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Background: Although conventional prediction models for surgical patients often 

ignore intraoperative time-series data, deep learning approaches are well-suited 

to incorporate time-varying and non-linear data with complex interactions. 

Blood lactate concentration is one important clinical marker that can reflect the 

adequacy of systemic perfusion during cardiac surgery. During cardiac surgery 

and cardiopulmonary bypass, minute-level data is available on key parameters 

that affect perfusion. The goal of this study was to use machine learning and 

deep learning approaches to predict maximum blood lactate concentrations after 

cardiac surgery. We hypothesized that models using minute-level intraoperative 

data as inputs would have the best predictive performance.

Methods: Adults who underwent cardiac surgery with cardiopulmonary bypass 

were eligible. The primary outcome was maximum lactate concentration within 

24  h postoperatively. We considered three classes of predictive models, using the 

performance metric of mean absolute error across testing folds: (1) static models 

using baseline preoperative variables, (2) augmentation of the static models with 

intraoperative statistics, and (3) a dynamic approach that integrates preoperative 

variables with intraoperative time series data.

Results: 2,187 patients were included. For three models that only used baseline 

characteristics (linear regression, random forest, artificial neural network) to 

predict maximum postoperative lactate concentration, the prediction error 

ranged from a median of 2.52  mmol/L (IQR 2.46, 2.56) to 2.58  mmol/L (IQR 2.54, 

2.60). The inclusion of intraoperative summary statistics (including intraoperative 

lactate concentration) improved model performance, with the prediction error 

ranging from a median of 2.09  mmol/L (IQR 2.04, 2.14) to 2.12  mmol/L (IQR 2.06, 

2.16). For two modelling approaches (recurrent neural network, transformer) 

that can utilize intraoperative time-series data, the lowest prediction error was 

obtained with a range of median 1.96  mmol/L (IQR 1.87, 2.05) to 1.97  mmol/L (IQR 

1.92, 2.05). Intraoperative lactate concentration was the most important predictive 

feature based on Shapley additive values. Anemia and weight were also important 

predictors, but there was heterogeneity in the importance of other features.
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Conclusion: Postoperative lactate concentrations can be predicted using baseline 

and intraoperative data with moderate accuracy. These results reflect the value 

of intraoperative data in the prediction of clinically relevant outcomes to guide 

perioperative management.
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Introduction

A critical goal of intraoperative management is optimizing 

systemic perfusion to maintain organ function. During cardiac 

surgery, both hemodynamic changes inherent to the surgery and 

management strategies while on cardiopulmonary bypass can reduce 

systemic perfusion. However, impaired systemic perfusion may not 

be evident until hours to days after surgery.

Many prediction models in cardiac surgery use simple 

combinations of static patient characteristics and a limited number of 

intraoperative variables (1–3). However, during cardiac surgery, and 

particularly during cardiopulmonary bypass, minute-level data is 

available on key parameters that are thought to affect perfusion (e.g., 

flow, hemoglobin concentration, mean arterial pressure) or measure 

the adequacy of perfusion (e.g., acid/base status, mixed venous 

saturations). Although conventional prediction models often ignore 

this dynamic data, deep learning approaches are well-suited to 

incorporate time-varying and non-linear data with complex 

interactions (4).

There is no gold standard to measure the adequacy of overall 

systemic perfusion, but blood lactate concentration is one important 

biomarker in clinical care (5, 6). Hyperlactemia after 

cardiopulmonary bypass has been consistently associated with 

postoperative morbidity, increased duration of intensive care stay, 

and mortality (6–8). Immediate elevations in postoperative lactate at 

the time of intensive care unit admission are thought to be largely 

due to hypoperfusion and have the strongest associations with 

important postoperative outcomes, including longer duration of 

intensive care unit stay and in-hospital mortality (8, 9). However, 

elevated lactate concentrations up to 24 h after surgery have also been 

associated with worse in-hospital and long-term mortality, 

potentially implicating hypoperfusion as a risk factor (10). Thus, it is 

important to understand which patients may develop postoperative 

elevations in lactate, as well as what intraoperative factors 

are contributory.

The goal of this study was to use several machine learning and 

deep learning approaches to predict maximum blood lactate 

concentrations in patients up to 24 h after cardiac surgery. 

