
EPViz: A Flexible and Lightweight Visualizer to Facilitate
Predictive Modeling for Multi-channel EEG

Danielle Currey1¶, Jeff Craley2¶, David Hsu3, Raheel Ahmed4,
Archana Venkataraman2,5*

1 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
2 Department of Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, MD, USA
3 Department of Neurology, University of Wisconsin Madison, Madison, WI, USA
4 Department of Neurosurgery, University of Wisconsin Madison, Madison, WI, USA
5 Department of Electrical and Computer Engineering, Boston University, Boston, MA,
USA

*Corresponding Author

Email: archanav@bu.edu

¶These authors contributed equally to this work.

Abstract

Scalp Electroencephalography (EEG) is one of the most popular noninvasive modalities
for studying real-time neural phenomena. While traditional EEG studies have focused
on identifying group-level statistical effects, the rise of machine learning has prompted a
shift in computational neuroscience towards spatio-temporal predictive analyses. We
introduce a novel open-source viewer, the EEG Prediction Visualizer (EPViz), to aid
researchers in developing, validating, and reporting their predictive modeling outputs.
EPViz is a lightweight and standalone software package developed in Python. Beyond
viewing and manipulating the EEG data, EPViz allows researchers to load a PyTorch
deep learning model, apply it to EEG features, and overlay the output channel-wise or
subject-level temporal predictions on top of the original time series. These results can
be saved as high-resolution images for use in manuscripts and presentations. EPViz also
provides valuable tools for clinician-scientists, including spectrum visualization,
computation of basic data statistics, and annotation editing. Finally, we have included a
built-in EDF anonymization module to facilitate sharing of clinical data. Taken
together, EPViz fills a much needed gap in EEG visualization. Our user-friendly
interface and rich collection of features may also help to promote collaboration between
engineers and clinicians.

Introduction 1

Scalp electroencephalography (EEG) has long been used as a window into the complex 2

inner-workings of the human brain. Formally, EEG measures the effects of postsynaptic 3

currents in the brain and provides real-time information about neural activity [1, 2]. Its 4

cost-effectiveness and relative ease of acquisition has made EEG ubiquitous in both 5

research and clinical practice. To a large extent, traditional EEG analysis has focused 6

on group-level effects. Broadly, these studies extract quantitative features from the 7

February 27, 2024 1/19



EEG data and use statistical testing either to identify significant differences between 8

groups or to compute the explained variance with respect to some external measure. 9

Common features include the amplitude and timing of evoked response potentials 10

(ERPs) [3, 4], spectral power across the standard EEG frequency bands [5–7], 11

quantitative metrics of the brain network organization [8–10], and spatial arrangement 12

of ICA components [4, 11]. One commonality across these methods is that they draw 13

“static” conclusions at the level of an EEG channel or a brain network. Hence, 14

visualization of these findings is straightforward. 15

The rise of machine learning has spurred new directions in computational 16

electrophysiology focused on time-varying and patient-specific predictive analyses. This 17

paradigm shift has been accelerated by deep learning and platforms, such as PyTorch 18

and TensorFlow, which make such techniques readily available to the research 19

community. Two common application domains are epilepsy monitoring and brain 20

computer interface (BCI) systems. Much of the work in epilepsy focuses on the problem 21

of seizure detection. This setting is often cast as a binary classification problem, where 22

the goal is to classify whether short windows (1-10 sec) of multi-channel EEG 23

correspond to baseline or seizure activity [12–14]. The methods range from traditional 24

machine learning algorithms applied to hand-crafted features, such as wavelet 25

coefficients [5, 15–21], spectral power [6, 7, 22–26], and non-linear 26

measures [5, 17,20,27–31], to end-to-end deep neural networks based on convolutional 27

and recurrent architectures [32–44]. Recent work in epilepsy has pivoted towards 28

localizing the seizure onset from EEG, which adds a spatial component to the temporal 29

predictions [23, 45, 46]. On the other hand, BCI systems try to decode user intent based 30

on the EEG signals in order to control the environment [47]. One approach detects 31

sensorimotor rhythms generated by motor imagery [48,49], typically by evaluating the 32

