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ABSTRACT 

Chinese hamster ovary (CHO) cells are used extensively to produce protein therapeutics, such as monoclonal 

antibodies (mAbs), in the biopharmaceutical industry. MAbs are large proteins that are energetically demanding 

to synthesize and secrete; therefore, high-producing CHO cell lines that are engineered for maximum metabolic 

efficiency are needed to meet increasing demands for mAb production. Previous studies have identified that 

high-producing cell lines possess a distinct metabolic phenotype when compared to low-producing cell lines. In 

particular, it was found that high mAb production is correlated to lactate consumption and elevated TCA cycle 

flux. We hypothesized that enhancing flux through the mitochondrial TCA cycle and oxidative phosphorylation 

would lead to increased mAb productivities and final titers. To test this hypothesis, we overexpressed peroxisome 

proliferator-activated receptor 𝛾 co-activator-1⍺ (PGC-1⍺), a gene that promotes mitochondrial metabolism, in 

an IgG-producing parental CHO cell line. Stable cell pools overexpressing PGC-1⍺ exhibited increased oxygen 

consumption, indicating increased mitochondrial metabolism, as well as increased mAb specific productivity 

compared to the parental line. We also performed 13C metabolic flux analysis (MFA) to quantify how PGC-1⍺ 

overexpression alters intracellular metabolic fluxes, revealing not only increased TCA cycle flux, but global 

upregulation of cellular metabolic activity. This study demonstrates the potential of rationally engineering the 

metabolism of industrial cell lines to improve overall mAb productivity and to increase the abundance of high-

producing clones in stable cell pools. 

  



1 Introduction 

Monoclonal antibodies (mAbs) represent the largest class of biopharmaceuticals, accounting for over 50% of 

new drug approvals and 65% of global biopharmaceutical sales (Walsh, 2018). MAbs bind their target antigens 

with high specificity, leading to less side effects during treatment, and are currently used as therapies against a 

wide range of diseases such as autoimmune disorders, various cancers, and inflammatory diseases. 

Biopharmaceuticals are typically produced in mammalian cells due to the complexity of these macromolecule 

drugs. Chinese hamster ovary (CHO) cells are one of the most common mammalian host cell lines, used in the 

production of over 80% of recently approved mAbs (Walsh, 2018). CHO cells have the ability to perform 

human-like post-translational modifications that are necessary for the in vivo efficacy of most protein 

therapeutics (Majewska et al., 2020; Mcatee et al., 2014), can grow in serum-free media (Rodrigues et al., 

2013; Schröder et al., 2004; Sinacore et al., 2000), and can be cultured in suspension (Becker et al., 2011; 

Fischer et al., 2015), all of which contribute to their preferential use in industry. While prior improvements in 

mAb production have been achieved through optimization of media formulations and bioprocess parameters, 

little progress has been made toward engineering host cell metabolism to increase the specific production rate 

(qP) of the mAb product (Jayapal et al., 2007; Kuo et al., 2018; Templeton et al., 2017a). With increasing 

demands and high dosage requirements for mAb treatments, there is a critical need to maximize productivity of 

mammalian cell cultures by enhancing the metabolic capabilities of CHO host lines. 

 

Proteins are energetically expensive for cells to synthesize, requiring three ATP equivalents to form each 

peptide bond (Seth et al., 2006). During periods of high production, a recombinant mAb protein can represent 

up to 20% of total cellular protein synthesis. Additional ATP is required to package and secrete mAbs into the 

extracellular medium (Gutierrez et al., 2020). Despite the elevated demands for energy and biosynthetic 

precursors to produce mAbs at high yield, CHO cells often exhibit an inefficient central carbon metabolism. 

They typically consume excess nutrients (e.g., glucose and amino acids) and accumulate waste products such 

as lactate, ammonia, and other byproducts that inhibit cell growth and affect final product quality (Dorai et al., 

2009; Lao and Toth, 1997; Le et al., 2012; Mulukutla et al., 2019). We previously reported that peak qP occurs 

during the stationary growth phase, coinciding with a switch to lactate consumption that supplies increased flux 

through oxidative metabolic pathways, particularly the mitochondrial TCA cycle (Templeton et al., 2013; 



Templeton and Young, 2018). In a subsequent study, we found that high-producing CHO cell cultures 

consistently exhibited enhanced mitochondrial metabolism compared to low- or non-producing cultures across 

a panel of industrial CHO host lines (Templeton et al., 2017a). Based on these observations, we hypothesized 

that enhancing flux through the TCA cycle would lead to increased mAb productivity and higher final product 

titer. 

