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Abstract

Scalp Electroencephalography (EEG) is one of the most popular noninvasive modalities
for studying real-time neural phenomena. While traditional EEG studies have focused
on identifying group-level statistical effects, the rise of machine learning has prompted a
shift in computational neuroscience towards spatio-temporal predictive analyses. We
introduce a novel open-source viewer, the EEG Prediction Visualizer (EPViz), to aid
researchers in developing, validating, and reporting their predictive modeling outputs.
EPViz is a lightweight and standalone software package developed in Python. Beyond
viewing and manipulating the EEG data, EPViz allows researchers to load a PyTorch
deep learning model, apply it to EEG features, and overlay the output channel-wise or
subject-level temporal predictions on top of the original time series. These results can
be saved as high-resolution images for use in manuscripts and presentations. EPViz also
provides valuable tools for clinician-scientists, including spectrum visualization,
computation of basic data statistics, and annotation editing. Finally, we have included a
built-in EDF anonymization module to facilitate sharing of clinical data. Taken
together, EPViz fills a much needed gap in EEG visualization. Our user-friendly
interface and rich collection of features may also help to promote collaboration between
engineers and clinicians.

Introduction

Scalp electroencephalography (EEG) has long been used as a window into the complex
inner-workings of the human brain. Formally, EEG measures the effects of postsynaptic
currents in the brain and provides real-time information about neural activity [1,2]. Its
cost-effectiveness and relative ease of acquisition has made EEG ubiquitous in both
research and clinical practice. To a large extent, traditional EEG analysis has focused
on group-level effects. Broadly, these studies extract quantitative features from the
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EEG data and use statistical testing either to identify significant differences between
groups or to compute the explained variance with respect to some external measure.
Common features include the amplitude and timing of evoked response potentials
(ERPs) [3114], spectral power across the standard EEG frequency bands [5-7],
quantitative metrics of the brain network organization [8H10|, and spatial arrangement
of ICA components [4,/11]. One commonality across these methods is that they draw
“static” conclusions at the level of an EEG channel or a brain network. Hence,
visualization of these findings is straightforward.

The rise of machine learning has spurred new directions in computational
electrophysiology focused on time-varying and patient-specific predictive analyses. This
paradigm shift has been accelerated by deep learning and platforms, such as PyTorch
and TensorFlow, which make such techniques readily available to the research
community. Two common application domains are epilepsy monitoring and brain
computer interface (BCI) systems. Much of the work in epilepsy focuses on the problem
of seizure detection. This setting is often cast as a binary classification problem, where
the goal is to classify whether short windows (1-10 sec) of multi-channel EEG
correspond to baseline or seizure activity [12H14]. The methods range from traditional
machine learning algorithms applied to hand-crafted features, such as wavelet
coefficients [5,/15-21], spectral power [6,/7,)22-26], and non-linear
measures [5}17,20L27131], to end-to-end deep neural networks based on convolutional
and recurrent architectures [32-44]. Recent work in epilepsy has pivoted towards
localizing the seizure onset from EEG, which adds a spatial component to the temporal
predictions [23,/45,46]. On the other hand, BCI systems try to decode user intent based
on the EEG signals in order to control the environment [47]. One approach detects
sensorimotor rhythms generated by motor imagery [48}/49], typically by evaluating the
EEG frequency content in the C3 and C4 electrodes [50]. Similarly, steady state visually
evoked potentials measure stable responses to flickering visual stimuli [51]. These
potentials are observed in the occipital lobe and can be detected using methods such as
filterbank analysis and canonical correlation analysis [52].

Software packages for EEG can be divided into two categories. The first category
focuses on specific analytical techniques, with the visualization options for each package
highly targeted towards the method under consideration. Examples include
EEGLab [53/[54], which is geared towards ERP analysis, EEGNet [55], which
emphasizes brain connectivity and network analyses, and BrainStorm [56], which tries
to link multimodal information in a common reference space. While these software
packages represent seminal contributions to the field, none of them are geared towards
viewing the results of time-varying and spatially-varying predictive analyses. The
second category of software includes EEG viewers that display and manipulate the raw
time series data. The most popular viewer is EDFBrowser [57], which provides a wide
range of preprocessing, display, and annotation functionalities. While EDFBrowser is
and will remain a valuable resource to the community, it has some notable limitations.
For example, the large number of tools makes the interface clunky and difficult to
navigate. In addition, EDF Browser does not have native support for visualizing model
predictions, a need that is growing in popularity with machine learning analyses.

