2023 IEEE International Conference on Edge Computing and Communications (EDGE) | 979-8-3503-0483-1/23/$31.00 ©2023 IEEE | DOI: 10.1109/EDGE60047.2023.00026

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

Perception Workload Characterization and
Prediction on the Edges with Memory Contention
for Connected Autonomous Vehicles

Sihai Tang*, Shengze Wang*, Song Fu*, and Qing Yang*
*Department of Computer Science and Engineering
University of North Texas
Denton, Texas 76203, USA
Email: {SihaiTang, shengzewang}@my.unt.edu; {Song.Fu, Qing.Yang}@unt.edu

Abstract—Vehicular Edge computing requires computational
power from connected Edge devices in the network to process
incoming vehicle work requests. This connection and offload-
ing allows for faster and more efficient data processing and
thus improves the safety, performance, and reliability of the
connected vehicles. Existing works focus on the processor and
its characterization, but they forgo the connecting components.
Memory resource and storage resource is limited on Edge devices,
and the two combined incur a heavy impact on deep learning.
This is prominent as perception-based workloads have yet to
be studied deeply. In our characterization, we have found that
memory contention can be split into 3 behaviors. Each of these
behaviors interacts with the other resources differently. Then, in
our deep neural network (DNN) layer analysis, we find several
layers that see computation time increases of over 2849% for
convolutional layers and 1173.34% for activation layers. Through
the characterization, we can model the workload behavior for
the Edge based on the device configuration and the workload
requirements. Through this, the impacts of memory contention
and its impacts are quantified. To the best of our knowledge,
this is the first such work that characterizes the memory impacts
towards vehicular edge computational workloads with a deep focus
on memory and DNN layers.

Index Terms—Edge Computing; Deep Learning; Autonomous
Vehicles; Object Detection; Workload Characterization; Memory
Contention.

I. INTRODUCTION

Perception is vital for Autonomous Vehicles (AV), and while
AVs can be very safe, they are not perfect. While all car
manufacturers aim for safety and efficiency when designing
and making their vehicles, there will still be unforeseen issues.
As the number one duty of an AV is to keep its passengers safe,
the ability of the AV to make critical driving decisions based
on the environment around it becomes paramount. In addition,
the AV must also be able to process everything, from sensing
to driving, in a timely manner to account for both its own
driving actions as well as the actions of other entities around
it.

Given this context, the main AV processing pipeline is
the flow of data from sensors to perception, then to path
planning before actuation. In such a pipeline, the module to
detect objects is arguably the most important of them all, as
plenty of news headlines and evidence shows [1]. Given the

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00026

104

fact that object detection must be both accurate and fast, the
most obvious choice for this module is some type of Deep
Neural Network (DNN). With a solid history and a very active
academic interest in the field, DNNs are widely researched
and used in both academic and industry sectors. Deployments
of DNNs for various tasks such as YOLO, SSD, Faster R-
CNN for object detection [2], [3], [4], DeepLab for image
segmentation [5] and LaneNet for lane detection [6].

These DNN workloads are commonly deployed as Edge
workloads, however, for a DNN to be useful, it must be trained
and optimized continuously to match the perils and new issues
that inevitably rises from the advancement of time. A quick
example would be the introduction of new climates or a variety
of unmarked old roads. Due to this, many companies employ
humans and semi-supervised methods to label and train the
data that is generated from the vehicles out on the roads, with
each vehicle generating close to 11 Terabytes worth of data
daily [7].

In addition, while the Edge has much lower latency than the
cloud, it also has much fewer resources as compared to the
cloud. This constraint on available computing resources can
make understanding perception workloads on the Edge nodes
a critical step for vehicle and Edge computing [8].

As a vessel meant to carry people, the AV must also be
safety critical with highly stringent requirements; latency and
detection accuracy is at the forefront [9]. However, real-time
requirements are notoriously difficult to satisfy, as seen by
the sheer amount of research being done in this area as new
technologies continuously push the boundaries [10]. Paired
with the wide usage of DNNs throughout the perception scene,
the crucial issue now becomes how can AVs and Edge nodes
handle this workload without being constantly upgraded with
the latest sensors and models.

As most AVs rely on their own data for real-time object
detection, there are quite a few limits to what they can do.
And the limits are particularly bad when it comes to sensor
blind zones and obstructions [11].

In this paper, we analyze memory contention not only on
CNN networks but also on individual layers; not only charac-
terization but also prediction. To the best of our knowledge,

Interval a Interval b Interval ¢ Interval d (Detector)
- Fetch Fetch Fetch ‘
‘# Object | Successful |Image arrives
2 Inference Inference
Appears | Capture at queue
Display ‘
Time
Optimization
Interval a Interval b Interval d (Detector)
- Fetch Fetch
‘& Object | Successful
2 Inference Inference
Appears | Capture
Display
Time
Fig. 1. Traditional approach to remove scheduling delays and memory
contention.

this is the first work to deeply characterize the impact of mem-
ory contention on the performance of perception workloads on
the edges. Existing studies focus on the CPU and GPU of the
Edge as the limiting factor, but Memory is also a limiting
factor often ignored.

Memory usage is a critical factor that can significantly
impact the deployment of machine learning models for infer-
ence on the Edges. Machine learning models typically require
significant amounts of memory to train and run, and the size
of the model can grow quickly with increasing complexity.
Therefore, deploying a machine learning model that uses a
large amount of memory on a device with limited resources,
such as an Edge device, can cause performance issues, such
as slow execution or crashes. In an over-subsidized workload,
where multiple tasks are simultaneously scheduled to overload
the scheduler, only 4 tasks can be completed; despite each task
having ample resources. Consequently, optimizing memory
usage is crucial when deploying machine learning models for
inference, as it can improve the performance and reliability
of the system, reduce hardware requirements and cost, and
increase the overall efficiency of the machine learning work-
flow. Therefore, finding ways that memory usage of a machine
learning model impacts the workload at different levels is
critical for various deployment and use cases.