 

To promote higher TCA cycle flux, we engineered an industrial IgG-expressing CHO cell line to overexpress 

peroxisome proliferator-activated receptor 𝛾 co-activator-1⍺  (PGC-1⍺), a transcriptional coactivator that 

regulates oxidative metabolism in animal cells (Fig. 1) (Austin and St-Pierre, 2012; Chan and Arany, 2014; 

Puigserver and Spiegelman, 2003; Rodgers et al., 2008; Scarpulla, 2011). The role of PGC-1⍺ has been well 

studied in various cell types and tissues, such as cardiomyocytes, skeletal muscle, and liver (Chan and Arany, 

2014; Lehman et al., 2000; Matthew Morris et al., 2012; Mootha et al., 2004). However, to the best of our 

knowledge, the overexpression of PGC-1⍺ has not been studied in CHO cells. In other cell types, 

overexpression of PGC-1⍺ increases oxygen consumption, mitochondrial biogenesis, and mitochondrial 

energy metabolism by activating transcription of downstream genes involved in mitochondrial substrate 

oxidation and ATP production (Chan and Arany, 2014; Lehman et al., 2000; Matthew Morris et al., 2012; 

Mootha et al., 2004). We therefore hypothesized that overexpression of PGC-1⍺ in the parental CHO cell line 

would lead to increased TCA cycle flux and therefore increased qP as a result of enhancing ATP supply and 

reducing waste product accumulation. 

 

We applied 13C metabolic flux analysis (MFA) to quantify the metabolic changes that occurred due to PGC-1⍺ 

overexpression by comparing the parental CHO host line with stable pools transfected with a PGC-1⍺ 

expression vector. By feeding 13C-labeled glucose during stationary phase and measuring the isotopic 

enrichment of intracellular metabolites, fluxes through central carbon metabolism were quantified using a 

mathematical model of CHO central carbon metabolism (Antoniewicz, 2020; Sacco and Young, 2021). 

Because isotopic steady state was not achieved prior to the onset of death phase, isotopically nonstationary 

metabolic flux analysis (INST-MFA) was used to assess metabolism during stationary phase (Cheah and 

Young, 2018). TCA cycle flux was increased 3-fold in stable pools overexpressing PGC-1⍺, which was 



corroborated by independent measurements of oxygen uptake rate that showed a 2.4-fold elevation in cellular 

respiration. These increases in oxidative metabolism were associated with a 5.2-fold increase in qP relative to 

the parental line, lending support to the hypothesis that engineering mitochondrial energy-producing pathways 

can promote higher mAb productivity in CHO cell lines.  

  



2 Materials and Methods 
 
2.1 Generation of cell lines 

An industrial IgG-producing CHO cell line, provided by Janssen, was used for this study. The pcDNA4-myc-

PGC-1⍺ plasmid was a gift from Toren Finkel (Addgene plasmid #10974 ; http://n2t.net/addgene:10974 ; 

RRID:Addgene_10974) (Ichida et al., 2002). The plasmid contains the coding sequence for human PGC-1⍺ 

under a CMV promoter with Myc and His tags on the C-terminus and a zeocin resistance marker. Two days 

preceding transfection with the PGC-1⍺ vector, cells were seeded at 2x105 cells/mL in 50 mL fresh chemically-

defined Janssen proprietary medium (SAFC; Burlington, MA) in 125-mL shake flasks at 37°C, 5% CO2, and 

shaking at 135 RPM. Since the mAb product was expressed via the glutamine synthetase (GS) expression 

system, methionine sulfoximine (MSX) was added to the medium to inhibit endogenous GS activity. On the day 

of transfection, cells were seeded in T-25 flasks containing 1x107 live cells in 1 mL fresh medium containing 25 

