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A Transfer Learning–Based LSTM for
Traffic Flow Prediction with Missing Data
Zhao Zhang, Ph.D.1; Hao Yang, Ph.D.2; and Xianfeng Yang, Ph.D.3

Abstract: Traffic flow prediction plays an important role in intelligent transportation systems (ITS) on freeways. However, incomplete traffic
information tends to be collected by traffic detectors, which is a major constraint for existing methods to get precise traffic predictions. To
overcome this limitation, this study aims to propose and evaluate a new advanced model, named transfer learning–based long short-term
memory (LSTM) model for traffic flow forecasting with incomplete traffic information, that adopts traffic information from similar locations
for the target location to increase the data quality. More specifically, dynamic time warping (DTW) is used to evaluate the similarity between
the source and target domains and then transfer the most similar data to the target domain to generate a hybrid complete training sample for
LSTM to improve the prediction performance. To evaluate the effectiveness of the transfer learning–based LSTM, this study implements
empirical studies with a real-world data set collected from a stretch of I-15 freeway in Utah. Experimental study results indicate that
the transfer learning–based LSTM network could effectively predict the traffic flow conditions with a training sample with missing values.
DOI: 10.1061/JTEPBS.TEENG-7638. © 2023 American Society of Civil Engineers.

Author keywords: Traffic flow prediction; Transfer learning; Long short-term memory (LSTM) network; Missing data.

Introduction

Traffic congestion mitigation and vehicle emission pollution have
become significant problems that need to be solved in modern cities.
Recently, with the advancement of data collecting, processing, and
computation technologies, data-driven approaches offer the possi-
bility of utilizing data-driven and computation technology to effi-
ciently tackle these problems. Intelligent transportation systems
(ITS) aims to apply data-driven computing technology to provide
more accurate traffic state prediction (TSP) by using massive data
created in cities, which helps travelers plan their trips and allows
transportation agencies to take actions to mitigate traffic conges-
tion and therefore reduce air pollution. The acquisition of accurate
future traffic information has always been complicated due to the
stochastic nature of traffic patterns.

TSP is a method that can predict future traffic information based
on historical traffic information (Liu et al. 2020; Lv et al. 2015; Ma
et al. 2015; Tian et al. 2018a; Zhang and Ge 2013; Zou et al. 2014),
which is an effective way to obtain future traffic information.
In practice, historical traffic information is usually collected by vari-
ous stationary traffic sensors, which can be easily retrieved because
it is collected by fixed traffic detectors (e.g., inductive loops and

radar detectors) on freeways. However, those collected historical
data usually contain missing values and significantly limit traffic
state prediction. Fig. 1 illustrates a comparison of long short-term
memory (LSTM) predictions using training set with and without
missing data. As shown in the figure, different lines represent
LSTM predictions with missing data, predictions without missing
data, and the ground truth. We can clearly observe that the pattern
of LSTM predictions with missing data is significantly different
from LSTM predictions without data and ground truth. Hence,
there is an urgent need for exploring an efficient countermeasure
to address data flawed issues in TSP tasks.

Recently, the effectiveness of transfer learning models in
improving the performance of machine learning models in various
fields has been recognized, such as environmental science (Chen
et al. 2021; Lv et al. 2019), quantum chemistry (Vermeire and
Green 2021), bioinformatics (Giorgi and Bader 2018), transporta-
tion (Huang et al. 2021; Zhang et al. 2019; Wan et al. 2022;
Kasundra et al. 2022), and so on. In the transportation field, people
mainly utilized transfer learning model for intercity transfers to
solve the insufficient data limitations in target cites (Huang
et al. 2021; Wei et al. 2016). However, addressing flawed data prob-
lems (e.g., data containing missing or error values) with transfer
learning methods has not been well investigated in the literature.
Therefore, this research aims to develop an innovative framework,
named transfer learning–based LSTM, to solve the missing data
problem in TSP tasks.

More specifically, transfer learning is used to find the traffic
detector stations with complete monitoring data that are similar to the
target domain and then create a hybrid training sample consisting of
data from target and source domains. Then, the LSTM network is
trained using hybrid training sample. This study makes significant
contributions to the literature from the following perspectives:
(1) an innovative transfer learning–based LSTM model is proposed
for TSP; and (2) an advanced method is provided to tackle the
flawed data problem in TSP tasks.