We  hypothesized that the addition of intraoperative and 

cardiopulmonary bypass parameters to baseline patient and surgical 

characteristics would improve prediction models; consequently, 

models using minute-level intraoperative data that included multiple 

parameters related to cardiopulmonary bypass would have the best 

predictive performance. Further, we aimed to examine the relative 

importance of predictive features using Shapley additive values 

(SHAP values). Although the prediction models were designed to use 

all intraoperative data, the results would potentially support the need 

for real-time prediction models that could be used during surgery to 

guide management decisions that could improve systemic perfusion.

Materials and methods

Institutional review board and consent

This study was approved by the Johns Hopkins Institutional 

Review Board (Baltimore, MD) with waived patient consent. The 

Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis (TRIPOD) framework was used to 

develop and report the results of this study (11).

Study population

Our study includes patients 18 years or older who underwent 

cardiac surgery with cardiopulmonary bypass at Johns Hopkins 

between July 1, 2016, and October 31, 2019. Patient data was extracted 

from Epic and merged with data from the Society of Thoracic Surgeons 

Registry. The Society of Thoracic Surgeons Registry captures patient 

preoperative risk characteristics, procedure-related processes of care, 

and clinical outcomes. The registry has been shown to have extremely 

high inter-rater reliability and completeness and is widely regarded as 

the “gold standard” for benchmarking cardiac surgery risk adjusted 

outcomes (12). For patients with more than one hospitalization with 

surgery during this time period, only the first hospitalization with 

surgery was included. Other exclusion criteria included missing time 

stamps and missing at least one recorded value of postoperative lactate 

within the first 24 h. Further filtering was done to account for errors in 

the information gathering stage, such as missing anesthesia start/end 

times. For patients with multiple surgeries during one hospitalization, 

the first surgery was predominantly used, but a second surgery which 

met criteria could also be  eligible. These steps yielded a total of 

N = 2,187 patients for the analysis (Figure 1). The sample size for this 

analysis was derived using all available data that met inclusion criteria.

Variable selection and data preprocessing

Variables from both the Society of Thoracic Surgeons Registry and 

from EPIC were reviewed by an expert clinician for potential inclusion 

in the prediction models based on clinical relevance and categorization 

as preoperative, intraoperative, or postoperative data. Static variables 

with greater than 5% missingness were excluded. A list of included 

variables is shown in Supplementary Table S1.
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Data extracted from EPIC provided granular baseline and 

intraoperative variables. Continuous intraoperative data (e.g., pulse 

oximetry) was extracted at 1 min intervals, and other discrete data 

were extracted as time-stamped variables. Medications were 

considered as total intraoperative dose or maximum infusion rate. The 

following pre-processing steps were applied to static variables: (1) 

imputation of missing categorical/binary features (i.e., comorbidities 

and medications) to be the absent value of zero, and (2) removal of 

outliers via clipping of continuous features to 0.01 and 0.99 percentiles. 

For the intraoperative time series, outliers were identified and 

removed based on parameters set by clinical judgment. Missing 

continuous static values were imputed based on the population mean. 

Missingness in the time series was imputed based on the mean value 

in the analytic cohort. The pulse variable was set to 0 for the duration 

of cross-clamp. Only the pulse measurements outside of cross-clamp 

were considered when computing intraoperative summary statistics.

We considered intraoperative variables using two approaches. In 

the first approach, we summarized all intraoperative features (minute-

level continuous intraoperative data, labs) as separate fixed size 

vectors, using the mean value and variance across the whole 

intraoperative window for which time series data was available. 

We also created several features based on time outside of clinically 

important ranges (mean arterial pressure <55, 60, and 65 mm Hg., 

central venous pressure >15 mm Hg., pulse >100, pulse <50, 

bicarbonate concentration <21 meq/L, hematocrit <21%, mixed 

venous saturation <70 and 75%, and pH <7.35). In the second 

approach, we utilized the dynamic information of the time-series data. 

To decrease noise in the data and reduce input data size, we compressed 

the data by taking the mean of every five minutes/measurements.

Clinical end point

The primary outcome was the maximum lactate concentration 

recorded within the first 24 h after the end of anesthesia.

Machine learning models

We conducted a comprehensive evaluation across five different 

machine learning models of increasing complexity: linear regression, 

random forest regression, artificial neural networks, recurrent neural 

networks, and transformers (Figure 2). The first three methods operate 

on static variables derived from both the preoperative data and 

intraoperative statistics. The last two methods can mine information 

directly from the intraoperative time series. Below, we provide brief 

summaries of each method, followed by our three evaluation 

paradigms in the next section.