µM MSX. Then, 15 μg of purified PGC-1⍺ expression vector DNA was incubated in 1.8 mL MSX-containing 

medium. Meanwhile, 37.5 μL polyethyleneimine (PEI) was separately incubated in 1.8 mL MSX-containing 

medium. The PEI solution was combined with the vector DNA aliquot and mixed thoroughly. The DNA/PEI 

mixture was incubated for 15 min at room temperature and then added to the T-25 flask containing the parental 

cells. Cells were incubated for 48 hours, then harvested, centrifuged at 1000 RPM (300 rcf) for five minutes, 

and the transfection medium was aspirated. The transfected cells were re-suspended in fresh medium 

containing MSX, 0.2%v/v phenol red, and 300 μg/mL zeocin (Invitrogen; Carlsbad, CA) at a density of 1.6x104 

cells per 200 μL. Phenol red (Sigma) was added for visual assessment of cell growth, while zeocin was added 

for antibiotic selection to inhibit growth of cells that did not integrate the PGC-1⍺ DNA construct. The cell 

suspension was aliquoted into 96-well plates (200 µL/well) for stable mini-pool selection.  

 

Roughly half of the medium in each well was removed via aspiration every three to four days and replaced with 

fresh growth medium. When the medium color change indicated rapid cell growth, the cells in those wells were 

expanded into 24-well plates, then to 12- and 6-well plates before being transferred to T-25 and then T-75 

flasks. Once the expanded mini-pools reached sufficiently high cell densities, they were seeded at 3x105 

cells/mL in 30 mL medium and grown in 125-mL shake flasks as stable populations. The expanded stable 

pools were then characterized to verify successful transfection and expression of PGC-1⍺. 



  

2.2 Total RNA isolation and reverse transcriptase quantitative real-time PCR (RT-qPCR) 

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen; Germantown, MD) according to the 

manufacturer’s protocol. Isolated RNA was reverse transcribed to cDNA using an iScript Reverse Transcription 

kit, according to the manufacturer’s protocol (BioRad, Hercules, CA). Reactions without reverse transcriptase 

were run in parallel to assess DNA contamination. Quantitative real-time PCR (RT-qPCR) was performed on a 

BioRad CFX96 Cycler (BioRad, Hercules, CA) with 20-µL reactions containing 25 ng/well of cDNA, 250 nm 

forward and reverse primers (Table S1), and 10 µL SYBR Green PCR Master Mix (BioRad, Hercules, CA). 

Reactions were run for 40 cycles, and the threshold cycle (Ct) was determined from amplification curves using 

the CFX Maestro software (BioRad, Hercules, CA). Target gene expression was normalized to the expression 

of hypoxanthine-guanine phosphoribosyltransferase (HPRT), a housekeeping gene that has previously been 

used in CHO cells (Ko et al., 2018)_and in other cell types where PGC-1⍺ expression was manipulated 

(Carrier et al., 2004; Lustig et al., 2011). Data were analyzed using a modified ∆∆Ct method (Livak and 

Schmittgen, 2001); since no expression of PGC-1⍺, recombinant or endogenous, was detected in the parental 

control line, values were reported as 2-∆Ct, where ∆Ct represents the difference in Ct for the gene of interest 

relative to the HPRT housekeeping gene.  

 

2.3 Cell culture and isotope labeling experiment 

The parental line and three PGC-1⍺ expressing pools (pool 1, 2, and 3) were grown in 125-mL shake flasks at 

37°C and 5% CO2 while shaking at 135 RPM. Four replicate flasks of each line were expanded from a single 

culture and grown in parallel. The cells were cultivated in chemically-defined Janssen proprietary medium with 

25 µM MSX and 300 µg/mL zeocin (Invitrogen) and proprietary feeds (Janssen) of amino acids and other 

nutrients added according to the timeline in Table 1. A bolus of 100% [U-13C6]glucose was fed to two replicate 

flasks of each cell line at the start of stationary growth phase (day five of culture). The onset of stationary 

growth phase was designated as the point when lactate metabolism switched from production to consumption. 

The volume of the glucose bolus was adjusted so that 70% of the total glucose would be labeled after the 13C-

glucose bolus was fed. Two additional replicate flasks were fed natural (i.e., unlabeled) glucose at this time. 

