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Microbial consortia exhibit complex functional properties in contexts
ranging from soils to bioreactors to human hosts. Understanding

how community composition determines function is a major goal of
microbial ecology. Here we address this challenge using the concept of
community-function landscapes—analogues to fitness landscapes—that
capture how changes in community composition alter collective function.
Using datasets that represent abroad set of community functions, from
production/degradation of specific compounds to biomass generation,

we show that statistically inferred landscapes quantitatively predict
community functions from knowledge of species presence or absence.
Crucially, community-function landscapes allow prediction without explicit
knowledge of abundance dynamics or interactions between species and can
be accurately trained using measurements from a small subset of all possible
community compositions. The success of our approach arises from the fact
that empirical community-functionlandscapes appear to be not rugged,
meaning that they largely lack high-order epistatic contributions that would
be difficult to fit with limited data. Finally, we show that this observation holds

across awide class of ecological models, suggesting community-function
landscapes can be efficiently inferred across a broad range of ecological
regimes. Our results open the door to the rational design of consortia
without detailed knowledge of abundance dynamics or interactions.

Biology is a science of connecting scales of organization. From pro-
teins to ecosystems, we are faced with the question of how variation
atalower scale of organization gives rise to changes at a higher scale.
For example, understanding protein evolution requires learning how
variation in the primary amino acid sequence determines fold and
function. Similarly, at the level of the organism, genetic variation drives
changesin phenotype andfitness. Inboth cases, interactions between
constituent parts give rise to functional system properties.

One of the most powerful conceptual frameworks for thinking
about how these functional properties emerge from components
and their interactions is the notion of a landscape’, where the
height of the landscape encodes a scalar-valued function or fit-
ness and position on the landscape corresponds to a particular
configuration of components. Landscape thinking permits us to
articulate key properties of the mapping from genotypes to fitness,
including the relative fitness of related genotypes?, the extent and

'Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. *Center for the Physics of Evolving Systems, University of
Chicago, Chicago, IL, USA. °Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA. *Department of Microbial Biotechnology,
National Center for Biotechnology (CNB-CSIC), Madrid, Spain. °Department of Pathology, University of Chicago, Chicago, IL, USA. ®Duchossois
Family Institute, University of Chicago, Chicago, IL, USA. 'Department of Physics, Washington University in St. Louis, St. Louis, MO, USA.

e-mail: tikhonov@wustl.edu; seppe.kuehn@gmail.com

Nature Ecology & Evolution | Volume 7 | November 2023 | 1823-1833

1823


http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-023-02197-4
http://orcid.org/0000-0001-6812-4745
http://orcid.org/0000-0001-8995-4529
http://orcid.org/0000-0002-9558-1121
http://orcid.org/0000-0002-4130-6845
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-023-02197-4&domain=pdf
mailto:tikhonov@wustl.edu
mailto:seppe.kuehn@gmail.com

Article

https://doi.org/10.1038/s41559-023-02197-4

nature of interactions between genes** and the dynamics of evolu-
tionary trajectories®”’.

Communities of microbes also exhibit functional properties, from
degrading complex substrates®’ to resisting invasions'®?, that arise
fromthe constituent parts and their interactions (Fig. 1a). Itis natural to
askwhether thelandscape concept canalso be usefulinthese scenarios.
Here we take inspiration from methods for understanding landscapes
for proteins and organisms to characterize the functional landscapes
of microbial communities”.

Duringthe past century, it has become routine to infer landscapes
inthe protein and organismal context statistically* . Given that directly
assaying all possible mutation combinationsis typically infeasible, the
statistical approach aims to approximate the landscape fromasmaller
number of measurements via regression'®, with the interactions between
mutations quantified via nonlinear epistatic terms. It is important to
note that this approach explicitly neglects the details of the complex
and often dynamical underlying processes that cause the fitness change.
For example, a statistical approach does not explicitly account for the
complex physicalinteractions between residues that alter the function
ofanenzyme. Similarly, at the organismallevel, this approach neglects
the details of how mutations impact gene expression or life history
traits. Despite this dramatic simplification, regression-based statistical
approaches have been highly successful inboth these contexts*'*?°,

Inspired by these successes, here we take a landscape approach
to quantitatively predict functions of interest in microbial communi-
ties. From this perspective, the presence and absence of species are
analogous to mutationsina proteinor genome, and aregression canbe
formulated to predict community function from species presence and
absencealone. Thisisin contrast to most existing approachesto predict-
ing community function, which almost exclusively seek to understand
how species presence impacts abundance dynamics and, consequently,
function”*, Here we consider the possibility that community func-
tion can be understood without the intermediate step of predicting
dynamics (Fig. 1b). We note that this approach explicitly ignores prio-
rity effects®, multistability* or any other scenario when presence/
absence information does not uniquely specify the community state.
Nevertheless, as we will show, community-function landscapes prove
remarkably predictive across arange of ecological contexts. This does
not mean thatpriority effects are absent, merely that, for the examples
considered here, their impact on community function is, on average,
weak enough that the predictive power remains high.

Implementing this approach requires measurements of com-
munity function for sets of synthetic communities constructed from
libraries of taxa. Here we utilize six existing datasets of this type, repre-
sentinga diverse set of functional properties®*>* >, For all the datasets
we study, we find that the functional landscape is well described by
modelsincluding only additive and pairwise epistatic terms. Moreover,
we find that the ruggedness of these landscapes is surprisingly low,
such that the effects of species presence/absence on function are, in
fact, dominated by additive terms. We support these observations
computationally, showing that a regression approach succeeds in
learning the community-function landscape across a large class of
ecological models, despite using only additive and pairwise terms and
only species presence/absence asinput.