EEG frequency content in the C3 and C4 electrodes [50]. Similarly, steady state visually 33

evoked potentials measure stable responses to flickering visual stimuli [51]. These 34

potentials are observed in the occipital lobe and can be detected using methods such as 35

filterbank analysis and canonical correlation analysis [52]. 36

Software packages for EEG can be divided into two categories. The first category 37

focuses on specific analytical techniques, with the visualization options for each package 38

highly targeted towards the method under consideration. Examples include 39

EEGLab [53,54], which is geared towards ERP analysis, EEGNet [55], which 40

emphasizes brain connectivity and network analyses, and BrainStorm [56], which tries 41

to link multimodal information in a common reference space. While these software 42

packages represent seminal contributions to the field, none of them are geared towards 43

viewing the results of time-varying and spatially-varying predictive analyses. The 44

second category of software includes EEG viewers that display and manipulate the raw 45

time series data. The most popular viewer is EDFBrowser [57], which provides a wide 46

range of preprocessing, display, and annotation functionalities. While EDFBrowser is 47

and will remain a valuable resource to the community, it has some notable limitations. 48

For example, the large number of tools makes the interface clunky and difficult to 49

navigate. In addition, EDF Browser does not have native support for visualizing model 50

predictions, a need that is growing in popularity with machine learning analyses. 51

In this paper, we introduce the EEG Prediction Visualizer (EPViz), a lightweight 52

and flexible EEG viewer that complements existing software resources in the field. 53

EPViz is targeted towards machine learning applications and is built around four core 54

functionalities: (1) displaying and manipulating the multi-channel EEG time series, (2) 55

running PyTorch deep learning models on the data, (3) overlaying channel-wise and 56

time-varying predictions on top of the EEG time series, and (4) saving high-quality 57

images of the results. In addition, EPViz includes basic preprocessing operations, 58

spectral feature extraction, and annotation editing. Finally, EPViz has a built-in 59
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anonymizer to facilitate sharing of clinical EEG data between clinicians and engineers. 60

EPViz is freely available for download at https://engineering.jhu.edu/nsa/links/. 61

Materials and methods 62

EPViz is a streamlined viewer designed for predictive modeling applications. EPViz is 63

built using the PyQt package (5.15.4) in Python. PyQt allows for easy integration with 64

a range of Python deep learning and machine learning libraries. 65

The multi-channel EEG data is plotted using the PyQtGraph package, which 66

provides fast updating and real-time user interaction capabilities. The PyEDFlib 67

package is used for loading EDF files, and the Matplotlib package is used for saving 68

high-quality images. Finally, the MNE package [58] is used to generate a 2-D 69

topographic map of channel-wise model predictions on the scalp for enhanced 70

visualization capabilities. This representation is also known as a topoplot. 71

Overview of the GUI 72

Fig. 1 illustrates the EPViz graphical user interface. The “Select File” button allows 73

the user to load an EDF file containing multi-channel EEG data. The popup window 74

asks the user to select which channels to plot. We have included the standard 10-10, 75

10-20 and bipolar 10-20 montages as preset selections. The user also has the option to 76

load a custom EEG montage via a separate text file. 77

The EEG signals appear in the main display pane. Signals from the default 78

montages are color-coded according to hemisphere (red for left, blue for right, and green 79

for the midline). This is in contrast to EDFBrowser, which defaults to plotting all 80

signals in black. Users can change the ordering and number of plotted signals using the 81

“Change Signals” button. Annotations in the EDF files are plotted as “Notes” at the 82

bottom of the display pane. These are particularly relevant for clinical EEG data. 83

Users can vary the time scale of the plot (1, 5, 10, 20, 25, 30, or 45 seconds) using the 84

“Change Window Size” button. Likewise, they can change the intensity scale via the 85

“Change Amplitude” button. Finally, the “Open Zoom” button allows the user to zoom 86

in on a selected region of the plotting window. 87

EPViz includes basic filtering operations. The high- and low-pass parameters, 88

implemented using the SciPy library, can be set in the “Change Filter” pop-up. To 89

allow for real-time updating, only the region shown on the screen is filtered. These 90

filtering operations mimic those used in epilepsy and BCI applications. More complex 91

preprocessing, such as ICA, should be done offline prior to loading the file into EPViz. 92