In our analysis, we found that Memory, as a factor, can be
generalized through characterization functions to model and
predict workload behavior. This behavior holds true across
different ML methods and on different platforms.

By deep analysis, we can extract the behavior and per-
formance of every layer in a perception network. Then, we
can monitor the behavior of individual layers of the model
during the inference process under different constraints and
conditions. This information is crucial for understanding the
performance and behavior of the model and for optimizing its
architecture and parameters. However, monitoring the behav-
ior of individual layers can be challenging, especially when
dealing with complex models with many layers.

Our research has shown that convolutional layers, along

105

with Routing, Shortcut, and ReLU activation layers, are
the predominant layers affected by factors such as memory
availability. For example, when the memory is constrained,
some layers may take longer to compute or may require
more memory to operate efficiently, with some layers see-
ing a computation time increase of over 2849% increase
for convolutional layers, over 1053% increase for Routing
layers, over 1173.34% increase for ReLU, and over 271% for
Shortcut layers. These findings are valuable for pinpointing
memory bottlenecks in a perception network and developing
dynamic memory allocation strategies to improve perception
performance.
Our main contributions include:

o Characterizing and modeling Memory impacts on ML
inference workloads for Edge devices

e Deep layer analysis pinpointing specific layers affected
by over-subsidization and memory contention

o Generalization of the Edge components that affect ML
inferencing workloads and define challenges for future
research

The rest of the paper is structured as follows, in Section II
we go over the background and motivation. In Section III, the
profiling setup and variables are discussed, and in Section IV
the results are shown and analyzed. Section V discusses the
findings, and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

As the world adopts the new generation of sensor-laden ve-
hicles, the default infrastructures need to follow suit. Modern
vehicles, be they autonomous or semi-autonomous, requires
complex and extensive computational resources to process
the data it needs to keep their passengers safe. And to
enable the safety of both the vehicle and its passengers, the
computation needs to be real-time and spatially relevant. In
works such as [7], the future landscape of connected vehicles
is explored and the challenges clarified. In them, the challenge
of offloading work away from the vehicle is one of the major
concerns.

In recent years, the concept of what defines computing is
blurred as many Edge devices such as Nvidia proprietary Edge,
or even mobile phones can accomplish the same task. Edge
computing is utilized in many fields such as unmanned aerial
vehicles (UAVs) [12], or for enhancing the capabilities of
Android-based devices [13]. Along that same line, Edge also
is a big factor for connected autonomous vehicles (CAVs).
In works such as [14], the inefficiencies for vehicle’s onboard
computation is clearly presented for CAVs, and the use of edge
computing was used resolved the issues; the issues included
network congestion, insufficient onboard vehicle computation
resources and processing speed.

Exploring this topic in recent years, papers such as [11],
[15] and [16] explore and prove the possibility of using Edge
as a means of sensor fusion for CAVs. Then in works such
as [17] and [14], the real-world applications of offloading
to the Edge are studied. With the gates opened, numerous
possibilities are highlighted, including the discussion of DNN

Edge Networks

Vehicles
=y v,
&
&=

Prediction Container

@ Characterized Prediction Model

| Real-time |

Data Inference, Input Size, Configuration

Edge ny Edge 1, Edgen3
Processor RAM

Processor RAM Processor RAM

Fig. 2. Autonomous vehicle to Edge node interaction.

which has emerged as a crucial and highly visited topic on
Edge, as indicated in [7].

The main workload for most AVs self-driving is based
on DNN inferencing, and this can be any of the state-of-
the-art models for object detection: YOLO [2], Faster R-
CNN [4], Mask R-CNN [18], SSD [3], etc. While the afore-
mentioned models do a great job, there are many trade-offs
and optimizations to be had. For example, to increase the
feasibility of deployment on lower-end computation hardware,
improvements such as quantization, pruning, and architecture
changes are often used [19], [20], [21].

Deploying machine learning models on Edge devices, espe-
cially low-end Edge devices, presents several challenges. One
major challenge is the limited computing resource and memory
resources available on these devices, which can restrict the
complexity and size of the models that can be deployed. Ad-
ditionally, Edge devices often have power constraints, which
limit the amount of energy that can be used for computation.

This limitation becomes especially debilitating when it
comes to the case of vehicular Edge computing. Most ML
models require a large-weight model to function optimally,
meaning that machine learning models deployed on Edge
devices must be optimized for both power and speed, which
can be difficult to achieve without sacrificing accuracy or
performance.

Another challenge is the lack of standardization in hardware
and software platforms, which can make it difficult to develop
and deploy machine learning models that maintain consistency
between AVs and vehicular Edge. Finally, the deployment of
machine learning models on Edge devices can raise concerns
about data privacy and security, as sensitive data from the
vehicles may be stored and processed on the device itself.
Addressing these challenges will require advances in hardware
and software optimization, standardization, and data privacy
and security measures [22], [23], [7].

Traditional machine learning and neural network improve-
ments focus on overall latency per frame as well as the overall
accuracy and optimizing the loss function. These generally
focus on the CPU and GPU, but the impacts from Memory
are not studied. In addition to the targeted hardware, methods
such as the Pyramid Attention Network [24] or the Region
Proposal Network [4] gave rise to many real-time detector

106

algorithms. But these are generally developed without Edge
resource constraints in mind.