Takentogether, our results show that, at least in the six examples
presented here, learning the properties of communities can be
accomplished without a detailed understanding of the interactions
between taxa or their abundance dynamics. Our findings enable a
powerful conceptual framework for predicting community functional
properties, frominvasionresistance to biotechnological applications.

Results

Learning community-function landscapes viaregression
Wefirst formulated astatisticalapproach tofitting community-function
landscapes using datasets that comprise measured values of microbial

community functions for aset of defined species combinations. In each
of these experiments, a defined pool of species was used to construct
communities combinatorially. Each community was then incubated,
typically for a defined period of time, and then a functional property
of interest was assayed. For a pool of N total species, there are 2¥ -1
possible species combinations, and measuring all possible combina-
tions is frequently intractable. The first goal of our investigation was
to ask whether we can predict the function of all 2V — 1 communities
by fitting a statistical model to a small subset ( « 2V -1) of all possible
consortia. The resulting model would provide a global picture of the
community-function landscape.

We formulated this problem as a linear regression of the follow-
ing form:

y:ﬁ0+2ﬁixi+2ﬁij'xi~xj'+-~-: 0

i<j

whereyisthescalar-valued function and x;represents the presence or
absence of species i in that community. The coefficient j;is the addi-
tive effect ofincluding species iin the community, and ;is analogous
to the effect of pairwise epistasis in genetic fitness landscapes, which
measures theimpact beyond individual additive effects of adding both
speciesiandj. The ellipses denote higher-order epistasis terms, for
example, three-way epistatic terms captured by third-order polyno-
mials and so on.

We took the convention that x;=1if species i is present in a com-
munity andx;=-1ifthat speciesis absent. We denoted absence using -1
instead of 0 to simplify theinterpretation of the regression coefficients
(discussioninref. 30). In brief, using x;= + 1 allows us to interpret §;as
the average effect of adding species i to community function, where
the average is taken over all community compositions. Similarly, the
pairwise coefficient 8;captures the average epistatic effect of species
iandj together across many consortia. Moreover, this convention
(corresponding to the Fourier expansion of the landscape) has some
convenient mathematical properties that make it easier to quantify
how much variationinthe measured functionis captured by additive,
pairwise and higher-order terms®>",

We considered regressions truncated at first, second and third
orders. Many of the datasets we utilized sampled a number of com-
munity configurations that are comparable to the total number of coef-
ficients to be inferred. To mitigate the risk of overfitting, we employed
L,-regularized regression (LASSO)** using a cross-validation proce-
dure to estimate the regularization hyperparameter (Methods). To
assess out-of-sample generalization error, we applied an additional
leave-one-out cross-validation scheme in which each data point was
iteratively left out of sample and the model was fit to all remaining
data points, allowing an out-of-sample prediction for each distinct
experimental community (Methods).

Community function is predictable from species composition
We compiled six datasets in which synthetic bacterial communities
were assembled from a pool of species. These datasets represent a
broad spectrum of community functions: Clark et al.”> measured the
production ofthe short-chain fatty acid butyrate (Fig. 2a); Langenheder
et al.” measured a combination of biomass and redox activity on the
monosaccharide xylose (comment in Methods); Sanchez-Gorostiaga
etal.” measured the breakdown of the polysaccharide starch (Fig. 2b,c);
Diaz-Colunga et al.”® measured the total production of iron-scavenging
siderophores (Fig. 2d). Inaddition, we considered biomass-related com-
munity functions: work by the Sanchez lab (Methods) measured total
community biomass (Fig. 2e), and Kehe et al.*’ measured the abundance
of asingle target species (Fig. 2f). Details about the size and species
pools for each dataset are given in Supplementary Table 1.

Ineach dataset, community function can be defined as a measur-
able scalar quantity, for example, the concentration of a compound
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Fig.1| Statistically learning community-function landscapes. a, Examples
of microbial community functions including (left to right): production of
biomass, conversion of substrate to product and suppression of a pathogen.
b, Contrasting the statistical landscape view (top) of predicting community
function with the dynamical view (bottom). In the dynamical view, species
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abundance dynamics are predicted via an ecological model, which integrates
knowledge or measurements of interactions between populations. In contrast,
the statistical landscape approach neglects dynamics and measures community
function for a set of consortia, allowing functions for all possible community
combinations to be inferred statistically.

orameasurement of biomass at agiven pointintime. Therefore we fit
models of the form shownin equation (1). We investigated truncating
the model atsuccessively higher orders of epistatic terms to determine
what degree of model complexity is needed to accurately predict com-
munity function. The quality of the fits are shown in Fig. 2 (bar plots)
forincreasingly complex models, with shaded bars showingin-sample
R? and white bars showing out-of-sample R? (Methods); scatter plots
visualize the quality of second-order out-of-sample model predictions.

Remarkably, across all six datasets studied here, models of
first or second order provide high-quality predictions (R? - 0.8 for
second-order models). In most cases, additive models alone (for exam-
ple, y =B, + Y Bx,) already have strong predictive power (R*> 0.5),
although the addition of second-order terms yielded an increased
quality of fit for all datasets. We note that residuals of observed versus
predicted values demonstrate similar patterns of heteroskedasticity
across datasets, where communities with higher values of the function
relative to the mean tend to be underestimated and those with lower
values of the function tend to be overestimated (Fig. 2 and Extended
DataFig.1).Itis possible that these patterns are a consequence of bias
induced by regularization'®. We note that errors in our predictions do
not correlate with community richness (Extended Data Fig. 2), indicat-
ing that our models generalize well to diverse communities.