In this paper, we introduce the EEG Prediction Visualizer (EPViz), a lightweight
and flexible EEG viewer that complements existing software resources in the field.
EPViz is targeted towards machine learning applications and is built around four core
functionalities: (1) displaying and manipulating the multi-channel EEG time series, (2)
running PyTorch deep learning models on the data, (3) overlaying channel-wise and
time-varying predictions on top of the EEG time series, and (4) saving high-quality
images of the results. In addition, EPViz includes basic preprocessing operations,
spectral feature extraction, and annotation editing. Finally, EPViz has a built-in
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anonymizer to facilitate sharing of clinical EEG data between clinicians and engineers.
EPViz is freely available for download at https://engineering. jhu.edu/nsa/links/.

Materials and methods

EPViz is a streamlined viewer designed for predictive modeling applications. EPViz is
built using the PyQt package (5.15.4) in Python. PyQt allows for easy integration with
a range of Python deep learning and machine learning libraries.

The multi-channel EEG data is plotted using the PyQtGraph package, which
provides fast updating and real-time user interaction capabilities. The PyEDFlib
package is used for loading EDF files, and the Matplotlib package is used for saving
high-quality images. Finally, the MNE package [58] is used to generate a 2-D
topographic map of channel-wise model predictions on the scalp for enhanced
visualization capabilities. This representation is also known as a topoplot.

Overview of the GUI

Fig. 1] illustrates the EPViz graphical user interface. The “Select File” button allows
the user to load an EDF file containing multi-channel EEG data. The popup window
asks the user to select which channels to plot. We have included the standard 10-10,
10-20 and bipolar 10-20 montages as preset selections. The user also has the option to
load a custom EEG montage via a separate text file.

The EEG signals appear in the main display pane. Signals from the default
montages are color-coded according to hemisphere (red for left, blue for right, and green
for the midline). This is in contrast to EDFBrowser, which defaults to plotting all
signals in black. Users can change the ordering and number of plotted signals using the
“Change Signals” button. Annotations in the EDF files are plotted as “Notes” at the
bottom of the display pane. These are particularly relevant for clinical EEG data.
Users can vary the time scale of the plot (1, 5, 10, 20, 25, 30, or 45 seconds) using the
“Change Window Size” button. Likewise, they can change the intensity scale via the
“Change Amplitude” button. Finally, the “Open Zoom” button allows the user to zoom
in on a selected region of the plotting window.

EPViz includes basic filtering operations. The high- and low-pass parameters,
implemented using the SciPy library, can be set in the “Change Filter” pop-up. To
allow for real-time updating, only the region shown on the screen is filtered. These
filtering operations mimic those used in epilepsy and BCI applications. More complex
preprocessing, such as ICA, should be done offline prior to loading the file into EPViz.

Obtaining and displaying temporal predictions

EPViz supports two types of predictions. The first is a continuous value between [0, 1],
corresponding a soft binary assignment. By default, EPViz assumes that “0” is the
baseline condition and “1” is the condition of interest. The second is a categorical
assignment into one of K classes plus a default class of “0” again denoting a baseline
condition outside of the main assignments.

The user can load predictions in one of two ways. The first method is via an auxiliary
file. The file should either contain a single row, corresponding to a subject-level
prediction for each time point, or contain the same number of rows as plotted EEG
channels, corresponding to a channel-wise prediction for each time point. The second
method is by loading a pre-trained PyTorch model and running it directly on loaded
data. Here, the PyTorch model should generate an output that is an integer modulo the
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Fig 1. Main GUI window. The signal organization window can be used to change the order of signals (top left). This
window is opened from the signal selection window. Also shown are the filtering and image saving windows. The main
window includes a leftside-panel with various options and the main signal plot to the right.
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number of samples in the signal. This format accounts for models that generate

window-wise predictions across short (e.g., 1-10 sec) snippets of the full EEG recordings.

