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ABSTRACT ARTICLE HISTORY
Recent studies have shown the successful implementation of clas- Received 7 July 2022
sical model-based approaches (e.g. macroscopic traffic flow mod- Accepted 25 September 2023

elling) and data-driven approaches (e.g. machine learning — ML) to

KEYWORDS
model freeway traffic patterns, while both have. their limitations. Traffic state estimation:
Even though model-based approaches could depict real-world traf- physics-guided machine
fic dynamics, they could potentially lead to inaccurate estimations learning; macroscopic traffic
due to traffic fluctuations and uncertainties. In data-driven models, flow modelling; neural

the acquisition of sufficient high-quality data is required to ensure networks
the model performance. However, many transportation applications
often suffer from data shortage and noises. To overcome those limita-
tions, this study aims to introduce and evaluate a new model, named
as physics-guided machine learning (PGML), that integrates the clas-
sical traffic flow model (TFM) with the machine learning technique.
This PGML model leverages the output of a traffic flow model along
with observational features to generate estimations using a neural
network framework. More specifically, it applies physics-guided loss
functions in the learning objective of neural networks to ensure that
the model not only consists with the training set but also shows lower
errors on the known physics of the unlabelled set. To illustrate the
effectiveness of the PGML, this study implements empirical studies
with a real-world dataset collected from a stretch of I-15 freeway
in Utah. Experimental study results show that the proposed PGML
model could outperform the other compatible methods, including
calibrated traffic flow models, pure machine learning methods, and
physics unguided machine learning (PUML).

1. Introduction

Accurate traffic information plays an important role in transportation management sys-
tems, which helps travelers plan their trips, allows transportation agencies to take actions to
mitigate traffic congestion, and therefore promotes a more efficient and safer driving envi-
ronment (Lv et al. 2014; Ma et al. 2015; J. Wang, Chen, and He 2019). Giving accurate and
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timely traffic information has always been complicated because of the stochastic nature of
the traffic patterns. In the literature, traffic state (i.e. flow, speed, and density) estimation
(TSE) is a method that can infer traffic information using partially observed and noisy data
from traffic sensors on the roadway system (Seo et al. 2017), which is the best way to tackle
the limitation of observed data.

Input data and estimation approaches are two essential parts of TSE (Xiao, Wei, and
Liu 2018). Regarding the technologies used for data collection, traffic data can be grouped
into stationary data and probe data. In practice, stationary data can be easily retrieved
because it is collected by fixed traffic detectors (e.g. inductive loops and radar detectors)
on freeways. Each stationary detector counts the number of vehicles that pass every minute
and detects the speed of each vehicle. However, the data is only available at the locations
with the stationary detector installed. Probe data is a sample of information collected from
vehicle navigation systems, cell phone applications, and fleet vehicles (Z. Zhang, Yuan, and
Yang 2020). Compared to stationary data, probe data can provide traffic information (e.g.
speed and flow) on variable locations of statewide highways but are very likely to be biased
because of the low penetration rate (e.g. 3%).

In terms of the estimation approaches, previous studies have shown that model-based
and data-driven models are commonly used (Seo et al. 2017). The basic logic is that these
approaches can be used as prior knowledge of partial traffic observations to simulate
traffic dynamics, capture data noises, and predict unobserved traffic states. More specif-
ically, model-based approaches rely on physics principles to study traffic dynamics over
space and time. In the early stages, the fundamental diagram of traffic flow was discov-
ered by borrowing concepts from the fluid mechanism (Yuan et al. 2021). Following the
same line, macroscopic traffic flow models were developed with the conservation law
and momentum equation, and a set of kinematic wave models were also formulated (Seo
et al. 2017). However, most models require great efforts to calibrate parameters and are
challenging to apply to noisy and biased traffic data because they were derived under
some ideal theoretical assumptions. In general, model-based approaches can be classi-
fied into two categories: (a) continuous models, such as the Lighthill-Whitham-Richards
(LWR) model (Lighthill and Whitham 1955; Richards 1956), the Payne-Whitham (PW) model
(Payne 1971; Whitham 1975), and the Aw-Rascle-Zhang (ARZ) model (Aw and Rascle 2000;
H. M. Zhang 2002); and (b) discretised models, which were presented to simulate traffic
states of subsegments and time intervals because of their tremendous computational effi-
ciency. METANET (Papageorgiou, Blosseville, and Hadj-Salem 1989), a discrete PW-like TSE
model, has been successfully applied by many studies (Y. Wang and Papageorgiou 2005; Y.
Wang, Papageorgiou, and Messmer 2007, 2008; Z. Zhang, Yuan, and Yang 2020). The advan-
tages of model-based approach include: (1) it can estimate accurate traffic state with less
input data; (2) it has high explanatory power; and (3) it can be directly implemented on traf-
fic operations. However, the model-based method may require plenty of time to select and
calibrate the models based on different scenarios. In some applications, calibrating a model
requires a tremendous amount of data.

With the development of data collecting, processing, and computation technologies
recently, data-driven approaches such as ML models have been widely developed and
implemented for TSE because they have the following benefits: (1) do not require clear
theoretical assumptions, and (2) low computational cost. Hence, ML models are prevail-
ing in utilising big data for TSE in recent years (Duan et al. 2016; Li, Li, and Li 2013;
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Ni and Leonard 2005; Polson and Sokolov 2017a, 2017b; Tak, Woo, and Yeo 2016; Tan
et al. 2013, 2014; Tang et al. 2015; Y. Wu et al. 2018; Yin, Murray-Tuite, and Rakha 2012;
Yuan et al. 2021; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020). However, the
performance of ML models depends on high-quality data due to their data-driven nature.
The deficiency of ML models includes: (a) scarce and insufficient training data to train the
model, (b) training data contains noisy/error information, (c) the pattern of test data is differ-
ent from the training set, and (d) the results of ML models are difficult to interpret because
they are developed as ‘black boxes'.