The remainder of this paper is organized as follows. “Literature
Review” part provides the review of existing studies related to miss-
ing data problems, transfer learning, and traffic state prediction.
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The transfer learning–based LSTM framework is presented in the
“Methodology” part. The “Case Study Results” are presented in the
experimental study part on real-world data fromUS interstate freeway
I-15. The last section of “Conclusions and Future Research Direc-
tions” summarizes the key findings and future research directions.

Literature Review

Missing Data Problem

Missing data can be caused by many reasons in collected data of
traffic flow, such as malfunction of the sensor, manual system closure,
and errors in signal transmission (Tian et al. 2018a). Therefore,
missing data imputation is a hot topic, and many methods have
been developed for reducing the impact of missing data. Those
methods can be generally classified into three categories. The first
category is interpolation, including temporal-neighboring and
pattern-similar imputation methods (Tak et al. 2016). However,
interpolation models cannot make full use of local daily flow
variation information to improve model performance (Zhong et al.
2005). The second category is statistical learning methods, such
as Markov chain Monte Carlo (MCMC) (Ni and Leonard 2005) and
probabilistic principal component analysis (PPCA) (Qu et al. 2009;
Tipping and Bishop 1999). It can obtain traffic flow information
by using the statistical characteristics of traffic flow, but the accu-
racy is low because these approaches are based on prior knowledge.

The third category is data-driven prediction approaches, includ-
ing autoregressive integrated moving average (ARIMA) (Zhong
et al. 2004), Bayesian networks (Ghosh et al. 2007; Zhang et al.
2004), neural networks (Dia 2001; Vlahogianni et al. 2005), support
vector regression (Castro-Neto et al. 2009), and LSTM networks
(Tian et al. 2018a). With the advancement of data collecting, pro-
cessing, and computation technologies, data-driven approaches are
more popular and efficient to solve the missing data problems in
traffic flow prediction recently.

Transfer Learning

For traditional machine learning models, the input feature space
and data distribution patterns are the same because the basic assump-
tion is the training data and testing data are collected from the
same domain. However, this assumption does not hold in many

real-world applications because the training data are expensive
or difficult to obtain (Weiss et al. 2016). Hence, it is important
to create high-performance learners trained with similar and more
easily obtained data from different domains. This methodology is
referred to as transfer learning (Weiss et al. 2016). Transfer learn-
ing is a new branch of artificial intelligence (AI) that has gained
increasing interest because it could allow the patterns of training
samples to be different (Lv et al. 2019).

More specifically, transfer learning is an innovative method that
uses well-established knowledge from a similar source domain to
improve the learning efficiency in the target domain (Weiss et al.
2016). Hence, it has been widely implemented in various fields to
solve the problem of limited data in target domain to train the
model. In real-world applications, unacceptable modeling accuracy
tends to be caused by unavailability of training data or training
data containing missing values at target stationary detectors. In this
research, transfer learning is utilized to transfer knowledge from the
complete data sequences obtained at nearby detectors or detectors
located on similar roadway geometry to an incomplete sequence in
the target domain.

Traffic State Prediction

During the last decades, many data-driven models have been
developed to predict the short-term traffic state. Those models can
be generally grouped by parametric methods and nonparametric
methods (Yu et al. 2021). Parametric methods mainly include
ARIMA models (Shi et al. 2014; Van Der Voort et al. 1996;
Williams and Hoel 2003) and the Kalman filter (Guo et al. 2014;
Ojeda et al. 2013). They cannot obtain a satisfying performance
under irregular traffic variations. To solve this limitation, nonpara-
metric methods are developed to obtain the acquisition of nonlinear
laws from historical data. These methods mainly include k-nearest
neighbors (Cai et al. 2016; Dell’acqua et al. 2015; Sun et al. 2018;
Wu et al. 2014), Bayesian model (Wang et al. 2014; Xu et al. 2014),
support vector machine (SVM) (Cai et al. 2016; Castro-Neto et al.
2009), and artificial neural network (ANN) (Chen 2017; Smith and
Demetsky 1994). But the performance of nonparametric methods is
heavily dependent on data quality and quantity of training data.