For the dataset by Clark et al. (Fig. 2a), the authors of the original
study predicted butyrate production using a complex model that
parameterized interactions and abundance dynamics. The quality of
our statistical predictions using species presence/absence are similar
to those obtained using acomplex dynamical model®, suggesting that
detailed dissections of community dynamics are not always necessary
to make reasonably good predictions of community function.

Empirical community-function landscapes are not rugged

We demonstrated that statistical models based on species presence/
absence can predict microbial community functions with surprising
accuracy. In particular, simple models containing only additive and/or

pairwise epistatic terms explained the vast majority of the variation
in the data (Fig. 2). Our statistical approach represents a strategy for
approximating the empirical community-function landscapes for
these datasets. We wanted to gain intuition for why these regressions
appeared to be so successful. To do this, we sought to quantify the
ruggedness of community-function landscapes.

Inanevolutionary context, the ruggedness of afitness landscape
dictates the number of local fitness optima and has important impli-
cations for the predictability of evolution®. In a community context,
very rugged landscapes are expected to be much harder to approxi-
mate globally using regression methods such as those used here, sim-
ply because ruggedness arises from a substantial number of strong
high-order epistatic terms. High-order terms are challenging tolearn
statistically due to the explosive combinatorial increase in the number
of terms as model order increases. Thus, we expect that rugged land-
scapes will be difficult to learn statistically, while non-rugged ones will
be straightforward to approximate using low-order models.

We quantified ruggedness using two complementary approaches:
first, by explicitly quantifying the relative contribution of terms of
different orders to the total variance, as explained below; and second,
by using anestablished metric of ruggedness denoted r/s (‘roughness
over slope’). To pursue the first approach, we started with the combi-
natorially complete dataset from Langenheder et al.” inwhich growth
on xylose was measured for all 2° - 1= 63 species combinations that
canbeformed fromasix-species pool. This combinatorially complete
dataset allowed us to compute the coefficients of the exact full-order
empirical landscape, which is a model of the form equation (1) that
includes epistatic terms of all possible orders (that is, up to sixth order).
Usingthis exactly inferred landscape, we generated aFourier amplitude
spectrum (Methods), which is adecomposition that reflects the total
variance of the landscape that is captured by terms of each order**™,
Thisspectrum, showninFig.3a(redline), indicates that-78% and -16%
ofthevarianceinthelandscapeis explained by first-and second-order
terms, respectively, leaving ~6% of variance remaining for higher-order
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Fig.2| Community functionis predictable from species presence/absence
inempirical datasets. For each dataset, regularized linear regressions were
performed using models truncated at the first, second and third order (equation
(1)). Bar plots show the quality of fit (R?) for each of these models, either using all
experimental data or using a systematic leave-one-out cross-validation approach
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(labelled ‘LOO-CV’). Scatter plots show out-of-sample prediction values for the
second-order regression fits obtained via the leave-one-out cross-validation
procedure. a-f, Analyses are shown for datasets by Clark et al.”> (a), Langenheder
etal.” (b), Sanchez-Gorostiaga et al.” (c), Diaz-Colunga et al.”® (d), data from the
Sanchezlab (e) and Kehe et al.” (f). Extended Data Figs. 1-4 provide more details.

terms. In other words, this exact community-function landscape dis-
playsalow degree of ruggedness, asitis dominated by low-order terms
andis largely free of consequential higher-order terms.

To assess whether this result reflects a meaningful property of
the empirical community-function landscape, we performed arando-
mization test by computationally shuffling the assignments between
function measurements and community compositions. For 100 such
randomizations, we inferred the new landscape and computed the
Fourieramplitude spectra. Theresults are plotted in Fig. 3a (blackline).
For the randomized landscapes, we found that terms of third order
were most important and additive terms alone captured only 10% of
the variance; the peak at third order arises from the fact that there are
combinatorially more terms possible at this order than any other. We
concludedthatalack of ruggednessinthe true landscapeis not spurious
butrather adistinctly non-randomstructural feature of this landscape.

We performed similar analyses for the remaining five datasets to
estimate the relative importance of coefficients of different orders.
Although these datasets are not combinatorially complete and there-
fore do not permit the inference of the exact amplitude spectra, we
inferred a truncated amplitude spectra via third-order regression.

We found that in each case, the dominant coefficients are additive,
with pairwise coefficients typically the next mostimportant (Fig. 3b).
Thelarge fraction of variance explained by additive and pairwise coef-
ficients across these cases againindicates alow degree of ruggedness.

As asecond approach to quantify ruggedness, we computed the
roughness/sloperatio (r/s) (refs. 33,34),a commonly used ruggedness
metric that quantifies how well a landscape is fit by a purely additive
model. Explicitly, roughness ris computed by fitting a model with
additive terms only (for example, y = B, + Y.8x;) and determining a
residual to this fit. The roughness (r) is the root-mean-square value of
these residuals. Slope sis defined as the mean (absolute) value of the
additive coefficients ;.. Theratio r/srepresents the typical magnitude
of additive model error relative to the typical magnitude of an additive
term. Large values of this ratio mean that the approximation afforded
by an additive modelis poor, indicating a high degree of ruggedness.

