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Background: Although conventional prediction models for surgical patients often
ignore intraoperative time-series data, deep learning approaches are well-suited
to incorporate time-varying and non-linear data with complex interactions.
Blood lactate concentration is one important clinical marker that can reflect the
adequacy of systemic perfusion during cardiac surgery. During cardiac surgery
and cardiopulmonary bypass, minute-level data is available on key parameters
that affect perfusion. The goal of this study was to use machine learning and
deep learning approaches to predict maximum blood lactate concentrations after
cardiac surgery. We hypothesized that models using minute-level intraoperative
data as inputs would have the best predictive performance.

Methods: Adults who underwent cardiac surgery with cardiopulmonary bypass
were eligible. The primary outcome was maximum lactate concentration within
24 h postoperatively. We considered three classes of predictive models, using the
performance metric of mean absolute error across testing folds: (1) static models
using baseline preoperative variables, (2) augmentation of the static models with
intraoperative statistics, and (3) a dynamic approach that integrates preoperative
variables with intraoperative time series data.

Results: 2,187 patients were included. For three models that only used baseline
characteristics (linear regression, random forest, artificial neural network) to
predict maximum postoperative lactate concentration, the prediction error
ranged from a median of 2.52 mmol/L (IQR 2.46, 2.56) to 2.58 mmol/L (IQR 2.54,
2.60). The inclusion of intraoperative summary statistics (including intraoperative
lactate concentration) improved model performance, with the prediction error
ranging from a median of 2.09 mmol/L (IQR 2.04, 2.14) to 2.12 mmol/L (IQR 2.06,
2.16). For two modelling approaches (recurrent neural network, transformer)
that can utilize intraoperative time-series data, the lowest prediction error was
obtained with a range of median 1.96 mmol/L (IQR 1.87, 2.05) to 1.97 mmol/L (IQR
1.92, 2.05). Intraoperative lactate concentration was the most important predictive
feature based on Shapley additive values. Anemia and weight were also important
predictors, but there was heterogeneity in the importance of other features.
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Conclusion: Postoperative lactate concentrations can be predicted using baseline
and intraoperative data with moderate accuracy. These results reflect the value
of intraoperative data in the prediction of clinically relevant outcomes to guide
perioperative management.

lactate, cardiac surgery, prediction, malperfusion, machine learning

Introduction

A critical goal of intraoperative management is optimizing
systemic perfusion to maintain organ function. During cardiac
surgery, both hemodynamic changes inherent to the surgery and
management strategies while on cardiopulmonary bypass can reduce
systemic perfusion. However, impaired systemic perfusion may not
be evident until hours to days after surgery.

Many prediction models in cardiac surgery use simple
combinations of static patient characteristics and a limited number of
intraoperative variables (1-3). However, during cardiac surgery, and
particularly during cardiopulmonary bypass, minute-level data is
available on key parameters that are thought to affect perfusion (e.g.,
flow, hemoglobin concentration, mean arterial pressure) or measure
the adequacy of perfusion (e.g., acid/base status, mixed venous
saturations). Although conventional prediction models often ignore
this dynamic data, deep learning approaches are well-suited to
incorporate time-varying and non-linear data with complex
interactions (4).

There is no gold standard to measure the adequacy of overall
systemic perfusion, but blood lactate concentration is one important
care (5, 6).
cardiopulmonary bypass has been consistently associated with

biomarker in clinical Hyperlactemia after
postoperative morbidity, increased duration of intensive care stay,
and mortality (6-8). Immediate elevations in postoperative lactate at
the time of intensive care unit admission are thought to be largely
due to hypoperfusion and have the strongest associations with
important postoperative outcomes, including longer duration of
intensive care unit stay and in-hospital mortality (8, 9). However,
elevated lactate concentrations up to 24 h after surgery have also been
associated with worse in-hospital and long-term mortality,
potentially implicating hypoperfusion as a risk factor (10). Thus, it is
important to understand which patients may develop postoperative
elevations in lactate, as well as what intraoperative factors
are contributory.

The goal of this study was to use several machine learning and
deep learning approaches to predict maximum blood lactate
concentrations in patients up to 24h after cardiac surgery.
We hypothesized that the addition of intraoperative and
cardiopulmonary bypass parameters to baseline patient and surgical
characteristics would improve prediction models; consequently,
models using minute-level intraoperative data that included multiple
parameters related to cardiopulmonary bypass would have the best
predictive performance. Further, we aimed to examine the relative
importance of predictive features using Shapley additive values
(SHAP values). Although the prediction models were designed to use
all intraoperative data, the results would potentially support the need
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for real-time prediction models that could be used during surgery to
guide management decisions that could improve systemic perfusion.