Figure 1 summarises the existing research gaps and the proposed solutions. Herein,
model-based approaches are usually constructed with strong prior knowledge, require
great effort in parameter calibrations, and are difficult to capture data uncertainties,
even though they can present the underlying mechanisms of traffic flow. Data-driven
approaches such as ML models do not require clear theoretical assumptions, but their
performance depends heavily on data quality and the model results are unexplainable.
Therefore, recognising the advantages and deficiencies of model-based and data-driven
approaches, this research aims to develop an innovative framework, named as physics-
guided machine learning (PGML). More specifically, the PGML framework could incor-
porate physics knowledge into loss functions to help ML models capture generalisable
dynamic patterns, in consistent with established traffic physics laws. Figure 2 shows the
proposed PGML model can leverage the advantages of both model-based and data-driven
approaches by making efficient use of traffic data and existing physics relationships in traf-
fic flow, where the x-axis measures the use of traffic data and y-axis measures the use of
traffic physics models. This study makes significant contributions to the literature from the
following perspectives: (a) compared with traditional physics models, the PGML can use
the ML portion to capture the uncertainties in estimation and greatly reduces the effort
required to calibrate parameters; (b) compared to pure ML models, the PGML is more resis-
tant to data limitation as valuable knowledge from physics models can help guide the ML
training process; and (c) the model results are more interpretable by learning parameters
with physics meanings. This research is expected to bridge the gap between the research

» High explanatory power » Low computational cost
» Hard to calibrate » Require high-quality data
» Rely on theoretical assumption » Black boxes

» Physics-based » Hybrid (MB » Physics-guided
data augmentation &ML) framework regularization

Figure 1. Hybrid modelling in traffic flow modelling domian.
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Figure 2. A presentation of model-based, data-driven, and PGML TSE approaches.

of transportation theoretical foundations and data-driven approaches proposed by the
innovative hybrid TSE framework.

The rest of this paper is organised as follows. Section 2 reviews existing studies related
to TSE and estimation methods. In Section 3, traffic flow fundamentals and a macroscopic
TSE model are introduced. The PGML framework and physics-guided loss function are pre-
sented in Section 4. Section 5 implements the case study on the real-world data from
interstate freeway |-15. The last section summarises the key findings and future research
directions.

2. Literature review
2.1. Classical traffic flow model

The importance and controllability of highways in transportation systems make TSE a vital
fundamental task of highway traffic management systems. In the early stages, macroscopic
traffic flow was found to be similar to hydrodynamic theory (Seo et al. 2017). Based on that
finding, the fundamental diagram was defined as the relationship between traffic speed,
flow, and density. The fundamental diagram is one of the most basic concepts in traffic
flow theory, which is described in Equations (1)-(2).

q=pV(p) (2)

where V represents the speed-density fundamental diagram.

According to the fundamental diagram, macroscopic traffic flow models were developed
using partial differential equations (PDE) to represent the aggregated traffic behaviour.
The traffic flow models can be generally classified into continuous models and discre-
tised models. The Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham 1955;
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Richards 1956) is a continuous first-order model and can be formulated in Equations (3)-(4).

0o + dx(pv) =0 3)
v=V(p) (4)

The LWR model succeeds in mimicking simple traffic conditions (e.g. traffic jam and shock-
wave) but it cannot reproduce more complicated traffic phenomena well.

To tackle such limitations, the well-known second-order PW model (Payne 1971;
Whitham 1975) was developed by adding the momentum equation to capture complex
traffic behaviour. The PW model is formulated as Equations (5)-(6), where Equation (6) is
the momentum equation.

3o + dx(pv) =0 (5)

_ 2
=20 Gy ©
T p

0tV + voyv = —
where t is the relaxation time and cg is a parameter related to driver anticipation. Papa-
georgiou, Blosseville,and Hadj-Salem (1989) proposed a discrete PW-like TSE model, named
METANET, which is an extension of PW model. It can reproduce complex traffic phenomena
but does not require tremendous computation efforts at a certain level.

2.2. Pure data-driven approach

In recent decades, more researchers began using data-driven methods (e.qg. statistical and
ML methods) for TSE with the advancement of data collecting, processing, and computa-
tion technologies. In the existing literature, Support Vector Machine (SVM) (J. Wang and
Shi 2013; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020) and Random Forest (RF)
(Hamner 2010; Leshem and Ritov 2007; D. Wang et al. 2016; Z. Zhang and Yang 2020; Z.
Zhang, Yuan, and Yang 2020) have a great ability to capture the stochastic characteristics
of traffic flow. SVM models can effectively model time series and regression problems since
they estimate the regression based on a number of kernel functions that can convert the
lower-dimensional data into a higher-dimensional feature space through a nonlinear rela-
tionship and then execute linear regression within this space (Smola and Schélkopf 2004).
The effectiveness of SVM-based models for time series and regression problems in the trans-
portation field has been approved by several existing studies (Asif et al. 2013; C.-H. Wu,
Ho, and Lee 2004; Y. Zhang and Liu 2009). The RF model (Breiman 2001) can reduce vari-
ance by combining a set of ‘weak’ learners, which can overcome the over-fitting problem
through Breiman'’s ‘bagging’ idea as it randomly selects features. The RF has been widely
implemented to predict traffic state (Hamner 2010; Leshem and Ritov 2007; Z. Zhang and
Yang 2020; Z. Zhang, Yuan, and Yang 2020). Moreover, the Artificial Neural Network (ANN)
is also considered as an effective method for TSE and traffic state prediction because it can
deal with multi-dimensional data, flexible model structure, strong generalisation, learning
ability, and adaptability (Karlaftis and Vlahogianni 2011). Compared with traditional sta-
tistical methods, ANN can effectively work with missing and noisy inputs since it doesn’t
have underlying assumptions (Karlaftis and Vlahogianni 2011). Many existing studies have
shown that ANN has a strong ability to predict traffic state (Taylor and Meldrum 1995; Van
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Lint, Hoogendoorn, and Zuylen 2005; Zeng et al. 2008; Z. Zhang and Yang 2020; Z. Zhang,
Yuan, and Yang 2020). In addition, graph neural networks (GNNs) have been conducted in
recent years and obtained superior performance in traffic state modelling for nested urban
networks (Jiang and Jiayun 2022).