To make a well-defined comparison between all datasets, we com-
puted normalized r/s values, defined as the ratio between r/s on the
original dataset and r/s for 100 randomized landscapes (Methods).
Randomized landscapes served here as a natural high-ruggedness
comparison. We found that this ratio was consistently <1, indicating
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Fig. 3| Empirical community-function landscapes are not rugged.

a, Normalized Fourier amplitude spectrum obtained from the combinatorially
complete landscape from Langenheder et al.”’. Normalized amplitude values
correspond to the fraction of total landscape variance that is captured by terms
ateachorder. The empirical amplitude spectrum (red) demonstrates that
landscape variance is primarily explained by first-order terms, with higher-
order terms explaining decreasing fractions of the variance. This denotes alow
degree of ruggedness in the empirical landscape. Black traces show spectra
obtained from randomized landscapes (points and error bars indicate the mean
and standard deviation, respectively, across 100 randomizations). Unlike the
empirical landscapes, the randomized versions are rugged: first-order terms
explain arelatively small fraction of total variance. b, For each additional dataset
thatis not combinatorially complete, the fitted coefficients of the regularized

third-order linear regression are used to infer the normalized amplitude
spectrum at first through third order. As in panel a, first-order terms explain
more variance in the landscape than terms at second and third orders, indicating
alack of ruggedness. ¢, For each dataset, normalized r/s values (a measure of
ruggedness; text) are computed by calculating the ratio of empirical r/s values
onoriginal landscapes to the r/s value of 100 randomized landscapes. The
normalized r/s values for all datasets are notably smaller than1, again indicating
alow degree of ruggedness in empirical landscapes compared to their
randomized counterparts. The boxplots show the median as the centre line,

with the boxes corresponding to the upper and lower quartiles, whiskers
corresponding to values that lie within 1.5x the interquartile range and individual
pointsindicating outliers.

that true landscapes are much less rugged than comparable random
landscapes (Fig. 3c).

We concluded that across a diverse range of microbial community
functions, empirical landscapes possess a low degree of ruggedness,
corresponding to the dominance of low-order (that is, additive and
pairwise epistatic) terms, and a notable absence of higher-order epi-
static terms. This enables low-order statistical models to faithfully
parameterize empirical landscapes and thereby accurately predict
community functions.

Ecological modelsindicate when landscapes can be learned

We have demonstrated multiple empirical examples where the func-
tional landscape of a microbial community proves to be non-rugged,
allowing low-order statisticalmodels to predict the function of interest.
Tounderstand the expected generality of this observation beyond the
six datasets considered here, we turned to ecological models, generat-
ing large ensembles of random communities for which the functional
landscapes canbe evaluated insilico. Our goal was not to fit models to
the empirical examples above but to probe the conditions under which
alack ofruggednessis expected tobe rare or common and to identify
the ecological scenarios under which low-order statistical inference
is expected to fail.

Wefirstsought tointerrogate synthetically generated community-
functionlandscapes using the generalized Lotka-Volterra (gLV) model,
withtotal abundance (biomass) serving as the function of interest. The
gLV model has many variants that differinassumptions regarding the
structure of randomly generated species interactions, but as recently
argued by Barbier et al., a large class of such variants can be reduced
to a four-parameter ‘reference model’”. We adopted this reference
model for our analyses (Methods), focusing on a sweep of the two key
parameters describing interaction strength (1) and interaction vari-
ability (o). Further analysis varying all four parametersis presentedin
Supplementary Fig. 5.

Foreach combination of zand o, we performed 10 trials of generat-
ing arandom pool of N=10 species (a pool small enough to evaluate
the combinatorially complete set of all possible communities) and
computed the exact community-function landscape (mimicking our
procedure for the Langenheder et al. data in Fig. 3a). The fraction of
variance explained by the first- and second-order terms, equivalent
tothe predictive power (R?) of the second-order approximation of the
landscape, is shown in Fig. 4a. These values are averaged over the ten
trials at each pointin the u-o plane. In the reference model, positive
p corresponds to interactions that are competitive on average, while
larger values of o correspond to a greater degree of variability in the
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Fig. 4 |Ecological models indicate both optimism and caution for inferring
community-function landscapes. a, The gLV model was used to generate
combinatorially complete synthetic community-function landscapes, taking
total abundance as the function of interest. Landscapes were generated using an
N =10 species pool, and two parameters controlling the structure of randomly
drawninteractions were varied: aninteraction-strength parameter g and an
interaction variability parameter g, with ten landscape trials for each point

in the u-o plane. Heat map shows the (trial-averaged) R? of the second-order
approximation of the exact landscape, that is, the variance explained by first- and
second-order terms combined. This value is computed from the exact landscape
coefficientsinferred asin Fig. 3a (nofitting required). Note that as interaction
variability dbecomes large, the model becomes unstable, causing species
abundances to diverge. In our simulations, any points in the y-o plane that
encountered divergences in more than five landscape trials are indicated in grey.

