
Snifer Faster R-CNN ++: An Eficient Camera-LiDAR Object Detector

with Proposal Refinement on Fused Candidates

SUDIP DHAKAL, University of North Texas, USA

DOMINIC CARRILLO, University of North Texas, USA

DEYUAN QU, University of North Texas, USA

QING YANG, University of North Texas, USA

SONG FU, University of North Texas, USA

In this paper we present Snifer Faster R-CNN++, an eicient Camera-LiDAR late fusion network for low complexity and

accurate object detection in autonomous driving scenarios. The proposed detection network architecture operates on output

candidates of any 3D detector and proposals from regional proposal network of any 2D detector to generate inal prediction

results. In comparison to the single modality object detection approaches, fusion based methods in many instances sufer

from dissimilar data integration diiculties. On one hand, fusion based network models are complicated in nature and on the

other hand they require large computational overhead and resources, processing pipelines for training and inference specially,

the early fusion and deep fusion approaches. As such, we devise a late fusion network that in-cooperates pre-trained, single-

modality detectors without change, performing association only at the detection level. In addition to this, lidar based method

fail to detect distant object due to its sparse nature so we devise proposal reinement algorithm to jointly optimize detection

candidates and assist detection for distant objects. Extensive experiments on both the 3D and 2D detection benchmark of

challenging KITTI dataset illustrate that our proposed network architecture signiicantly improves the detection accuracy,

accelerating the detection speed.

CCS Concepts: · Senfor Fusion → Efeciency; · Late Fusion → Flexibility; Resuability; · Proposal Reinement →

Accuracy.

Additional Key Words and Phrases: object detection, late fusion, proposal reinement, candidates fusion, regional proposal

network

1 INTRODUCTION

Driven signiicantly by the interest in self-driving vehicles, compelling research efort has been devoted to both

2D and 3D object detection. For 2D object detection, while camera provide high resolution shape and texture

information they sufer from inability to detect occluded object in complex scenes as camera data is mainly

captured in the lower position of the front view [41]. This brings severe challenges to object detection and

semantic segmentation. LiDAR sensors on the other hand, which facilitates 3D object detection, provide accurate

360°ield of view 3D measurements and depth information but is vulnerable to extreme weather condition and

also sufers from its sparse nature which is more prominent for distant object as seen in Fig. 1. Both Camera
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Fig. 1. Illustration of dense LiDAR point cloud for nearby objects and its sparse nature as the distance increases.

based methods [24] [2] [14] [23] and LiDAR based methods [42] [39] [22] [27] [12] [26] has been well studied in

autonomous driving domain. Although the data of the two modalities excel in various areas when used separately,

the complementary of LiDAR and Camera or simply fusion based methods is expected to make the combination

result in a better performance on perception [7]. Instead, it has been strenuous to design fusion-based networks

that exploits both modalities adequately and get improvements over single-modality based methods. Careful

examination of challenging open 3D detection benchmarks, such as KITTI [8] and nuScenes [1], show that single

modality based methods are the leading entries in the leader-board and hence there is still plenty of room for

improvement for the fusion based methods. Additionally, fusion methods also do not achieve real time operation

as they are prone to adding computational complexity. Existing approaches in the literature for fusing LiDAR

and camera broadly follow three approaches: early fusion, deep fusion and late fusion as shown in Fig. 2. In early

fusion, raw data from both lidar and camera sensor are fed into the early fusion deep learning based pipeline. This

allows the powerful deep learning methods to ind their own features carrying the highest information gain and

therefore get a better performance in terms of precision of classiication. However one major disadvantage of early

fusion is that given heterogeneous data from diferent modalities it needs to use very complicated architectures

of neural networks to ind the common ground. As such, the computational power required to run such system

will be enormous as the amount of data needed for training will also be huge. Similarly, in deep fusion where

the features are combined after feature extraction, they also require support of deep learning based pipelines

and networks. In contrast to this, late fusion would regard every sensor as a separate unit, where each sensor

has its own processing pipeline and can incorporate pre-trained, single modality detector without any change.

This allows for the pipelines to be fused into a perception output only when the detection and classiication

takes place which is at the decision level. The major advantages of late fusion methods can be summarized into

following points:-

Flexibility and Simplicity As mentioned earlier, late fusion methods can incorporate any types of 2D and 3D

models as they operate on the output results. Additionally, for a given network, it is also easy and simple to

encode the detection candidate data that late fusion operates on.

Re-usability Pre-trained models for both 2D and 3D detector can be reused without going through the complica-

tions of training such networks. Single modality algorithms can be trained using their own sensor data.

Heterogeneous Data For each modality a separate algorithm can be trained based on requirement and later the

output can be combined. One major advantage of such approach is that, especially in autonomous driving system

that deals with multiple sensor, issue of data format, data alignment, representation and sparsity can be neglected

or ignored. Data from each modality pass through separate pipeline thus providing a independent processing

methodology such that there is no complexity in combining the diverse input data.

Based on this observation, we adopt a late fusion approach for low complexity and accurate object detection in

autonomous driving scenarios. Our approach similar to the candidate fusion approach presented in CLOCs [17]

operates on the output candidates of any 3D detector such as PV-RCNN, PointPillars before NMS ( non-maximum

suppression) and proposals from Regional Proposal Network (RPN) of any 2D detector such as Faster R-CNN,
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Fig. 2. Illustration of the architecture of various fusion based approaches in the existing literature.