Materials and methods
Institutional review board and consent

This study was approved by the Johns Hopkins Institutional
Review Board (Baltimore, MD) with waived patient consent. The
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) framework was used to
develop and report the results of this study (11).

Study population

Our study includes patients 18years or older who underwent
cardiac surgery with cardiopulmonary bypass at Johns Hopkins
between July 1, 2016, and October 31, 2019. Patient data was extracted
from Epic and merged with data from the Society of Thoracic Surgeons
Registry. The Society of Thoracic Surgeons Registry captures patient
preoperative risk characteristics, procedure-related processes of care,
and clinical outcomes. The registry has been shown to have extremely
high inter-rater reliability and completeness and is widely regarded as
the “gold standard” for benchmarking cardiac surgery risk adjusted
outcomes (12). For patients with more than one hospitalization with
surgery during this time period, only the first hospitalization with
surgery was included. Other exclusion criteria included missing time
stamps and missing at least one recorded value of postoperative lactate
within the first 24 h. Further filtering was done to account for errors in
the information gathering stage, such as missing anesthesia start/end
times. For patients with multiple surgeries during one hospitalization,
the first surgery was predominantly used, but a second surgery which
met criteria could also be eligible. These steps yielded a total of
N=2,187 patients for the analysis (Figure 1). The sample size for this
analysis was derived using all available data that met inclusion criteria.

Variable selection and data preprocessing

Variables from both the Society of Thoracic Surgeons Registry and
from EPIC were reviewed by an expert clinician for potential inclusion
in the prediction models based on clinical relevance and categorization
as preoperative, intraoperative, or postoperative data. Static variables
with greater than 5% missingness were excluded. A list of included
variables is shown in Supplementary Table S1.
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Patients with Society of Thoracic Surgeons registry and electronic health
record data for hospitalizations during eligible time period (n=2711)

H Second hospitalization removed (n=40)

Patients with Society of Thoracic Surgeons data and
matched electronic health record data for first
hospitalization during eligible time period (n=2671)

1—>

Missing at least one of vitals, perfusion, labs or medications (n=17)
Anesthesia times missing (n=2)

Invalid bypass or cross clamp times (n=302)

Patients with valid Society of Thoracic Surgeons and
intraoperative electronic health record data (n=2350)

Analyzed (n=2187)

FIGURE 1

H No lactate values in first 24 hours (n=163)

Patient flow diagram. A patient flow diagram is shown describing included and excluded patients in the analytic cohort.

Data extracted from EPIC provided granular baseline and
intraoperative variables. Continuous intraoperative data (e.g., pulse
oximetry) was extracted at 1 min intervals, and other discrete data
were extracted as time-stamped variables. Medications were
considered as total intraoperative dose or maximum infusion rate. The
following pre-processing steps were applied to static variables: (1)
imputation of missing categorical/binary features (i.e., comorbidities
and medications) to be the absent value of zero, and (2) removal of
outliers via clipping of continuous features to 0.01 and 0.99 percentiles.
For the intraoperative time series, outliers were identified and
removed based on parameters set by clinical judgment. Missing
continuous static values were imputed based on the population mean.
Missingness in the time series was imputed based on the mean value
in the analytic cohort. The pulse variable was set to 0 for the duration
of cross-clamp. Only the pulse measurements outside of cross-clamp
were considered when computing intraoperative summary statistics.

We considered intraoperative variables using two approaches. In
the first approach, we summarized all intraoperative features (minute-
level continuous intraoperative data, labs) as separate fixed size
vectors, using the mean value and variance across the whole
intraoperative window for which time series data was available.
We also created several features based on time outside of clinically
important ranges (mean arterial pressure <55, 60, and 65mm Hg.,
central venous pressure >15mm Hg., pulse >100, pulse <50,
bicarbonate concentration <21meq/L, hematocrit <21%, mixed
venous saturation <70 and 75%, and pH <7.35). In the second
approach, we utilized the dynamic information of the time-series data.
To decrease noise in the data and reduce input data size, we compressed
the data by taking the mean of every five minutes/measurements.