Linear regression (static): we use a multivariate linear model to 

predict the clinical endpoint (maximum postoperative lactate) based 

on the patient variables. Given the large number of input features, 

we  use the ElasticNet model, which combines both L1 and L2 

regularization on the learned regression coefficients. Mathematically, 

the regularization is done by adding the absolute value (L1) and 

squared value (L2) of each coefficient to the mean-squared error 

objective. Linear regression assumes a static input of fixed dimension. 

Hence, as noted above, we only apply it to the static preoperative 

variables and summarized intraoperative statistics.

Random forest (static): the random forest is an ensemble of 

decision tree classifiers that incorporate two layers of randomness. 

Each tree is grown using a random subset of patients by recursively 

searching for the feature that splits the patients into two clusters with 

the lowest squared difference in lactate between all points assigned a 

cluster. This process is controlled via two hyperparameters, one 

governing the number of trees in the forest, and the other specifying 

the percentage of random features at each branch. The random forest 

requires a fixed input feature dimension and is only applied to 

static variables.

Artificial neural network (static): we used a feedforward artificial 

neural network (ANN) to map the static input features onto the 

desired clinical outcome. The network consists of fully connected 

layers and ReLU activations after each layer. Tunable hyperparameters 

FIGURE 1

Patient flow diagram. A patient flow diagram is shown describing included and excluded patients in the analytic cohort.
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include the learning rate, hidden layer sizes, and the number of hidden 

layers. We use the Adam optimizer with the regularization parameter 

fixed to 1e-2 and a fixed dropout of 0.5 at each hidden layer.

Recurrent neural network (static + time series): recurrent neural 

networks are extensions to the artificial neural network that can handle 

dynamic sequences of variable lengths. We relied on a gated recurrent 

unit architecture (13). The static features are concatenated to the 

dynamic features at every time point. Once again, we tuned the learning 

rate, hidden layer sizes, and the number of hidden layers. We use the 

Adam optimizer with the regularization parameter fixed to 1e-2 and a 

fixed dropout of 0.5 at each hidden layer and 0.05 at the input.

Transformer (static + time series): transformers are a recently 

proposed alternative to recurrent architectures that use self-attention 

to learn representations of the dynamic inputs. We rely on the original 

encoder implementation by Vaswani et al. (14) and the extension to 

multivariate time series data by Zerveas et  al. (15) tunable 

hyperparameters include the learning rate, hidden layer sizes, number 

of attention heads, and the dimension for the feedforward network 

model We use the Adam optimizer with the regularization parameter 

fixed to 1e-2 and a fixed dropout of 0.5 at each hidden layer and 0.05 

at the input.

Statistical analysis

We use a repeated nested five-fold cross validation to robustly 

quantify the performance of each model. Here, the dataset of N = 2,187 

patients was randomly divided into five groups, i.e., folds. During each 

iteration, four folds were combined and split into training and 

validation. The validation set was used to determine the best 

hyperparameter configuration and set the early stopping criteria for 

each deep learning model. We  use an automatic hyperparameter 

optimization framework called Optuna to set the hyperparameters of 

each method based on sampling 50 configurations via the tree-based 

Parzen Estimator. Once the hyperparameters were fixed, the models 

were optimized by minimizing the mean-squared error between the 

measured and predicted lactate values in the training dataset. We then 

evaluated the lactate prediction on the held-out testing fold. This 

nested procedure mitigates overfitting. We  resampled the cross-

validation folds five times to obtain performance confidence intervals 

for each model.

We used the SHapley Additive exPlanations (SHAP) approach as 

a model agnostic framework to identify the most important features 

for each model, and thus interpret the information being learned. 

SHAP values compute the change in the expected model prediction 

when conditioning on each feature of interest. Classic SHAP value 

estimation requires retraining a model on all feature subsets S FÍ , 

where F is the set of all features. To compute the importance of feature 

i, a model would be trained with and without the feature present. 

Predictions of the two models are subtracted, yielding the “effect” of 

feature i. This is computed for all subsets S, and computing a weighted 

average of these computed differences yields the SHAP value.

To reduce the computational overhead, we  used the 

KernelSHAP method to jointly approximate the exact SHAP values. 

FIGURE 2

Machine learning models used for analysis. (A) Multivariate linear regression with an ElasticNet penalty (not pictured) to encourage feature sparsity. 