P Shortest path

Shortest path length (P)

Theblack curve shows an analytical prediction (computed in the N > e limit*)
for the stability boundary of the gLV model, beyond which species abundances
will typically diverge. Supplementary Figs. 5 and 6 detail more. b, A consumer
resource model (CRM) was used to generate synthetic community-function
landscapes with randomly generated cross-feeding networks (schematic).
One resource was supplied externally (‘source’), while the function of the
community was defined to be the concentration of a different resource (‘target’).
Networks comprising N=10 species and L = 8 resources were generated so as
tovary the length of the shortest path (P) connecting the source resource to
the target. Plot shows the variance explained (R?) by models truncated at first,
second and third order, computed using the exact landscape coefficients and
shown as a function of P. The R? value declines with P, as expected. Solid lines
correspond to mean values obtained across trials, with error bands indicating
+1standard deviation.

strength of interactions. Note that asinteraction variability o becomes
large, the Lotka-Volterra model becomes unstable, causing species
abundances to diverge®. In our simulations, any points in u-o plane
that encountered divergences in more than five trials are indicated in
grey (Fig.4a). Additional details about these simulations are described
inMethods.

We found that across the entire range of parameters for which
the dynamics of the model are stable, second-order regression pro-
vides excellent fits (R*z 0.9) to gLV community-function landscapes
(Fig. 4a; the non-grey region s all yellow). Further analysis shows that
R?remains similarly high even as we change other model parameters,
includinginteraction asymmetry and the variability of species’ carrying
capacity (Supplementary Fig. 5). These resultsindicate that non-rugged
functional landscapes can be observed across a wide range of eco-
logical scenarios.

Itisimportant to stress that the lack of ruggedness is not a trivial
property of all gLV models. Although the Lotka-Volterra model studied
here contains only second-order interactions, these interactions couple
species abundances, and therefore we do not expect the functional
landscape to be well approximated by alow-order regression onspecies
presence/absence alone. For example, rugged gLV landscapes canand
do exist (Supplementary Fig. 6). In the ensemble of models described
by Barbier et al., such examples are curiously rare (Supplementary
Fig. 6), at least for biomass as the property of interest. However, it is
likely that for other ensembles (for example, witha more complex cor-
relation structure of interactions), rugged landscapes could be more
common. Identifying the ecological mechanisms dictating whether
thelandscape of agiven functional property will be rugged or smooth
isanimportant question for future work.

Asanillustration, we present one mechanism that will generically
lead to increased ruggedness. Consider a nutrient X; that is broken
down thrgugh %chaln of L reactions following a linear pathway
X1—>X2 —=. —>XL+1 , where each reaction is performed by a

specialized community member n,. If X is the only nutrient supplied
tothe consortium, and the function of interest is the concentration of
the end product X,,;, then the concentration of X, will be non-zero if
and only ifall species n,, ...n, are present. Mathematically, if presence
or absence were denoted as s;= 0 or 1, respectively, such alandscape
would be described by a single Lth-order term: y =, , s;S,...5,.
Under the convention used here, where presence or absenceis denoted
by x;=*1, this corresponds to coefficients at all orders being
equally important. (As a simple illustration, for three species
§15,83 = (X1 + X5 + X5+ X6 + XX + XX + XX0,X;) / 8, which is easy to check

by adirectsubstitution s; = X‘+l .JInthis scenario, regressions exploit-

ing only low-order models w1II provide poor predictive power and the
landscape will be rugged (Fig. 4b).

To build on the intuition from this thought experiment, we used
a consumer resource model (CRM) to generate synthetic landscapes
with N =10 species competing for L = 8 nutrients. Only one resource
was supplied externally (‘source’, Fig. 4b, red dot), while the function
of the community was defined to be the concentration of one of the
otherresources (‘target’, Fig.4b, blue dot).In each trial, we constructed
arandom cross-feeding network for apool of N=10 species, witheach
species capable of converting one randomly chosen resource into
another. We then computed the complete functional landscape, as
above forthe gLV, by simulating all possible subsets of this ten-species
pool. Simulation details are described in Methods.

Onthebasis of the intuition from the thought experiment above,
we expected the predictive power of low-order approximationsto cor-
relate with the length of the shortest path (P) connecting the source
resource to the target (schematic, Fig. 4b). The landscapes corres-
ponding to cross-feeding networks with long paths from source to
target (that is, large P) are expected to be more rugged. To confirm
this, Fig. 4b plots the fraction of variance (R?) explained by low-order
approximations of the exact synthetic CRM landscapes, shown as a
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function of the shortest chain length P. We observe that while suc-
cessfulin cross-feeding networks with small P, low-order models were
increasingly challenged as Pincreases, with R dropping below 0.5 for
second-order models beyond P=4.Increasing model order from addi-
tive only to third order substantially improved predictive power, par-
ticularly atlarge P, consistent with the idea thatincreasing Pincreases
the prevalence of higher-order terms. These results illustrate that
low-order approximations of community-function landscapes may
fail to make accurate predictions in ecological scenarios with long
chains of trophic dependencies or other situations when function is
strongly contingent on the simultaneous presence of multiple species.

Discussion

Thekey result of our study is the demonstration that functional proper-
ties of microbial communities can be predicted by simple statistical
models knowing only which species are present or absent. Remarkably,
in analogy to fitness landscapes describing proteins and organisms,
we showed that regressions can quantitatively describe empirical land-
scapes for a wide range of community functions. We found that the
success of these regressions derives from the fact that the underlying
landscapes are notrugged, allowing the majority of variation in function
to be captured by additive and pairwise terms in the regression. The
predictions did not require specialized knowledge or measurement of
microscopic system properties, only adataset comprising quantitative
measurements of a function taken from a collection of defined com-
munities drawn from a fixed pool of species.