Cascade RC-NN and so on to generate inal prediction results. Similarly, since lidar point clouds are sparse for

distant objects, their performance drops signiicantly on them. Unlike LiDAR scans, camera images provide

high-resolution sampling and rich texture information even for the distant objects and thus can complement

LiDAR in such scenario. In light of this evidence, our approach takes cues from camera data and combines them

with LiDAR data to boost the detection performance for distant object and also in overall detection model. Apart

from this, we also study the possibility of using diferent clustering algorithm for point cloud data and examine

their application in diferent scenarios. Although our experiment show that there are possible alternatives to

generating object candidates via other computationally small point cloud data clustering algorithm, our statistics

also suggest that the accuracy sufers a major blow while adopting such methods. Therefore, inding the optimal

trade of between accuracy and inference speed is a very complicated task in object detection domain. The

proposed architecture delivers the following contributions:

· a versatile and lexible approach for optimizing object detection in autonomous driving systems.

· a novel proposal reinement algorithm to jointly optimize detection candidates form both LiDAR and Camera

sensors and also assist detection for distant objects.

· evaluation on the KITTI dataset shows we signiicantly improve any 2D detectors state- of-the-art image-based

methods and LiDAR-based method.

· a comprehensive study of clustering algorithm for point cloud data and their feasibility as an alternative to 3D

detectors for creating 3D candidate objects.

2 RELATED WORKS

In the present context, there are stacks of methods that have been implemented for the object detection task in

autonomous vehicles. Related object detection approaches in ADS can be summarized into three-fold discussed

below.

2.1 3D object detection from point clouds

In order to learn discriminative features from sparse 3D point cloud data in diferent ways, a number of state-of-

the-art 3D object detection methods has been proposed. Some approaches such as [11] [13] [40] generate 3D

candidate boxes by projecting point cloud to bird’s eye view (BEV) and utilizing 2D CNN to learn the point cloud

features. Others,[42] [5] grouped the points into voxels and utilized 3D CNN to learn the features from each

voxel and generate 3D boxes. There are two major drawback of such approaches. First, there is major information

loss while projecting point cloud to bird eye view due to data quantization. Second, such approaches follow the

early and deep fusion methodology using large number of 3D CNNs, thereby increasing both the computational

ACM J. Auton. Transport. Syst.
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overhead and memory requirement for training and inference. Another set of 3D detection methods convert lidar

points to pillars commonly called as pillar based method. Pointpillar[12] and PIXOR [40] further simplify 3D

voxels to 2D pillars, where all the voxels with the same z-axis are combined into a single pillar. Existing 2D CNN

can then be utilized to process these 2D pillars into bounding boxes. Although pillar based method solves the

expensive processing nature of voxel based method, they also add another layer to already stacked convolutional

neural network and hence requires large processing time and memory. In contrast, our late fusion approach

beneit from candidate object obtained form pre-trained models of any 2D and 3D detector and the combined

application along with the proposal reinement algorithm adds negligible delay to the perception system.

2.2 2D object detection from images

Based on the rich texture information provided by camera image, a number of state of art 2D object detection

methods has been proposed. One-stage methods such as YOLO [23], SSD [15],and two-stage methods such

as Faster R-CNN, Cascade R-CNN, Mask R-CNN [9] are the most popular object detection methods in two

dimensional domain. One stage detectors are generally faster in terms of execution speed as they use a single

feed-forward neural network that creates bounding boxes and classiies objects in the same stage but are less

accurate. In contrast, two-stage methods, since they are based on established convolutions neural network as

the state-of-the-art for learning image features and detection, are more accurate but take long execution time.

Two-stage deep learning based object detectors consists of two stages 1) regional proposal network (RPN) and 2)

regression and object classiication. In the irst stage, several region of interest (RIOs) are proposed and processed

in an input image with each proposal having the certain probability of containing object of interest. Similarly,

in the second stage, based on these RIOs, the most promising ones are selected and object present on those

ROIs are classiied based on the features learned. Our approach on the other hand leverages from these regions

proposals obtained from the RPN, compare them with object candidates obtained from any 3D detector through

the application of our novel proposal reinement algorithm and chooses only the best among the best candidates

for generating inal detection boxes.

2.3 Object Detection Based on Integrated Fusion

As discussed earlier, in an integrated fusion approach, data from lidar and camera are linked together either at the

input stage where raw and pre-processed data obtained from sensors and fused together, or at the intermediate

stage where features obtained from sensors are combined, or at the decision stage where output of diferent

models are combined together. MVX-Net [29] proposed a multi-model voxelnet to augment LiDAR points with

semantic image features and learn to fuse image and LiDAR features at early stages for accurate object detection.

Similar to this approach, PointPainting [32] projects the lidar points into the semantically segmented image,

creating a painted point cloud, which is fed to any LiDAR based detectors to generate output 3D bounding

boxes. Similarly, EPNet [10] uses a point-wise manner to to augment the point features from lidar point cloud

data with semantic image features in a fusion module. Other methods such as Frustum PointNets [21], Frustum

convnet [34] irst detect objects in 2D images then use the information to further process the point cloud data.

