE accuracy on all

segments. To further confirm this finding, the TSE results obtained by PGNN are compared

to the observed data in Figure 13. For the on-ramp segment, the coefficient is 0.97 and the

intercept is 9.81 for flow estimation, and the coefficient is 0.56 and the intercept is 32.69

for speed estimation. For the off-ramp segment, the coefficient is 0.97 and the intercept is

13.04 for flowestimation, and the coefficient is 0.40 and the intercept is 43.89 for speed esti-

mation. All results proved that PGNN could performwell for flow and speed estimation and

especially for flow estimation. Overall, the PGNN could reach an acceptable TSE accuracy

on all segments.

Theperformanceofdifferentmodels inpeakhours andoff-peakhours are also compared

in Figure 14. Peak hours include six hours (7 am – 10 am and 4 pm – 7 pm) and off-peak

hours include eighteen hours (midnight – 7 am, 10 am – 4 pm, and 7 pm – midnight).

As shown in the figure, the pure-ML model produces very high RMSEs, especially in peak

hours. The RMSEs of all PUNN and PGNN models are lower than the pure-ML model and

PGNN obtains the lowest RMSEs in both peak and off-peak hours on normal, on-ramp, and

off-ramp segments. It indicates that the PGMLmodels could obtain better estimation accu-

racy for both flow and speed under low traffic volume conditions on freeways. The PGNN

model performance degradation during peak hours may be due to traffic congestion or

traffic crashes.

6. Conclusions and future research directions

The quality of TSE directly affects the effectiveness of traffic control and the efficiency

of intelligent transportation systems (ITSs) operations. Recently, classical model-driven

approaches and data-driven approaches have been successfully deployed in TSE. However,

model-driven approaches could potentially yield inaccurate estimation and data-driven
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Figure 12. TSE estimates vs. ground truth on on-ramp and off-ramp segments. (a) Estimated flowof on-
ramp segment. (b) Estimated speed of on-ramp segment. (c) Estimated flow of off-ramp segment and
(e) Estimated speed of off-ramp segment.
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Figure 13. Estimated speed and flow by PGML vs. ground truth on on-ramp and off-ramp segments.
(a) Estimated flow of on-ramp segment. (b) Estimated Speed of on-ramp segment. (c) Estimated Flow of
off-ramp segment and (d) Estimated Speed of off-ramp segment.

approaches require a massive amount of data to train the model. To overcome these lim-

itations, this study develops an innovative physics-guided machine learning (PGML) that

combines the classical traffic flow model with the machine learning model (neural net-

work) to improve TSE accuracy. The PGML framework incorporates physics knowledge into

loss functions to help ML models capture generalisable dynamic patterns consistent with

established traffic physics laws.More specifically, the applicationofphysics-based loss func-

tions in the learning objective of neural networks in our PGML framework ensures that the

model predictionswill not only show lower errors on the training set but also have scientific

consistency with the known physics on the unlabelled set.

To test the effectiveness of the proposed PGML approach for coping with the problems

of freeway traffic flow modelling, this paper conducted empirical studies on a real-world

dataset collected from a stretch of I-15 freeway in Utah. Research results indicate that

the proposed PGML framework performed better than the previous compatible methods,

including the calibrated traffic physics model and the pure machine learning methods,

especially in terms of estimation accuracy and input robustness. The proposed PGML

approach can offer high-resolution, wide-coverage, and accurate traffic state information

with limited traffic sensor data. The research findings provide the basis for future research

if they have the same research concern. This work will help transportation agencies find

better countermeasures to mitigate traffic congestion, improve traffic operation efficiency
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Figure 14. The pure-ML, PUNN, and PGNN model performance comparison between peak hour and
off-peak hour. (a) RMSE of flow and (b) RMSE of speed.

and safety, and help travelers preplan and schedule routes. The proposed PGML approach,

which combinesmachine learningmodels with a traffic physics-basedmodel, could poten-

tially lead to a revolution in ITS development and significantly reduce the amount ofmoney

required for traffic detectors. This research will indeed help build up the era of big data for

transportation.