(B) Random Forest regression that uses an ensemble of decision tree classifiers for prediction; each tree is grown by iteratively searching for the feature 

that splits the patients into clusters with the lowest pairwise difference of lactate values within each cluster. (C) Artificial Neural Network that uses a 

sequence of fully connected layers to project the data onto latent representations (denoted by blue dots). The models in Panels (A–C) use static 

baseline and intraoperative variables as input variables. (D) Recurrent Neural Network that handles dynamic sequences through a series of feedback 

operations; this model can accommodate different input sequence lengths. (E) Transformer that uses a self-attention mechanism to model both short-

and long-range dependencies in the input sequence. The models in (D) and (E) use time series intraoperative data, as well as static baseline and 

intraoperative variables, as input variables.
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KernelSHAP solves a weighted linear regression with a specialized 

weighting kernel known as the Shapley kernel (16). KernelSHAP 

method provides better sample efficiency than the direct 

computation above. We  extract variable importances by first 

running KernelSHAP on each testing fold in our 5-fold cross 

validation setup, and averaging the absolute SHAP values over the 

folds. This analysis is designed to align with how the models are 

trained and evaluated, and it provides insight on the behavior of the 

models used to generate the out-of-sample predictions in our 

main result.

Results

Patient characteristics

A total of 2,187 patients were included in this analysis, and a 

patient flow diagram is shown in Figure 1. Characteristics of patients 

are shown in Table 1. Mean age was 62 ± 13 years and 71% were male. 

Isolated coronary artery bypass graft surgery was performed in 50% 

of patients. Median duration of cardiopulmonary bypass was 102 min 

(Interquartile range [IQR] 75, 144). The maximum lactate 

concentration in the 24 h after surgery was a median of 4.6 mmol/L 

(IQR 2.8, 7.3). The median time to maximum postoperative lactate 

concentration from the end of the operation was 3.7 h (IQR 2.1, 5.8). 

Variables that were used as inputs to the models are listed in 

Supplementary Table S1 and include variables from both the Society 

of Thoracic Surgeons Registry and from the electronic medical record.

Comparison of model performance for 
lactate prediction

Baseline characteristics as model inputs
We first examined model performance (i.e., prediction error, 

expressed as the mean absolute error) for prediction of highest 

postoperative lactate using only baseline patient characteristics. As 

seen in Figure  3 and Table  2, for models that only used baseline 

characteristics as input variables, the mean prediction error of 

maximum postoperative lactate concentration ranged from a median 

of 2.52 mmol/L (IQRS 2.46, 2.56) for the linear regression model to a 

median of 2.58 mmol/L (IQRS 2.54, 2.60) for the random forest model.

Baseline and static intraoperative characteristics 
as model inputs

We next included static intraoperative characteristics as input 

variables. Since not all institutions measure intraoperative lactate 

concentration during surgery, we examined the performance of each 

model with and without intraoperative lactate concentration as an 

input variable. For the three models that do not use time-series data 

(linear regression, random forest, and artificial neural network), the 

inclusion of all static intraoperative variables aside from lactate 

concentration improved model performance and reduced the mean 

prediction error to a range of median 2.26 mmol/L (IQR 2.23, 2.37) to 

median 2.37 mmol/L (IQR 2.30, 2.38). The inclusion of intraoperative 

lactate concentration further reduced prediction error to a range of 

median 2.09 mmol/L (IQR 2.04, 2.14) to median 2.12 mmol/L (IQR 

2.06, 2.16) (Figure 3 and Table 2).

Baseline and time-series intraoperative 
characteristics as model inputs

Finally, the addition of intraoperative time-series data as inputs 

for recurrent neural network and transformer models resulted in the 

best model performance, with a reduction in prediction error of 

approximately 10%, compared to models that do not use time-series 

data. Without intraoperative lactate concentration as an input, the 

mean prediction error ranged from median 2.11 mmol/L (IQR 2.03, 

2.22) to median 2.14 (IQR 2.11, 2.22). The inclusion of intraoperative 

lactate concentration further improved model performance and 

resulted in the lower prediction error of all models that were 

examined, with a mean prediction error that ranged from median 

1.96 mmol/L (IQR 1.87, 2.05) to median 1.97 mmol/L (IQR 1.92, 2.05) 

(Figure 3 and Table 2).

Overall, the performance of each model consistently and 

significantly improved as more perioperative information (baseline, 

intraoperative, intraoperative + lactate data) was provided as input 

(Figure 3A). Additionally, the recurrent neural network model had 

significantly better performance than models which did not use time-

series data, and even surpassed the transformer model with similar 

data inputs (Figure  3B). As post hoc sensitivity analyses, we  also 

examined model performance in elective and non-elective surgeries, 

and found similar performance for the elective and urgent surgeries, 

although the prediction error was consistently lower in the small 

number of patients undergoing emergent surgery 

(Supplementary Table S2).