Obtaining and displaying temporal predictions 93

EPViz supports two types of predictions. The first is a continuous value between [0, 1], 94

corresponding a soft binary assignment. By default, EPViz assumes that “0” is the 95

baseline condition and “1” is the condition of interest. The second is a categorical 96

assignment into one of K classes plus a default class of “0” again denoting a baseline 97

condition outside of the main assignments. 98

The user can load predictions in one of two ways. The first method is via an auxiliary 99

file. The file should either contain a single row, corresponding to a subject-level 100

prediction for each time point, or contain the same number of rows as plotted EEG 101

channels, corresponding to a channel-wise prediction for each time point. The second 102

method is by loading a pre-trained PyTorch model and running it directly on loaded 103

data. Here, the PyTorch model should generate an output that is an integer modulo the 104
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Fig 1. Main GUI window. The signal organization window can be used to change the order of signals (top left). This
window is opened from the signal selection window. Also shown are the filtering and image saving windows. The main
window includes a leftside-panel with various options and the main signal plot to the right.

number of samples in the signal. This format accounts for models that generate 105

window-wise predictions across short (e.g., 1-10 sec) snippets of the full EEG recordings. 106

Figure generation and export 107

Fig. 2 illustrates the model predictions in the main display pane. As seen, the 108

predictions are overlaid in a light cyan across the appropriate channels. In the case of 109

binary classification, the detection threshold can be swept using the built-in slider bar. 110

This strategy allows users to identify salient features of the underlying EEG that may 111

coincide with the predictions. Not only does this mimic clinical review of scalp EEG 112

data, but it may facilitate interpretability of the corresponding algorithms. 113

Going one step further, EPViz can display multi-channel predictions on a topological 114

scalp plot (topoplot). The topoplots are generated using the MNE plot topomap 115

function. The user can select the time point to display by moving a black vertical line 116

on the main display pane. Once positioned, the topoplot is automatically updated as 117

the user scrolls through the EEG data. 118

Finally, the “Save to .png” option allows the user to export a high-quality image of 119

the main display pane. Here, the user first selects the desired options (filtering signals, 120

overlaying predictions, adding annotations) and proceeds to an image editor. The editor 121

allows them to change the plot title, the EEG signal thickness, and the text font size. 122

Topoplots can be exported to an image using the “Save topoplot” button. Users can 123
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toggle subplot titles which default to the times for each topoplot. The Matplotlib 124

package is used for exporting the *.png files. 125

Fig 2. Visualizing predictions. Model predictions are shown in light cyan across the
channels. Since multi-channel predictions are plotted, topoplots have been generated.

Other functionalities 126

Data statistics and spectrum 127

EPViz computes and displays basic statistics of the EEG data. These include signal 128

mean, variance, and line length. Line length is computed as the sum of distances 129

between consecutive time points of the signal; it is a particularly useful metric in EEG 130

analysis [29]. Beyond these time-domain features, EPViz computes the power within the 131

standard EEG frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta 132

(14-30 Hz), and gamma (30-45 Hz). As shown in Fig. 3, the user can control the channel 133

and time interval over which the statistics are computed by moving the red rectangle. 134

EPViz also plots the spectrogram of a selected EEG channel. The spectrogram is 135

extracted based on the Fast Fourier Transform magnitude. This time-frequency 136

representation is popular in many EEG applications [6, 7, 22–26]. Users can toggle the 137

spectrogram via the “Power Spectrum” button. EPViz computes and displays basic 138

statistics of the EEG data. These include signal mean, variance, and line length. As its 139

name suggests, line length is computed as the sum of distances between consecutive 140

time points of the signal; it is a particularly useful metric in EEG analysis. Beyond 141

these time-domain features, EPViz computes the power within the standard EEG 142
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frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), and 143

gamma (30-45 Hz). As shown in Fig. 3, the user can control the channel and time 144

interval over which the statistics are computed by moving the red rectangle. 145

Annotation editor 146

The EDF file format provides a means to store text annotations linked to specific time 147

points of the data. Annotations are often added by clinicians to flag salient events, for 148

example during epilepsy monitoring. The are also useful in research studies to indicate 149

the timing of different stimuli or experimental conditions. Similar to EDFBrowser, our 150

EPViz includes tools for extracting and modifying textual annotations. Specifically, the 151

annotations are displayed both as a list on the right of the window and in the “Notes” 152

row of the main display pane. As seen in Fig. 3, we have also included an annotation 153

editor that lets the user both modify the text of existing annotations and add new 154

annotations. Changes made using the annotation editor will not persist outside of 155

EPViz unless they are saved into a new EDF file. 156

Fig 3. Annotation editor and statistics. The dock on the right side of the plot
contains the annotation editor (top) and signal statistics (bottom). The red rectangle
on the main plot can be used to select a region over which statistics will be computed.