The effectiveness of the proposed PGML approach has beenproven. However, the PGML

traffic state estimation still needs additional study. In particular, a more efficient machine

learning algorithm and traffic physics-based model and its application on urban freeway

networks are worth studying. The proposed PGML approach benefits other transportation-

related applications such as missing data imputation and validating traffic detector data.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 25

Acknowledgments

The authors thank theUtahDepartment of Transportation (UDOT), for their valuable support anddata

provision.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research is supported by the project ‘CMMI #2047268 CAREER: Physics Regularized Machine

Learning Theory: Modeling Stochastic Traffic Flow Patterns for Smart Mobility Systems’ funded by

the National Science Foundation (NSF) and the project ‘MPC-657 Knowledge-Based Machine Learn-

ing for Freeway COVID-19 Traffic Impact Analysis and Traffic Incident Management’ funded by the

Mountain-Plains Consortium (MPC).

ORCID

Yun Yuan http://orcid.org/0000-0002-7035-4942

References

Allström, Andreas, Joakim Ekström, David Gundlegård, Rasmus Ringdahl, Clas Rydergren, Alexandre

M. Bayen, and Anthony D. Patire. 2016. “Hybrid Approach for Short-Term Traffic State and Travel

Time Prediction on Highways.” Transportation Research Record 2554 (1): 60–68. https://doi.org/

10.3141/2554-07.

Anusha, S. P., R. Asha Anand, and Lelitha Vanajakshi. 2012. “Data Fusion Based Hybrid Approach

for the Estimation of Urban Arterial Travel Time.” Journal of Applied Mathematics 2012.

https://doi.org/10.1155/2012/587913.

Asif, Muhammad Tayyab, Justin Dauwels, Chong Yang Goh, Ali Oran, Esmail Fathi, Muye Xu, Menoth

Mohan Dhanya, Nikola Mitrovic, and Patrick Jaillet. 2013. “Spatiotemporal Patterns in Large-Scale

Traffic Speed Prediction.” IEEE Transactions on Intelligent Transportation Systems 15 (2): 794–804.

https://doi.org/10.1109/TITS.2013.2290285.

Aw, A., andMichel Rascle. 2000. “Resurrection of” SecondOrder” Models of Traffic Flow.” SIAM Journal

on AppliedMathematics 60 (3): 916–938. https://doi.org/10.1137/S0036139997332099.

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:101

0933404324.

Daw, Arka, Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. 2017. “Physics-

Guided Neural Networks (PGNN): An Application in Lake Temperature Modeling.” arXiv preprint

arXiv:1710.11431.

Doan, Nguyen Anh Khoa, Wolfgang Polifke, and Luca Magri. 2019. “Physics-Informed Echo State Net-

works for Chaotic Systems Forecasting.” In International ConferenceonComputational Science, Faro,

Portugal, 192–198.

Duan, Yanjie, Yisheng Lv, Yu-Liang Liu, and Fei-Yue Wang. 2016. “An Efficient Realization of

Deep Learning for Traffic Data Imputation.” Transportation Research Part C: Emerging Technolo-

gies72:168–181. https://doi.org/10.1016/j.trc.2016.09.015.

Hamner, Benjamin. 2010. “Predicting Travel TimesWith Context-Dependent RandomForests byMod-

eling Local and Aggregate Traffic Flow.” In 2010 IEEE International Conference on Data Mining

Workshops, Sydney, NSW, Australia, 1357–1359.

Hofleitner, Aude, Ryan Herring, and Alexandre Bayen. 2012. “Arterial Travel Time Forecast with

Streaming Data: A Hybrid Approach of Flow Modeling and Machine Learning.” Transportation

Research Part B: Methodological 46 (9): 1097–1122. https://doi.org/10.1016/j.trb.2012.03.006.



26 Z. ZHANG ET AL.

Huang, Archie J, andAgarwal Shaurya. 2022. “Physics-InformedDeepLearning for Traffic State Estima-

tion: Illustrations with LWR and CTMModels.” IEEEOpen Journal of Intelligent Transportation System

3:503–518. https://doi.org/10.1109/OJITS.2022.3182925.