VOTENET [20] and ImVoteNEt [19] also use the integrated fusion approach to complement lidar point cloud

with both geometric and semantic/texture cues from images using the concept of voting schemes for promising

2D boxes which are then appended to seed point in 3D for object proposals. Besides geometric cues from the 2D

votes, each pixel also passes semantic and texture cues to the 3D points, as either features extracted per-region,

or ones extracted per-pixel. This helps to signiicantly improve 3D detection. Finally, methods like MV3D [4],

AVOD [11], form a multi-channel bird eye view image by projecting raw point cloud into BEV. And using 2D

CNN, features are extracted from this transformed image along with another image from front camera for 3D

bounding box regression. Most of these approaches are either early fusion or middle fusion methods, that requires
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transformation of either point cloud data or camera images because these are heterogeneous data and combining

them either causes loss in information or create a complex architecture. In contrast to such approaches, our

methods uses late fusion approach and hence doesn’t have to deal with the heterogeneous data.

2.4 Limitation of Prior Works

Currently, there exists a multitude of fusion-based approaches in contemporary research. Among these methods

that combine lidar and camera data, most of them follow either early fusion that combines raw data from lidar

and camera sensor at the early stage or deep fusion approach that combines features extracted from these data

obtained from diferent modalities at the feature level. Methods such as PointPainting [32], PointAugmenting

[33], follow an early fusion approach, where they combine raw image and point cloud data from camera and

lidar sensor respectively. One limitation with such an approach is that there is a problem of complexity and

interpretability. For instance, [32] requires complex model architecture with a high number of input channels

to get semantic labels from camera data and further combine it with lidar point cloud data to create painted

point cloud. This complexity can make the model harder to train, optimize, and interpret. Also from architecture

point of view, combining diferent modalities at an early stage may capture diferent levels of semantics or object

characteristics. Early fusion may struggle to bridge the semantic gap between modalities, making it challenging

to capture high-level semantic information. Similarly, the dimensional input data in such methods is also huge

which can lead to an increase in computational demands. This can slow down training and inference times. These

methods also require change in data input as the data is either augmented in case of [33] or transformed in case

of [32]. Such alteration also requires additional computation and can result in information loss.

On the other hand, deep fusion based methods such as MVXNet [30], AVOD [11], and MV3D [4]which combine

features extracted from diferent models, also have their own limitations. For instance, [30], uses features extracted

from camera images to append them to the 3D points at feature level. This can create feature alignment problems,

particularly when modalities have varying resolutions, scales, or data characteristics. Failure to align features

properly can lead to suboptimal fusion results. Similarly, [11] also has a complex architecture as it requires

multimodal feature fusion for features extracted from both image and BEV lidar point cloud data. This can lead to

limited adaptability to new modalities as incorporating new sensor modalities or making changes to the sensor

coniguration might require signiicant adjustments to AVOD’s architecture and fusion mechanisms, potentially

hindering adaptability. Another deep fusion based method PI-RCNN [36] also follows a similar architecture.

First, an image segmentation sub-network extracts semantic features from RGB-image. Meanwhile, the stage-1

of detection sub-network generate 3D proposals from raw LIDAR points. Then, the 3D points and semantic

feature maps are fed into the separate module to conduct point-wise fusion and supplement the features of points.

Finally, the stage-2 of detection sub-network takes the point-wise features augmented from image semantics

as input to obtain the inal prediction of the 3D bounding box. Such additional sub networks can again make

the architecture complex and increase the computation overhead. Deep Continuous Fusion [13], EPNet [10]

and 4D-Net [18] attempt to fuse the two modalities by sharing the information between 2D and 3D backbones.

However, an important limitation in those works is a lack efective alignment mechanism between camera and

lidar features leading to a suboptimal performance.

2.5 Distinctive Features of Our Approach

Diverging from existing approaches, our work stands apart both in terms of architecture and implementation.

Notably, we embrace a late fusion strategy, driven by a clear recognition of the manifold beneits it ofers.

Early fusion based approaches like [33], [32], despite their advantages, present intricacies in model architecture,

interpretation, computational demands, and potential information loss. Our late fusion method on the other

hand, make use of pretrained 2D and 3D detector to generate the bounding boxes and process these boxes
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together to get a better result. Our approach is diferent in a sense, it is simple, easy to implement and pretty

straightforward. Our approach is a probabilistic driven learning based fusion technique that is designed to exploit

the geometric and semantic information from 2D and 3D detectors. UnLike the existing early fusion, which

requires data augmentation or transformation at an early stage, our late fusion approach only combines bounding

boxes obtained from respective detectors at the inal stage. This makes it easier for training and inference as

there is no complexity introduced due to diference in data from heterogenous modalities. Also, we reuse the

already provided pretrained model, thus saving time and computation overhead.

Similarly, diferent from deep fusion based approaches, that requires feature level data encoding and combi-

nation, thus sufering from feature misalignment, and potential information loss, our method follows a simple

approach thus making it easy to use and incorporate any types of 2D and 3D detectors as our model only operate

on the output result. Additionally, features extracted from diferent modalities have diferent formats and thus

require careful computation. Also, combining high-dimensional features from diferent modalities, can increase

the dimensionality of the input space. Our method on the other hand is only designed to exploit the geometric

and semantic information from 2D and 3D detectors. Overall, our implementation makes the computation faster,

assuming we already have the pretrained 2D and 3D detectors.

Furthermore, our approach distinguishes itself from its late fusion-based counterparts like CLOC in two

fundamental ways. Firstly, CLOC employs intersection over union to evaluate and compare bounding boxes.

In contrast, our method takes a diferent route, utilizing our proposal reinement algorithm to meticulously

assess and reine proposals, as well as candidate objects stemming from 2D and 3D detectors. This strategic

choice is underpinned by the goal of ensuring the accurate detection of distant objects Ð a common limitation in

conventional methods. Moreover, another departure lies in the fact that while CLOC relies on the inal detection

boxes generated by 2D detectors, our approach leans on the proposals extracted from the region proposal

networks of 2D detectors. This decision is motivated by the intention to maximize the incorporation of proposals

originating from camera sensors. The primary rationale behind this choice is to enhance the eicacy of distant

object detection by encompassing as many relevant proposals as possible.