Clinical anonymization 157

To facilitate the sharing of clinical data, EPViz includes a built-in anonymizer to strip 158

identifiable information from the EDF file prior to it being saved. Fig. 4 shows the 159

annonymization window. Here, users can opt for the default setting, which removes 160

names and dates from the EDF header, or they can selectively edit each field 161

themselves. The Python code underlying the anonymizer has been verified by the 162

University of Wisconsin (UW) Madison Institutional Review Board and is currently 163

being used for data sharing between UW Madison and Johns Hopkins University. 164
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For convenience, the EEG data and the overlaid model predictions can be saved into 165

a single EDF file. This file can easily be re-loaded into the EPViz for further analysis 166

and visualization. Logistically, the model predictions are stored as a new data channel 167

and should not interfere with other EEG software packages. 168

Fig 4. Anonymization window. This option can be used to strip identifiable
information from the EDF file prior to saving.

Command line options 169

We have provided command-line support for figure generation of the main display pane 170

(EEG signals) and for data anonymization. These command-line option can be 171

integrated into batch processing pipelines and are particularly useful for comparing 172

different predictive modeling outputs. In summary, EPViz is built so that people with 173

and without technical expertise are able to easily interact with its tools. 174
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Table 1. Unit testing code coverage for EPViz source files.

Functionality File Coverage (%)

Main plot plot.py 82
plot utils.py 93

EDF saving anonymizer.py 91
saveEdf info.py s 100
saveEdf options.py s 100

Filtering filter options.py 100
Predictions prediction info.py 82

prediction options.py 74
Preprocessing edf loader.py 100
Signal loading channel info.py 93

channel options.py 78
Signal statistics signalStats info 100

signalStats options 92
Spectrograms spec options.py 99
Image saving saveImg options.py 81

saveTopoplot options.py 93

Development and release 175

Software Testing Procedures 176

To ensure a smooth user experience, we have added unit testing for EPViz. Our tests 177

cover the main functionalities of the visualizer (e.g., loading, plotting, manipulating, 178

and saving data/images) with extensive coverage of the corresponding source files. 179

Exceptions included purely UI functionalities, which require constant user interaction. 180

Table 1 shows the code coverage of our unit tests. We have also created a GitHub Action 181

to run the unit tests on each pull request to encourage high-quality code integration. 182

Finally, we have used Pylint (https://pylint.pycqa.org/en/latest/) during the 183

development process to ensure that our EPViz source code conforms to the PEP 8 style 184

guidelines for Python. 185

Software Dissemination 186

We have included three ways for users to download and install EPViz . First, users can 187

clone our GitHub repository, which contains the most up-to-date version of the code. 188

The repository includes information for developers about how to use EPViz along with 189

test EDF files from the public Children’s Hospital of Boston (CHB) and Temple 190

University Hospital (TUH) datasets [25,59,60] that can be used to explore the visualizer 191

functionality. The GitHub repository is linked on our lab webpage: 192

https://engineering.jhu.edu/nsa/. 193

Second, EPViz is available on PyPI at https://pypi.org/project/EPViz. This 194

page provides instructions on how to install EPViz in Linux, MacOS and Windows, 195

links to our online documentation, and a summary of features and command-line 196

options. There is also a description of the unit tests created for EPViz and instructions 197

for running pylint on any code modifications to ensure compatibility. 198

Third, EPViz can be downloaded as a standalone package for MacOS and Windows. 199

This option is geared towards users with limited programming experience, who simply 200

want to access the functionalities of EPViz. These packages are available for download 201

at https://engineering.jhu.edu/nsa/. 202

February 27, 2024 8/19



EPViz is licensed under General Public License (GPL) 3.0. 203

Online Documentation 204

We have created an extensive online documentation page for EPViz, which can be 205

accessed via our lab website at: https://engineering.jhu.edu/nsa/epviz/. The 206

documentation includes a short video of EPViz , followed by detailed information about 207

each of the main features and tips to help users interact with the visualizer. The user 208

can also download the test EDF files in our GitHub repository and follow along with a 209

step-by-step demo at the end of the page. This demo reviews a common use case for 210