Jia, Xiaowei, Anuj Karpatne, Jared Willard, Michael Steinbach, Jordan Read, Paul C. Hanson, Hilary A.

Dugan, and Vipin Kumar. 2018. “Physics Guided Recurrent Neural Networks for Modeling Dynam-

ical Systems: Application to Monitoring Water Temperature and Quality in Lakes.” arXiv preprint

arXiv:1810.02880.

Jiang, Weiwei, and Luo Jiayun. 2022. “Graph Neural Network for Traffic Forecasting: A Survey.” Expert

Systems with Applications 207:117921. https://doi.org/10.1016/j.eswa.2022.117921.

Kahana, Adar, Eli Turkel, Shai Dekel, and Dan Givoli. 2020. “Obstacle Segmentation Based

on the Wave Equation and Deep Learning.” Journal of Computational Physics 413:109458.

https://doi.org/10.1016/j.jcp.2020.109458.

Karlaftis, Matthew G., and Eleni I. Vlahogianni. 2011. “Statistical Methods Versus Neural Networks in

Transportation Research: Differences, Similarities and Some Insights.” Transportation Research Part

C: Emerging Technologies 19 (3): 387–399. https://doi.org/10.1016/j.trc.2010.10.004.

Kumar, Selvaraj Vasantha, Krishna Chaitanya Dogiparthi, Lelitha Vanajakshi, and Shankar Coimbatore

Subramanian. 2017. “Integration of Exponential Smoothing with State Space Formulation for Bus

Travel Time and Arrival Time Prediction.” Transport 32 (4): 358–367. https://doi.org/10.3846/1648

4142.2015.1100676.

Leshem, Guy, and Ya’acov Ritov. 2007. “Traffic Flow Prediction Using Adaboost Algorithm with Ran-

dom Forests As aWeak Learner.” International Journal ofMathematical and Computational Sciences

1 (1): 1–6.

Li, Li, Yuebiao Li, and Zhiheng Li. 2013. “Efficient Missing Data Imputing for Traffic Flow by Consid-

ering Temporal and Spatial Dependence.” Transportation Research Part C: Emerging Technologies

34:108–120. https://doi.org/10.1016/j.trc.2013.05.008.

Lighthill, Michael James, and Gerald Beresford Whitham. 1955. “On Kinematic Waves II. A Theory

of Traffic Flow on Long Crowded Roads.” Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences 229 (1178): 317–345.

Lv, Yisheng, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-YueWang. 2014. “Traffic Flow Prediction

withBigData: ADeepLearningApproach.” IEEETransactionson IntelligentTransportationSystems16

(2): 865–873.

Ma, Xiaolei, Zhimin Tao, YinhaiWang, Haiyang Yu, and YunpengWang. 2015. “Long Short-TermMem-

oryNeural Network for Traffic SpeedPredictionUsingRemoteMicrowave SensorData.” Transporta-

tion Research Part C: Emerging Technologies 54:187–197. https://doi.org/10.1016/j.trc.2015.03.014.

Ni, Daiheng, and John D. Leonard. 2005. “Markov Chain Monte Carlo Multiple Imputation Using

Bayesian Networks for Incomplete Intelligent Transportation Systems Data.” Transportation

Research Record 1935 (1): 57–67. https://doi.org/10.1177/0361198105193500107.

Papageorgiou, Markos, Jean-Marc Blosseville, and Habib Hadj-Salem. 1989. “Macroscopic Modelling

of Traffic Flow on the Boulevard Périphérique in Paris.” Transportation Research Part B:Methodolog-

ical 23 (1): 29–47. https://doi.org/10.1016/0191-2615(89)90021-0.

Payne, H. J. 1971. “Models of Freeway Traffic and Control.” In Mathematical Models of Public Systems,

Vista, CA, USA: Simulation Councils Inc.