However, the performance of those models would be significantly reduced when the
training data is too scarce and the pattern of testing data is geographically far away from
the training set. In addition, the results of ML models are challenging to interpret because
they are developed as ‘black boxes'.

2.3. Hybrid physics machine learning

Both model-based approaches and data-driven approaches have their advantages and
drawbacks. Model-based approaches can simulate traffic dynamics and predict unobserved
spatiotemporal traffic states with a limited amount of traffic observations. Data-driven
approaches are prevailing in capturing the stochastic characteristics of traffic flow based
on a massive amount of historical data. The estimation methodology and the data quality
are the two essential parts in TSE (Xiao, Wei, and Liu 2018). Hence, to overcome the limita-
tion of both types of approaches, data expansion, data fusion, and hybrid approaches were
developed in the literature. Those hybrid concepts can partially combine the advantages of
different data sources and different methods (Z. Zhang, Yang, and Yang 2023). The hybrid
data-driven and model-based approaches for traffic time estimation and forecasting were
implemented and evaluated by a group of studies (Allstrom et al. 2016; Anusha, Anand, and
Vanajakshi 2012; Hofleitner, Herring, and Bayen 2012; Kumar et al. 2017; Sharmila, Velaga,
and Kumar 2019; You and Kim 2000; Yu et al. 2010; Z. Zhang, Yuan, and Yang 2020; Zhu
et al. 2018). Furthermore, other studies (Willard et al. 2021b) point out that a variety of
methodologies are needed to integrate physics theory into ML models in different subjects
and applications because of different forms of scientific knowledge in various disciplines.
This paper further indicated that feeding the output of a physics model as input into an ML
model is one direct and effective way to combine the physics model and ML models.

2.4. Physics-guided machine learning

Scientific problems usually exhibit high complexity because physics variables vary with
spatial and temporal on different scales. Standard ML models usually fail to generalise to
scenarios not experienced in training data because they tend to fail to capture spatio-
temporal relationships, especially in the case of incomplete data. Hence, people started
to integrate physics knowledge into the loss functions to help ML models capture gener-
alisable dynamic patterns that are consistent with known physical laws. Daw et al. (2017)
stated that physics-guided machine learning (PGML) is one of the most effective ways to
make ML models align with physical laws by integrating physical constraints into the loss
function of ML models. Recently, the effectiveness of PGML models in improving the perfor-
mance of standard ML methods in various fields has been recognised (Daw et al. 2017; Doan,
Polifke,and Magri 2019; Jiaetal. 2018; Kahana et al. 2020; Yang and Perdikaris 2018; L. Zhang
etal.2018). In transportation field, physics informed machine learning (PIML) developed by
Huang and Shaurya (2022) and Shi et al. (2021), refers to training an ML model to solve for
TSE problem while respecting the physics law inside of continuous traffic flow model, such
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as LWR and LWR, given by general nonlinear partial differential equations (PDE). Hence,
these models only work for continuous TSE problem. To tackle this problem, this paper
attempts to propose a PGML that integrates the physics law from the METANET model to
solve the discrete TSE problem, which could speed up the estimation process.

In summary, a hybrid framework that integrates physics knowledge and data-driven
methods with low computational cost for discrete TSE problem is still lacking. This paper
focuses on filling the gap by proposing an ANN-based PGML model for TSE.

3. Fundamentals and review of macroscopic TSE models

To facilitate the convenience of reference, Table 1 provides a concise summary of the key
notations used in the proposed PGML model.

As an existing influential study, Papageorgiou, Blosseville, and Hadj-Salem (1989) devel-
oped a discrete macroscopic traffic flow model, METANET, which conceptually subdivides
the target freeway segment into n subsegments with a unit length of AL (500 m). Figure 3
shows the template freeway segment. For each subsegment i, the mean density, dj(k), can
be determined by the difference between the input and output flows by Equation (7).

.
ditk +1) = di(k) + m[qM (k) — qi(k) + ri(k) — si(k)] (7)

The departure flow is assumed to be a portion of the flow at the segment in Equation (8).
The ramp flow is captured by the sensors installed at the ramps.

Table 1. Key notations of proposed PGML model.

Notation Definition

D the training data set

S stationary data points

T traffic flow model data points

Yy target values

i the index of sub-sections of a freeway segment

j the index of the physics data points in the data set

k the index of the time step

m the number of observations on each segment

n the number of segments on the highway

qi(k) the total flow at the end of segment

ri the inflow of vehicles at on-ramps

Si the outflow of vehicles at off-ramps

A number of lanes in subsegment i

uj(k) the average speed at segment i

ur the free-flow speed

a the exponent of the stationary speed equation

Bi(k) the departure rate

AL the segment length at the segment

di(k) the density at the end of segment i

der the critical density

T, Y,k positive physics model parameters

o hyper-parameter of empirical error in the loss function
B hyper-parameter of physics inconsistency in the loss function
A hyper-parameter of structural error in the loss function
X the data input vectors of sizen x m

Xphy traffic physics inconsistency vectors of size n x m

the model estimation vectors of size n x m
Y the data output vectors of size n * m
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Figure 3. Freeway stretch example.

si(k) = Bi(k) x gi—1(k) (8)

For dynamically updating the average speed, u;j(k), a well-developed equation proposed
by the METANET model (Papageorgiou, Blosseville, and Hadj-Salem 1989) is adopted by
Equation (9).