EPViz including loading a file, selecting a montage, loading predictions, navigating 211

through the signal time series, saving a figure, and anonymizing the file. These steps are 212

also covered in the linked video. 213

Real-world use case: seizure detection 214

Data 215

We demonstrate the real-world utility of EPViz via a seizure detection experiment. Our 216

scalp EEG dataset was acquired by University of Wisconsin-Madison pediatric epilepsy 217

monitoring unit. It includes 192 EEG recordings in the standard 10-20 montage [61] 218

from 16 patients for a total of 100 seizures. There are an average of 6.25 seizures per 219

patient (min = 1 seizure, max = 33 seizures). The total recording time is 33.1 hours 220

with an average of 124 minutes of recorded EEG per patient, as seen in Fig 5. The EEG 221

data was sampled at 256 Hz and resampled to 200 Hz for the purpose of analysis. The 222

EEG was annotated for seizure onset and offset by a clinician using video-EEG. 223

Fig 5. UWM Dataset Recording Times. Total time in minutes of EEG included
for each patient in the UWM dataset.
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Experimental setup 224

Predictive models 225

We compare the performance of eight different methods for seizure detection drawn 226

from recently published work. These methods encompass a range of feature extraction 227

and machine learning techniques. The inputs to each method are one-second windows of 228

multichannel EEG data, provided as a sequence. The outputs are window-level 229

predictions of seizure versus baseline activity. Here, we provide a concise summary of 230

each method and refer the reader to the citations below for additional details. 231

• CNN-BLSTM: Introduced in [32], this deep learning architecture couples a 232

convolutional neural network (CNN) feature encoder with a recurrent bidirectional 233

long short-term memory (BLSTM) classifier. 234

• CNN-MLP: Proposed as a baseline for the CNN-BLSTM [32], this method uses 235

the same convolutional encoder, but replaces the BLSTM with a multi-layer 236

perceptron that operates independently on each one-second window of the EEG. 237

• Wei-CNN: Developed by [41], this is a fully-convolutional deep learning method 238

that uses a single CNN to obtain window-wise seizure versus baseline predictions. 239

• CNN-2D: Also used a baseline in [32], this method concatenates the FFT of the 240

channel-wise EEG signals into a 2D matrix and operates on it like an image. This 241

method is inspired by the works of [34,37], which use a similar strategy. 242

• MLP-XXX: These three methods rely on hand-crafted features extracted 243

channel-wise from the one-second windows as described in [45]. The “time” 244

features consist of sample entropy, signal energy, line length, and largest Lyapunov 245

exponent. The “filterbank” features consist of spectral power in different EEG 246

frequency bands. The classification is performed by a multi-layer perceptron. 247

• Kaleem-SVM: As introduced in [18], this method operates on the combined 248

time and filterbank features described above but uses a support vector machine 249

(SVM) classifier instead of a deep neural network. 250

Training and calibration is performed according to [32]. For the CNN-BLSTM, the 251

CNN encoder is pre-trained on individual windows for 10 epochs prior to joint training 252

of the full architecture. The outputs for each method are averaged 20 consecutive 253

windows to reduce noise in the final predictions. Likewise, the seizure detection 254

thresholds for each method are independently set to allow only two minutes of false 255

positive seizure classifications per hour on the training data. 256

Finally, we note that our objective in this study is to demonstrate how EPViz can be 257

used to visualize the results of a real-world predictive analysis, rather than to advocate 258

for any particular seizure detection method. Thus, we have selected models that are 259

simple to implement and train, while still being current in the field. 260

Performance Metrics 261

We evaluate performance at the level of one-second EEG windows and at the level of 262

whole seizures. In the former case, we treat the window-level seizure versus baseline 263

predictions as independent outputs and compute the Area Under the Receiver 264

Operating Characteristic Curve (AUC-ROC) and the Area Under the Precision-Recall 265

Curve (AUC-PR). These metrics capture the behavior when varying the detection 266

threshold. We also compute sensitivity and specificity using the detection thresholds 267

obtained during callibration (see previous section). In the latter (whole seizure) case, we 268
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Fig 6. Seizure detection performance on the UWM dataset. Box plots capture the average performance for each
metric across the 16 patients. The orange bar denotes the median performance, boxes correspond to the inter-quartile range,
and the whiskers denote the 10th and 90th percentiles. Top: Window level results are calculated on one-second windows of
EEG. Bottom: Seizure level results are calculated over the duration of the seizure period.

first determine the intervals of contiguous seizure classification based on the callibrated 269

detection thresholds. Any interval that intersect a clinician-annotated seizure is 270

considered a true positive detection; the remaining are considered false positive 271

detections. From here, we quantify the duration of false positive detections, the 272

sensitivity (true positives divided by total number of seizures), and the onset latency. 273