Comparison of observed vs. predicted 
lactate values

Figure 4 depicts observed compared to predicted lactate values for 

two representative models: linear regression (which uses static 

variables as inputs) and recurrent neural network (which uses both 

static and time-series variables as inputs). Using only preoperative 

data as input variables resulted in the greatest error in observed to 

predicted values, while the addition of intraoperative data (and 

particularly time-series) data improved prediction. The scatterplots in 

Figure  4 demonstrate that prediction of maximum postoperative 

lactate values was better at lower levels of lactate (where points are 

closer to the diagonal) than at higher levels of lactate (where points are 

more distributed).

Variable importance

The top fifteen SHAP values for linear regression, random forest 

and artificial neural network models are shown in Figure  5 and 

provide insight into the most important features for each prediction 

model. In all three models, intraoperative lactate concentration was 

the dominant feature. Baseline anemia and weight were also common 

important features (among the top five) for all three models as well. 

However, there was substantial heterogeneity in the remaining 

predictive features between models. As an example, for models that 

did not include intraoperative lactate concentration as an input, total 

dose of epinephrine infusion was the most important predictive 

feature in the random forest model but was not a top fifteen feature in 

either the linear regression or artificial neural network models.
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TABLE 1 Patient and perioperative characteristics.

All Patients 
(n  =  2,187)

Lactate >3  mmol/L 
(n  =  1,550)

Lactate <=3  mmol/L 
(n  =  637)

Value of p

Age (years), mean (SD) 62 (13) 62 (13) 60 (14) <0.001a

Male, n (%) 1,558 (71.2%) 1,138 (73.4%) 420 (65.9%) <0.001b

Race, n (%) 0.079b

  Caucasian 1,517 (69.4%) 1,065 (68.7%) 452 (71.0%)

  Black 411 (18.8%) 279 (18.0%) 132 (20.7%)

  Asian 129 (5.9%) 99 (6.4%) 30 (4.7%)

  Other 113 (5.2%) 88 (5.7%) 25 (3.9%)

Comorbidities, n (%)

  Prior Stroke 170 (7.8%) 116 (7.5%) 54 (8.5%) 0.484b

  Hypertension 1,618 (74.0%) 1,154 (74.5%) 464 (72.8%) 0.468b

  Chronic Lung Disease 220 (10.1%) 160 (10.3%) 60 (9.4%) 0.576b

  Obstructive Sleep Apnea 353 (16.1%) 254 (16.4%) 99 (15.5%) 0.671b

  Tobacco Use 364 (16.6%) 220 (14.2%) 144 (22.6%) <0.001b

  Diabetes 773 (35.3%) 535 (34.5%) 238 (37.4%) 0.224b

Surgery, n (%) <0.001b

  Coronary Artery Bypass Only 1,101 (50.3%) 754 (48.6%) 347 (54.5%)

  Valve Surgery Only 302 (13.8%) 190 (12.3%) 112 (17.6%)

  Coronary Artery Bypass + Valve Only 143 (6.5%) 122 (7.9%) 21 (3.3%)

  Aortic Procedures Only 77 (3.5%) 59 (3.8%) 18 (2.8%)

  Ventricular Assist device 51 (2.3%) 45 (2.9%) 6 (0.9%)

  Heart Transplant 32 (1.5%) 30 (1.9%) 2 (0.3%)

  Other 481 (21.7%) 350 (22.6%) 131 (20.6%)

Status, n (%) <0.001b

  Elective 1,006 (46.0%) 686 (44.3%) 320 (50.2%)

  Urgent 1,012 (46.3%) 720 (46.5%) 292 (45.8%)

  Emergent 146 (6.7%) 122 (7.9%) 24 (3.8%)

Cardiopulmonary bypass duration (min), median (IQR) 102 (75, 144) 109 (79, 153) 90 (67, 118) <0.001a

Aortic cross-clamp duration (min), median (IQR) 69 (49, 96) 73 (52, 103) 61 (43, 85) <0.001a

Mean arterial pressure (mm Hg.), (median, IQR) 73.5 (69.9, 77.4) 73.2 (69.5, 76.9) 74.4 (70.7, 78.7) <0.001a

Central Venous Pressure (mm Hg.), median, (IQR) 9.1 (7.4, 11.1) 9.1 (7.5, 11.1) 9.1 (7.2, 11.0) 0.174a

Pulse (beats per minute), median (IQR) 72.9 (67.1, 80.5) 74.0 (68.0, 81.3) 70.4 (65.5, 77.2) <0.001a