Recently, various deep learning models have been extensively
used in TSP tasks to improve modeling accuracy. In comparison
with other deep learning networks, the recurrent neural network
(RNN) could better capture the temporal evolution of traffic flow
by self-loops and chainlike structures (Qu et al. 2022). But tradi-
tional RNN models have following limitations (Gers et al. 1999;
Ma et al. 2015): (1) traditional RNNs cannot train time series with
long time lags, and (2) traditional RNNs rely on predetermined time
lags to learn the temporal sequence processing, but it is challeng-
ing to find the optimal time window size in an automatic way.
Hochreiter and Schmidhuber (1997) proposed a LSTM network
that is a special RNN architecture. The aforementioned constraints
of traditional RNNs could be solved by LSTM because it can learn
information with long time spans and determine the optimal time
lags in an automated manner (Ma et al. 2015; Yu et al. 2021). These
advantages made the LSTM network extensively deployed for
traffic state prediction (Do et al. 2019; Fu et al. 2016; Kang
et al. 2017; Luo et al. 2019; Ma et al. 2015; Mackenzie et al. 2019;
Tian et al. 2018a, b; Yang et al. 2019). In this paper, the LSTM
network is utilized for traffic flow prediction with transferred
historical traffic flow data.

In summary, a transfer learning–based LSTM framework that
can transfer knowledge from nearby detectors or detectors with
similar roadway geometry to overcome the missing data problem
in traffic flow prediction is still lacking. This paper focuses on

Fig. 1. Comparison LSTM performance between with and without
missing data.
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filling the gap by proposing a transfer learning–based LSTMmodel
for TSP with missing data.

Methodology

To deal with the training sample with missing data problems in
traffic flow forecasting, the transfer learning–based LSTM model
is constructed. As shown in Fig. 2, the proposed transfer learning–
based LSTM includes four key steps. Firstly, the experiment data
containing an incomplete data sequence in the target domain are
obtained from a detector sensor located on a freeway traffic monitor-
ing station. Secondly, a dynamic time warping (DTW) algorithm is
utilized to pinpoint the traffic detector stations with complete traffic
flow data that are similar to the target domain. The traffic flow data
from these traffic detector stations are named as the source domain.
Thirdly, hybrid data from target and source domains are used to
construct the training sample. Finally, the LSTM network is trained
with hybrid data and the trained model is used to predict the future
traffic flow. The transfer learning and LSTM are described in the
following sections.

Transfer Learning

Transfer learning is one of the key methods utilized in this study.
The target and source domains are two key components of learning,
and the essential basis of transfer learning is to identify the simi-
larity between source and target domains. The source domain will
have a negative impact on machine learning model performance for
the target domain if the pattern of the source domain is different
from the target domain. It is important to avoid negative transfer
and select an appropriate criterion to measure similarity between
target domain and source domains (Pan and Yang 2009). Accord-
ing to the existing literature (Folgado et al. 2018; Fu 2011;
Li et al. 2020), there are several similarity measurement criteria
that have widely implemented, including Euclidean distance (ED),

Kullback-Leibler divergence (K-L divergence), Pearson correlation
coefficient (Pearson), longest common subsequence (LCSS), and
DTW, among others.

In general, the inherent data properties of the time series are the
key to selecting a proper similarity measurement criterion (Chen
et al. 2021). The ED method may lead to the inappropriate trans-
mission of time information because it requires the length of the
time series to be equal. The main drawback of K-L divergence
is that distance and asymmetry are not considered. Pearson’s
correlation coefficient is good at measuring the strength of the
correlation between two variables, but it is an ineffective method
for dealing with nonlinear scenarios. LCSS mainly works for shape
similarity rather than spatial similarity and is very time-consuming.
The DTW algorithm could accurately measure the similarity
between the patterns of two time-series data because it can use time
series of different lengths (Chen et al. 2021). Hence, DTW was
utilized as the fundamental similarity measurement criterion in this
research considering the length of continuous gaps in traffic flow
data varies.

DTW can be used to measure the similarity between two time-
series data and select the shortest distance between values because
it is a nonlinear programming technique that involves model
similarity matching for time series by bending and aligning the time
axis (Chen et al. 2021). In this study, incomplete time-series traffic
flow data, named as the target domain data, are defined as DT .
This series can be denoted as DT ¼ fD1

T ;D
2
T ; : : : ;D

m
T g, which

is incomplete time-series traffic flow data with missing values,
where m is the sample size of target domain. The important step
is to select source domain time-series data DS, where 1 ≤ S ≤ N,
S ≠ T, and N is the total number of traffic detector stations. The
detailed procedures of the DTWalgorithm are described in Table 1,
which is utilized to determine the best source domain for the target
domain according to the following formula:

Dn ¼ min
DS

DTWðDS;DTÞ; 1 ≤ S ≤ N and S ≠ T ð1Þ

whereDn = appropriate source domain among all domains of traffic
detector stations.