Clinical end point

The primary outcome was the maximum lactate concentration
recorded within the first 24 h after the end of anesthesia.
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Machine learning models

We conducted a comprehensive evaluation across five different
machine learning models of increasing complexity: linear regression,
random forest regression, artificial neural networks, recurrent neural
networks, and transformers (Figure 2). The first three methods operate
on static variables derived from both the preoperative data and
intraoperative statistics. The last two methods can mine information
directly from the intraoperative time series. Below, we provide brief
summaries of each method, followed by our three evaluation
paradigms in the next section.

Linear regression (static): we use a multivariate linear model to
predict the clinical endpoint (maximum postoperative lactate) based
on the patient variables. Given the large number of input features,
we use the ElasticNet model, which combines both L1 and L2
regularization on the learned regression coefficients. Mathematically,
the regularization is done by adding the absolute value (L1) and
squared value (L2) of each coefficient to the mean-squared error
objective. Linear regression assumes a static input of fixed dimension.
Hence, as noted above, we only apply it to the static preoperative
variables and summarized intraoperative statistics.

Random forest (static): the random forest is an ensemble of
decision tree classifiers that incorporate two layers of randomness.
Each tree is grown using a random subset of patients by recursively
searching for the feature that splits the patients into two clusters with
the lowest squared difference in lactate between all points assigned a
cluster. This process is controlled via two hyperparameters, one
governing the number of trees in the forest, and the other specifying
the percentage of random features at each branch. The random forest
requires a fixed input feature dimension and is only applied to
static variables.

Artificial neural network (static): we used a feedforward artificial
neural network (ANN) to map the static input features onto the
desired clinical outcome. The network consists of fully connected
layers and ReLU activations after each layer. Tunable hyperparameters
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FIGURE 2

intraoperative variables, as input variables.

Machine learning models used for analysis. (A) Multivariate linear regression with an ElasticNet penalty (not pictured) to encourage feature sparsity.

(B) Random Forest regression that uses an ensemble of decision tree classifiers for prediction; each tree is grown by iteratively searching for the feature
that splits the patients into clusters with the lowest pairwise difference of lactate values within each cluster. (C) Artificial Neural Network that uses a
sequence of fully connected layers to project the data onto latent representations (denoted by blue dots). The models in Panels (A-C) use static
baseline and intraoperative variables as input variables. (D) Recurrent Neural Network that handles dynamic sequences through a series of feedback
operations; this model can accommodate different input sequence lengths. (E) Transformer that uses a self-attention mechanism to model both short-
and long-range dependencies in the input sequence. The models in (D) and (E) use time series intraoperative data, as well as static baseline and

include the learning rate, hidden layer sizes, and the number of hidden
layers. We use the Adam optimizer with the regularization parameter
fixed to le-2 and a fixed dropout of 0.5 at each hidden layer.

Recurrent neural network (static + time series): recurrent neural
networks are extensions to the artificial neural network that can handle
dynamic sequences of variable lengths. We relied on a gated recurrent
unit architecture (13). The static features are concatenated to the
dynamic features at every time point. Once again, we tuned the learning
rate, hidden layer sizes, and the number of hidden layers. We use the
Adam optimizer with the regularization parameter fixed to le-2 and a
fixed dropout of 0.5 at each hidden layer and 0.05 at the input.

Transformer (static+time series): transformers are a recently
proposed alternative to recurrent architectures that use self-attention
to learn representations of the dynamic inputs. We rely on the original
encoder implementation by Vaswani et al. (14) and the extension to
multivariate time series data by Zerveas et al. (15) tunable
hyperparameters include the learning rate, hidden layer sizes, number
of attention heads, and the dimension for the feedforward network
model We use the Adam optimizer with the regularization parameter
fixed to le-2 and a fixed dropout of 0.5 at each hidden layer and 0.05
at the input.

Statistical analysis

We use a repeated nested five-fold cross validation to robustly
quantify the performance of each model. Here, the dataset of N=2,187
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patients was randomly divided into five groups, i.e., folds. During each
iteration, four folds were combined and split into training and
validation. The validation set was used to determine the best
hyperparameter configuration and set the early stopping criteria for
each deep learning model. We use an automatic hyperparameter
optimization framework called Optuna to set the hyperparameters of
each method based on sampling 50 configurations via the tree-based
Parzen Estimator. Once the hyperparameters were fixed, the models
were optimized by minimizing the mean-squared error between the
measured and predicted lactate values in the training dataset. We then
evaluated the lactate prediction on the held-out testing fold. This
nested procedure mitigates overfitting. We resampled the cross-
validation folds five times to obtain performance confidence intervals
for each model.