Right cerebral oximetry, median (IQR) 62.6 (55.0, 69.5) 63.1 (55.4, 70.0) 61.2 (53.7, 69.0) 0.03a

Left cerebral oximetry, median (IQR) 62.2 (54.1, 69.5) 62.6 (54.6, 70.0) 60.4 (52.6, 68.7) 0.018a

Blood Flow (derived from cardiopulmonary bypass 

monitor) during bypass (L/min), median (IQR)

4.94 (4.46, 5.34) 4.93 (4.44, 5.33) 4.95 (4.49, 5.35) 0.730a

Bicarbonate Concentration (derived from 

cardiopulmonary bypass monitor) during bypass mmol/L, 

median (IQR)

24.9 (23.8, 26.1) 24.8 (23.7, 26.0) 25.1 (24.0, 26.2) 0.001a

Hematocrit (derived from cardiopulmonary bypass 

monitor) during bypass (%), median (IQR)

27.4 (24.2, 30.7) 27.4 (24.3, 30.9) 27.4 (24.2, 30.5) 0.596a

Mixed Venous Oxygen Saturation (derived from 

cardiopulmonary bypass monitor) during bypass (%), 

median (IQR)

83.1 (79.7, 86.8) 83.1 (79.7 86.8) 83.1 (80.0, 86.6) 0.988a

pH (derived from cardiopulmonary bypass monitor), 

during bypass, median (IQR)

7.39 (7.37, 7.41) 7.39 (7.37, 7.41) 7.39 (7.37, 7.42) <0.001a

(Continued)
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When features were grouped to explore feature sets that had predictive 

power, we found that the contribution of intraoperative variables was 

higher in patients with the highest predicted postoperative lactate 

concentrations. On the other hand, for some patients with false prediction 

of high lactate, the intraoperative lactate values appeared to contribute 

substantial weight to the model, which may reflect that distribution-based 

approximations of time series variables in these models do not capture the 

dynamic course of perioperative physiologic changes.

TABLE 1 (Continued)

All Patients 
(n  =  2,187)

Lactate >3  mmol/L 
(n  =  1,550)

Lactate <=3  mmol/L 
(n  =  637)

Value of p

Maximum epinephrine infusion (mcg/kg/min) median 

(IQR)

0.05 (0.03, 0.07) 0.05 (0.03, 0.08) 0.05 (0.03, 0.05) <0.001a

Maximum norepinephrine infusion (mcg/kg/min), median 

(IQR)

0.00 (0.00, 0.05) 0.00 (0.00, 0.05) 0.00 (0.00, 0.05) <0.001a

Phenylephrine bolus administration (mcg), median (IQR) 700 (200, 1850) 700 (200, 2000) 700 (225, 1,500) 0.791a

Red blood cell transfusion (mL), median (IQR) 0 (0, 300) 0 (0, 500) 0 (0, 300) 0.002a

SD, standard deviation; IQR, inter-quartile range; L, liters; mL, milliliters; mm Hg, millimeters of mercury.
aWilcoxon Rank Sum test.
bChi-Square test.

FIGURE 3

Prediction modelling for postoperative lactate concentration. Plots showing mean absolute error in predicting maximum lactate concentrations in the 

first 24  h after surgery. The results of five different machine learning models are shown, with separate models based on included variables (only 

baseline variables, baseline and intraoperative variables, baseline and intraoperative variables and all intraoperative lactate values). The linear regression, 

random forest, and artificial neural network models use summarized statistics of intraoperative data, while the recurrent neural network and 

transformer models incorporate time-series intraoperative data. Panel (A) demonstrates the additive value of more included variables while holding the 

model constant, with the feature set that includes baseline, intraoperative, and all intraoperative lactate values having the best model performance. 

Panel (B) is organized differently and demonstrates that the models that can utilize time series data have the best performance even when the type of 

data in the feature set is constant.
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Discussion

The results of this study demonstrate that maximum lactate 

concentration in the 24 h after cardiac surgery can be predicted with 

moderate accuracy and a mean prediction error of 1.96 mmol/L for 

the best model (recurrent neural network). Compared to models with 

only static baseline and intraoperative patient characteristics, the 

inclusion of time-series intraoperative data generally improved 

TABLE 2 Model performance (mean absolute errora) for prediction of maximum lactate concentration in the 24  hours after cardiac surgery.