AT AT
uitk +1) = uj(k) + T[Vi(di(k)) —u(k)] + Tui(k)(ui—1 (k) — uj(k))

_ YiAT dipa(k) —di(k) — SAT rik), ui(k)
TAL di(k) + « ALA; di(k) + &

)

where V[d;(k)] is the static speed for segment i at time k with respect to the density d;j(k):

VIdik)] = uy exp [—1 (d"(k)) } (10)

a\ dg

Also, the relationship between flow, density, and speed is given by Equation (11):
qgi(k) = di(ku;(k)A; (11)

where Equations (7)-(11) are the conservation equation, dynamic speed equation, station-
ary speed equation, and flow equation, respectively; t, v, k, dcr, U, a are positive model
parameters which are given the same values for all segments. Using the traffic flow and
speed from traffic sensors at upstream and downstream stations, on-ramps, and off-ramps,
one can directly use Equations (7)-(11) to estimate the traffic speed evolution on the target
freeway section.

4. Physics-guided machine learning algorithm

Let D denote the set of freeway segments i at various time step k: D = {x;« |i € [0,n], V k €
[0, t]} (k denotes the time interval (5-min)). Let S and 7 be two subsetsof D,asD =S UT.

S=1{x,1i=1,...,ns} is composed of the observed traffic information from stationary
sensors. 7 = {Xka |i=1,...,nr}is composed of generated TFM estimates based on the
upstream and downstream stationary data [x] ., x; 1. Then, the training data for PGML

model consist of (1) stationary data points is denoted by S = {x,.‘,k [i=1,...,ns}; (2) TFM
data points 7 = {x;k |i=1,...,n7}; and (3) target values ) = {yjx |i=1,...,ns} (i.e. the
true traffic states at the stationary points), where i and j are the indexes of stationary points
and TFM data points. S and ) have the same index i in the case of the target value ) paired
with stationary point S. In experiments, the stationary data points are usually limited by the
availability of traffic sensors (e.g. probe and sensor detectors). Hence, the traffic state can be
observed only in limited locations. An estimation method is needed to infer the unknown
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traffic state in locations without traffic sensors installed. In this study, the traffic flow model
is utilised to construct traffic state for those locations based on limited traffic informa-
tion from S, named TFM data points 7. The input of TFM includes speed and flow from
upstream, off-ramp, on-ramp, and downstream segments. Then, unobserved traffic states
could be estimated by TFM for all segments by Equation (12). In particular, the METANET
model is chosen as the traditional TFM model to estimate traffic speeds and flows for target
locations. Detailed procedures of the METANET model are shown in Equations (7)-(11).

S on off s ]
X101 91 97 X T T T
Xi1 Xp1 ... Xpq
s on off s T T T
X2 G2 92 Xn2 | X2 X2 - Xpa
— | . . . (12)
T T T
x5 on off XS X0 Xor oo Xng txn
LXe 9ir Gir Xntdixa

TFM data points could overcome both location and measurement limitations, which also
can reflect the real traffic physics truth. The parameters of traffic flow models need to be
calibrated by the ground truth data and this process is similar to the training process of
machine learning. The TFM model can offer available data for a freeway segment based
on the upstream and downstream traffic information. However, the output of TFM may
include incomplete information of the target traffic state because of simplified or miss-
ing information in 7". Hence, the PGML model is constructed with an ML portion based on
the output from TFM. Figure 4 presents the framework of the proposed PGML model for
TSE, which includes two key steps: (1) build up a hybrid physics neural network, termed
as HP-NN, and (2) substitute the HP-NN output into a traffic physical law to obtain the
physics inconsistency on target freeway segments and develop a physics-based loss func-
tion. Then, the model training process would be guided by the new loss function. The
basic logic of the proposed PGML for TSE is presented in Algorithm 1. The unobserved
traffic states can be estimated by PGML using Equation (16), based on the samples in Equa-
tions (13)-(15). Herein, the input X represents time t, distance d, on-ramp flow g°", off-ramp
flow g°ff, TFM speed u” and flow g7, the Yphy represents the traffic physics inconsistency in
flow and speed, the output Y represents the corresponding vector of flow and speed. The
Yphy are used as a guide, making the estimation of PGML more consistent with the traffic

Input Hybrid Physics -

- | Machine Learning Y

Y* ‘Loss=a+loss(Y,Y*)+ Brloss(Y, Yy) +1 *regO”,w).‘-_
Physics-based Loss Function -

= Physics Model
dp+k(pr)=0
V-V(p)
To

Output

Yooud -
D+ Vv = — :

g

2
@
= /—?4)xp

Figure 4. The Diagram of Physics-guided Machine Learning (PGML) model, Y refers to the observed sta-
tionary values, Y* refers to the predicted value, and Yy refers to the physics value on the intermediate
subsegment.
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physics knowledge. The detailed calculation procedures of traffic physics inconsistency are
described in the following section.

Algorithm 1 PGML algorithm
Results: Estimated traffic states

1: Pick a freeway segment with point data available at upstream and downstream stations
2: Set the length of each sub-segment to 500 m
3: Run TFM to produce estimates for all sub-segments: [xﬁlt,xf,,t] ﬂ [xﬁlt,xit, ... ,xf,,t]
4: for sub-segmenti=1,...,ndo
5: if sub-segment i without point data then
6: Group the TFM estimates and point data of its nearby sensor stations:
[t s GO0 U, G, UPYT = (Gt Un]
7: Build up physics-based loss function:PGLoss = a % 1= 311 > jL; (65, — Y)? +
B e Yy S VY = VI + 4 R()
: Train PGML model with the grouped dataset.
: Use the trained model to estimate traffic state for sub-segment i f=
(1@ 008D 0]},
10: end if
11: end for

I

on T T
t1p dip di2 912 Yo 491

on
e e Gy G Uy Ay
ff T T
y Tt da 437 a3 Uxq Gy (13)
=[x x ... x| =
[1 2 ”] tho dap q(zjg qcz)g U;-,z a5,

on T T
o d2,i’ qZ,t q2,t uz,r q2,t

on T

_tn,l‘ dn,t Qn,t qn,t un,t qn,t_ (nxt)x6
(U1 g1 ]
ui2 qiz2
Ut gt
Uz gon

T , ,

Y=[yi v2 ... ] = Uzs Qoo (14)