3 MOTIVATION

LIDAR sensors play a crucial role by providing precise 3D point cloud data that accurately captures objects’

shapes, sizes, and positions. When this information is combined with camera data, the vehicle’s comprehension

of its surroundings becomes more comprehensive. Moreover, the integration of candidate objects derived from

accurate 3D detectors which fuses the most reined information from LIDAR sensors, results in an enhanced

overall understanding of objects within the environment. This is particularly crucial for detecting and recognizing

objects such as pedestrians, cyclists, and small vehicles. Furthermore, the integration of 3D detectors introduces

an added layer of redundancy and robustness to the perception system. In situations where camera sensors

face challenges due to environmental conditions or technical issues, the 3D detectors can step in to ensure the

system’s reliability, thereby upholding the safety of the vehicle and its occupants. The fusion of geometric features

provided by 3D detectors with the visual cues of color and texture from camera data also contributes to improved

object classiication. An additional motivation behind the incorporation of 3D detectors lies in their capability to

identify objects even when they are partially obscured by obstacles. This addresses a signiicant limitation in

object detection, ensuring that the perception system maintains accurate awareness of objects, irrespective of

occlusions. As a result, the integration of 3D detectors not only enhances accuracy but also bolsters the system’s

adaptability and performance in complex and dynamic environments.

ACM J. Auton. Transport. Syst.



Snifer Faster R-CNN++ • 7

3.1 Drawbacks of Integrating 3D detectors

Incorporating 3D detectors also brings about drawbacks. Among these, a signiicant concern is the potential for

false positives to be introduced into the system. While the majority of candidate objects derived from 3D detectors

are reliable, a subset of them may lead to the inclusion of incorrect bounding boxes or erroneous candidate

objects within the model. This phenomenon is clearly illustrated in Fig. 3, where the red-colored candidate objects

originating from PV-RCNN are instances of false detections. These erroneous candidate objects can lead to both

misclassiication and incorrect detection outcomes.

Fig. 3. Illustration of false positive (denoted by red bounding box) introduced into the model due to 3D detectors.

4 SNIFFER FASTER R-CNN++ ARCHITECTURE

In this section, we present our proposed two-stage late fusion framework, Snifer Faster R-CNN++ for detection

and classifying object from combined application of lidar point cloud and camera image. The proposed method,

illustrated in Fig. 4, uses four primary components: (1) 3D Candidate Network, (2) 2D Regional Proposal Network,

(3) a proposal reinement algorithm and inally (4) Cloc’s Fusion. For generating 3D detection candidates we

use PVR-CNN as our primary 3D detector, we can also use any 3D detectors. We also study the practicality of

using existing data clustering algorithm such as DBSCAN, CCL and RANSAC for rapid 3D detection candidate

generation which is discussed in subsection below. Similarly, we use 2D proposals from RPN of Faster R-CNN,

which passes through Proposal Reinement algorithm along with the 3D detection candidate as a sparse tensor

together. Best candidate proposals are then selected from this group of input tensor and CLOC’s fusion approach

with small modiication is implemented to get the inal detection result as shown in the igure.

4.1 2D-3D Association via Sparse Tensor

We associate 2D proposals and 3D detection candidates into a consistent joint representation which through

the application of proposal reinement algorithm is fed into the CLOC’s fusion network. The output from the

RPN of any 2D detector ( Faster R-CNN in our case) are a set of 2D bounding boxes in the image plane with four

coordinates of top left and bottom right corner namely xmin, ymin, xmax, ymax along with a conidence score

denoted as �2
�

�
and can be represented as:

�2�
= { �2�

1 , �2�

2 , �2�

3 , ... �2�

�
},

�2�

�
= { [ ���� , ���� , ���� , ���� , �2

�

�
] }

Most 2D detector have 1000 proposal per image as a default setting but we limit the number of proposal for

each image to 500 by eliminating proposals that have the lowest conidence score. However for some proposals,

even though they have low conidence, we still keep them to provide cues to the LiDAR for detecting distant

object. This is discussed thoroughly in the section below. A 3D bounding box is represented as (� , �, �, ℎ,� , � , � )

ACM J. Auton. Transport. Syst.



8 • Sudip Dhakal et al.

Fig. 4. The overall architecture of our proposed Snifer Faster R-CNN++ netowork, which comprises of a) 3D candidate

network for generating 3D candidate objecs, b) 2D Regional Proposal Network for generating regional proposals, c) Proposal

Refinement for refining the candidate objects and proposals and d) CLOC’s fusion netowrk for final predication results.

in the LiDAR coordinate, where (� , �, �) is the object center location, (ℎ,� , � ) is the object size, and angle � is the

object orientation from the bird’s view with conidence score �3
�

�
and can be represented as:

�3
�

= { �3
�

1 , �3
�

2 , �3
�

3 , ... �3
�

�
},

�3
�

�
= { [ � , � , � , ℎ , � , � , � , �3

�

�
] }

Here �3
�

is the set of all the detection candidates in one LiDAR scan. For 3D detectors, we take the object

candidates prior to applying NMS to encompass as many candidate proposals as possible. These candidate object

are then converted to 2D format that are aligned accurately along the camera coordinate. This is achieved via

KITTI transformation and projection matrix provided by the KITTI dataset. The result from this transformation

are set of 2D candidate object which can then be associated with the 2D proposals accordingly. The ultimate

goal of this association is to create a consistent joint representation through the combined application of all 2D

and 3D detection candidates so that the result can be fed to the proposal reinement algorithm and inally to the

CLOC’s fusion network.