Experimental Results 274

Fig. 6 reports the seizure detection results. The box plots are constructed by first 275

averaging the performance metrics across all seizures for a given patient and then 276

plotting the distribution of these averages across patients. Note that the CNN-BLSTM 277

and CNN-MLP have the best median performance at the window level, which suggests 278

that the convolutional encoder is key to learning discriminative representations from the 279

data. At the seizure level, while the deep learning methods achieve similar sensitivity 280

and onset latency, the CNN-BLSTM shines with respect to low false positives. This 281

observation indicates that (1) the calibration thresholds set during training are more 282

likely to generalize to testing data for the CNN-BLSTM, and (2) the temporal modeling 283

of this architecture may help to suppress less certain seizure predictions. 284

Fig. 7 demonstrates the utility of EPViz in comparing different methods. Here, the 285

unsmoothed seizure detections for each model are superimposed in blue over the original 286

EEG signal, here displayed using the longitudinal bipolar montage. Annotated seizure 287

onset is displayed using the dashed vertical line at 739 seconds. The CNN-BLSTM 288

makes a continuous seizure detection with low latency. With the exception of the 289

MLP-Time Domain, CNN and MLP models make non-continuous seizure classifications, 290

alternating between detected seizure and periods of baseline. The Kaleem-SVM misses 291

the seizure entirely. Beyond this example, EPViz can be used to compare model 292

behaviors during baseline activity and seizure offset. Researchers can also use these 293

images to identify confounding features in the underlying EEG signals, then can be 294

re-incorporated into their models for improved performance. 295

Finally, we note that the seizure detection performance in the UWM dataset is lower 296
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Fig 7. EPViz visualizations of seizure detections from each model. Detected seizures are shown superimposed in blue on the
EEG. Annotated seizure onset at 739 seconds is shown by the vertical dashed line. The CNN-BLSTM shows a contiguous
seizure detection with low latency while alternative models show higher latency, non-continuous detection, or misses.

than the performance of the models reported in [32] using the CHB dataset [25,26]. 297

This trend may be partially attributed to the smaller sample size of the UWM dataset. 298

In addition, the CHB dataset contains primarily generalized seizures, whereas the UWM 299

dataset contains a more heterogeneous focal epilepsy cohort. 300
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Discussion 301

Comparison between EPViz and existing tools 302

EPViz provides a streamlined interface that allows users to easily interact with the 303

EEG data and visualize model predictions. Accordingly, EPViz fills an unoccupied 304

niche amongst other EEG visualization and analyses tools. Perhaps the most widely 305

used too is EDF Browser [57], which provides similar EDF loading and manipulation 306

capabilities. EDF Browser also has a large suite of analytical tools, from filtering 307

operations to spectral analysis [57]. While EDF Browser will remain a powerhouse in 308

the EEG community, we believe that EPViz provides key functionality not incorporated 309

in EDF Browser. First, EPViz is a streamlined and user-friendly application, which 310

makes it easy for non-technical users to adopt. Second, it is geared towards 311

spatio-temporal predictive analyses; the predictive overlay and topoplots are currently 312

not supported in EDF Browser. Finally, it generates high-quality images of the data 313

and results, which can be used in scientific publications and presentations. 314

There are also a variety of EEG software toolboxes developed for Matlab. For 315

example, the popular EEGLab focuses on independent component analysis (ICA) and 316

other time-frequency techniques [53,54]. It also provides a GUI for visualizing events 317

detected by these methods. In contrast, EEGNET provides tools for functional 318

connectivity analysis [55] and includes a pipeline for the relevant preprocessing to 319

construct an EEG connectome. Finally, BrainStorm registers multiple data formats 320

including MEG, EEG, and MRI producing visualizations and analysis [56]. While these 321

packages provide some overlapping functionality to EPViz, they do not lend themselves 322

towards predictive analysis, like our PyTorch integration. They also rely on Matlab, 323

which is an expensive and not-universally available platform. In contrast, EPViz is 324

based on open-source Python packages and is freely available to the community. Table 2 325

summarizes the key features offered by EPViz, as compared to existing software 326

packages. As seen, EPViz fills a much needed gap in EEG visualization. 327

Finally, EPViz leverages the MNE library [58] to produce topoplots in a user-friendly 328

manner. While the native MNE library provides many visualization, preprocessing, and 329

analysis tools, using them requires advanced scripting knowledge. 330

Application domains 331

EPViz can be used in a variety of clinical and research applications, where the goal is to 332

detect an event from the EEG data. One natural domain is epilepsy. In fact, the 333

experimental testbed in this paper uses EPViz to compare the seizure detection 334

performance across different machine learning methods. Other phenomenon of interest 335