Most commonly seen methods to get around the Edge
memory constraints in literature usually sacrifice or explore
tradeoffs. In works [25] and [26], the authors reduce the full
YOLO architecture to reduce the computational load. Then
in works such as [27], the workload is distributed through
a pipeline rather than face the hardware constraints such as
memory contention. Then in traditional methods such as [28],
the memory contention for individual tasks is considered and
removed, as seen in a reproduced Fig. 1.

Finally, modern literature that tries to tackle the Memory
contention issues for DNN on Edge also sees limitations. In the
host of memory-aware middleware works, we find MASA [29]
along with many of the other memory-aware middleware
works such as Deepeye [30], NestDNN [31], and DART [32].
These works approach the issue of CPU and Memory issues
for low-end Edge devices from a middleware perspective,
taking into account the layer impacts on the CPU and Memory
respectively. However, even in works like MASA, the full
impacts of memory are not fully examined. Also, due to the
methodologies and hardware platform in MASA, the DNNs
do not fully cover the single-stage and two-stage foundations;
only two-layer types are analyzed. Additionally, the works
mentioned above do not model the characteristics of memory
as an impact variable, but rather facilitate the DNN process.
Last but not least, most modern-day DNNs make use of
Pytorch [33] as a backbone and framework, which was not
included in these motivating works.

A. Challenges of Characterizing Machine Learning on Edge

Characterizing machine learning workloads on Edge de-
vices presents several notable challenges. One major challenge
is the diversity of Edge devices and their corresponding
hardware configurations, which can make it very difficult
to generalize performance and operation time metrics across
different devices; energy consumption is also directly related
to the workload intensity and processing time. Additionally,
the complexity and variability of machine learning models,
along with different input and network conditions, can make
it difficult to predict how they will behave on different Edge
devices, even if the other Edge devices are the exact same
model and specification.

Furthermore, detailed profiling of machine learning work-
loads on Edge devices requires specialized tools and expertise
that may not be readily available to developers or end users. In
addition to the previously mentioned difficulties, the privacy
of client data is another major concern as profiling workload
requires monitoring the processing of sensitive data on the
device itself. To address these concerns, more advances are in
standardizing benchmarking tools or Edge privacy-preserving
methods are needed as stated in surveys such as [34].

In works such as [35], [36], the memory and layer by layer
connections to privacy are examined. Through layer by layer
encoding, the papers show that it is possible to encrypt and
process the data on a layer level without notable impacts to

7Linear: y =0.07703*x - 0.8854
R? =0.9915

[ecivel

9t

Time (s)

90 100 110 120 130

1 1 1 1 1
40 50 60 70

80
GFLOPs

12001 inear: y = 2.54% - 86.91
R%=0.1595
1000 ©
800 f
@ 600f 5
(o]
£ o
= 400 |
O
200 o
A o o
o
a Q Q
of 6 8 o) o

-200

30 80 920 100 110 120 130
GFLOPs

40 50 60 70

Fig. 3. Workload on single-stage perception With (Left)(a) and Without (Right)(b) Memory resource contention.

performance for CAVs. In the same line, traditional memory
based privacy concerns also require deeper scrutiny.

III. MEASURING AND CHARACTERIZING PERCEPTION
WORKLOADS ON THE EDGES

Deep learning-enabled perception networks can be broadly
classified into two categories: single-stage and two-stage ob-
ject detection. In this paper, we study both of them. In
each category, we select the widely used and representative
networks. Specifically, Single-Stage YOLO, both Darknet and
Pytorch-based, and Two-Stage Faster-RCNN, Pytorch based.
We represent YOLO as w and Faster R-CNN as 6. By covering
both single-stage and double-stage methods, we can attempt to
generalize our findings to be applicable to other methodologies
that utilize the same principles.

Our goal is to discover the uniqueness of each category
in terms of resource demands, with a focus on the memory
impacts in this paper, and performance bottlenecks arising
from these resource demands.

In addition to the individual resource variable impacts, we
also need to characterize the workload as a predictable model.
For example, as Fig. 2 shows, we can utilize a generalized
prediction model for the incoming workload to be able to
facilitate a better scheduling module on the Edge. The edge
network architecture would serve as both a communications
and computational node for the CAVs accessing the edge
network.

A. Profiling Setup

To profile our ML methods, we simulate the high-end Edge
nodes with a machine equipped with an Intel Core i7-10750H,
Nvidia GeForce RTX 2070, 16 GB of DDR4 RAM, and a
1 TB NVMe SSD. The total operating power constraint for
the laptop is set to 250 Watts. For the lower-end Edge node,
we opted for the Nvidia Jetson Xavier NX. It supports nine
optimized power budgets to cap the CPU core numbers and
their frequencies. Power modes in our experiments include
20W, 15W, or 10W TDP with six, four, or two CPU cores.

107

B. Features and Formulation

To define how incoming AV workloads will impact available
Edge nodes, there are two sets of variables to consider, the set
of inputs from AV and the set of resources from available
Edge nodes. We define the set of AV as V = {wvy,v9,...}
and the set of Edge nodes as E {m.n2,...}. Where
Vi = { Varas Viask } A0 70 = {10, 1+ Myyene } are monitored
and facilitated by the Prediction Module. Following the input
requests from the vehicles in Fig. 2, we allow for the Edge
nodes in the service range to process the incoming tasks. Then,
the individual Edge nodes are able to determine the request and
workload from the incoming requests. The individual nodes
can then communicate the task requirements and their own
resources to the Edge manager, which can then quickly direct
the workload to an Edge node that can finish the task within
an acceptable deadline.