Uzt  qot
LUnt  Antd (hp)x2
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—,,Phy _phy-
o
phy _phy
Uiy a4y
phy _phy
o
phy _phy
T u q
h h h 2,1 2,1
Yohy = [}’ﬁ) Y ,Vg Yok y] =Py Py (15)
22 922
phy _phy
Uyt A9
phy _phy
LUnt dnt (nxt)x2
f—[,@ w1’
f=[u@00 n%l,,, (16)

4.1. Physics-guided machine learning model structure

In this study, a basic ANN is utilised to regress the traffic state, Y. The relationship between
the input features, X, and target prediction, Y fora fully connected neural network with m
hidden layers can be described as:

z) = WEX + b, (17)
zi=WX+b;, Viel2,m (18)
aj=f(z), Viell,m] (19)
Y=WK jai+bmi, Viel2,m] (20)

where {W;, b,'}Q"Jr1 denotes the weight and bias parameters in hidden and output layers; f
is the activation function in hidden layers.

The proposed PGML uses the ANN as base machine learning model with hybrid data,
which combines the observed data and TFM estimates as the input to train the neural net-
work. Hence, the PGML can also be termed as a physics-guided neural network (PGNN).
The structure of The PGNN is depicted in Figure 5. The PGNN not only uses additional TFM
estimates as input, but also adds the traffic physics knowledge as additional term in the loss
function so that it can guide the entire training process. The loss function of PGML is termed
as a physics-guided loss function.

4.2. Physics-guided loss function

The objective of the training procedure of pure machine learning model is to minimise the
empirical loss of its model estimations, Y, to maintain low model complexity as follows:

1T~
Loss = N Z(Y —Y)?2 (21)

i=1
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Observed data TFM estimates

Input later

Hidden layer

Output layer

Figure 5. The deep structure for PGNN.

TSE problems often involve a high degree of complexity because of relationships between
physics variables (e.g. flow, density, and speed) are varying spatially and temporally at dif-
ferent scales. Those relationships are usually difficult to be captured directly by the training
data, using pure-ML models. Hence, the proposed PGML framework will offer a new solu-
tion to model the stochastic correlations between traffic states by incorporating physics
knowledge into loss function. The corresponding physics-based loss function would con-
vert physics constraints into the ANN loss function, which is one of the most efficient
methods to make model estimations consistent with physics laws (Willard et al. 2021a). The
physics-guided loss function is described as:

PGloss = o * Loss(?, Y) +8 % Loss(V, Yohy) +A % R(f) (22)
——r ———— ~—
empirical error physical inconsistency structural error

where the training Loss(V, Y) measures the empirical error (e.g. MSE) between labels Y
and predictions Y; Loss(Y, Yphy) denotes the physics inconsistency (also termed as physics-
based loss) that aims to keep the consistency between predictions and physics laws. R(f)
denotes the model structural error that measures the model complexity; «, 8, and A repre-
sent the trade-off hyper-parameters of empirical error, physics inconsistency, and structural
error respectively. The detailed description of how to establish the physics-based loss is as
follows.

Traffic physics relationships inside of TFM could be used to build up physics incon-
sistency for target segments once the traffic information of upstream and downstream
segments is available. Figure 6 illustrates the detailed procedures of calculating the physics
inconsistency by traffic physics law. An algorithmic description of physics inconsistency is
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Figure 6. The diagram of physics inconsistency calculation.

presented in Algorithm 2. The preliminary traffic state estimates of all segments have been
obtained by TFM and HPML model. Then, those estimates are used to construct the physics
inconsistency by traffic physics law. The utilised traffic physics law is a converted form of
TFM, which is introduced as:

phy _ hpml AT hpml T

dik” = i1 — AL [ -1k~ qi,k:l (23)
hpml phy

GPy — yhemt 21 [V{dphy} _dJr ] + A—TUT [uhpml _d ] n VAT iy — diy

ik ik+1 T ik L; ik | Mik—1 ik T AL dp,?y Tk

1
(24)

h hy ph

G = U2 (25)
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phy
di,k
dCf

V[df,?y] = urexp | ——

phy
ik

from TFM; and d:j,f’ﬂl, qr_p;“,l and u?,fﬂ' denote HPML predictions.

phy phy ; o T T ;
where di,k , Ui, and g;, > are values of physical Iaws,u,.,k and 9ix denotes TFM estimates

Algorithm 2 Traffic physics law algorithm
Results: physics inconsistency

: Set the length of each sub-segment to 500 m

: for sub-segmentido

TFM
o [yS S S S S
Run TFM model: [x] ., X; ] —> [X] (0 X5 1+ -+ Xp 4]

1
2
3
4. end for
5: Group the training dataset: [ty, dnt, Ghys qgf{] = [Gnt, Unt
6: for sub-segmenti=1,...,ndo
7 if sub-segment i without point data then
8 Train HPML model with grouped dataset: Loss = « * Loss(V, Y) + A % R(f)
9 Use the trained HPML model to estimate traffic state for sub-segment j,
hpml _hpml
|:un,l‘ ’ qn,t ]
10: end if
11: end for
12: for sub-segmenti=1,...,Ndo

phy _ hpml _ AT phy T AT, T |, ,hpml T
U’ = Uik — 7 |V = Ui |+ ToYik [ Uik—r — Uik

hpml __phy
13: Y.pkhy = + VAT g1 —Gig
I T AL d,PEy"'K
phy _ _phy phy,
A =i Ui Ai
. o yPhy _$
14: calculate Ajx = [V}, Y|

15: end for
16: physics violations: PHY.Loss(Y) = —L_ 37 | 3™ Ak
17: Physics-guided  loss  function: ~ PGLoss = o % —— 37 | 51 | (x,.sk -2+ B

h o~
i i1 ket VR = Y1+ A % R(f)