4.2 Proposal Refinement

The proposal reinement algorithm [6] as shown in Algorithm 1 inputs two types of proposals, R2D and L3D

from camera and lidar sensor respectively as discussed earlier. It prudently chooses only the best proposals from

both sets of proposals. For a given image, we compare each candidate object or proposal from LiDAR proposal set

( 3D detector) (L) with each proposal from RPN of Faster R-CNN (R) i.e for each bbox ( proposal) with coordinates

(�1, �2, �3, �4) in R, we compare each bbox (proposal) with coordinates (�1, �2, �3, �4)in L for a given scene [12]. A

certain threshold � is assigned to this algorithm to compensate as many object candidates as possible and for that

given threshold, if two adjacent bbox coordinates meets the criteria then we keep those candidates. In case, if the

threshold is not met, then such candidate boxes are iltered out or simply removed from the tensor as shown in

Fig. 5. A less then equal to value for this threshold accommodates the candidate boxes that might be too small in

comparison whereas a greater then equal to value accommodates massive candidate boxes. The application of

absolute subtraction of the candidate boxes coordinates can achieve both these cases.

While CLOC completely ignores the 2D detection candidate that doesn’t have any overlapping 3D candidate

object, we assume that some 2D proposals can provide useful cues to the inal detection because LiDAR proposal

ACM J. Auton. Transport. Syst.



Snifer Faster R-CNN++ • 9

normally fail to detect object at far distance where the point cloud is sparse. In such scenario 2D RGB proposals

can complement or help the missed detection from LiDAR candidate object and eventually obtain better detection

result when used together. Based on our observation, most 2D proposals which represent object at large distance

are very small in size which is obvious form practical point of view. As such, we keep 2D proposals that have a

total area below a given threshold ’beta’ � . Finally, the output of this algorithm with the application of � and �

as predeined threshold gives certain number of candidate boxes per given point cloud or image but due to the

fact that same candidate object meets the threshold for multiple other candidate objects, it will be the resulting

product multiple times. We manually check the repeated presence of candidates and remove the repeated ones.

Finally, the snifer candidates object are obtained as the output as illustrated in Algorithm 1 and these are handed

over to the multiple conv2D for further processing.

Fig. 5. Illustration of the working mechanism of Proposal Refinement Algorithm.

We have made a minor modiication to our proposal reinement algorithm obtained from [6]. Due to the sparse

nature of the point cloud data for distant objects provided by the LiDAR sensor, the candidate objects produced

by the 3D detector could potentially miss these objects. Camera sensors on the other hand have the capability to

encompass these objects as it provides color, and texture cues even for distant objects. Based on our observation,

most 2D proposals which represent objects at large distances are very small in size which is obvious from a

practical point of view. Furthermore, it is evident that proposals with a considerably small size also exhibit a

diminutive cross-sectional area. As a result, in our algorithm, we take measures to retain a substantial number of

these minuscule proposals with the aim of capturing distant objects. This involves applying a speciic threshold

value to delineate the inclusion of such proposals from the camera sensor. We ensure that proposals with a

cumulative area falling below the deined threshold, denoted as � , are preserved.

ACM J. Auton. Transport. Syst.
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4.3 Point Cloud Data Clustering

a. DBSCAN: DBSCAN [25] stands for Density-Based Spatial Clustering of Applications with Noise. It is a popular

unsupervised clustering algorithm used for identifying clusters of points in a given set of sparse or scattered

points. In a given cluster, if a point has several other point close to each other then DBSCAN works by grouping

those points into a single cluster thus identifying regions of high density of clusters. Any regions with low density

are discarded as outlier or noise. Mainly, there are two parameters taken by DBSCAN algorithm. The irst one is

epsilon, which is the maximum distance that two points can be from each other and still be considered as a part

of the same cluster. The second one is minPts, which is the minimum number of points required to form a cluster

or a dense region. In case of point cloud data from LiDAR, which is basically a collection of scanned points from

lidar scan we can use DBSCAN for clustering dense points in the given point cloud. In order to do that, irst we

have to represent the point cloud data as s set of points in a feature space. We can use diferent properties of the

points such as location, intensity or color to construct feature space in a given point cloud data. Once the feature

space is constructed, DBSCAN can be applied to the point cloud data to identify clusters of points. Once the

clusters are identiied we use axis-aligned bounding box method to draw 3D bounding box around that cluster.

These boxes are further projected from lidar 3D coordinate to camera 2D coordinate system and used a possible

alternative to candidate object from 3D detector.

b. RANSAC: RANSAC [16] stands for "Random Sample Consensus." We can also use this algorithm for it-

ting models to data in the presence of noise or outliers. It randomly selects a subset of data points and uses these

points to it a model. The next step in this algorithm is to test the model on the remaining points, identifying the

inliers that it the model well and pruning the outliers that do not. The same process is repeated several times,

and the best it to the data is the model with the highest number of inliers. In case of point cloud data, we can use

RANSAC, for clustering or segmentation of point cloud, by itting models to subset of points that are most likely

to belong to same cluster. For instance, for data that has 3D points in space, it can be used to it planes or spheres

to subset of points that are in close proximity to each other which are stored as inliers and assigned to a cluster

and the points in far proximity to a given threshold are discarded altogether or assigned to other clusters.

c. Connected Component Labeling: Connected component labeling [31] is a technique used in image pro-

cessing and computer vision to identify and isolate distinct regions or objects in an image. To obtain connected

components from LiDAR data, point clouds are segmented into smaller parts separated by a minimum distance.