Next, to formulate potential Edge configurations, we define
the potential variables as follows:

« Processor resource

¢ RAM as the memory resource

o Workload size calculated from the requested service and
the input size

o Time as the quantifying metric

IV. ANALYSIS AND KEY INSIGHTS

The difference in Edge deployment hardware and task type
brings up a challenging issue. Different AV workload requests
and variations in hardware performance on the Edge nodes
can be hard to plan for. In turn, this negatively impacts
the reliability of DNN inferencing and brings the essential
challenge to robust workload characterization.

A. Memory and Computation Load

In Section II, we discuss how memory contention can be a
significant influencing variable when time or performance la-
tency is crucial. Based on Fig. 3, we see two distinctive states,
highlighting the importance of managing memory contention
in such scenarios.

60

50

40

Time (s)

........

1.5 2 25 3 3.5 4
Memory Available (GB)

0 0.5 1

10 I I I I
0.5 1 1.5 2 25 3

Memory Available (GB)

4.5

Fig. 4. Memory Contention on a low-end Edge between single-stage and two-stage perception. Left(a) represents YOLO and Right(b) represents Faster

R-CNN

In our profiling, we quantify three states for the memory
variable.

e Scenario 1: No Memory resource contention

e Scenario 2: Memory resource contention typically en-
countered under heavy workload

o Scenario 3: Extreme Lack of Memory resources

In Scenario 1, memory resource is plentiful for all of
the tasks with no bottlenecks for any reason. In Scenario 2
however, memory resource is strained by either access racing
conditions or resource availability. Temperature and system-
bus bottlenecks are not considered in Scenario 2 as the system
itself will be unstable for workloads. Finally, Scenario 3 covers
the other possible memory allocation constraints, spanning
from low to the lowest possible operational limits.

While in Scenario 1, Fig. 3.a, it is clear that the model does
not deviate from the CPU variable-dominated linear model,
and we can formulate the model as:

Ntime = 0.077 % v — 0.89 (1)

where 7 = GFLOPs represent the amount of computation
required by the workload.

However, if applying Equation 1 to the same set of work-
loads with the added memory limitations, the model will not
hold true as seen in Fig. 3.b. While traditional methods of
optimization and scheduling will alleviate this issue, they will
not be able to solve it completely.

And so, to accurately characterize the impact of memory
contention across various platforms, more characterization is
required for workloads falling under Scenario 2 and 3, which
experience moderate to heavy memory contention.

By modeling the behavior of the algorithm under different
resource constraints, we can profile and characterize the im-
pacts of Memory contention, where Faster R-CNN is referred
to as (f) and YOLO as (w). Starting off, the max amount of
RAM required to run each ML method is profiled, and we
represent this value as 0y 4x for Faster R-CNN and wps4x

108

for YOLO. Each ML is profiled with sequentially less available
RAM available until task failure.

Starting off, in Fig. 5, we profile the workload characteristic
under Scenario 3 and clearly see a direct relation with the
amount of memory available. Based on the data gathered, we
can model the two ML workload behaviors as Equations 2
and 3 respectively. CPU Frequency is represented as v =
CPUPower and Memory is represented as 5 = Memory.
It should be noted here that while the R? is acceptable at a
minimum of 0.9, some extreme cases such as operating w at
100MB or less will have a higher variance when predicted
with this model.

N0 e =0 % v 41016 f~0-06054 _ 930

2
with R? = 0.9041 @

N me =0 % v+ 0.2379 % 7103 4 11.38
with R? = 0.9560

To fully encompass Edge workload parameters for Scenario
3, and to ensure the character is consistent across different
platforms, we analyze the same scenario on the Jetson device,
shown in Fig. 4. Here, while the device is able to take smaller
increments and holds less variance in the data, the behavior is
much the same. Based on the data, the second set of models
derived from Faster R-CNN(#) and YOLO(w) are represented
in 4 and 5.

3

0l =0% v+ 42.418 % 70768 N
with R? = 0.9837
ﬁg‘me =0% v + 6.386 x 5—0.413 s

with R? = 0.8694

With the Jetson Memory model, we are able to predict the
execution time with an R? = 0.98 for # and a R? = (.87 for
w.

1.5 2
Memory Available (GB)

25

20 . . .
0 0.5 1 1.5 2

Memory Available (GB)

25 3

Fig. 5. Memory Contention on a high-end Edge between single-stage and two-stage perception. Left(a) represents YOLO and Right(b) represents Faster

R-CNN

This is great for both industrial cost estimation of how many
incoming tasks an Edge node can handle. With the memory
impacts characterized, we now look at how it impacts each
individual layer.

B. Layer Wise Characterization

With the insights from memory profiling, we can examine
the layer information for further analysis. First, both of our
ML methods use some common layers, such as convolution
layers, activation layers, and operations such as max-pooling.
In Fig. 7, we show the difference between the layers in a
normal operation versus a resource-constrained operation. It
is clearly evident the impacts of memory contention affects
only selected layers of the architecture.

Given the shared building block layers, we profile the layer-
by-layer workload for both aforementioned scenarios. The
layers that are impacted are shown in Fig. 8 for YOLO, and
Fig. 9 for Faster R-CNN. Upon deep analysis of the data
gathered, we can see that the most heavily impacted layers are
at the beginning of the architecture for both w and 6. Table
I highlights the layers most impacted for YOLO, and table II
highlights the layers for Faster R-CNN.