Figure generation and export

Fig. [2| illustrates the model predictions in the main display pane. As seen, the
predictions are overlaid in a light cyan across the appropriate channels. In the case of

binary classification, the detection threshold can be swept using the built-in slider bar.

This strategy allows users to identify salient features of the underlying EEG that may
coincide with the predictions. Not only does this mimic clinical review of scalp EEG
data, but it may facilitate interpretability of the corresponding algorithms.

Going one step further, EPViz can display multi-channel predictions on a topological

scalp plot (topoplot). The topoplots are generated using the MNE plot_topomap
function. The user can select the time point to display by moving a black vertical line
on the main display pane. Once positioned, the topoplot is automatically updated as

the user scrolls through the EEG data.

Finally, the “Save to .png” option allows the user to export a high-quality image of
the main display pane. Here, the user first selects the desired options (filtering signals,
overlaying predictions, adding annotations) and proceeds to an image editor. The editor

allows them to change the plot title, the EEG signal thickness, and the text font size.
Topoplots can be exported to an image using the “Save topoplot” button. Users can
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toggle subplot titles which default to the times for each topoplot. The Matplotlib
package is used for exporting the *.png files.

Fig 2. Visualizing predictions. Model predictions are shown in light cyan across the

channels. Since multi-channel predictions are plotted, topoplots have been generated.
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Other functionalities
Data statistics and spectrum

EPViz computes and displays basic statistics of the EEG data. These include signal
mean, variance, and line length. Line length is computed as the sum of distances
between consecutive time points of the signal; it is a particularly useful metric in EEG
analysis . Beyond these time-domain features, EPViz computes the power within the
standard EEG frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta
(14-30 Hz), and gamma (30-45 Hz). As shown in Fig. [3| the user can control the channel
and time interval over which the statistics are computed by moving the red rectangle.
EPViz also plots the spectrogram of a selected EEG channel. The spectrogram is
extracted based on the Fast Fourier Transform magnitude. This time-frequency
representation is popular in many EEG applications @ Users can toggle the
spectrogram via the “Power Spectrum” button. EPViz computes and displays basic
statistics of the EEG data. These include signal mean, variance, and line length. As its
name suggests, line length is computed as the sum of distances between consecutive
time points of the signal; it is a particularly useful metric in EEG analysis. Beyond
these time-domain features, EPViz computes the power within the standard EEG
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frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), and
gamma (30-45 Hz). As shown in Fig. [3 the user can control the channel and time
interval over which the statistics are computed by moving the red rectangle.

Annotation editor

The EDF file format provides a means to store text annotations linked to specific time
points of the data. Annotations are often added by clinicians to flag salient events, for
example during epilepsy monitoring. The are also useful in research studies to indicate
the timing of different stimuli or experimental conditions. Similar to EDFBrowser, our
EPViz includes tools for extracting and modifying textual annotations. Specifically, the
annotations are displayed both as a list on the right of the window and in the “Notes”
row of the main display pane. As seen in Fig. 3] we have also included an annotation
editor that lets the user both modify the text of existing annotations and add new
annotations. Changes made using the annotation editor will not persist outside of
EPViz unless they are saved into a new EDF file.

Fig 3. Annotation editor and statistics. The dock on the right side of the plot
contains the annotation editor (top) and signal statistics (bottom). The red rectangle
on the main plot can be used to select a region over which statistics will be computed.
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Clinical anonymization

To facilitate the sharing of clinical data, EPViz includes a built-in anonymizer to strip
identifiable information from the EDF file prior to it being saved. Fig. [d] shows the
annonymization window. Here, users can opt for the default setting, which removes
names and dates from the EDF header, or they can selectively edit each field
themselves. The Python code underlying the anonymizer has been verified by the
University of Wisconsin (UW) Madison Institutional Review Board and is currently
being used for data sharing between UW Madison and Johns Hopkins University.
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For convenience, the EEG data and the overlaid model predictions can be saved into
a single EDF file. This file can easily be re-loaded into the EPViz for further analysis
and visualization. Logistically, the model predictions are stored as a new data channel

and should not interfere with other EEG software packages.