Polson, Nicholas G., and Vadim O. Sokolov. 2017a. “Bayesian Particle Tracking of Traffic Flows.” IEEE

Transactions on Intelligent Transportation Systems 19 (2): 345–356. https://doi.org/10.1109/TITS.

2017.2650947.

Polson, Nicholas G., and VadimO. Sokolov. 2017b. “Deep Learning for Short-Term Traffic Flow Predic-

tion.” Transportation Research Part C: Emerging Technologies 79:1–17. https://doi.org/10.1016/j.trc.

2017.02.024.

Richards, Paul I. 1956. “Shock Waves on the Highway.” Operations Research 4 (1): 42–51.

https://doi.org/10.1287/opre.4.1.42.

Seo, Toru, Alexandre M. Bayen, Takahiko Kusakabe, and Yasuo Asakura. 2017. “Traffic State

Estimation on Highway: A Comprehensive Survey.” Annual Reviews in Control 43:128–151.

https://doi.org/10.1016/j.arcontrol.2017.03.005.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 27

Sharmila, R. B., Nagendra R. Velaga, and Akhilesh Kumar. 2019. “SVM-Based Hybrid Approach

for Corridor-Level Travel-Time Estimation.” IET Intelligent Transport Systems 13 (9): 1429–1439.

https://doi.org/10.1049/itr2.v13.9.

Shi, Rongye, Zhaobin Mo, Kuang Huang, Xuan Di, and Qiang Du. 2021. “A Physics-Informed Deep

Learning Paradigm for Traffic State and Fundamental Diagram Estimation.” IEEE Transactions on

Intelligent TransportationSystems 23 (8): 11688–11698. https://doi.org/10.1109/TITS.2021.3106259.

Smola, Alex J., and Bernhard Schölkopf. 2004. “A Tutorial on Support Vector Regression.” Statistics and

Computing 14 (3): 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.

Tak, Sehyun, Soomin Woo, and Hwasoo Yeo. 2016. “Data-Driven Imputation Method for Traffic Data

in Sectional Units of Road Links.” IEEE Transactions on Intelligent Transportation Systems 17 (6):

1762–1771. https://doi.org/10.1109/TITS.2016.2530312.

Tan, Huachun, Guangdong Feng, Jianshuai Feng, Wuhong Wang, Yu-Jin Zhang, and Feng Li. 2013.

“A Tensor-Based Method for Missing Traffic Data Completion.” Transportation Research Part C:

Emerging Technologies 28:15–27. https://doi.org/10.1016/j.trc.2012.12.007.

Tan, Huachun, YuankaiWu, BinCheng,WuhongWang, andBin Ran. 2014. “RobustMissing Traffic Flow

Imputation Considering Nonnegativity and Road Capacity.”Mathematical Problems in Engineering

2014. https://doi.org/10.1155/2014/763469.

Tang, Jinjun, Guohui Zhang, Yinhai Wang, Hua Wang, and Fang Liu. 2015. “A Hybrid Approach

to Integrate Fuzzy C-Means Based Imputation Method with Genetic Algorithm for Missing Traf-

fic Volume Data Estimation.” Transportation Research Part C: Emerging Technologies 51:29–40.

https://doi.org/10.1016/j.trc.2014.11.003.

Taylor, Cynthia, and Deirdre Meldrum. 1995. “Freeway Traffic Data Prediction Using Neural Net-

works.” In Pacific Rim TransTech Conference. Vehicle Navigation and Information Systems Conference

Proceedings 6th International VNIS, A Ride into the Future, Seattle, WA, USA, 225–230.

Van Lint, J. W. C., S. P. Hoogendoorn, and Henk J. van Zuylen. 2005. “Accurate Freeway Travel Time

Prediction with State-Space Neural Networks Under Missing Data.” Transportation Research Part C:

Emerging Technologies 13 (5–6): 347–369. https://doi.org/10.1016/j.trc.2005.03.001.

Wang, Jiawei, Ruixiang Chen, and Zhaocheng He. 2019. “Traffic Speed Prediction for Urban Trans-

portation Network: A Path Based Deep Learning Approach.” Transportation Research Part C: Emerg-

ing Technologies 100:372–385. https://doi.org/10.1016/j.trc.2019.02.002.