YOLO Layer Normal | Contention | Percentage Increase
0 Convolution 0.2705s | 0.4792s 77%
1 Convolution 0.5176s | 14.311s 2665%
6 Convolution 0.5046s | 14.879s 2849%
9 Routing 0.0108s | 0.1249s 1053%
10 Convolution | 0.2669s | 0.5167s 93%
11 Convolution | 0.4157s | 0.7581s 82%
16 Convolution | 0.2113s | 0.2816s 33%
20 Shortcut 0.0015s | 0.0057s 271%
TABLE I
SINGLE-STAGE PERCEPTION CNN LAYERS WITH AND WITHOUT MEMORY
CONTENTION.

Starting with Fig. 8.a, the data shows two layers, 1 and
6, that show heavy impact from memory contention. Both
layers are convolutional layers with a calculated 3.407 GFLOP

109

Faster R-CNN Layer | Normal | Contention | Percentage Increase
3 Relu Activation 1.8892s | 22.1668s 1173.34%
5 Convolution 0.5995s | 3.4108s 468.9%
7 Convolution 1.1588s | 28.272s 2339.77%
12 Convolution 0.9201s | 6.551s 12.96%
14 Convolution 0.9158s | 9.6611s 954.93%
TABLE II
TWO-STAGE PERCEPTION CNN LAYERS WITH AND WITHOUT MEMORY
CONTENTION.

theoretical computational load, but whilst this load seems big,
similarly sized loads are spread throughout the architectures in
other layers as well. Layer 1 showed a 27.65 times increase
and Layer 6 showed a 29.49 times increase over the non-
contention scenario. This gives big insight as to where the
most affected areas are for the YOLO architecture.

However, in Fig. 8.b, with the two layers from Fig. 8. a
removed, we see other smaller impacted layers. When diving
deeper, we find that in our profiling results, layers 9 and 20
show an abnormal amount of increase compared to both its
theoretical GFLOP value as well as the non-contention latency.
For Layer 9, a routing layer with GFLOP of near 0, the
memory contention caused the latency to increase by over
1053%. Similarly, for Layer 20, a shortcut layer also with
a near 0 GFLOP of 0.001, we see a latency increase of 271%.

It is logical for the initial convolutional layers to be heavily
impacted by the lack of memory due to the input needing to be
loaded from storage, but our insight on the impacts on layers
9 and 20 opens up potential paths for future research.

Next, we analyze the layer data for Faster R-CNN in Fig. 9.
Here, the data shows 5 layers that are affected the most, and
of those, layers 3 and 7 stand out. Layer 3 is a relu activation
layer with a 1173% increase and layer 7 is a convolutional
layer with a 2339.77% increase.

C. Compute Power and Processor Characterization

On both our platforms, we started with a fixed input load
for both ML methods. In Fig. 6, we show the performance

457)
Linear: y =-0.4082*x + 4.711
~ R? =0.8901
ar 8
35F
T 3
® 8
£ o]
=5t ~
8 g
ol
150 B g
2 3 4 5 6 7 8 9
Cumulative GHz
351
8 Linear: y = - 3.758% + 41.62
R? =0.8832
30+
g
25+
8
z
g 20 o 8
IS
151 8
o
10}
2 3 4 5 6 7 8 9

Cumulative GHz

Fig. 6. Characterizing workload on Jetson with different CPU configurations.
With single-stage perception network YOLO (Top)(a), and two-stage percep-
tion network Faster R-CNN (Bottom)(b).

of Faster R-CNN on 4 different CPU power Thermal Design
Power (TDP) and Core configurations, with inference time as
the quantifying metric for characterization of workload. From
the data points gathered in Fig. 6.b, we model the Scenario 1
of Faster R-CNN impact as follows, where v = CPU:

= —3.758 x v + 41.62
with R? = 0.8832

0
Mtime

(6)

In the same fashion, we have Fig. 6.a showing the same
profiling results for YOLO on the same CPU power and core
configurations. Again, the model for the Scenario 1 impacts
on YOLO Workload can be formulated as follows:

N = —0.4082 % v + 4.711

7
with R? = 0.8901 ™

When combined with the memory variable from Scenario
2, we get the Scenario 2 Equation 8 for Faster R-CNN With
memory measured in Gigabytes and Frequency measured in
Gigahertz:

110

O Normal
-+ Constrained

-
1000

Layer Number

Fig. 7. Layer information for single-stage perception full architecture for both
no contention and under oversubsidized contention.

N, =97.201 — 9.335 % 3 — 5.862 * v

8
with R? = 0.927 ®)

In the same fashion, when Characterizing the entirety of the
workload, we have Scenario 2 represented as Equation 9 for
YOLO, we have the following equation:

=23.713 — 3.506 * 8 — 1.361 % v
with R? = 0.924

o
Ntime

(©))

D. Workload Size and Resource requirement

In the CPU profiling, we find that there is a direct linear
relationship between the CPU computation power and the
inference performance for both models, as shown in Fig. 6.

But the input size of the task can also determine how
much computational power is needed. For example, processing
higher-resolution sensor data requires much more compu-
tational power as opposed to a low-resolution sensor. To
characterize this, we conducted profiling with different input
sizes as shown in Fig. 10.

However, when we introduce another variable, memory, to
the equation, then the profiling results change drastically as we
can see in Fig. 3. When we apply the direct linear formula with
adjusted constants to Fig. 3.b, the R? fit for the formulation
based on the CPU variable becomes progressively inaccurate.

E. Insight Analysis and Generalization

With the data from our profiling on which variables affect
ML workloads, we can now try to generalize our prediction
model.