We used the SHapley Additive exPlanations (SHAP) approach as
a model agnostic framework to identify the most important features
for each model, and thus interpret the information being learned.
SHAP values compute the change in the expected model prediction
when conditioning on each feature of interest. Classic SHAP value
estimation requires retraining a model on all feature subsets SC F,
where F is the set of all features. To compute the importance of feature
i, a model would be trained with and without the feature present.
Predictions of the two models are subtracted, yielding the “effect” of
feature i. This is computed for all subsets S, and computing a weighted
average of these computed differences yields the SHAP value.

To reduce the computational overhead, we used the
KernelSHAP method to jointly approximate the exact SHAP values.
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KernelSHAP solves a weighted linear regression with a specialized
weighting kernel known as the Shapley kernel (16). KernelSHAP
method provides better sample efficiency than the direct
computation above. We extract variable importances by first
running KernelSHAP on each testing fold in our 5-fold cross
validation setup, and averaging the absolute SHAP values over the
folds. This analysis is designed to align with how the models are
trained and evaluated, and it provides insight on the behavior of the
models used to generate the out-of-sample predictions in our
main result.

Results
Patient characteristics

A total of 2,187 patients were included in this analysis, and a
patient flow diagram is shown in Figure 1. Characteristics of patients
are shown in Table 1. Mean age was 62 + 13 years and 71% were male.
Isolated coronary artery bypass graft surgery was performed in 50%
of patients. Median duration of cardiopulmonary bypass was 102 min
(Interquartile range [IQR] 75, 144). The maximum lactate
concentration in the 24 h after surgery was a median of 4.6 mmol/L
(IQR 2.8, 7.3). The median time to maximum postoperative lactate
concentration from the end of the operation was 3.7h (IQR 2.1, 5.8).
Variables that were used as inputs to the models are listed in
Supplementary Table S1 and include variables from both the Society
of Thoracic Surgeons Registry and from the electronic medical record.

Comparison of model performance for
lactate prediction

Baseline characteristics as model inputs

We first examined model performance (i.e., prediction error,
expressed as the mean absolute error) for prediction of highest
postoperative lactate using only baseline patient characteristics. As
seen in Figure 3 and Table 2, for models that only used baseline
characteristics as input variables, the mean prediction error of
maximum postoperative lactate concentration ranged from a median
of 2.52mmol/L (IQRS 2.46, 2.56) for the linear regression model to a
median of 2.58 mmol/L (IQRS 2.54, 2.60) for the random forest model.

Baseline and static intraoperative characteristics
as model inputs

We next included static intraoperative characteristics as input
variables. Since not all institutions measure intraoperative lactate
concentration during surgery, we examined the performance of each
model with and without intraoperative lactate concentration as an
input variable. For the three models that do not use time-series data
(linear regression, random forest, and artificial neural network), the
inclusion of all static intraoperative variables aside from lactate
concentration improved model performance and reduced the mean
prediction error to a range of median 2.26 mmol/L (IQR 2.23, 2.37) to
median 2.37 mmol/L (IQR 2.30, 2.38). The inclusion of intraoperative
lactate concentration further reduced prediction error to a range of
median 2.09 mmol/L (IQR 2.04, 2.14) to median 2.12 mmol/L (IQR
2.06, 2.16) (Figure 3 and Table 2).
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Baseline and time-series intraoperative
characteristics as model inputs

Finally, the addition of intraoperative time-series data as inputs
for recurrent neural network and transformer models resulted in the
best model performance, with a reduction in prediction error of
approximately 10%, compared to models that do not use time-series
data. Without intraoperative lactate concentration as an input, the
mean prediction error ranged from median 2.11 mmol/L (IQR 2.03,
2.22) to median 2.14 (IQR 2.11, 2.22). The inclusion of intraoperative
lactate concentration further improved model performance and
resulted in the lower prediction error of all models that were
examined, with a mean prediction error that ranged from median
1.96 mmol/L (IQR 1.87, 2.05) to median 1.97 mmol/L (IQR 1.92, 2.05)
(Figure 3 and Table 2).