Wang, Yibing, and Markos Papageorgiou. 2005. “Real-time Freeway Traffic State Estimation Based on

ExtendedKalman Filter: AGeneral Approach.” TransportationResearchPart B:Methodological 39 (2):

141–167. https://doi.org/10.1016/j.trb.2004.03.003.

Wang, Yibing,Markos Papageorgiou, andAlbertMessmer. 2007. “Real-Time Freeway Traffic State Esti-

mation Based on Extended Kalman Filter: A Case Study.” Transportation Science 41 (2): 167–181.

https://doi.org/10.1287/trsc.1070.0194.

Wang, Yibing, Markos Papageorgiou, and Albert Messmer. 2008. “Real-Time Freeway Traffic State

Estimation Based on Extended Kalman Filter: Adaptive Capabilities and Real Data Testing.” Trans-

portation Research Part A: Policy and Practice 42 (10): 1340–1358.

Wang, Jin, and Qixin Shi. 2013. “Short-Term Traffic Speed Forecasting Hybrid Model Based on

Chaos-Wavelet Analysis-Support VectorMachine Theory.” TransportationResearchPart C: Emerging

Technologies 27:219–232. https://doi.org/10.1016/j.trc.2012.08.004.

Wang, Di, Qi Zhang, ShunyaoWu, Xinmin Li, andRuixueWang. 2016. “Traffic FlowForecastwithUrban

Transport Network.” In 2016 IEEE International Conference on Intelligent Transportation Engineering

(ICITE), Singapore, 139–143.

Whitham, Gerald Beresford. 1975. Linear and NonlinearWaves. Modern Book Incorporated.

Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. 2021a. “Integrating

Scientific Knowledge with Machine Learning for Engineering and Environmental Systems.” ACM

Computing Surveys (CSUR) 55 (4): 1–37. https://doi.org/10.1145/3514228.

Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. 2021b. “Integrating

Physics-Based Modeling with Machine Learning: A survey.”arXiv preprint arXiv:2003.04919.

Wu, Chun-Hsin, Jan-Ming Ho, and Der-Tsai Lee. 2004. “Travel-Time Prediction with Support

Vector Regression.” IEEE Transactions on Intelligent Transportation Systems 5 (4): 276–281.

https://doi.org/10.1109/TITS.2004.837813.



28 Z. ZHANG ET AL.

Wu, Yuankai, Huachun Tan, Lingqiao Qin, Bin Ran, and Zhuxi Jiang. 2018. “A Hybrid Deep Learn-

ing Based Traffic Flow Prediction Method and Its Understanding.” Transportation Research Part C:

Emerging Technologies 90:166–180. https://doi.org/10.1016/j.trc.2018.03.001.

Xiao, Jianli, Chao Wei, and Yuncai Liu. 2018. “Speed Estimation of Traffic Flow Using Multiple Ker-

nel Support Vector Regression.” Physica A: Statistical Mechanics and Its Applications 509:989–997.

https://doi.org/10.1016/j.physa.2018.06.082.

Xu, Dongwei, Chenchen Wei, Peng Peng, Qi Xuan, and Haifeng Guo. 2020. “GE-GAN: A Novel Deep

Learning Framework for Road Traffic State Estimation.” Transportation Research Part C: Emerging

Technologies 117:102635. https://doi.org/10.1016/j.trc.2020.102635.

Yang, Yibo, and Paris Perdikaris. 2018. “Physics-Informed Deep Generative Models.” arXiv preprint

arXiv:1812.03511.

Yin, Weihao, Pamela Murray-Tuite, and Hesham Rakha. 2012. “Imputing Erroneous Data of Single-

Station Loop Detectors for Nonincident Conditions: Comparison Between Temporal and Spatial

Methods.” Journal of Intelligent Transportation Systems16 (3): 159–176. https://doi.org/10.1080/

15472450.2012.694788.