Based on the key insights from formulas 2, 3, 4 and 5, we
can consolidate the findings for Scenario 3 in the following
manner:

N N w w
o (4] o o
o o o o
X
—_— . .
> >

Time (ms)
g

o
S
T

0 20 40 60 80 100 120 140 160
Layer Number

Fig. 8. Single-stage perception full architecture layer impacts of memory contention breakdown.

2000
0 20 40 60 80 100 120 140 160
Layer Number
30
¢}
25
(¢}

20
o
E
o 15F
£
[

10

o
o
51 .
¢}
olee . oo 6606°6055040 |
0 5 10 15 20 25 30

Layer Number

Fig. 9. Two-stage perception CNN layers with memory contention.

n? = ki * % + Q;
0y =kjx B9 +Q; (10)

where k;, a; indicates the variable coefficient constant bound
to each Edge node, (Q; as the respective constant value, and
B reflects the currently available memory. The removal of
the variable v is needed in Equation 10 to accurately reflect
Scenario 3. We can address the variance of thermal limitations
through the rolling window average in 11, where n indicates a
mark of time, thus allowing for accuracy. Here, the rolling win-
dow for k,, and a,, can be set so that k1 = ka...k, = kp41
where n + 1 indicates the current time constant for Equation
10.

_k1+k2+k3++kn

kn

n
_Gtatazt---+a (b

n =

n

By combining the two characterizing models, we can then
formulate the decision tree for the running task queue ¢ on
the Edge, where 8{""¢shold for task i represents the memory
threshold for Scenario 3, where the CPU variable impact is
dwarfed by the memory impacts. This threshold varies based
on the ML algorithm, and in our results, rested around 100MB
for YOLO and 800MB for Faster R-CNN. The decision tree
for predicting workload is as follows:

n
c:{1,...,n} where Bavaitable = BMaz — Z Ci
i

such that processing time for task: a; in the task

queue ¢ can be calculated as follows

. . R ired
c(ai) — Scenario 1 for 5fh7eshold > 51 equire
Required i
&& ,61 equire < ﬂlAvazlable
C(ai) — Scenario 2 for 5fh'reshold > rBichu”L)d
Required i
&& /31 equire > BZAv(nlable

. equired
¢(a;) = Scenario 3 for fihreshold o ghequire

From the profiling results, the first key insight is the impact
of low memory resources for a given workload. Traditional
CPU-based scheduling approach does not address the physical
memory limitations, and thus cannot account for situations
such as over-subsidization of an Edge node. In addition, the
amount of data required for a simple predictive model based on
our insight is very small and thus can be customized quickly
and efficiently.

We have identified the characteristics of the various Edge
node components relevant for CAV-based inference workload,
and classify the variables for CPU and Input size as linear
while taking special measures for over-subsidization situations.

Deeper profiling into the layer performance of the data
shows that it is only a few specific layers that are affected
by the memory contention. To start off, in Fig. 8 and Fig. 9,

16
Linear: y =0.01847*x + 2.07
R? = 0.9969
14 o
8
12 3
8
101]
2 6 °
= o8t 8
o N
6 8%
©
at o€
@@
(oS)
0 100 200 300 400 500 600 700
Input Size (Kp)

Linear: y = 0.02342°x - 0.4633
R?=0.9966

1
150 200 250 300 350 400

Input Size (Kp)

Fig. 10. Edge input vs time for YOLO and Faster R-CNN.

we see the impacted layers for w and 6 respectively. These
findings allow for a much more targeted approach to research
and optimize ML methods for Edge devices with expectations
of memory contention or lower hardware specifications.

V. IMPLICATIONS AND DISCUSSION

In our generalization, we first considered a non-linear ap-
proach to encompass all the variables from Section IV at the
same time. To do this, we test out multiple modeling methods.
We show the results of including all of our targeted variables
in Table I. Here, we see that while Linear Regression does
give a decent model accuracy, it is out shadowed by methods
such as MLP [37] and Correlated Nystrom Views [38].

Method Model Accuracy
Linear Regression 0.82
Gaussian Process 0.76
Isotonic Regression 0.85
MLP* Regressor 0.88
MLP Base 0.84
Pace Regression 0.8
Radial Basis Network 0.43
Radial Basis Regressor 0.87
SMOreg (SVM) 0.81
Correlated Nystrom Views | 0.9
TABLE III

TRADITIONAL AND ML PREDICTOR MODELS BASED ON THE FEATURES
LISTED IN TABLE I. COEFFICIENTS OF LAYERS POINT TO EQUATION (1).

Through further testing, we have tried to train and tune the
aforementioned models based on actual data and compare their
prediction capabilities across platforms. But due to the data
sample size, the models see overfitting issues. In an attempt
to get around this, we used SMOTE [39] to upsample our data
where needed to achieve a better-generalized result. However,
the effort was too tedious and require further research to be
optimized.

While we believe that the ML method of modeling based
on the variables will outperform the generalized formulations
presented, it will require much more data to be sufficient and

112

will require retraining for each individual Edge node in a self-
update loop, which will also require more resources.

A. Unusual findings

There are several unusual findings that are interesting. First,
in our profiling, we find that oversubsidized workloads will
trigger the OOM Kkiller Linux kernel on the Nvidia Jetson, but
not on the other platforms with the same Linux kernel and
OOM policy. As this exceeds the scope of this paper, we did
not investigate this phenomenon further. This finding may be
pursued further as a CAV workload scheduling optimization
issue.