Overall, the performance of each model consistently and
significantly improved as more perioperative information (baseline,
intraoperative, intraoperative +lactate data) was provided as input
(Figure 3A). Additionally, the recurrent neural network model had
significantly better performance than models which did not use time-
series data, and even surpassed the transformer model with similar
data inputs (Figure 3B). As post hoc sensitivity analyses, we also
examined model performance in elective and non-elective surgeries,
and found similar performance for the elective and urgent surgeries,
although the prediction error was consistently lower in the small
number of  patients  undergoing

emergent  surgery

(Supplementary Table S2).

Comparison of observed vs. predicted
lactate values

Figure 4 depicts observed compared to predicted lactate values for
two representative models: linear regression (which uses static
variables as inputs) and recurrent neural network (which uses both
static and time-series variables as inputs). Using only preoperative
data as input variables resulted in the greatest error in observed to
predicted values, while the addition of intraoperative data (and
particularly time-series) data improved prediction. The scatterplots in
Figure 4 demonstrate that prediction of maximum postoperative
lactate values was better at lower levels of lactate (where points are
closer to the diagonal) than at higher levels of lactate (where points are
more distributed).

Variable importance

The top fifteen SHAP values for linear regression, random forest
and artificial neural network models are shown in Figure 5 and
provide insight into the most important features for each prediction
model. In all three models, intraoperative lactate concentration was
the dominant feature. Baseline anemia and weight were also common
important features (among the top five) for all three models as well.
However, there was substantial heterogeneity in the remaining
predictive features between models. As an example, for models that
did not include intraoperative lactate concentration as an input, total
dose of epinephrine infusion was the most important predictive
feature in the random forest model but was not a top fifteen feature in
either the linear regression or artificial neural network models.
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TABLE 1 Patient and perioperative characteristics.

10.3389/fmed.2023.1165912

All Patients Lactate >3 mmol/L Lactate <=3 mmol/L Value of p
(n=2,187) (n=1,550) (n=637)
Age (years), mean (SD) 62 (13) 62 (13) 60 (14) <0.001*
Male, n (%) 1,558 (71.2%) 1,138 (73.4%) 420 (65.9%) <0.001°
Race, 1 (%) 0.079"
Caucasian 1,517 (69.4%) 1,065 (68.7%) 452 (71.0%)
Black 411 (18.8%) 279 (18.0%) 132 (20.7%)
Asian 129 (5.9%) 99 (6.4%) 30 (4.7%)
Other 113 (5.2%) 88 (5.7%) 25 (3.9%)
Comorbidities, n (%)
Prior Stroke 170 (7.8%) 116 (7.5%) 54 (8.5%) 0.484°
Hypertension 1,618 (74.0%) 1,154 (74.5%) 464 (72.8%) 0.468"
Chronic Lung Disease 220 (10.1%) 160 (10.3%) 60 (9.4%) 0.576"
Obstructive Sleep Apnea 353 (16.1%) 254 (16.4%) 99 (15.5%) 0.671°
Tobacco Use 364 (16.6%) 220 (14.2%) 144 (22.6%) <0.001°
Diabetes 773 (35.3%) 535 (34.5%) 238 (37.4%) 0.224°
Surgery, n (%) <0.001°
Coronary Artery Bypass Only 1,101 (50.3%) 754 (48.6%) 347 (54.5%)
Valve Surgery Only 302 (13.8%) 190 (12.3%) 112 (17.6%)
Coronary Artery Bypass + Valve Only 143 (6.5%) 122 (7.9%) 21 (3.3%)
Aortic Procedures Only 77 (3.5%) 59 (3.8%) 18 (2.8%)
Ventricular Assist device 51 (2.3%) 45 (2.9%) 6(0.9%)
Heart Transplant 32 (1.5%) 30 (1.9%) 2(0.3%)
Other 481 (21.7%) 350 (22.6%) 131 (20.6%)
Status, 1 (%) <0.001°
Elective 1,006 (46.0%) 686 (44.3%) 320 (50.2%)
Urgent 1,012 (46.3%) 720 (46.5%) 292 (45.8%)
Emergent 146 (6.7%) 122 (7.9%) 24 (3.8%)
Cardiopulmonary bypass duration (min), median (IQR) 102 (75, 144) 109 (79, 153) 90 (67, 118) <0.001*
Aortic cross-clamp duration (min), median (IQR) 69 (49, 96) 73 (52,103) 61 (43, 85) <0.001*
Mean arterial pressure (mm Hg.), (median, IQR) 73.5(69.9, 77.4) 73.2 (69.5, 76.9) 74.4 (70.7,78.7) <0.001*
Central Venous Pressure (mm Hg.), median, (IQR) 9.1(7.4,11.1) 9.1(7.5,11.1) 9.1(7.2,11.0) 0.174*
Pulse (beats per minute), median (IQR) 72.9 (67.1, 80.5) 74.0 (68.0, 81.3) 70.4 (65.5,77.2) <0.001*
Right cerebral oximetry, median (IQR) 62.6 (55.0, 69.5) 63.1 (55.4, 70.0) 61.2 (53.7, 69.0) 0.03*
Left cerebral oximetry, median (IQR) 62.2 (54.1, 69.5) 62.6 (54.6, 70.0) 60.4 (52.6, 68.7) 0.018*
Blood Flow (derived from cardiopulmonary bypass 4.94 (4.46, 5.34) 4.93 (4.44, 5.33) 4.95 (4.49, 5.35) 0.730°
monitor) during bypass (L/min), median (IQR)
Bicarbonate Concentration (derived from 24.9 (23.8,26.1) 24.8 (23.7,26.0) 25.1(24.0,26.2) 0.001*
cardiopulmonary bypass monitor) during bypass mmol/L,
median (IQR)
Hematocrit (derived from cardiopulmonary bypass 27.4(24.2,30.7) 27.4(24.3,30.9) 27.4(24.2,30.5) 0.596*
monitor) during bypass (%), median (IQR)
Mixed Venous Oxygen Saturation (derived from 83.1(79.7, 86.8) 83.1(79.7 86.8) 83.1 (80.0, 86.6) 0.988*
cardiopulmonary bypass monitor) during bypass (%),
median (IQR)
pH (derived from cardiopulmonary bypass monitor), 7.39(7.37,7.41) 7.39(7.37,7.41) 7.39(7.37,7.42) <0.001*
during bypass, median (IQR)
(Continued)
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TABLE 1 (Continued)