Fig 4. Anonymization window. This option can be used to strip identifiable

information from the EDF file prior to saving.
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We have provided command-line support for figure generation of the main display pane
(EEG signals) and for data anonymization. These command-line option can be

integrated into batch processing pipelines and are particularly useful for comparing
different predictive modeling outputs. In summary, EPViz is built so that people with
and without technical expertise are able to easily interact with its tools.
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Table 1. Unit testing code coverage for EPViz source files.

Functionality File Coverage (%)
Main plot plot.py 82
plot_utils.py 93
EDF saving anonymizer.py 91
saveEdf_info.py s 100
saveEdf_options.py s 100
Filtering filter _options.py 100
Predictions prediction_info.py 82
prediction_options.py 74
Preprocessing  edf_loader.py 100
Signal loading  channel_info.py 93
channel_options.py 78
Signal statistics signalStats_info 100
signalStats_options 92
Spectrograms spec_options.py 99
Image saving savelmg_options.py 81
save Topoplot_options.py 93

Development and release
Software Testing Procedures

To ensure a smooth user experience, we have added unit testing for EPViz. Our tests
cover the main functionalities of the visualizer (e.g., loading, plotting, manipulating,
and saving data/images) with extensive coverage of the corresponding source files.
Exceptions included purely UI functionalities, which require constant user interaction.
Table [I] shows the code coverage of our unit tests. We have also created a GitHub Action
to run the unit tests on each pull request to encourage high-quality code integration.

Finally, we have used Pylint (https://pylint.pycqa.org/en/latest/) during the
development process to ensure that our EPViz source code conforms to the PEP 8 style
guidelines for Python.

Software Dissemination

We have included three ways for users to download and install EPViz . First, users can
clone our GitHub repository, which contains the most up-to-date version of the code.
The repository includes information for developers about how to use EPViz along with
test EDF files from the public Children’s Hospital of Boston (CHB) and Temple
University Hospital (TUH) datasets [25,/594/60] that can be used to explore the visualizer
functionality. The GitHub repository is linked on our lab webpage:
https://engineering. jhu.edu/nsa/.

Second, EPViz is available on PyPI at https://pypi.org/project/EPViz. This
page provides instructions on how to install EPViz in Linux, MacOS and Windows,
links to our online documentation, and a summary of features and command-line
options. There is also a description of the unit tests created for EPViz and instructions
for running pylint on any code modifications to ensure compatibility.

Third, EPViz can be downloaded as a standalone package for MacOS and Windows.

This option is geared towards users with limited programming experience, who simply
want to access the functionalities of EPViz. These packages are available for download
at https://engineering. jhu.edu/nsa/.
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EPViz is licensed under General Public License (GPL) 3.0.

Online Documentation

We have created an extensive online documentation page for EPViz, which can be
accessed via our lab website at: https://engineering. jhu.edu/nsa/epviz/. The
documentation includes a short video of EPViz , followed by detailed information about
each of the main features and tips to help users interact with the visualizer. The user
can also download the test EDF files in our GitHub repository and follow along with a
step-by-step demo at the end of the page. This demo reviews a common use case for
EPViz including loading a file, selecting a montage, loading predictions, navigating
through the signal time series, saving a figure, and anonymizing the file. These steps are
also covered in the linked video.

Real-world use case: seizure detection

Data

We demonstrate the real-world utility of EPViz via a seizure detection experiment. Our
scalp EEG dataset was acquired by University of Wisconsin-Madison pediatric epilepsy
monitoring unit. It includes 192 EEG recordings in the standard 10-20 montage
from 16 patients for a total of 100 seizures. There are an average of 6.25 seizures per
patient (min = 1 seizure, max = 33 seizures). The total recording time is 33.1 hours
with an average of 124 minutes of recorded EEG per patient, as seen in Fig[f] The EEG
data was sampled at 256 Hz and resampled to 200 Hz for the purpose of analysis. The
EEG was annotated for seizure onset and offset by a clinician using video-EEG.