Long Short-Term Memory Network

In this study, LSTM is used to generate accurate traffic flow pre-
dictions with transferred training samples. LSTM is a special RNN
architecture; the LSTM network was proposed by Hochreiter and
Schmidhuber (1997), which could overcome the vanishing gradient
problem of traditional RNN. A typical LSTM network is composed
of one input layer, one recurrent hidden layer (memory block), and
one output layer. The memory block contains memory cells with
self-connections memorizing the temporal state, and pair of adap-
tive, multiplicative gating units to control information flow in the
block. The typical architecture of an LSTM network is illustrated
in Fig. 3.

The input of the historical traffic flow sequence is denoted as
x ¼ ðx1; x2; : : : ; xTÞ (where T is the prediction period), and the
output sequence is y ¼ ðy1; y2; : : : ; yTÞ can be iteratively calcu-
lated as follows:

it ¼ sigðwi½xt;Ht−1� þ ηiÞ ð2Þ

ft ¼ sigðwf½xt;Ht−1� þ ηfÞ ð3Þ

eCt ¼ tanhðw ~C½xt;Ht−1� þ η ~CÞ ð4Þ

ot ¼ sigðwo½xt;Ht−1� þ ηoÞ ð5Þ

Data Pre-processing (Transfer Learning)

Raw Data with 

Missing Values

Target 

Domain

Source 

Domain

Select

DTW

Hybrid training 

sample

LSTM

Accurate Traffic Flow 

Predictions

Fig. 2. Diagram of transfer learning–based LSTM with missing data.
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Ct ¼ it⊙Ct−1 þ ft⊙ eCt ð6Þ

Ht ¼ Ct⊙ot ð7Þ

where it, ft, and ot = input gate, forget gate, and output gate,
respectively;⊙ = scalar product; w represents the weights matrices;

η represents the offset vector; Ct−1 = state of the previous cell at
time t–1; and tanh(·) = activation function

tanhðxÞ ¼ ex − e−x
ex þ e−x ð8Þ

Also, sig(·) denotes the logistic sigmoid function

sigðxÞ ¼ 1

1þ e−x ð9Þ

Experimental Study

Experimental Setup

In this study, the Performance Measurement System (PeMS) data
collected from interstate freeway I-15 were utilized to validate the
effectiveness of the proposed transfer learning–based LSTM net-
work with missing data. PeMS data are the most commonly used
data type in traffic flow forecasting tasks (Fu et al. 2016; Qu et al.
2022; Wu et al. 2018; Yu et al. 2021). The studied freeway corridor
and detector stations are illustrated in Fig. 4.

In the case study, the separate freeway segment in I-15 has 10
detectors. Station 407 was used for testing the proposed transfer

Table 1. Details procedure of the DTW algorithm

Step Dynamic time warping algorithm

Step 1 Suppose A ¼ fa1; a2; : : : ; ang and B ¼ fb1; b2; : : : ; bmg represent two time-series data, n and m are the lengths of two sequences. The two
time-series sequences can be formulated as an n ×m distance matrix Dn×m, and the elements dij ¼ DðaI ; bjÞji ∈ ½1; n�; j ∈ ½1;m�, of the
distance matrix Dn×m denote the distance between ai and bj.

Step 2 P ¼ fp1;p2; : : : ;pkg represent the optimal warping path in DTW, which consists of adjacent elements in the matrix Dn×m that represents the
kth element of P. The warping path must meet the following conditions:
(1) maxðm; nÞ ≤ k ≤ mþ n − 1.
(2) Boundary limits: p1 ¼ d11 and pk ¼ dnm.
(3) Two adjacent elements in P must be adjacent in Dn×m and extend forward, namely Pk ¼ fα; βg and wkþ1 ¼ fα 0;β 0g. The corresponding
points between the two time-series data must not intersect, i.e., 0 ≤ α 0 − α ≤ 1 and 0 ≤ β 0 − β ≤ 1.

Step 3 Calculate the DTW distance DDTWði; jÞ. The warping path can be examined by dynamic programming using following formulas:
DDTWði; jÞ ¼ minfDDTWði − 1; j − 1Þ;DDTWði; j − 1Þ;DDTWði − 1; jÞg þ dijDDTWð1; 1Þ ¼ d11

Step 4 The DTW distance for the two time-series data is the DDTWði; jÞ at the endpoint of the two sequences.

Source: Adapted from Chen et al. (2021).

X

Sigmod
function

Sigmod
function

Tanh
function

InputGate ForgetGate

X

Sigmod
function

X

Tanh
function

OutputGate

Fig. 3. Structure of LSTM network.