Physics value for all target segments could be computed by Equations (23)-(26) with
both TFM and HPML model estimates. To ensure model estimates comply with traffic flow
physics laws, Yy , this research first calculates the difference between physics values and
model estimates during time-step k at segment i:

A= IYEY =V (27)

A positive value of A, can be viewed as a violation of physics laws at segment i during time-
step k. Hence, the mean of physics violations across all observations can be considered as
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an additional term in the physics-based loss function:

. .I n m
PHY Loss(V) = —— A 28
oss(V)=——3% > A (28)

i=1 k=1

Adding the term into the original ANN loss function, the physics-guided loss function can
be expressed as:

PGLoss = a %

n m n m
~ 1 ~
S 2 phy
2 D O =24 Br—— 3 3 IR —VI+axRE)  (29)

i=1 k=1 i=1 k=1

where xS denotes the ground truth from stationary data; Yp ¥ denotes the physical values
(e.g. flow and speed) from converted TFM.

Note that the selection of hyper-parameters, « and 8, can affect the performance of
PGML. To reduce the number of hyper-parameters to be calibrated or optimised, the
physics-based loss function could be simplified as:

1 n m 1 n m h R
Jp)=pr—— > (G —— > D I =VI+axRE)  G0)
i=1 k=1 i=1 k=1

where p equals «/B. To optimise the value of p, a stochastic approximation approach is
developed as:

p* = argmin J(p) (31)
Then, the optimal value, p*, could be obtained by the iterative process:

J(ok + Skei) — J(ok — Skei)
Pk+1 = Pk — 25, (32)

where, 8 is a small positive number that decreases with the iteration index, k; and e; is the
unit vector in the searching process.

4.3. Problem statement summary of PGML model for TSE

This subsection briefly summarises the PGML model for TSE problem. For a discrete spa-
tiotemporal traffic state points D = {x;x | i € [0,n], V¥ k € [0, ]}, given limited observation
points S, the fully-covered estimated traffic state can be obtained by TFM:

traffic flow model

D li=1,. ., ns) —————— x| li=1,...,n7} (33)

Then the data set are ready for PGML as below:

{xk|/_1 ..., ns}
:{y,k|l_1 ..ns} €D (34)
{Xk|l—1 .,hr}eD

With the design of PGML model based on a neural network, the loss function include three
parts: (@) empirical error between prediction Y on S and label values Y; (b) physics incon-
sistency between predictions Y and physics values A, and (c) structural error that measures
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the model complexity. Then a general PGML for TSE is to solve the problem:

n m n m
: _ P S ™2 1 phy +
man(p)_n*m;;(xi’k—Y) +n*m;;w’.’k —Y|+A%R(F) (35

5. Experimental study with field data
5.1. Case setting

To evaluate the effectiveness of the proposed PGML framework, field data are obtained
from a stretch of interstate freeway I-15 (mileposts 299.68 — 304) in Salt Lake City, Utah.
The studied freeway stretch is presented in Figure 7, where the observed data are available
at the stations, indicated by blue and yellow icons, and the probe data can be collected
over the entire segment. Seven blue icons (three detectors located on normal segments,
two detectors located on off-ramps, and two detectors located on on-ramps) represent
the detectors for training and the three yellow icons (one detector located on a normal
segment, one detector located on an off-ramp segment, and one detector located on an
on-ramp segment) represent the detectors for testing.

Data from the Performance Measurement System (PeMS) and Utah ClearGuide
databases managed by the Utah Department of Transportation (UDOT) are used for model
development and evaluations. The PeMS traffic information is collected by detectors
installed every few miles along the freeway. Each detector counts the number of vehicles
that pass every minute and detects the speed of each vehicle. Stationary point data is only
available at the locations with detectors installed, but it can provide more precise traffic
information. Probe speed data collected from the Clearguided database that is the esti-
mated information collected from vehicle navigation systems, cell phone applications, and
fleet vehicles. The probe data have a relatively low resolution because of the low pene-
tration rate (e.g. 3%) of probe vehicles. but it can provide full-field speed information on

G @D @0 @ or oron oy  GEOD @HOD N
A A A A A A A

M 0 & =
3

*2 9 erv

316009
O
©

©-
@0

8
(8} ) § (&} Legend
z : > &E 3 3 2 - Training set
| -N: Normal segment; -Off: Off-ramp segment; -On: On-ramp segment ‘ [: Testing set

Figure 7. The deployment of freeway corridor and stations.
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Figure 8. Sample data in the studied cases. (a) Observed flow. (b) Observed speed.

statewide freeways. The real-time traffic data and roadway geometry design information
can be retrieved by the public online. For model evaluation, the time range of the data used
is between January 4, 2021, and January 10, 2021. There are 288 observations per detec-
tor per day because the data is collected every 5-min. PeMS data with 5-min time intervals
are widely utilised for TSE by many existing studies (Duan et al. 2016; Xu et al. 2020; Yuan
etal.2021; Z. Zhang and Yang 2020; Z. Zhang, Yuan, and Yang 2020). All obtained station-
ary point data, including both flow and speed information from stationary detectors, are
shown in Figure 8. Notably, such data are collected from stationary traffic detectors and
are only available in limited locations. In this research, two cases with different datasets are
analysed for model evaluations: (1) Physics unguided neural network (termed PUNN) that
utilises hybrid spatiotemporal information and the TFM data as input and treats observed
traffic state as the label; and (2) physics-guided neural network (termed as PGNN) that uses
spatiotemporal information and the TFM data as the input and treats observed traffic state
as the label. Three benchmark machine learning models (e.g. RF, SVM, and ANN) and PUNN
are utilised for evaluating the PGML performance.