Fig 5. UWM Dataset Recording Times. Total time in minutes of EEG included
for each patient in the UWM dataset.
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Experimental setup
Predictive models

We compare the performance of eight different methods for seizure detection drawn
from recently published work. These methods encompass a range of feature extraction
and machine learning techniques. The inputs to each method are one-second windows of
multichannel EEG data, provided as a sequence. The outputs are window-level
predictions of seizure versus baseline activity. Here, we provide a concise summary of
each method and refer the reader to the citations below for additional details.

e CNN-BLSTM: Introduced in [32], this deep learning architecture couples a
convolutional neural network (CNN) feature encoder with a recurrent bidirectional
long short-term memory (BLSTM) classifier.

e CNN-MLP: Proposed as a baseline for the CNN-BLSTM |[32], this method uses
the same convolutional encoder, but replaces the BLSTM with a multi-layer
perceptron that operates independently on each one-second window of the EEG.

e Wei-CNN: Developed by [41], this is a fully-convolutional deep learning method
that uses a single CNN to obtain window-wise seizure versus baseline predictions.

e CNN-2D: Also used a baseline in [32], this method concatenates the FFT of the
channel-wise EEG signals into a 2D matrix and operates on it like an image. This
method is inspired by the works of [34,/37], which use a similar strategy.

e MLP-XXX: These three methods rely on hand-crafted features extracted
channel-wise from the one-second windows as described in [45]. The “time”
features consist of sample entropy, signal energy, line length, and largest Lyapunov
exponent. The “filterbank” features consist of spectral power in different EEG
frequency bands. The classification is performed by a multi-layer perceptron.

e Kaleem-SVM: As introduced in |18], this method operates on the combined
time and filterbank features described above but uses a support vector machine
(SVM) classifier instead of a deep neural network.

Training and calibration is performed according to [32]. For the CNN-BLSTM, the
CNN encoder is pre-trained on individual windows for 10 epochs prior to joint training
of the full architecture. The outputs for each method are averaged 20 consecutive
windows to reduce noise in the final predictions. Likewise, the seizure detection
thresholds for each method are independently set to allow only two minutes of false
positive seizure classifications per hour on the training data.

Finally, we note that our objective in this study is to demonstrate how EPViz can be
used to visualize the results of a real-world predictive analysis, rather than to advocate
for any particular seizure detection method. Thus, we have selected models that are
simple to implement and train, while still being current in the field.

Performance Metrics

We evaluate performance at the level of one-second EEG windows and at the level of
whole seizures. In the former case, we treat the window-level seizure versus baseline
predictions as independent outputs and compute the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) and the Area Under the Precision-Recall
Curve (AUC-PR). These metrics capture the behavior when varying the detection
threshold. We also compute sensitivity and specificity using the detection thresholds
obtained during callibration (see previous section). In the latter (whole seizure) case, we
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Fig 6. Seizure detection performance on the UWM dataset. Box plots capture the average performance for each
metric across the 16 patients. The orange bar denotes the median performance, boxes correspond to the inter-quartile range,
and the whiskers denote the 10th and 90th percentiles. Top: Window level results are calculated on one-second windows of
EEG. Bottom: Seizure level results are calculated over the duration of the seizure period.
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first determine the intervals of contiguous seizure classification based on the callibrated
detection thresholds. Any interval that intersect a clinician-annotated seizure is
considered a true positive detection; the remaining are considered false positive
detections. From here, we quantify the duration of false positive detections, the
sensitivity (true positives divided by total number of seizures), and the onset latency.