Our simulations of generalized Lotka-Volterra and consumer
resource models demonstrated that we can expect low-order approxi-
mations of landscapes to work well across a range of ecological con-
texts. We identified a clear exception, however, in functions that are
strongly contingent on the simultaneous presence of multiple highly
specialized community members. One might therefore expect that the
low-order landscape approximations might encounter challenges, for
example, insystems with longlinear chains of reactions, such as those
present in anaerobic digesters® and Winogradsky columns™, A critical
directiontobe addressed in future work is asystematic analysis of the
ecological mechanismsthat either enable orimpede the performance
of approximations of community-functionlandscapes. A better under-
standing of these mechanisms would provide amore principled view of
community functional properties amenable to our statistical approach.

Because our approach predicts community function fromspecies
presence/absence, it explicitly assumes that replicate communities
with the same composition will have the same function. This assump-
tion could fail if communities exhibit alternative stable states**° with
distinct final abundances and functions despite identical presence/
absence compositions. While alternative stable states have been docu-
mented in synthetic consortia®®, they do not appear to be widespread
or have large impacts on function in the communities studied here.
Extended DataFig. 3 shows predictions for replicate communities with
identical compositions. We find that most replicates in all six datasets
studied are well predicted by our model. We conclude that alternative
stable states do not drive substantial functional variation across the
consortia studied here. However, none of the datasets studied here
systematically varied the initial relative abundances for communities
of fixed composition, and this may resultincommunities not reaching
alternative stable states despite their existence. In ecological contexts
wherealternative stable states are pervasive and drive large functional
variation, our predictions would begin to degrade in quality.

Another questionis how our results could be extended to contexts
with extensive functional redundancy between taxa. Our regression
approach would probably struggle in these scenarios. This is easiest
toseeinthe extreme limit of taxa that are perfectly interchangeable:a
high-dimensional OR function, where OR is defined as the Boolean logi-
cal operator, has Fourier terms of all orders, and any low-order model
would be a poor approximation. Thus, the excellent performance of

our method on the available datasets is probably aided by the fact
that the labour-intensive nature of the combinatorial experiments
favours synthetic communities with relatively low redundancy. The
experimental cost associated with increasing the number of species
discourages theinclusion of taxa highly similar to those already in the
pool. This is the opposite regime of the natural communities, which
are often phylogenetically under-dispersed*-*.

Whereas the method as presented would probably struggleincom-
munities with extensive redundancy, the argumentaboveindicates how
this limitation could be remedied, namely by grouping redundant taxa
before performing regressions. Infact, our results suggest that the high
predictive power of asimple regression onthe variables describing the
presence or absence of any member in a group could be taken as the
criterionindicating that the grouping was chosen appropriately. This
offers a path towards quantitative prediction of complex community
functions in the high-diversity regime and echoes recently proposed
ideas from multiple groups* .

Our results complement previous studies demonstrating that
community-function landscapes follow patterns of global epistasis®®.
These patterns were first discovered in the context of organismal fitness
landscapes*®™*8, Global epistasis refers not to the impacts of individual
epistatic terms but rather to properties (for example, diminishing
returns) that emerge from the collective impact of many epistatic
contributions. Inthe context of microbial communities, global epistasis
arises as a linear relationship between the impact of adding a specific
species on community function and the function of the ‘background’
community towhich the species was added®. It is worth noting that the
regressionand global epistasis approachesrepresent distinct strategies
for predicting community function. The regressionapproach presented
here attempts to predict the function of anarbitrary community viaan
ansatzassuming that only low-order epistatic contributions areimpor-
tant, whereas the global epistasis approach attempts to estimate the
effect of adding a speciesto agiven background community harnessing
the predictability of patterns arising from combined epistatic contribu-
tions up to arbitrary order”. Connecting the concept of global epistasis
withtheregressionapproachto learning functional landscapes remains
animportant exercise, as the two approaches may provide complemen-
tary insights in different ecological scenarios.

Perhaps the greatest downstreamimpact of our study is the possibil-
ity of using statistically inferred landscapes to rationally design commu-
nities with desired functional properties. Because community-function
landscapes can be approximated by sampling only a subset of all pos-
sible species combinations, it is conceivable that even large synthetic
consortia with predefined functions can be designed and optimized
computationally given only a small number of measurements. Deter-
mining the optimal sampling strategy to accurately infer landscapes
remains animportant avenue for future work. For example, itisunclear
whether the sampling should include amix of simple communities of <3
taxaor whether high-diversity communities are more informative given
arestricted number of measurements. However, even without extensive
optimization, our models were able to identify the communities with the
highest functional output, even when these communities were left out of
sample. The simplicity of the approach makesit readily portable across
contexts and functions and its performance could offer an appealing
advantage relative to alternative design strategies™*.

Methods
Collection and preprocessing of datasets
Datasets were compiled from six experimental efforts to measure
various community functionsin defined synthetic microbial consortia.
Details about these datasets and references are listed in Supplementary
Tablel.

The dataset by Langenheder et al.” was generated by measuring
the activity of synthetic communities with xylose provided as the sole
carbonsource. Metabolic activity was measured via the absorbance of
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aredoxdye (tetrazoliumviolet) at 600 nm over multiple time points. It
should be noted that because cell scattering at 600 nm probably also
contributed to absorbance, the functional values collected inthis study
reflectacombination of both redox activity and biomass growth. While
this detail complicates the mechanistic interpretation of the data, it
doesnot presenta problem for our analysis, as the datastill represent
acomplex functional property for the regression approachto predict.
Here the community-function landscape we sought to approximate
was constructed from the functional values collected at the endpoint
ofthe experiment (48 h).