Each part is a set of connected points. We derive this approach from the classic image processing algorithm

called Connected Component Labeling (CCL). From a given set of point clouds, CCL is used to detect connected

regions. The next step is to generate 3D proposals from these regions and a 3D grid is set for this propose. This

grid is deduced from the octree structure which divides a 3D space into at most eight parts to store points. We

can control the gap between two adjacent component by selecting diferent octree levels. Connected regions or

components with points less then a certain number or threshold will be ignored . As shown in given Fig. 6 CCL

segments LiDAR point clouds into disconnected components, with each box indication a potential object in the

sensing data. Each box is then projected from LiDAR cordinate to image cordinate system following the same

approach described above to get the inal 2D object candidates.

Based on LiDAR point cloud clustering and segmentation we generate axis aligned candidate object by following

the same approach as above. One main advantage of using RANSAC is that it is computationally inexpensive

and very simple as compared to any 3D detector. It can also handle datasets with irregularly shaped clusters

and outliers which is a prominent feature of lidar point cloud data. Additionally, it doesn’t require the number

of clusters to be speciied beforehand, which is particularly useful when working with large dataset such as

point cloud data. The only downside of using such lightweight algorithm is that the candidate object obtained
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from these algorithm are signiicantly less accurate in comparison to 3D detector. We prove this hypothesis,

through various experiments in our experiment section. Our main aim to include these algorithm is to study the

possibility and practicality of used such lightweight methods in fusion architecture.

(a) 3D proposals generated from point clouds (b) 2D proposals projected on an image

Fig. 6. CCL generates 3D and 2D proposals from point clouds and an image.

4.4 CLOC’s Network and Training Details

We adopt the fusion network provided by CLOC’s fusion architecture. The candidate results obtained from

Proposal Reinement Algorithm denoted by S, are fed to the fusion layers which is a set of 1 x 1 2D convolution

layers. Similar to CLOC’s network we employ four convolution layers successively to general fused conidence

scores for all the potentials association. The layers are: Conv2D(4, 18, (1,1), 1), Conv2D(18,36, (1,1), 1), Conv2D(36,

36, (1,1), 1) and Conv2D(36, 1,(1,1), 1), which yields a tensor of size 1 × S × 1. Each 2D layer has four parameters

namely, cin, cout, k,d representing the number of input channels, number of output channels, kernel size and

stride respectively. Additionally, we also employ ReLU [22] after each convolution layer is applied for the irst

three layers. Finally an output tensor Tout is obtained of shape kxnx1 by illing p outputs based on indices (i,j)

and this tensor is mapped to desired learning targets, a probability score map of size 1 × n, through maxpooling

in the irst dimension, as mentioned in [17]. Similar to CLOC’s architecture we use a cross entropy loss for target

classiication by the focal loss. Our fusion network is trained using stochastic gradient descent (SGD). We run

the training for 12 epochs using Adam optimizer with an initial learning rate of 0.0025 and momentum of 0.9

along with weight-decay factor of 0.0001. The parameter ’momentum’ adds a fraction of the previous update to

the current update, which helps to smooth out the update trajectory and accelerate the convergence. A value of

0.0 means no momentum, while a value closer to 1.0 means more momentum. CLOC prioritizes 3D candidate

objects based on the assumption that the number of objects missed by 3D detector but detected by 2D detector is

negligible. As a result of this, they ignore some useful 2D candidate objects. On the other hand, our proposal

reinement algorithm conserves some 2D candidate object which eventually help in identifying objects that are

not detected by LiDAR sensor, especially objects at far distance. While CLOC usies the IoU approach for reining

candidate object we use our own approach as discussed in section 4.2.

5 EXPERIMENTS

We evaluate Snifer Faster R-CNN++ on the challenging KITTI Dataset [8] to experimentally prove the viability

of our proposed framework. This section mainly focuses on our experimental setup, dataset coniguration and

implementation details. We will also evaluate the performance and impact of our framework in a real-world

environment, and compare it against existing state-of-the-art multimodal fusion methods of 3D object detection.
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Method
Modality Car ( IoU=0.7 ) Pedestrian ( IoU =0.5 )

Easy Mod Hard Easy Mod Hard

Early-Fusion

PFF3D [35] L+R 81.11 72.93 67.24 43.93 36.07 32.86

Painted PointRCNN [32] L+R 82.11 71.70 67.08 50.32 40.97 37.87

PI-RCNN [37] L+R 84.37 74.82 70.03 - - -

Complexer-YOLO [28] L+R 55.93 47.34 42.60 17.60 13.96 12.70

MVX-Net(PF) [29] L+R 83.20 72.70 65.20 - - -

Deep Fusion

SECOND L 83.34 72.55 65.82 51.07 42.56 37.29

PV-RCNN L 87.45 80.28 76.21 47.30 39.42 36.97

PointRCNN L 86.23 75.81 68.99 49.43 41.78 38.63

PointPillars L 82.58 74.31 68.99 49.43 41.78 38.63

PointFusion [38] L+R 77.92 63.00 53.27 - - -

RoIFusion [3] L+R 88.09 79.36 72.51 42.22 35.14 32.92

Late Fusion

CLOCs L+R 89.16 82.28 77.23 52.10 42.72 39.08

SECOND+FRCNN L+R 86.44 78.33 70.73 50.37 39.78 36.44

PointPillars+FRCNN L+R 87.43 80.20 74.37 50.02 39.98 36.94

PointRCNNs+FRCNN L+R 87.71 81.38 77.26 51.40 42.32 38.98

Snifer Faster R-CNN++ L+R 88.82 81.47 76.79 51.88 42.56 39.04

Table 1. A comparision of the performance of Snifer Faster R-CNN++ with the state of the art object detectors evaluated on

the KITTI test set. The results are evaluated by the mean Average Precision with 40 recall positions.