Experimental Results

Fig. [6] reports the seizure detection results. The box plots are constructed by first
averaging the performance metrics across all seizures for a given patient and then
plotting the distribution of these averages across patients. Note that the CNN-BLSTM
and CNN-MLP have the best median performance at the window level, which suggests
that the convolutional encoder is key to learning discriminative representations from the
data. At the seizure level, while the deep learning methods achieve similar sensitivity
and onset latency, the CNN-BLSTM shines with respect to low false positives. This
observation indicates that (1) the calibration thresholds set during training are more
likely to generalize to testing data for the CNN-BLSTM, and (2) the temporal modeling
of this architecture may help to suppress less certain seizure predictions.

Fig. [7] demonstrates the utility of EPViz in comparing different methods. Here, the
unsmoothed seizure detections for each model are superimposed in blue over the original
EEG signal, here displayed using the longitudinal bipolar montage. Annotated seizure
onset is displayed using the dashed vertical line at 739 seconds. The CNN-BLSTM
makes a continuous seizure detection with low latency. With the exception of the
MLP-Time Domain, CNN and MLP models make non-continuous seizure classifications,
alternating between detected seizure and periods of baseline. The Kaleem-SVM misses
the seizure entirely. Beyond this example, EPViz can be used to compare model
behaviors during baseline activity and seizure offset. Researchers can also use these
images to identify confounding features in the underlying EEG signals, then can be
re-incorporated into their models for improved performance.

Finally, we note that the seizure detection performance in the UWM dataset is lower
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Fig 7. EPViz visualizations of seizure detections from each model. Detected seizures are shown superimposed in blue on the
EEG. Annotated seizure onset at 739 seconds is shown by the vertical dashed line. The CNN-BLSTM shows a contiguous
seizure detection with low latency while alternative models show higher latency, non-continuous detection, or misses.
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than the performance of the models reported in using the CHB dataset [25/26].
This trend may be partially attributed to the smaller sample size of the UWM dataset.
In addition, the CHB dataset contains primarily generalized seizures, whereas the UWM
dataset contains a more heterogeneous focal epilepsy cohort.
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Discussion

Comparison between EPViz and existing tools

EPViz provides a streamlined interface that allows users to easily interact with the
EEG data and visualize model predictions. Accordingly, EPViz fills an unoccupied
niche amongst other EEG visualization and analyses tools. Perhaps the most widely
used too is EDF Browser [57], which provides similar EDF loading and manipulation
capabilities. EDF Browser also has a large suite of analytical tools, from filtering
operations to spectral analysis [57]. While EDF Browser will remain a powerhouse in
the EEG community, we believe that EPViz provides key functionality not incorporated
in EDF Browser. First, EPViz is a streamlined and user-friendly application, which

makes it easy for non-technical users to adopt. Second, it is geared towards

spatio-temporal predictive analyses; the predictive overlay and topoplots are currently
not supported in EDF Browser. Finally, it generates high-quality images of the data

and results, which can be used in scientific publications and presentations.

There are also a variety of EEG software toolboxes developed for Matlab. For
example, the popular EEGLab focuses on independent component analysis (ICA) and
other time-frequency techniques [53,54]. It also provides a GUI for visualizing events

detected by these methods. In contrast, EEGNET provides tools for functional

connectivity analysis [55] and includes a pipeline for the relevant preprocessing to
construct an EEG connectome. Finally, BrainStorm registers multiple data formats
including MEG, EEG, and MRI producing visualizations and analysis [56]. While these
packages provide some overlapping functionality to EPViz, they do not lend themselves
towards predictive analysis, like our PyTorch integration. They also rely on Matlab,
which is an expensive and not-universally available platform. In contrast, EPViz is

based on open-source Python packages and is freely available to the community. Table
summarizes the key features offered by EPViz, as compared to existing software
packages. As seen, EPViz fills a much needed gap in EEG visualization.

Finally, EPViz leverages the MNE library [58] to produce topoplots in a user-friendly
manner. While the native MNE library provides many visualization, preprocessing, and
analysis tools, using them requires advanced scripting knowledge.