The dataset by Sanchez-Gorostiaga et al.” included 53 community
configurations out of the possible 63. We note that as we confirmed
withthe authors of the original study, the potentially ambiguous phras-
ingin the original manuscript (‘every combination of sixamylolytic soil
bacteria’) referred to every pairwise combination beingincludedinthe
list, not that the dataset was combinatorially complete.

Total community biomass data collected by Diaz-Colunga et al.
were notincluded inthe original manuscript®, Detailed experimental
protocols forisolation, culturing and community assembly are given
in refs. 28,50, with the biomass dataset differing from these meth-
odological details in the following ways: (1) the eight isolates used in
the biomass dataset were distinct from the siderophore production
isolates (thoughisolated using the same methodology), (2) the medium
used in biomass growth experiments lacks a trace mineral supple-
ment, (3) biomass was quantified by measuring the optical density
(OD) at 600 nm using 100 pl of endpoint cultures in an AccuSkan FC
plate reader (Fisher Scientific) and (4) monoculture measurements
for four strains were omitted, resulting in a dataset of 160 unique
configurations (instead of 164 as should otherwise result from the
methodology in ref. 28). Though isolates used in the biomass dataset
were not sequenced or taxonomically identified, colonies either pos-
sessed distinct morphologies, possessed distinct colour profiles when
grown on chromogenic agar plates (CHROMagar Mastitis GN) and/or
wereisolated fromseparate environmental samples and were therefore
probably genomically distinct.

Data from Kehe et al.”’ were generated using a microwell array
approach in which each community was assembled by randomly
grouping nanolitre droplets of defined species compositioninto2-19
droplet combinations. Due to this stochastic assembly, initial species
abundances varied beyond binary presence/absence: for example, a
three-droplet combination containing two droplets of species A and
onedroplet of species Bwill have differentinitial abbundances than the
combination of one droplet of species A and two droplets of species
B. Because the formulation of community-function landscapes in
equation (1) operates on binary species presence/absence, this vari-
ationininitial abundances was ignored and a species was considered
to be presentin acommunity if it had positive initial abundance.

In cases where datasets contained experimental replicates, the
mean over replicates was taken to obtain a single community-function
value for each unique species combination.

Statistical inference of landscapes viaregression
Community-function landscapes were approximated for empirical
datasets by fitting equations of the form equation (1) truncated at
first, second and third order viaLASSO regularization®. Tenfold cross
validation was used to estimate the regularization hyperparameter.
Allmodels were fit using the package glmnetin R version 4.1. 2. For all
datasets considered here, the computational demands of fitting our
models were modest, and all model fitting and analysis was performed
using a personal computer.

To fit the data, two strategies were employed. First, all available
data points were used to fit landscape models. The coefficients of
determination (R?) for these fits are shown in grey bars in Fig. 2, and
predicted versus observed values are shown in Extended Data Figs. 3
and4.Second, to obtain an estimate of out-of-sample model accuracy,

aleave-one-out procedure was employed. Individual data points corre-
spondingto each distinct experimental community were systematically
left out of sample, and models were then fit to all remaining data points
usingtenfold cross validation. The observed versus predicted values of
left-out points estimated via this approach for a second-order model
are shown in the scatter plots of Fig. 2. The prediction quality (R?) for
left-out points are shown in white bars in Fig. 2.

Calculation of Fourier amplitude spectrum

Because equation (1) withx; € { -1, 1} corresponds to the Fourier expan-
sionofafitnesslandscape®, the Fourier amplitude equation® at order
p canbe written simply as

A, =Y B2 @

iep

It canbe shown that sum of amplitudes across all ordersis equalto the
total variance of the landscape. This permits the calculation of the
fraction of total variance explained by terms at order p as Apl 2y Apr-

Calculation of r/s ruggedness metric

The roughness-slope ratio, r/s, is a measure of landscape ruggedness
that quantifies how well a landscape is fit by a purely additive model.
This quantity was computed by first fitting alinear model of the form:

y=PBo+ Zﬂixb 3

where yis the measured community function, and the coefficients S,
and S;are obtained ordinary least-squares regression.
The roughness, r, is defined as the root-mean-squared-error of

the resulting fit, or
1 )
f=,/zZ(J/i—yi)’ 4)

where Listhe number of datapointsinthelandscapeand yisthevalue
of yfitted by linear regression. The slope, s, is defined as the mean of
the absolute value of coefficients §;

y= 136 )

Larger values of r/sindicate agreater deviation fromlinearity, therefore
amore rugged landscape. In contrast, an r/s value of 0 would corre-
spond to a perfectly additive landscape.

The values of r/s depend on landscape size, and sensible com-
parisons of this quantity between datasets require an appropriate
normalization. Because randomized landscapes represent a natural
high-ruggedness comparison, r/s values computed on randomized
landscapes were used as scaling factors, for example

IISoriginal

(6)

r/s. . = -
normalized . ’
I/Srandomized

was computed. Normalized r/svalues close to lindicate that the empiri-
cal landscapeis as rugged as the randomized landscape, while values
closeto zeroindicatealow degree of ruggednessinthe empiricalland-
scape. One hundred randomizations were performed for each dataset,
and values of /S, omaizea Were computed for each; the distributions of
these values are shown in Fig. 3c.