375 384 386 391 393 401 420414407 412

Fig. 4. Deployment of freeway corridor and stations. (Map © 2023 Google.)
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learning–based LSTM network with missing data. The other
marked detector stations were used for conducting the transfer
learning for target Station 407. Traffic flow data were collected
from August 2 to August 11, 2021. There were 288 observations
per detector per day because the data are collected every 5 min.

To evaluate the performance of the proposed transfer learning–
based LSTM network with missing data, testing cases were con-
structed regarding the basic TSP problem with random missing
data. To further test the effectiveness of methods under this condi-
tion, we created the missing data scenarios by artificially removing
the traffic flow records in the training data to simulate the situation
of the device malfunctioning. The robustness analysis was imple-
mented to show the capability of dealing with the unpredictable
missing inputs in the training process. Theoretically, the proposed
transfer learning–based LSTM is efficient for predicting the traffic
flow with missing data on the target locations. To validate this
feature, a certain portion of the training data set was randomly re-
moved. The test set is the complete data set. In the robustness study,
30%, 50%, and 70% of the training data were randomly removed,
and transfer learning was used to supplement those missing data,
and the testing data were kept unchanged.

Table 2 lists all the predetermined parameters of the proposed
method in the setup of experiments. Time-series data were ex-
pressed in the appropriate format for the LSTM network. Generally,
the time-series data are improper to feed into LSTM directly be-
cause they consists of several tuples (time, value). Hence, the sliding
window technique was used to reconstruct original time-series data.
The sliding window technique is presented in Table 3. For example,
the traffic flows for the prior three timestamps of the moment
Tði ¼ 1; 2; 3Þ were used as input for the LSTM network, and the
traffic flow of moment T is the output. The same data input and
output are used for benchmark benchmark methods [e.g., ANN,
SVM, andf random forest (RF)].

In this study, the raw flow data were normalized into a range
from zero to one by Eq. (10) given the requirements of the machine
learning model

xn ¼
xi − xmin

xmax − xmin
ð10Þ

where xn = normalized raw flow data; xi = flow data; and xmax and
xmin = minimum and maximum raw flow data, respectively. Finally,
the prediction needs to be denaturable.

Performance Index

To evaluate the accuracy of predictions, this research selects three
common prediction evaluation indexes root mean square error
(RMSE), mean absolute percentage error (MAPE), and mean ab-
solute error (MAE) (Chen et al. 2018; Qu et al. 2022; Yu et al.
2021) of each dimension as the performance metric, which are de-
fined in Eqs. (11)–(13). The smaller the value of these three evalu-
ation methods indicates better performance of the model

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi − byiÞ2
s

ð11Þ

MAPE ¼ 1

n

Xn
i¼1

jyi − byij
yi

× 100% ð12Þ

MAE ¼ 1

n

Xn
i¼1

jyi − byij ð13Þ

where yi = observed traffic speed and flow; and byi = estimated
traffic speed and flow.

Results Analysis

The similarity results between the target domain and source do-
mains are presented in Table 4. As indicated in the table, Station
414 was determined to be the most appropriate source domain for
the target domain (Station 407). Then, we used the traffic flow data
of Station 414 to transfer to Station 407 and then combined those
data to get a hybrid training sample for the LSTM network.

Table 5 summarizes the traffic flow prediction results from
LSTM and other benchmark methods (e.g., SVM, RF, and ANN)
of Station 407 with missing rates of 0.3, 0.5, and 0.7. For the miss-
ing rate of 0.3, LSTM generated a 42.93 vehicles/5-min RMSE, a
9.30% MAPE, and 28.86 vehicles/5-min MAE.

As indicated in the table, in comparison with these benchmark
methods, the transfer learning–based LSTM obtained the best mod-
eling performance under the missing rate of 0.3. For the missing
rate of 0.5, the transfer learning–based LSTM obtained the most
accurate predictions, which yielded a 43.03 vehicles/5-min RMSE,
a 9.33% MAPE, and 28.86 vehicles/5-min MAE. For the missing
rate of 0.7, the transfer learning–based LSTM can still achieve
best prediction results (e.g., a 43.06 vehicles/5-min RMSE, a
9.34% MAPE, and 29.01 vehicles/5-min MAE) compared with
benchmark models. All results proved that the proposed transfer