Baseline patient 
characteristics

Intraoperative features  
(not including intraoperative 

lactate)

Intraoperative features 
(including intraoperative 

lactate)

Linear Regression (mean absolute 

error in mmol/L), median (IQR)

2.52 (2.46, 2.56) 2.26 (2.23, 2.37)b 2.09 (2.04, 2.14)b

Random Forest (mean absolute 

error in mmol/L), median (IQR)

2.58 (2.54, 2.60) 2.37 (2.30, 2.38)b 2.11 (2.07, 2.17)b

Artificial Neural Network (mean 

absolute error in mmol/L), 

median (IQR)

2.52 (2.49, 2.57) 2.28 (2.24, 2.37)b 2.12 (2.06, 2.16)b

Recurrent Neural Network (mean 

absolute error in mmol/L), 

median (IQR)

N/A 2.11 (2.03, 2.22)c 1.96 (1.87, 2.05)c

Transformer (mean absolute 

error in mmol/L), median (IQR)

N/A 2.14 (2.11, 2.22)c 1.97 (1.92, 2.05)c

aWe computed the mean absolute error (MAE) for every testing fold to evaluate the out-of-sample generalization performance. We first used a single 5-fold cross validation to generate 5 MAE 

values. Then, we repeated the cross validation procedure three times by randomly shuffling the data. The result is a distribution of MAE values computed across the repeated testing folds (15 

values in total). The entries in the table are reported as the median and interquartile intervals of this MAE distribution.
bIntraoperative features included static characteristics and distribution-based parameters for time-series data (e.g., mean, minimum, variance).
cIntraoperative features included minute-level time series data, in addition to static characteristics and distribution-based parameters for time-series data.

FIGURE 4

Observed vs. predicted postoperative lactate concentrations for linear regression and recurrent neural network models. The observed vs. predicted 

postoperative lactate concentration is shown for a representative model that does not utilize time-series data (linear regression) and a model that does 

utilize time-series data (recurrent neural network). For the linear regression model that does not utilize time-series data, the inclusion of intraoperative 

data (B), and additionally intraoperative lactate concentration (C) substantially improves model performance compared to a model that only utilizes 

baseline patient data (A). For the recurrent neural network model that does utilize time-series data, model performance is improved with the inclusion 

of intraoperative time series data (D) and additionally intraoperative lactate concentrations (E), compared to models that do not utilize time-series data 

(B) and (C).
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model performance. The strongest and most consistent predictive 

feature was intraoperative blood lactate concentration. Other 

consistent predictive features included baseline anemia and weight. 

However, beyond these features, there was substantial heterogeneity 

in the strength of individual variables that informed 

model predictions.

Our results demonstrate that incorporation of intraoperative 

variables, and particularly time-series data, substantially improved 

model performance for the prediction of postoperative lactate 

concentration, as compared to models that only used baseline 

characteristics. Other prediction models for a variety of 

postoperative morbidity or mortality that have been developed using 

baseline and intraoperative data have demonstrated little to no 

improvement in predictive power with the inclusion of intraoperative 

data (17–19), while the results of our study demonstrate substantial 

improvement in predictive power with the use of intraoperative 

time-series data. In comparing the various modelling approaches, 

we  found similar performance using linear regression, random 

FIGURE 5

SHAP values for six model configurations to predict lactate concentration after cardiac surgery. Shapley additive values (SHAP values) represent an 

estimate of the contribution of each feature to the model prediction, with higher mean values indicating greater feature performance. The highest 

SHAP values are shown for linear regression (A,D), random forest (B,E), and artificial neural network models (C,F). Panels (A–C) use baseline and 

intraoperative variables (but not intraoperative lactate) as inputs, while Panels (D–F) also include intraoperative lactate values as inputs.
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forest, and artificial neural network approaches, each of which 

utilizes static variables (e.g., patient comorbidities) or distribution-

based categorization of time-series variables (e.g., mean or 

maximum values). Deep learning approaches that utilized full time-

series data (recurrent neural network and transformer) had the best 

performance, most notably when intraoperative lactate was included 

as a feature. There are several potential explanations for error in 

model predictions, including potentially important unmeasured 

factors, limitation in information that can be  extracted from 

measured factors, and a heterogeneous cohort. However, these 

results imply that valuable information may be  captured in the 

evolving dynamics of time series data, that reflect physiologic 

changes during surgery.