Another anomaly we encountered during profiling was the
discrepancy between the theoretical computation load and the
actual workload latency profiled. For example, as explained in
the layer-wise profiling section, we encountered a situation
where shortcut layers and routing layers are having larger
latency than normal convolutional layers. While this can be
directly linked to the lack of memory, but it does not explain
the huge latency increase we profiled. Also, in computation
size, both shortcut layers and routing layers have a very
small computation footprint, which makes this finding even
more useful for optimization research. Again, as the technical
challenges found in this phenomenon exceed the scope of this
paper, this was not investigated further. We hypothesize that
this may be a direct cause of a linear or sequential architecture
workflow. Future works for this would be to investigate the
base ML algorithms and also ones that can be paralleled, such
as the inclusion of transformers, to see if a method can be used
to allow for a consistent theoretical to real world performance
translation.

While these findings did not affect the workload profiling,
they do present additional avenues for future research.

VI. CONCLUSION AND FUTURE WORK

Machine learning and Al workloads have achieved stability
in our current society, with the widespread adoption of Edge
technology by major technology companies like Microsoft

Azure, Amazon AWS, and IBM [40], [41], [42]. Despite the
benefits, utilizing on-road Edge to offload workloads from
CAVs presents numerous unknowns. Existing works on opti-
mizing and facilitating machine learning on Edge devices lack
the deep insights required for Edge users and device providers
to estimate the behavior of machine learning workloads across
diverse configurations. In this paper, we address these issues
and identify potential areas for improvement. We propose a
novel approach to optimize workloads by considering Edge
device parameters, workload input, and algorithm architecture.
The profiling and insights provided in our approach can be
generalized beyond the specific machine learning algorithms
examined in this paper.

While the models we present are basic, they offer better clar-
ity in characterizing workload behavior compared to traditional
machine learning (ML) models. Although some ML models
like MLP and Correlated Nystrom Views can predict workload
behavior, they necessitate extensive training and struggle to
encompass different ML inference algorithms.

By characterizing and generalizing our findings, we pro-
vide valuable insights into the performance and potential of
Edge devices for machine learning workloads. Our analysis
demonstrates that even when overloaded with memory con-
tention, algorithms such as YOLO and Faster R-CNN can still
complete their tasks, suggesting that resource oversubscription
on Edge devices is a viable option for non-real-time sensitive
tasks.

Moreover, leveraging memory and layer-wise information
enables optimization of both the architecture and deployment
of machine learning models, leading to improved efficiency of
Edge devices and reduced energy consumption. Our analysis
identifies critical bottlenecks in machine learning workloads,
as discussed in Sections IV and V.

The ability to predict the execution time of specific layers
offers several benefits for future research. Firstly, it allows for
the optimization of model architecture and hyperparameters
by identifying the most time-consuming layers and optimizing
their performance. Secondly, it enhances the efficiency of the
model during training or inference by scheduling the layers
to maximize available resources and reduce overall execution
time. Finally, it facilitates the development of new algorithms
and techniques that consider the performance characteristics
of individual layers, enabling the creation of more efficient
and accurate machine learning models.

The contributions of our paper are significant. Our pro-
posed approach provides a targeted method for predicting
the performance and maximum workload capabilities of Edge
devices for machine learning inferencing tasks. These insights
enable other researchers and service providers to conduct
future research on more efficient algorithms and strategies
for resource management, including memory and processing
power, ultimately reducing contention, and improving overall
performance. Additionally, exploring the utilization of dis-
tributed systems and Edge-to-cloud architectures can help
alleviate resource contention and enhance scalability.

Another promising area to explore based on our findings is

113

the development of accurate and efficient profiling tools and
methodologies capable of handling the complexity and vari-
ability of machine learning models and Edge device hardware.
Through a thorough understanding of workload behavior, stan-
dardized benchmarks and metrics can be established to target
variables for more generalized use cases. Furthermore, our
findings suggest the need to address privacy considerations.
While our profiling did not account for privacy algorithms
and methods applied to the selected workloads, incorporating
privacy-preserving techniques and data obfuscation methods
may reveal different workload characteristics and yield ad-
ditional insights. Considering privacy aspects in workload
profiling can provide a more comprehensive understanding of
the challenges and opportunities involved.

In conclusion, there are numerous potential areas for future
research in profiling machine learning workloads on Edge de-
vices. Addressing these challenges will be crucial for enabling
the widespread deployment of machine learning models on
Edge devices. By delving into these areas, researchers can
contribute to the advancement of efficient algorithms, resource
management strategies, profiling tools, and privacy-preserving
techniques, ultimately facilitating the seamless integration of
machine learning in Edge computing environments.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
constructive comments and suggestions. This work has been
supported in part by the U.S. National Science Foundation
grants CNS-2231519, CNS-2113805, CNS-1852134, OAC-
2017564, ECCS-2010332, CNS-2037982, DUE-2225229, and
CNS-1828105.

REFERENCES

“Exclusive: Surveillance footage of tesla crash on bay bridge,”
https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21-37.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848,
2017.

D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: an instance segmen-
tation approach,” in 2018 IEEE intelligent vehicles symposium (IV).
1EEE, 2018, pp. 286-291.

S. Lu and W. Shi, “Vehicle computing: Vision and challenges,” Journal
of Information and Intelligence, 2022.

A. Waheed, M. A. Shah, S. M. Mohsin, A. Khan, C. Maple,
S. Aslam, and S. Shamshirband, “A comprehensive review of comput-
ing paradigms, enabling computation offloading and task execution in
vehicular networks,” IEEE Access, vol. 10, pp. 3580-3600, 2022.