5.1 Results on KITTI Dataset

The KITTI Dataset [8] is a popular dataset for 2D and 3D detection in autonomous driving and contains both

LiDAR point clouds and camera images along with iles for calibration. It contains 7,481 training samples and

7,518 test samples. For our experiments, we divided the oicial training set into two sets: a set1 with 3712 samples

and another set2 with 3769 samples. We use the irst training set to train existing 3D detectors and 2D detectors.

Our Snifer R-CNN++ network is trained on set2 training set. The KITTI benchmark requires detecting cars,

pedestrians, and cyclists, but for the sake of convenience and accessibility of ground truth, we trained our model

on only the car class based on this split. To showcase the versatility of our proposed approach, we utilize a fusion

network that combines various 2D and 3D detectors. Speciically, for 2D detectors we incorporate Faster R-CNN ,

and Cascade R-CNN. Similarly, for 3D detectors we incorporate PV-RCNN, PointPillars, SECOND, PointPainting

and PointRCNN. The result of our experiments demonstrate a notable enhancement in the performance of

the detectors withe the incorporation of CLOCs and proposal reinement algorithm. Although, the accuracy

is marginally below the original CLOC’s fusion network we still manage to outperform other existing 2D and

3D detectors. For some instances, aided by our proposal reinement algorithm, we managed to get even better

detection result for distant object in comparison to CLOC.

6 EVALUATION RESULTS

Table 1 showcase the evaluation result based on KITTI test set. We evaluate our model using the combination of

diferent set of 2D and 3D detectors. Our Snifer Faster R-CNN++ ( PVR-CNN + Faster-RCNN) outperforms most
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Method
2D Detector 3D Detector Fusion Based

Name GPU Speed Name GPU Speed GPU Speed

SFR + PVR Faster RCNN 3.8GB 4.2Hz PV-RCNN 3.5 GB 9.6Hz 1.1GB 3.8Hz

SFR + POR Faster RCNN 3.8GB 4.2Hz PointRCNN 4.5 GB 12Hz 1.1GB 3.9Hz

Table 2. Comparision of running speed and GPY memory usage between individual 2D and 3D detector and our fusion

based method ( Snifer Faster R-CNN++ ). Here, the fusion of Snifer Faster R-CNN and PV-RCNN methods is denoted as

SFR + PVR, while the fusion of Snifer Faster R-CNN and PointRCNN is represented as SFR + POR.

of the existing detection algorithms. Single Modality based methods such as SECOND, PV-RCNN, PointRCNN

are improved by our fusion based methods. Signiicant improvement can be seen especially on the moderate and

hard classes as compared to the easy class. In addition to this, our assumption that late fusion based methods are

more accurate in comparison to the early-fusion and deep-fusion based methods is also proved by the evaluation

result in Table 1. The accuracy of all easy, moderate and hard condition for both Car and Pedestrian class in late

fusion based methods is higher then all the other methods. Similarly, our netowork perfroms better then CLOC’s

in terms of detecting distant object as seen in Fig. 7.

Table 2 illustrates a comparison between the operational speed and GPU memory consumption of our distinct

2D and 3D detectors, alongside the fused model (Snifer Faster R-CNN++). Given our approach, which involves

the concurrent execution of Faster R-CNN and a 3D detector, it becomes infeasible to execute both seamlessly on

a solitary GPU system at the desktop level. Therefore, we proceed to assess the individual operational speeds of

each model as well as the fused version. As depicted in the table, while the fusion model mandates a greater GPU

capacity, it demonstrates superior speed.

Similarly, we also evaluate the efectiveness of our proposal reinement algorithm for detecting distant objects.

Fig. 7 illustrates the outcomes of both our proposal reinement algorithm and its adapted version aimed at

identifying distant objects. When observing objects in close proximity to the vehicle, speciically within a distance

of 0 to 15 meters, the 3D Average Precision (AP) Gain exhibits a negative variance when compared to the baseline

model, denoted as CLOC. However, with the progression of distance, there is a noticeable positive trend in the 3D

AP Gain. This upward trend indicates an enhanced capability in detecting additional objects as the distance from

the vehicle increases. This observation serves to underline that our proposal reinement algorithm, while not

causing a substantial enhancement in distant object detection, does contribute to some degree of improvement in

this regard. This observation substantiates the eicacy of our algorithm.

In addition to this, we also study the practicality of using alternative methods for generating 3D/2D object

candidates. Table 3 showcases the result in terms of time, accuracy and number of candidate object generated

during each method. Here, total clusters for 3D object detection refers to the total number of clusters formed

based on each method. For instance, application of DBSCAN algorithm results in a total of 964632 clusters of

point clouds in KITTI test set. For each frame or point cloud associated with the frame, the total number of

clusters or candidate objects for DBSCAN is 128. As we can see, the accuracy is signiicantly low in comparison to

existing 3D object detectors such as PV-RCNN. Although methods such as DBSCAN, CCL can be computationally

inexpensive, our inding prove that, using these methods will lower the accuracy substantially.