10.3389/fmed.2023.1165912

All Patients Lactate >3mmol/L Lactate <=3 mmol/L Value of p
(n=2,187) (n=1,550) (n=637)
Maximum epinephrine infusion (mcg/kg/min) median 0.05 (0.03, 0.07) 0.05 (0.03, 0.08) 0.05 (0.03, 0.05) <0.001*
(IQR)
Maximum norepinephrine infusion (mcg/kg/min), median 0.00 (0.00, 0.05) 0.00 (0.00, 0.05) 0.00 (0.00, 0.05) <0.001*
(IQR)
Phenylephrine bolus administration (mcg), median (IQR) 700 (200, 1850) 700 (200, 2000) 700 (225, 1,500) 0.791*
Red blood cell transfusion (mL), median (IQR) 0 (0, 300) 0 (0, 500) 0 (0, 300) 0.002*
SD, standard deviation; IQR, inter-quartile range; L, liters; mL, milliliters; mm Hg, millimeters of mercury.
“Wilcoxon Rank Sum test.
"Chi-Square test.
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FIGURE 3
Prediction modelling for postoperative lactate concentration. Plots showing mean absolute error in predicting maximum lactate concentrations in the
first 24 h after surgery. The results of five different machine learning models are shown, with separate models based on included variables (only
baseline variables, baseline and intraoperative variables, baseline and intraoperative variables and all intraoperative lactate values). The linear regression,
random forest, and artificial neural network models use summarized statistics of intraoperative data, while the recurrent neural network and
transformer models incorporate time-series intraoperative data. Panel (A) demonstrates the additive value of more included variables while holding the
model constant, with the feature set that includes baseline, intraoperative, and all intraoperative lactate values having the best model performance.
Panel (B) is organized differently and demonstrates that the models that can utilize time series data have the best performance even when the type of
data in the feature set is constant.

When features were grouped to explore feature sets that had predictive
power, we found that the contribution of intraoperative variables was
higher in patients with the highest predicted postoperative lactate
concentrations. On the other hand, for some patients with false prediction
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of high lactate, the intraoperative lactate values appeared to contribute
substantial weight to the model, which may reflect that distribution-based
approximations of time series variables in these models do not capture the
dynamic course of perioperative physiologic changes.
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TABLE 2 Model performance (mean absolute error®) for prediction of maximum lactate concentration in the 24 hours after cardiac surgery.