Simulations of the generalized Lotka-Volterra model
Community-function landscapes were synthetically generated using
the generalized Lotka-Volterra (gLV) model, with total abundance
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serving as the community function of interest. A four-parameter
‘reference model’ formulated by Barbier et al.** was used to explore
important dimensions of the gLV parameter space. The model can be
written as follows:

N; = éNi (Ki -N; —Z%Nj), 7)
! J

where for speciesiinapool of Ntotal species, N,is the abundance, r;is
theintrinsic growth rate and K;is the carrying capacity. The parameters
ayare interaction coefficients between speciesiand,.

The equilibria of equation (7) are determined by the values of K;
and a;. For eachsyntheticlandscape, these parameters were randomly
generated. The carrying capacities K;wereindependently drawn froma
gamma distribution with mean1and variance &, while the interaction
coefficients were drawn from anormal distribution withmeanu / Nand
variance ¢/ N. These definitions ensure that the full range of distinct
qualitative behavioursis spanned by parameter values of order 1 (ref. 51
for details). A broad, ecologically relevant regime of the interaction
parameter space wasexploredinFig.4a(ue[-1,4]ando€[0,1.5]). The
standard deviation of carrying capacities was fixed at { = 0.3. The fourth
andfinal parameterisinteractionasymmetry, defined asy = corr(ay, a;).
InFig. 4a, interactions were set to be symmetric by taking y =1. These
parameter values and ranges are identical to those used in Fig. S2 of
ref. 35, allowing direct comparison with Fig. 4a. Supplementary Fig. 5
provides a more thorough parameter sweep varying both yand {.

Landscapes were generated over agrid of pointsin g-ospace.Each
landscape was generated through the following steps:

1. Asetof carrying capacity parameters K; and interaction para-
meters a; were drawn for a pool of N=10 species as described
above. All r;were fixed to 1.

2. Equation (7) was simulated to equilibrium for all species
combinations.

3. Total endpoint ‘biomass’ (sum of abundances Y ;N,(=)) was
computed for each simulation.

4. Exact, full-order landscapes (equation (1)) were computed,
using biomass as the community function.

Initial species abundances were drawn from an exponential distribu-
tion withmean 0.1. Numerical integration was performed using odel5s
(MATLAB). Ateach pointinthe u-ospace, tentrials of landscapes were
generated. Note that for larger values of g, species abundancesin equa-
tion (7) are more likely to diverge. Parameter combinations for which
divergences were encountered in more than half of trials areindicated
by grey valuesin Fig. 4a.

Simulations of the consumer resource model withrandom
cross-feeding networks

Community-function landscapes were synthetically generated using
aconsumer resource model (CRM), taking the equilibrium concentra-
tion of a terminal waste product as the function of interest. The CRM
isgiven as follows:

N; = Ny(r; — my),

ri = Y Ci,R,,
1 za:wta (8)

. Ks—R,
Rﬂ = —ﬁrﬂ s _ EC,ﬁRﬂN, + ZyriNiDi/j~
i i

Here N, r;and m; are the abundance, total resource uptake and main-
tenance costs, respectively, of speciesiin a pool of Ntotal species. R,
is the concentration of resource a. The matrices C,, and D;; describe
which resources a species consumes and secretes, respectively, with
secretions assumed proportional to the metabolic uptake r,. An effi-
ciency factor y <1ensures that energy cannot be gained but only lost.

Hereywassetto 0.5. The decay rates 7;and species maintenance costs
m;are all set to1for simplicity. The resource carrying capacity for the
single externally supplied resource, K, was set to 10°, and all remain-
ing resource carrying capacities, K, were set to 0. The total number of
resourceswas fixedtoL +1, withresourceL +1representing aterminal
waste product that no species can consume.

Random cross-feeding networks were generated to explore
how chains of trophic dependencies impact the ruggedness of
community-function landscapes. To do this, it was assumed thateach
species i can consume and secrete exactly one resource, denoted in;
and out; respectively. These were selected through the following steps,
performed independently for each species:

1. Theidentity of the consumed resource in; was chosen randomly
between1and L with equal probability.

2. Thesecretedresource out;canrange from1toL +1, where
resource L +1is the terminal waste product; however it must be
distinct fromin,, leaving L possible choices. With probability
p, we setout; =in; +1; otherwise out;was drawn from any of the
remaining values at random.

The parameter p thus allows the exploration of a range of network
topologies, from long linear pathways with a high degree of trophic
dependency (atp =1) torandomgraphs (atp=1/L).

Afterselectingin,and out;for all species, we verified that resource
L +1was ‘reachable’ through the network from resource 1, that is,
whether there existed at least one path fromresourceltoresourcel +1.
Ifthiswas not the case, the functional landscape (the concentration of
resource L +1foragivenset of species) would beidentically zero; such
networks were discarded asinvalid and the steps above were repeated
until a valid circuit was obtained.

For Fig. 4b, random cross-feeding networks were generated by
carryingout the steps above across arange of values of p, fixing N=10
total species and L = 8total resources. Twenty valid random trials over
15 values of p € (1/ L, 1) were generated to create 300 total random
cross-feeding networks. The community-function landscapes for these
networks were then computed by settinginitial species abundances to
0.1, simulating equation (8) to equilibrium for all species combinations
(odel5s, MATLAB), taking the equilibrium concentration of resource
L +1asthefunction of interest and using this complete combinatorial
landscape to determine the exact coefficients of its Fourier decomposi-
tion (equation (1)).

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data analysed here are either available from the original studies
or in the following repository: https://github.com/abbyskwara2/
regression_on_landscapes.

Code availability

Code to run all analyses presented in this paper is available in
the following repository: https://github.com/abbyskwara2/
regression_on_landscapes.
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