In this study, the calibrated initial METANET model parameters are listed in Table 2. The
performance of the proposed system for TSE is evaluated and compared by three common
statistical indicators, including root meaning square Error (RMSE), mean absolute percent-
age error (MAPE), and mean absolute error (MAE), which are defined in Equations (36)-(38):

RMSE = (36)
AN

MAPE = — 2 211 % 100% (37)
1 N

MAE=N;|y—yf| (38)

where y; is the observed traffic speed and flow and y is the estimated traffic speed and flow.
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Table 2. The parameters of
traffic flow model.

Parameter Value

n 9

Ai 4

AT 1/360 (h)
ur 120 (km/h)
y 35 (km?/h)
AL 0.5 (km)

1) 1.4

T 0.05 (h)

o 1.4324
der 36.85 (veh/km)
K 13 (veh/k)m)

5.2. Results analysis

5.2.1. Estimation results on normal segment

Table 3 summarises the TSE results from TFM, pure-ML models, PUNN, and PGNN of nor-
mal freeway segment. Among all three pure-ML models, the lowest flow RMSE, MAPE, and
MAE are 95.30 vehicles/5-minutes, 26.09%, 65.86 vehicles/5-minutes, respectively, and the
lowest speed RMSE, MAPE, and MAE are 2.56 mph, 2.04%, and 1.38 mph, respectively, while
TPM can generate lower RMSE, MAPE, and MAE of both flow and speed estimates. It yields a
2.40 mph of RMSE, a 1.91% of MAPE, and 1.30 mph of MAE for speed and a 56.28 vehicles/5-
minutes of RMSE, a 14.80% of MAPE, and 38.14 vehicles/5-minutes of MAE for flow, while
TPM can generate lower RMSE, MAPE, and MAE of both flow and speed estimates. These
results indicate that pure-ML cannot reach an acceptable estimation accuracy with limited
information. It demonstrates that the TPM data could be a fully covered traffic informa-
tion for ML model training. Hence, the PGNN is developed for TSE problem with TFM data
as an additional information. PGNN generates a 1.90 mph of RMSE, a 1.64% of MAPE, and
1.17 mph of MAE for speed and a 40.96 vehicles/5-minutes of RMSE, a 10.81% of MAPE, and
27.85 vehicles/5-minutes of MAE for flow. This finding indicates that TSE accuracy by PGNN
is within an acceptable range. To further confirm this finding, Table 4 shows the improve-
ment percentage of TSE results from TFM, PUNN, and PGNN. Compared with the results
from TFM and the best pure-ML model (ANN), the RMSE, MAPE, and MAE are improved by
PUNN. It indicates that TFM estimates can be valid additional training variables to improve
TSE accuracy. Furthermore, The PGNN is the most effective model for TSE because the PGNN
obtains the largest improvement. Figure 9 show the comparison of estimated flow and
speed by TFM, pure-ML models, PUNN, and PGNN with ground truth. It can be clearly seen

Table 3. Estimation results of on freeway normal segment.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE
TFM 56.28 14.80% 38.14 240 1.91% 1.30
SVM 106.73 26.09% 68.08 2.56 2.04% 1.38
RF 103.25 26.50% 71.19 2.80 2.57% 1.78
ANN 95.30 31.17% 65.86 2.68 2.43% 1.68
PUNN 45.10 12.46% 31.82 238 1.74% 1.17
PGNN 40.96 10.81% 27.85 1.90 1.64% 1.17

Note: Flow: veh/5-min; Speed: mph.
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Table 4. The performance improvement of TFM and PGNN compared with pure-ML.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE
TFM 40.94% 52.52% 42.09% 10.45% 21.40% 22.62%
PUNN 52.68% 60.03% 11.19% 11.2% 28.40% 30.36%
PGNN 57.02% 65.32% 57.71% 29.10% 32.51% 30.36%
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(a) Estimated flow of normal segment
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(b) Estimated speed of normal segment.

Figure 9. TSE estimates vs. ground truth on normal segment. (a) Estimated flow of normal segment and
(b) Estimated speed of normal segment.

that the line of PGNN better fits the ground truth, which demonstrates that PGNN could
accurately estimate speed and flow. To further confirm this finding, the TSE results obtained
by PGNN are compared to the observed data. In Figure 10, the estimation results will be
seen as fitting the ground truth well if the coefficient of the trend line is close to one and
the intercept is close to zero. In this case, the coefficientis 0.95 and the intercept is 11.49 for
flow estimation, and the coefficient is 0.36 and the intercept is 47.33 for speed estimation.
It proves that PGML could achieve relatively higher TSE accuracy.

To furtherillustrate the variation of MAPEs of different models, Figure 11 shows the violin
plots of MAPEs on the test set by different models. In each ‘violin’, its margin shows the
Gaussian distribution of the dataset, and a box plot is drawn inside. In Figure 11, it is noted
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Figure 10. Estimated flow and speed by PGML vs. ground truth on normal segment. (a) Estimated flow
of normal segment and (b) Estimated speed of normal segment.
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Figure 11. MAPE distribution of different models on test set of normal segment. (a) MAPE of estimated
flow and (b) MAPE of estimated speed.

that PGNN generally has a lower MAPE value. All results proved that PGNN could perform
well for flow and speed estimation and especially for flow estimation.

5.2.2. Estimation results on on-ramp and off-ramp segment

Tables 5-6 show the TSE results from TFM, pure-ML models, PUNN, and PGNN of freeway
on-ramp and off-ramp segments. Compared with Table 3, the conclusion can be reached
that the performance of pure-ML models on on-ramp and off-ramp segments is better than
normal segments. The RMSE, MAPE, and MAE for both flow and speed of PGNN on on-
ramp and off-ramp segments are lower than those for normal segments. It indicates that
PGNN also performs better on on-ramp and off-ramp segments. Compared TSE results from
TFM, pure-ML, and PUNN, the RMSE, MAPE, and MAE for both flow and speed of PGNN
are greatly decreased, especially for the flow. It indicates that TSE accuracy can be signif-
icantly enhanced by PGNN on normal, on-ramp, and off-ramp segments. Figure 12 show
the comparison of estimation results of TFM, pure-ML, PUNN, and PGNN with ground truth
on on-ramp and off-ramp segments. The lines of TFM, pure-ML, and pure-ML with probe
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Table 5. Estimation results of on freeway on-ramp.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE
TFM 64.47 21.74% 51.12 1.92 2.02% 1.46
SVM 72.74 24.89% 50.20 1.99 2.17% 1.56
RF 50.82 20.01% 33.66 3.85 2.81% 2.03
ANN 55.08 26.91% 40.83 2.22 2.39% 1.72
PUNN 35.04 11.71% 24.03 1.82 1.99% 1.44
PGNN 31.37 11.38% 21.78 141 1.44% 1.04

Note: Flow: veh/5-min; Speed: mph.