Baseline patient Intraoperative features Intraoperative features

characteristics (not including intraoperative (including intraoperative
lactate) lactate)

Linear Regression (mean absolute 2.52 (2.46, 2.56) 2.26(2.23,2.37)° 2.09 (2.04, 2.14)"

error in mmol/L), median (IQR)

Random Forest (mean absolute 2.58 (2.54, 2.60) 2.37(2.30, 2.38)° 2.11(2.07,2.17)°

error in mmol/L), median (IQR)

Artificial Neural Network (mean 2.52 (2.49, 2.57) 2.28 (2.24, 2.37) 2.12 (2.06, 2.16)°
absolute error in mmol/L),

median (IQR)

Recurrent Neural Network (mean N/A 2.11 (2.03, 2.22)° 1.96 (1.87, 2.05)°
absolute error in mmol/L),

median (IQR)

Transformer (mean absolute N/A 2.14 (2.11,2.22)° 1.97 (1.92, 2.05)°

error in mmol/L), median (IQR)

“We computed the mean absolute error (MAE) for every testing fold to evaluate the out-of-sample generalization performance. We first used a single 5-fold cross validation to generate 5 MAE
values. Then, we repeated the cross validation procedure three times by randomly shuffling the data. The result is a distribution of MAE values computed across the repeated testing folds (15
values in total). The entries in the table are reported as the median and interquartile intervals of this MAE distribution.

“Intraoperative features included static characteristics and distribution-based parameters for time-series data (e.g., mean, minimum, variance).

“Intraoperative features included minute-level time series data, in addition to static characteristics and distribution-based parameters for time-series data.
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FIGURE 4
Observed vs. predicted postoperative lactate concentrations for linear regression and recurrent neural network models. The observed vs. predicted
postoperative lactate concentration is shown for a representative model that does not utilize time-series data (linear regression) and a model that does
utilize time-series data (recurrent neural network). For the linear regression model that does not utilize time-series data, the inclusion of intraoperative
data (B), and additionally intraoperative lactate concentration (C) substantially improves model performance compared to a model that only utilizes
baseline patient data (A). For the recurrent neural network model that does utilize time-series data, model performance is improved with the inclusion
of intraoperative time series data (D) and additionally intraoperative lactate concentrations (E), compared to models that do not utilize time-series data
(B) and (C).

Discussion moderate accuracy and a mean prediction error of 1.96 mmol/L for
the best model (recurrent neural network). Compared to models with

The results of this study demonstrate that maximum lactate  only static baseline and intraoperative patient characteristics, the
concentration in the 24 h after cardiac surgery can be predicted with  inclusion of time-series intraoperative data generally improved
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SHAP values for six model configurations to predict lactate concentration after cardiac surgery. Shapley additive values (SHAP values) represent an
estimate of the contribution of each feature to the model prediction, with higher mean values indicating greater feature performance. The highest
SHAP values are shown for linear regression (A,D), random forest (B,E), and artificial neural network models (C,F). Panels (A-C) use baseline and
intraoperative variables (but not intraoperative lactate) as inputs, while Panels (D—F) also include intraoperative lactate values as inputs.

concentration, as compared to models that only used baseline
characteristics. Other prediction models for a variety of
postoperative morbidity or mortality that have been developed using
baseline and intraoperative data have demonstrated little to no
improvement in predictive power with the inclusion of intraoperative
data (17-19), while the results of our study demonstrate substantial
improvement in predictive power with the use of intraoperative
time-series data. In comparing the various modelling approaches,
we found similar performance using linear regression, random

model performance. The strongest and most consistent predictive
feature was intraoperative blood lactate concentration. Other
consistent predictive features included baseline anemia and weight.
However, beyond these features, there was substantial heterogeneity
the individual variables that informed
model predictions.

Our results demonstrate that incorporation of intraoperative
variables, and particularly time-series data, substantially improved
model performance for the prediction of postoperative lactate

in strength  of
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forest, and artificial neural network approaches, each of which
utilizes static variables (e.g., patient comorbidities) or distribution-
based categorization of time-series variables (e.g., mean or
maximum values). Deep learning approaches that utilized full time-
series data (recurrent neural network and transformer) had the best
performance, most notably when intraoperative lactate was included
as a feature. There are several potential explanations for error in
model predictions, including potentially important unmeasured
factors, limitation in information that can be extracted from
measured factors, and a heterogeneous cohort. However, these
results imply that valuable information may be captured in the
evolving dynamics of time series data, that reflect physiologic
changes during surgery.