L. Liu, Z. Dong, Y. Wang, and W. Shi, “Prophet: Realizing a predictable
real-time perception pipeline for autonomous vehicles,” in 2022 IEEE
Real-Time Systems Symposium (RTSS). 1EEE, 2022, pp. 305-317.

[4]

[51

[6]

[71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

(23]

[24]

[25]

126

[27]

(28]

[29]

L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Transactions on Intelli-
gent Transportation Systems, 2022.

Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: feature
based cooperative perception for autonomous vehicle edge computing
system using 3d point clouds,” in ACM/IEEE Symposium on Edge
Computing (SEC), 2019.

H. Sun, B. Zhang, X. Zhang, Y. Yu, K. Sha, and W. Shi, “Flexedge:
Dynamic task scheduling for a uav-based on-demand mobile edge
server,” IEEE Internet of Things Journal, vol. 9, no. 17, pp. 15983—
16 005, 2022.

Y. Yao, B. Liu, Y. Zhao, and W. Shi, “Towards edge-enabled distributed
computing framework for heterogeneous android-based devices,” in
2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), 2022, pp.
531-536.

S. Tang, B. Chen, H. Iwen, J. Hirsch, S. Fu, Q. Yang, P. Palacharla,
N. Wang, X. Wang, and W. Shi, “Vecframe: A vehicular edge com-
puting framework for connected autonomous vehicles,” in 2021 IEEE
International Conference on Edge Computing (EDGE). 1EEE, 2021,
pp. 68-77.

Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet of Things Journal, 2020.

Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131-2165, 2021.

S. Hu, G. Li, and W. Shi, “Lars: A latency-aware and real-time
scheduling framework for edge-enabled internet of vehicles,” IEEE
Transactions on Services Computing, vol. 16, no. 1, pp. 398-411, 2023.
K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

Y. Cai, W. Hua, H. Chen, G. E. Suh, C. De Sa, and Z. Zhang, “Structured
pruning is all you need for pruning cnns at initialization,” arXiv preprint
arXiv:2203.02549, 2022.

Z. Hou, M. Qin, F. Sun, X. Ma, K. Yuan, Y. Xu, Y.-K. Chen, R. Jin,
Y. Xie, and S.-Y. Kung, “Chex: channel exploration for cnn model
compression,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12287-12298.

S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie, and
Z. Yang, “Seernet: Predicting convolutional neural network feature-map
sparsity through low-bit quantization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11216-11225.

S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber threats facing
autonomous and connected vehicles: Future challenges,” IEEE transac-
tions on intelligent transportation systems, vol. 18, no. 11, pp. 2898-
2915, 2017.

Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 3, pp. 515-529, 2019.

H. Li, P. Xiong, J. An, and L. Wang, “Pyramid attention network for
semantic segmentation,” arXiv preprint arXiv:1805.10180, 2018.

D. P. Carrasco, H. A. Rashwan, M. A. Garcia, and D. Puig, “T-yolo: Tiny
vehicle detection based on yolo and multi-scale convolutional neural
networks,” IEEE Access, 2021.

P. Adarsh, P. Rathi, and M. Kumar, “Yolo v3-tiny: Object detection
and recognition using one stage improved model,” in 2020 6th interna-
tional conference on advanced computing and communication systems
(ICACCS). IEEE, 2020, pp. 687-694.

M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1-17, 2018.

W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Real-
time object detector with minimized end-to-end delay for autonomous
driving,” in 2020 IEEE Real-Time Systems Symposium (RTSS). 1EEE,
2020, pp. 191-204.

B. Cox, J. Galjaard, A. Ghiassi, R. Birke, and L. Y. Chen, “Masa: Re-
sponsive multi-dnn inference on the edge,” in 2021 IEEE International
Conference on Pervasive Computing and Communications (PerCom),
2021, pp. 1-10.

114

[30]

[32]

[33

=

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar, “Deepeye: Resource efficient local execution of multiple deep
vision models using wearable commodity hardware,” in Proceedings of
the 15th Annual International Conference on Mobile Systems, Applica-
tions, and Services, 2017, pp. 68-81.

B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in Pro-
ceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking, 2018, pp. 115-127.

Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). 1EEE, 2019, pp. 392-405.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security
and privacy-preserving in edge computing paradigm: Survey and open
issues,” IEEE access, vol. 6, pp. 18209-18 237, 2018.

T. Bai, D. Shao, Y. He, S. Fu, and Q. Yang, “P3: A privacy-preserving
perception framework for building vehicle-edge perception networks
protecting data privacy,” in IEEE International Conference on Computer
Communications and Networks (ICCCN). 1EEE, 2023.

T. Bai, S. Fu, and Q. Yang, “Privacy-preserving object detection with
secure convolutional neural networks for vehicular edge computing,”
Future Internet, vol. 14, no. 11, p. 316, 2022.

F. Murtagh, “Multilayer perceptrons for classification and regression,”
Neurocomputing, vol. 2, no. 5-6, pp. 183-197, 1991.

B. McWilliams, D. Balduzzi, and J. M. Buhmann, “Correlated random
features for fast semi-supervised learning,” Advances in Neural Infor-
mation Processing Systems, vol. 26, 2013.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321-357, 2002.

“Azure private multi-access edge compute (mec) microsoft
azure,” https://azure.microsoft.com/en-us/solutions/private-multi-access-
edge-compute-mec/overview.

“Aws for the edge — edge computing and storage, 5g, hybrid, iot -
amazon web services,” https://aws.amazon.com/edge/.

“Edge computing solutions ibm,” https://www.ibm.com/edge-
computing.