Application domains

EPViz can be used in a variety of clinical and research applications, where the goal is to

detect an event from the EEG data. One natural domain is epilepsy. In fact, the
experimental testbed in this paper uses EPViz to compare the seizure detection

performance across different machine learning methods. Other phenomenon of interest

EPViz | EDF Browser | EEGLab | EEGNET | BrainStorm

View EEG Signals v v v v v
Compute Summary Statistics v v v v v
Annotate Data v v v v
PyTorch Integration v

Overlay Predictions v

Save High-Res Images v v

License-Free v v v

Table 2. Summary of features provided by EPViz, as compared to existing EEG software.
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are auras and non-epileptic events, both of which can be detected using a similar
training and evaluation strategy. Going one step further, EPViz supports channel-wise
predictions, which makes it a natural tool for seizure localization studies [45,46], where
the goal is to identify a specific area of onset (e.g., lobe and/or hemisphere) and track
the seizure activity as it propagates from that location.

Another application domain is BCI. Once again, some studies try to predict
subject-level events, such as viewing a particular stimuli, while others zone in on specific
EEG channels to tease apart the activity.

Finally, even though we have focused this paper on predictive analytics, the features
of EPViz can be used to emphasize other aspects of the data. Recall that EPViz can
overlay “predictions” contained in an auxiliary file. Hence, the user can create
“predictions” that correspond to different experimental conditions. Another option is to
create “predictions” that select certain EEG channels and time intervals based on an
ERP analysis. Thus, EPViz is a flexible tool that users can adapt for their own needs.

Limitations and Future Work

EPViz is currently designed to load and manipulate a single EEG recording. This setup
makes it amenable to the testing phase of machine learning approaches, i.e., evaluating
the performance of a model on new data. However, EPViz cannot be used for model
training, which would require processing multiple EEG recordings at a time. Future
work will integrate command-line options into EPViz for the user to train a PyTorch
deep learning model given a data directory and subject ID list. This trained model can
be loaded back into EPViz and applied to new EEG data using the existing
functionality. Along the same lines, we will add an option for users to load multiple
EEG recordings and toggle between them in the main display pane.

From a visualization standpoint, EPViz is optimized for the 10-20 electrode
placement system [61]. While the user can load data from other montages, the signals
will not be colored according to hemisphere, and EPViz will not generate a topoplot
since the electrode placements are not provided in the EDF file. Future work will tackle
this issue by allowing the user to add the electrode positions, hemisphere information,
and desired ordering to the auxiliary text file mentioned above.

Along the same lines, EPViz has difficulty displaying more than 50 EEG signals at a
time. Not only are the signals difficult to see, but the plot updates much more slowly
after user interaction (e.g., signal filtering, scrolling through time, zoom functionality).
To address this issue, we will integrate a memory management system that allows
EPViz to efficiently cache and update data as needed. We will also add a pop-out
window for the main display pane to accommodate the additional EEG signals.

Finally, EPViz is configured to apply the loaded models to the entire EEG recording
to obtain predictions. While suitable for research purposes, clinicians desire real-time
analysis capabilities to assist in their review of continuous recordings. We will explore
such add-ons to EPViz in the future. These will likely rely on memory management
systems and closer integration with existing clinical software packages.

Conclusion

We have introduced EPViz, a lightweight and user-friendly visualizer for EEG data.
EPViz is designed for predictive modeling applications, which are becoming increasingly
popular in EEG research. Specifically, EPViz allows the user to generate and overlay
predictions on top of the EEG signals, thus providing a mechanism to interpret the
model output with respect to the data. EPViz can also generate high-quality images of
the predictive modeling outputs to aid in scientific reporting [62]. EPViz is completely

February 27, 2024

14/19

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383



open-source and uses Python, which is the fastest-growing programming language for
machine learning. Finally, EPViz has been designed for both engineers and
clinician-scientists. In particular, we have included spectrogram visualization, which is
often used in clinical review of EEG, and a built-in anonymizer to remove identifiable
information from the EDF files. EPViz has helped our own team to build an
interdisciplinary and inter-institutional collaboration in epilepsy. We hope that it will
promote such collaborations for other researchers.
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