Table 6. Estimation results of on freeway off-ramp.

Models Flow RMSE Flow MAPE Flow MAE Speed RMSE Speed MAPE Speed MAE
TFM 40.01 12.73% 26.82 2.04 1.98% 1.44
SVM 57.95 26.53% 41.70 2.00 1.67% 1.19
RF 52.00 20.37% 34.71 2.64 1.92% 1.37
ANN 55.87 24.06% 40.68 223 1.96% 141
PUNN 34.99 12.86% 23.89 1.75 1.54% 1.10
PGNN 31.98 11.23% 21.90 1.69 1.46% 1.05

Note: Flow: veh/5-min; Speed: mph.

do not fit the ground truth well. It can be clearly seen that the line of PGNN better fits the
ground truth, which indicates that PGNN also performs well on the on-ramp and off-ramp
segments. It further demonstrates that PGNN could reach an acceptable TSE accuracy on all
segments. To further confirm this finding, the TSE results obtained by PGNN are compared
to the observed data in Figure 13. For the on-ramp segment, the coefficient is 0.97 and the
intercept is 9.81 for flow estimation, and the coefficient is 0.56 and the intercept is 32.69
for speed estimation. For the off-ramp segment, the coefficient is 0.97 and the intercept is
13.04 for flow estimation, and the coefficient is 0.40 and the intercept is 43.89 for speed esti-
mation. All results proved that PGNN could perform well for flow and speed estimation and
especially for flow estimation. Overall, the PGNN could reach an acceptable TSE accuracy
on all segments.

The performance of different models in peak hours and off-peak hours are also compared
in Figure 14. Peak hours include six hours (7 am - 10 am and 4 pm - 7 pm) and off-peak
hours include eighteen hours (midnight — 7 am, 10 am — 4 pm, and 7 pm - midnight).
As shown in the figure, the pure-ML model produces very high RMSEs, especially in peak
hours. The RMSEs of all PUNN and PGNN models are lower than the pure-ML model and
PGNN obtains the lowest RMSEs in both peak and off-peak hours on normal, on-ramp, and
off-ramp segments. It indicates that the PGML models could obtain better estimation accu-
racy for both flow and speed under low traffic volume conditions on freeways. The PGNN
model performance degradation during peak hours may be due to traffic congestion or
traffic crashes.

6. Conclusions and future research directions

The quality of TSE directly affects the effectiveness of traffic control and the efficiency
of intelligent transportation systems (ITSs) operations. Recently, classical model-driven
approaches and data-driven approaches have been successfully deployed in TSE. However,
model-driven approaches could potentially yield inaccurate estimation and data-driven
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Figure 12. TSE estimates vs. ground truth on on-ramp and off-ramp segments. (a) Estimated flow of on-
ramp segment. (b) Estimated speed of on-ramp segment. (c) Estimated flow of off-ramp segment and
(e) Estimated speed of off-ramp segment.
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Figure 13. Estimated speed and flow by PGML vs. ground truth on on-ramp and off-ramp segments.
(a) Estimated flow of on-ramp segment. (b) Estimated Speed of on-ramp segment. (c) Estimated Flow of
off-ramp segment and (d) Estimated Speed of off-ramp segment.

approaches require a massive amount of data to train the model. To overcome these lim-
itations, this study develops an innovative physics-guided machine learning (PGML) that
combines the classical traffic flow model with the machine learning model (neural net-
work) to improve TSE accuracy. The PGML framework incorporates physics knowledge into
loss functions to help ML models capture generalisable dynamic patterns consistent with
established traffic physics laws. More specifically, the application of physics-based loss func-
tions in the learning objective of neural networks in our PGML framework ensures that the
model predictions will not only show lower errors on the training set but also have scientific
consistency with the known physics on the unlabelled set.

To test the effectiveness of the proposed PGML approach for coping with the problems
of freeway traffic flow modelling, this paper conducted empirical studies on a real-world
dataset collected from a stretch of I-15 freeway in Utah. Research results indicate that
the proposed PGML framework performed better than the previous compatible methods,
including the calibrated traffic physics model and the pure machine learning methods,
especially in terms of estimation accuracy and input robustness. The proposed PGML
approach can offer high-resolution, wide-coverage, and accurate traffic state information
with limited traffic sensor data. The research findings provide the basis for future research
if they have the same research concern. This work will help transportation agencies find
better countermeasures to mitigate traffic congestion, improve traffic operation efficiency
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Figure 14. The pure-ML, PUNN, and PGNN model performance comparison between peak hour and
off-peak hour. (a) RMSE of flow and (b) RMSE of speed.

and safety, and help travelers preplan and schedule routes. The proposed PGML approach,
which combines machine learning models with a traffic physics-based model, could poten-
tially lead to a revolution in ITS development and significantly reduce the amount of money
required for traffic detectors. This research will indeed help build up the era of big data for
transportation.

The effectiveness of the proposed PGML approach has been proven. However, the PGML
traffic state estimation still needs additional study. In particular, a more efficient machine
learning algorithm and traffic physics-based model and its application on urban freeway
networks are worth studying. The proposed PGML approach benefits other transportation-
related applications such as missing data imputation and validating traffic detector data.
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