7 ABLATION STUDIES

Since we are using diferent threshold for reining proposals, we conducted multiple experiments to get the

optimal solution. Fig. 8 shows the efect of variation of beta (used for accommodating small boxes) and lambda

values used as a thresholds for proposal reinement and also the IoU approach followed by CLOC’s fusion

network. As seen in the igure, for both lambda and beta value as the value increases the accuracy increases and
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Method Modality Total Clusters Candidate Objects/f Accuracy Time(s/f)

Result on 2D Object Detection

Faster-RCNN R 7518000 1000 88.97 0.2149

Cascade-RCNN R 7518000 1000 86.40 0.3147

Snifer Faster R-CNN L+R 3112452 414 83.71 0.1737

Snifer Faster R-CNN++ L+R 1706586 227 93.20 0.1438

Result on 3D Object Detection

DBSCAN L 964632 128 57.23 0.16

RANSAC L 872243 116 52.11 0.16

CCL L 563604 73 62.34 0.15

PV-RCNN L 751800 100 87.45 0.15

Table 3. A study based on the practicality of using alternative methods for generating computationally inexpensive 3D

candidate object on the KITTI test set with the state of art methods.

Fig. 7. 3D Average Precision (AP) and 3D AP Gain based on distance for our model ( snifer) and baseline model [17].

Fig. 8. The efect of variation of lambda and beta values to the Snifer Faster R-CNN++ network along with the underlying

IoU approach used by CLOC’s fusion architecture.

becomes stable at a point and starts to decrease again. This is due to the fact that, the increasing values for both

lambda and beta results in more boxes being included in the detection process. Although they contribute to the

inal detection result, they also introduce false negatives and hence the accuracy tend to decrease towards the
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PR IoU S2d S3d focal loss 3D AP

83.04

55.45

85.67

89.16

87.37

88.82

Table 4. Efect of diferent combination of channels in our fusion network. The results are on the easy level car class of KITTI

test set with AP calculated by 40 recall positions. PV-RCNN and Faster RCNN are fused in this experiment

end. This is one promising area we have for the future research purpose. We also study the efect of diferent

combination of channels in our network which includes, proposal reinement (PR) for reining proposals using

the proposal reinement algorithm, IoU approach used by the CLOC’s fusion approach, conidence score from 2D

object detection (s2D), conidence score from 3D object detectors (s3D) and focal loss. Each channel provides a

major contribution to the network as seen in Table 4. Major contribution is seen from PR as comparison to other

channels. Similarly, conidence scores are also fused together during the processing pipeline and therefore plays

a major role in inal detection. Focal loss on the other hand, addresses the issue of imbalance between positives

and negatives among the detection candidates.

As stated earlier, we have trained our Snifer Faster-RCNN++ model using reined boxes derived from a

collaborative process involving candidate objects from a 3D detector and proposals from 2D detectors. Our

approach operates in an oline manner, meaning that we initially execute these models to obtain candidate

objects and proposals, respectively. However, we acknowledge that this oline nature could potentially create a

disparity between our work and its real-world deployment. Consequently, deploying our model in real-world

scenarios poses several challenges. To begin with, the oline nature of our method necessitates the parallel

execution of the 2D and 3D detectors for real-time deployment. This introduces complexity, as the runtimes of

these detectors can vary. Consequently, the generation of 2D proposals and 3D candidate objects might occur at

diferent time intervals, resulting in alignment issues that could afect the performance and efectiveness of the

model or overall system. Similarly in dynamic real time environments, where objects and scenes change rapidly,

oline methods might struggle to provide accurate implementation. In such a dynamic setting, objects may

exhibit real-time movement, alter their positions, or become obscured, factors that are not adequately addressed

by oline methods like ours. This forms a component of the future research challenge we intend to address too.

8 CONCLUSION

In this paper, we presented Snifer Faster R-CNN++, a novel sequential late fusion approach for object detection

that inherently performs sensor fusion during the inal detection stage, combining the candidate objects obtained

from LiDAR with vision data to obtain faster and accurate object detection results. We used proposal reinement

algorithm to reine candidate objects from both 2D and 3D detectors and signiicantly improve the accuracy.

Most prominently, our approach aided by the rich texture information from camera image helps in detecting

distant objects. We also presented a comprehensive study of diferent point cloud data clustering algorithms

and studied their feasibility as a alternative for computationally expensive 3D detectors. While these methods

have less computational overhead we showcase that the application of such methods is questionable due to their

overall performance in detection result . Apart from this, we also perform extensive experiments on the KITTI

dataset to show the superiority of our proposed architecture over the state of art in terms of both inference and

accuracy.
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Fig. 9. ualitative analysis of KITTI results. We created two diferent comparison figures where green boxes represent

accurate candidate boxes and red represent the missed one). For the first comparison, the fig (a), shows the projection of 3D

object candidates on the point cloud, fig (b) shows the projection of useful 2D object proposals that complements the missed

boxes from 3D lidar detector), fig (c) shows the final result. For the second comparison, the fig (d), shows the projection of 3D

object candidates on the point cloud ( green boxes represent accurate detection candidates that complements the missed

boxes from 2D detector), fig (e) shows the projection of 2D object proposals, fig (f) shows the final result.
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