The best model performance which used baseline and 

intraoperative time-series variables achieved a mean prediction 

error of 1.96 mmol/L (IQR 1.87–2.05) for maximum postoperative 

lactate concentration. Increased blood lactate concentrations during 

and after surgery are thought to be due to an imbalance between 

tissue oxygen supply and demand (Type A lactic acidosis) or due to 

other non-hypoxic causes, such as glycolysis, drug therapy or 

hypothermia (Type B) (20). Although the exact contribution of each 

etiology to blood lactate concentrations cannot be  known in 

individual patients, increased blood lactate early after cardiac 

surgery is highly clinically relevant and has been consistently 

associated with postoperative morbidity and mortality (6, 7). There 

does appear to be  greater importance to early elevated lactate 

concentration compared to late elevated lactate concentration with 

respect to mortality (8). However, elevated lactate concentrations up 

to 24 h after cardiac surgery have been associated with in-hospital 

and long-term mortality (10). Thus, timely prediction of 

postoperative lactate concentrations may help risk stratify patients 

and guide ongoing resuscitation during and immediately after 

surgery, especially for those patients at high risk of developing 

elevated postoperative lactate concentrations. An important 

implication of our study is that these results support future efforts to 

develop real-time prediction models that can be  used to guide 

intraoperative management decisions. There are several modifiable 

factors during cardiac surgery that may affect systemic perfusion 

and can be  modified in patients with predicted high lactate 

concentrations. Both cardiac output and hemoglobin concentration 

are highly modifiable and may be increased to increase systemic 

perfusion. Other important approaches include optimization of 

acid–base status, improving right and left ventricle function, and 

consideration of options for mechanical circulatory support, such as 

an intra-aortic balloon pump.

There are few studies that have developed models to predict 

lactate concentrations after cardiac surgery, in part because lactate is 

not routinely collected postoperatively. One study of >13,000 patients 

developed nomograms to predict elevated lactate after cardiac surgery, 

with AUCs of 0.799 (21). However, the classification task was simply 

predicting a postoperative lactate >4 mmol/L, which is an easier 

prediction problem and provides less information than predicting the 

highest postoperative lactate. Indeed, elevated lactate concentrations 

have been associated with postoperative mortality in a dose-dependent 

manner (7). Additionally, a limited number of intraoperative variables 

were used, and no time-series data was included. Thus, the relative 

contribution of intraoperative variables, including time-series 

variables, to the prediction has not been clear from prior studies.

Shapley additive values can provide insight into the contribution 

of individual features to model prediction. In our study, intraoperative 

lactate was by far the most predictive feature in all models. This may 

be due to the delayed sequelae of intraoperative events or to ongoing 

pathophysiology that promotes lactate release. Additionally, baseline 

anemia and weight were common important features. However, 

beyond these features, there was substantial heterogeneity in top 

predictive features between models. This observation highlights a 

limitation of using Shapley values to assign importance and/or 

causation to individual features. Heterogeneity in the importance of 

features identified in Shapley plots may be caused by many factors, 

including feature redundancy and collinearity, individual 

implementation choices, and an outcome that may not be related to 

measured features. Furthermore, there were features in our dataset 

which represented similar physiologic characteristics, and correlations 

of features may have led to bias in attribution of individual feature 

contribution in the Shapley methodology. Taken as a whole, these 

results identify potential limitations in interpreting individual 

characteristics from perioperative data derived from Shapley values.

Strengths of this study include a large cohort with prediction of 

a clinically relevant outcome using several different machine and 

deep learning approaches. However, there are several limitations. 

First, prediction approaches used all intraoperative data, and thus 

prediction information is not available to guide intraoperative 

management. A next step would be developing real-time updating 

models for use during surgery. Second, we used cross-fold validation, 

but using data from only one institution, and an important next step 

will be to validate these prediction models in other settings. Third, a 

prediction model is limited by the available data, and for this reason 

we  used a comprehensive set of patient and intraoperative 

characteristics at 1 min resolution. However, as demonstrated in our 

results, increasing the amount of input data tends to improve 

performance. Thus, we  believe that amassing large and diverse 

datasets remains an open problem in this space that is important for 

future contributions. Fourth, the outcome was highest lactate within 

24 h after surgery, given associations with in-hospital and long-term 

mortality. Others have reported a benign course for postoperative 

lactate elevations in the 6–12 h after cardiac surgery. Regardless of the 

timing, our results suggest that mechanisms that contribute to 

intraoperative elevations in lactate are also important for 

postoperative lactate elevations. Finally, the prediction of the best-

performing model was moderate, but even with this degree of error, 

the prediction is still clinically relevant.

Postoperative lactate concentrations can be  predicted using 

baseline and intraoperative data with moderate accuracy. These results 

support the need for real-time prediction models that could be used 

during surgery to guide management decisions that could improve 

systemic perfusion.
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