The best model performance which used baseline and
intraoperative time-series variables achieved a mean prediction
error of 1.96 mmol/L (IQR 1.87-2.05) for maximum postoperative
lactate concentration. Increased blood lactate concentrations during
and after surgery are thought to be due to an imbalance between
tissue oxygen supply and demand (Type A lactic acidosis) or due to
other non-hypoxic causes, such as glycolysis, drug therapy or
hypothermia (Type B) (20). Although the exact contribution of each
etiology to blood lactate concentrations cannot be known in
individual patients, increased blood lactate early after cardiac
surgery is highly clinically relevant and has been consistently
associated with postoperative morbidity and mortality (6, 7). There
does appear to be greater importance to early elevated lactate
concentration compared to late elevated lactate concentration with
respect to mortality (8). However, elevated lactate concentrations up
to 24 h after cardiac surgery have been associated with in-hospital
and long-term mortality (10). Thus, timely prediction of
postoperative lactate concentrations may help risk stratify patients
and guide ongoing resuscitation during and immediately after
surgery, especially for those patients at high risk of developing
elevated postoperative lactate concentrations. An important
implication of our study is that these results support future efforts to
develop real-time prediction models that can be used to guide
intraoperative management decisions. There are several modifiable
factors during cardiac surgery that may affect systemic perfusion
and can be modified in patients with predicted high lactate
concentrations. Both cardiac output and hemoglobin concentration
are highly modifiable and may be increased to increase systemic
perfusion. Other important approaches include optimization of
acid-base status, improving right and left ventricle function, and
consideration of options for mechanical circulatory support, such as
an intra-aortic balloon pump.

There are few studies that have developed models to predict
lactate concentrations after cardiac surgery, in part because lactate is
not routinely collected postoperatively. One study of >13,000 patients
developed nomograms to predict elevated lactate after cardiac surgery,
with AUCs of 0.799 (21). However, the classification task was simply
predicting a postoperative lactate >4 mmol/L, which is an easier
prediction problem and provides less information than predicting the
highest postoperative lactate. Indeed, elevated lactate concentrations
have been associated with postoperative mortality in a dose-dependent
manner (7). Additionally, a limited number of intraoperative variables
were used, and no time-series data was included. Thus, the relative
contribution of intraoperative variables, including time-series
variables, to the prediction has not been clear from prior studies.
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Shapley additive values can provide insight into the contribution
of individual features to model prediction. In our study, intraoperative
lactate was by far the most predictive feature in all models. This may
be due to the delayed sequelae of intraoperative events or to ongoing
pathophysiology that promotes lactate release. Additionally, baseline
anemia and weight were common important features. However,
beyond these features, there was substantial heterogeneity in top
predictive features between models. This observation highlights a
limitation of using Shapley values to assign importance and/or
causation to individual features. Heterogeneity in the importance of
features identified in Shapley plots may be caused by many factors,
including feature redundancy and collinearity, individual
implementation choices, and an outcome that may not be related to
measured features. Furthermore, there were features in our dataset
which represented similar physiologic characteristics, and correlations
of features may have led to bias in attribution of individual feature
contribution in the Shapley methodology. Taken as a whole, these
results identify potential limitations in interpreting individual
characteristics from perioperative data derived from Shapley values.

Strengths of this study include a large cohort with prediction of
a clinically relevant outcome using several different machine and
deep learning approaches. However, there are several limitations.
First, prediction approaches used all intraoperative data, and thus
prediction information is not available to guide intraoperative
management. A next step would be developing real-time updating
models for use during surgery. Second, we used cross-fold validation,
but using data from only one institution, and an important next step
will be to validate these prediction models in other settings. Third, a
prediction model is limited by the available data, and for this reason
we used a comprehensive set of patient and intraoperative
characteristics at 1 min resolution. However, as demonstrated in our
results, increasing the amount of input data tends to improve
performance. Thus, we believe that amassing large and diverse
datasets remains an open problem in this space that is important for
future contributions. Fourth, the outcome was highest lactate within
24 h after surgery, given associations with in-hospital and long-term
mortality. Others have reported a benign course for postoperative
lactate elevations in the 6-12h after cardiac surgery. Regardless of the
timing, our results suggest that mechanisms that contribute to
intraoperative elevations in lactate are also important for
postoperative lactate elevations. Finally, the prediction of the best-
performing model was moderate, but even with this degree of error,
the prediction is still clinically relevant.

Postoperative lactate concentrations can be predicted using
baseline and intraoperative data with moderate accuracy. These results
support the need for real-time prediction models that could be used
during surgery to guide management decisions that could improve
systemic perfusion.
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