Table 3. Data windowing

Input Output

XT−iði ¼ 1; 2; 3Þ XT

Table 2. Prefixed parameters of LSTM network

Parameter Value

Training set size 2,880
Testing set size 864
Learning rate 0.001
Optimizer Adam
Activation function Rectified linear unit (ReLU)
Hidden layer 3
Epochs 1,000

Table 4. DTW correlation (×107) results between the target domain (Station 407) and source domains

Missing
rate 375 384 386 391 393 401 412 414 420

0.3 0.139 0.146 0.146 0.123 0.121 0.143 0.137 0.136 0.136
0.5 0.174 0.180 0.180 0.185 0.188 0.177 0.169 0.167 0.172
0.7 0.173 0.175 0.176 0.190 0.194 0.175 0.169 0.169 0.170
Average 0.162 0.167 0.167 0.166 0.168 0.165 0.158 0.158 0.159

Note: Bold denotes the best performance.
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learning–based LSTM could perform well for traffic flow forecast-
ing with missing data.

Figs. 5(a–c) show the comparison of prediction results of SVM,
RF, ANN, and LSTM with ground truth. It can be clearly seen that
the line of LSTM could better fit the ground truth under different

missing rates compared with benchmark models. This demonstrates
the excellent prediction performance of transfer learning–based
LSTM under different missing rates.

To further confirm this finding, the prediction results obtained
by the transfer learning–based LSTM were compared with ground
truth. In Figs. 6(a–c), the prediction results can be seen as fitting the
ground truth well if the coefficient of the trend line is close to one
and the intercept is close to zero (Yuan et al. 2021). For the missing
rate of 0.3, the coefficient was 0.97 and the intercept was 10.33 for
LSTM. For the missing rate of 0.5, the coefficient was 0.97 and the
intercept was 10.63 for LSTM. For the missing rate of 0.7, the co-
efficient was 0.97 and the intercept was 12.82 for LSTM. These
results indicate that the transfer learning–based model could
achieve stable and accurate prediction performance under different
missing rates.

To further verify the robustness of the proposed transfer learning–
based LSTM, Fig. 7 illustrates the prediction error of the transfer
learning–based LSTM with different missing rates under differ-
ent traffic dynamic orders. The traffic conditions are divided into
three categories according to traffic volume: low traffic volume
(0–300 vehicles=5-min), medium traffic volume (300–550 vehicles/
5-min), and high traffic volume (>550 vehicles=5-min). As shown

Fig. 5. Prediction results versus ground truth: (a) missing rate = 0.3; (b) missing rate = 0.5; and (c) missing rate = 0.7.

Table 5. Prediction results of spots on normal segment with missing data

Method Missing rate RMSE MAPE MAE

SVM 0.3 56.83 16.67 39.54
RF 0.3 52.40 11.78 36.14
ANN 0.3 48.40 13.20 35.85
LSTM 0.3 42.93 9.30 28.86
SVM 0.5 52.57 16.00 38.20
RF 0.5 49.94 11.26 34.50
ANN 0.5 49.87 14.10 37.57
LSTM 0.5 43.03 9.33 28.86
SVM 0.7 53.17 16.05 38.15
RF 0.7 50.25 11.50 35.38
ANN 0.7 49.44 13.68 36.92
LSTM 0.7 43.06 9.34 29.01

Note: Bold denotes the best performance.
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in the figure, the performance of transfer learning–based LSTM
was downgraded with the traffic volume increasing with different
missing rates.

Conclusions and Future Research Directions

Precise traffic flow prediction plays a significant role in the success-
ful operation of ITS on freeways. However, traffic detectors may
provide incomplete traffic information, which is a major constraint
for existing methods to get precise traffic predictions. To overcome
this limitation, this paper introduces an advanced transfer learning–
based LSTM network for traffic flow forecasting with incomplete
traffic information. This new method could transfer similar data

from a source domain to a target domain to generate a hybrid
training sample. This attribute makes the transfer learning–based
LSTM network overcome the limitation of training samples with
missing values and can then improve the prediction performance
of LSTM.

Experimental study results indicated that the transfer learning–
based LSTM network could effectively predict the traffic flow
conditions with training sample with missing values. Hence, the
proposed transfer learning–based LSTM network has the potential
to help transportation agencies to obtain more accurate traffic flow
information to propose more efficient traffic control strategies.

The effectiveness of the transfer learning–based LSTM ap-
proach has been proven. However, transfer learning–based LSTM
traffic flow forecasting still needs more future studies. More specifi-
cally, more advanced machine learning algorithms and similarity
evaluation criterion and its application on urban freeway networks
are worth studying.

Data Availability Statement
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