You, Jinsoo, and Tschangho John Kim. 2000. “Development and Evaluation of a Hybrid Travel

Time Forecasting Model.” Transportation Research Part C: Emerging Technologies 8 (1–6): 231–256.

https://doi.org/10.1016/S0968-090X(00)00012-7.

Yu, Bin, Zhong-Zhen Yang, Kang Chen, and Bo Yu. 2010. “Hybrid Model for Prediction of

Bus Arrival Times At Next Station.” Journal of Advanced Transportation 44 (3): 193–204.

https://doi.org/10.1002/atr.v44:3.

Yuan, Yun, Zhao Zhang, Xianfeng Terry Yang, and Shandian Zhe. 2021. “Macroscopic Traffic

Flow Modeling with Physics Regularized Gaussian Process: A New Insight Into Machine Learn-

ing Applications in Transportation.” Transportation Research Part B: Methodological 146:88–110.

https://doi.org/10.1016/j.trb.2021.02.007.

Zeng, Dehuai, Jianmin Xu, Jianwei Gu, Liyan Liu, and Gang Xu. 2008. “Short Term Traffic Flow Predic-

tion Using Hybrid ARIMA and ANN Models.” In 2008 Workshop on Power Electronics and Intelligent

Transportation System, Guangzhou, China, 621–625.

Zhang, H. Michael. 2002. “A Non-Equilibrium Traffic Model Devoid of Gas-Like Behavior.” Trans-

portation Research Part B: Methodological 36 (3): 275–290. https://doi.org/10.1016/S0191-2615(00)

00050-3.

Zhang, Linfeng, Jiequn Han, Han Wang, Roberto Car, and E. J. P. R. L. Weinan. 2018. “Deep Potential

Molecular Dynamics: A Scalable Model with the Accuracy of QuantumMechanics.” Physical Review

Letters 120 (14): 143001. https://doi.org/10.1103/PhysRevLett.120.143001.

Zhang, Yang, and Yuncai Liu. 2009. “Traffic Forecasting Using Least Squares Support Vector

Machines.” Transportmetrica 5 (3): 193–213. https://doi.org/10.1080/18128600902823216.

Zhang, Zhao, and Xianfeng Yang. 2020. “Freeway Traffic Speed Estimation by Regression Machine-

learning Techniques Using Probe Vehicle and Sensor Detector Data.” Journal of Transportation

Engineering, Part A: Systems 146 (12): 04020138. https://doi.org/10.1061/JTEPBS.0000455.

Zhang, Zhao, Xianfeng Terry Yang, and Hao Yang. 2023. “A Review of Hybrid Physics-Based Machine

Learning Approaches in Traffic State Estimation.” Intelligent Transportation Infrastructure 2: 1–9.

https://doi.org/10.1093/iti/liad002.

Zhang, Zhao, Yun Yuan, and Xianfeng Yang. 2020. “A Hybrid Machine Learning Approach

for Freeway Traffic Speed Estimation.” Transportation Research Record 2674 (10): 68–78.

https://doi.org/10.1177/0361198120935875.

Zhu, Lin, Fangce Guo, John W. Polak, and Rajesh Krishnan. 2018. “Urban Link Travel Time Estima-

tion Using Traffic States-Based Data Fusion.” IET Intelligent Transport Systems 12 (7): 651–663.

https://doi.org/10.1049/itr2.v12.7.


	1. Introduction
	2. Literature review
	2.1. Classical traffic flow model
	2.2. Pure data-driven approach
	2.3. Hybrid physics machine learning
	2.4. Physics-guided machine learning

	3. Fundamentals and review of macroscopic TSE models
	4. Physics-guided machine learning algorithm
	4.1. Physics-guided machine learning model structure
	4.2. Physics-guided loss function
	4.3. Problem statement summary of PGML model for TSE

	5. Experimental study with field data
	5.1. Case setting
	5.2. Results analysis
	5.2.1. Estimation results on normal segment
	5.2.2. Estimation results on on-ramp and off-ramp segment


	6. Conclusions and future research directions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