EPViz EDF Browser EEGLab EEGNET BrainStorm

View EEG Signals X X X X X
Compute Summary Statistics X X X X X
Annotate Data X X X X
PyTorch Integration X
Overlay Predictions X
Save High-Res Images X X
License-Free X X X

Table 2. Summary of features provided by EPViz, as compared to existing EEG software.
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are auras and non-epileptic events, both of which can be detected using a similar 336

training and evaluation strategy. Going one step further, EPViz supports channel-wise 337

predictions, which makes it a natural tool for seizure localization studies [45, 46], where 338

the goal is to identify a specific area of onset (e.g., lobe and/or hemisphere) and track 339

the seizure activity as it propagates from that location. 340

Another application domain is BCI. Once again, some studies try to predict 341

subject-level events, such as viewing a particular stimuli, while others zone in on specific 342

EEG channels to tease apart the activity. 343

Finally, even though we have focused this paper on predictive analytics, the features 344

of EPViz can be used to emphasize other aspects of the data. Recall that EPViz can 345

overlay “predictions” contained in an auxiliary file. Hence, the user can create 346

“predictions” that correspond to different experimental conditions. Another option is to 347

create “predictions” that select certain EEG channels and time intervals based on an 348

ERP analysis. Thus, EPViz is a flexible tool that users can adapt for their own needs. 349

Limitations and Future Work 350

EPViz is currently designed to load and manipulate a single EEG recording. This setup 351

makes it amenable to the testing phase of machine learning approaches, i.e., evaluating 352

the performance of a model on new data. However, EPViz cannot be used for model 353

training, which would require processing multiple EEG recordings at a time. Future 354

work will integrate command-line options into EPViz for the user to train a PyTorch 355

deep learning model given a data directory and subject ID list. This trained model can 356

be loaded back into EPViz and applied to new EEG data using the existing 357

functionality. Along the same lines, we will add an option for users to load multiple 358

EEG recordings and toggle between them in the main display pane. 359

From a visualization standpoint, EPViz is optimized for the 10-20 electrode 360

placement system [61]. While the user can load data from other montages, the signals 361

will not be colored according to hemisphere, and EPViz will not generate a topoplot 362

since the electrode placements are not provided in the EDF file. Future work will tackle 363

this issue by allowing the user to add the electrode positions, hemisphere information, 364

and desired ordering to the auxiliary text file mentioned above. 365

Along the same lines, EPViz has difficulty displaying more than 50 EEG signals at a 366

time. Not only are the signals difficult to see, but the plot updates much more slowly 367

after user interaction (e.g., signal filtering, scrolling through time, zoom functionality). 368

To address this issue, we will integrate a memory management system that allows 369

EPViz to efficiently cache and update data as needed. We will also add a pop-out 370

window for the main display pane to accommodate the additional EEG signals. 371

Finally, EPViz is configured to apply the loaded models to the entire EEG recording 372

to obtain predictions. While suitable for research purposes, clinicians desire real-time 373

analysis capabilities to assist in their review of continuous recordings. We will explore 374

such add-ons to EPViz in the future. These will likely rely on memory management 375

systems and closer integration with existing clinical software packages. 376

Conclusion 377

We have introduced EPViz, a lightweight and user-friendly visualizer for EEG data. 378

EPViz is designed for predictive modeling applications, which are becoming increasingly 379

popular in EEG research. Specifically, EPViz allows the user to generate and overlay 380

predictions on top of the EEG signals, thus providing a mechanism to interpret the 381

model output with respect to the data. EPViz can also generate high-quality images of 382

the predictive modeling outputs to aid in scientific reporting [62]. EPViz is completely 383
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open-source and uses Python, which is the fastest-growing programming language for 384

machine learning. Finally, EPViz has been designed for both engineers and 385

clinician-scientists. In particular, we have included spectrogram visualization, which is 386

often used in clinical review of EEG, and a built-in anonymizer to remove identifiable 387

information from the EDF files. EPViz has helped our own team to build an 388

interdisciplinary and inter-institutional collaboration in epilepsy. We hope that it will 389

promote such collaborations for other researchers. 390
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