The unlabeled cultures were sampled daily to assess growth and extracellular exchange rates. After two days 



of incubation with 13C-glucose, cell pellets were collected from the labeled cultures roughly every 12 hours and 

were immediately cold-quenched as described previously (Templeton et al., 2014). 

 

2.4 Determination of growth and extracellular exchange rates 

Culture viable cell densities (VCDs) and percent viabilities were measured using a trypan blue exclusion 

method with a Cedex XS automated counter (Roche, Basel, Switzerland). Medium amino acid concentrations 

were analyzed using an Agilent 1200 series high performance liquid chromatograph (HPLC) as described 

previously (Templeton et al., 2014). Medium glucose and lactate concentrations were measured using a YSI 

2300 biochemical analyzer (YSI, Yellow Springs, OH), and mAb titers were measured with a ForteBio Octet 

RED96 (Pall, Menlo Park, CA). Net growth rates, death rates, and extracellular fluxes were calculated by the 

ETA software package (Murphy and Young, 2013) as previously described (Templeton et al., 2014).  

 

2.5 Oxygen consumption measurements 

Oxygen uptake rates (OURs) were measured using an Oroboros Oxygraph-2k instrument, which contains two 

chambers with separate oxygen probes to monitor on-line changes in oxygen concentration over time. The 

instrument was set to 37ºC, and cells were harvested from each culture and re-suspended in growth medium 

at a density of 2x106 cells/mL. For each PGC-1⍺ pool, two million cells were injected into one chamber of the 

instrument while two million cells of the parental control line were injected into the opposite chamber. The 

parental line was included in each experiment to control for chamber effects. The rates of oxygen consumption 

were allowed to reach equilibrium for a minimum of five minutes before OUR was measured. 

 

2.6 Gas chromatography-mass spectrometry (GC-MS) measurements 

Gas chromatography-mass spectrometry (GC-MS) was used to assess 13C enrichments of metabolites over 

the time course of the isotope labeling experiments. Intracellular metabolites were extracted from cold-

quenched cell pellets, derivatized, and analyzed by GC-MS as described previously (Templeton et al., 2017a, 

2013). GC-MS analysis of medium glucose was performed by di-O-isopropylidene derivatization to determine 

the enrichment of 13C-glucose in each labeled flask as previously described (Antoniewicz et al., 2011). 

 



2.7 13C isotopically non-stationary metabolic flux analysis (INST-MFA) 

An isotopomer model was constructed based on a previously described CHO cell metabolic network to 

simulate the mass isotopomer distributions (MIDs) of intracellular metabolites following administration of the 

13C-glucose tracer (Templeton et al., 2014). The model comprised 80 metabolic reactions, 22 extracellular 

metabolite exchange rates, and two macromolecular products (mAb and biomass) as detailed in Tables S3-6. 

Isotopomer models were regressed to fit the experimental data sets for each cell line using the INCA software 

package (Young, 2014), as previously described (Templeton et al., 2014). All model fits were overdetermined, 

and the best-fit flux solution was obtained from at least 50 independent trials, each starting from random initial 

guesses, in order to converge on a global optimum. (Best practices recommend at least 10 independent trials 

to ensure a global optimum solution (Antoniewicz, 2020; Crown and Antoniewicz, 2013).) Due to the lack of 

isotopic steady state measurements, INST-MFA was used to regress flux solutions for each cell line based on 

measurements collected between days 6-8 of culture. Goodness-of-fit metrics for each best-fit solution are 

provided in Table S2, and 95% confidence intervals were calculated for all flux parameters by evaluating the 

sensitivity of the sum-of-squared residuals to parameter variations (Tables S3-6). The Cytoscape software 

package was used to produce images of the resulting flux maps (Shannon et al., 2003).  

 

2.8 Statistical analysis 

Significant differences between fluxes of the different cell lines were analyzed via two-way ANOVA (⍺ = 0.05) 

with Tukey-Kramer post-hoc testing. Standard errors of the mean (SEM) for each flux were calculated from 

95% confidence bounds provided by INCA (i.e., by dividing the difference between the upper and lower bounds 

by 3.92).  

 
 
  



3 Results 
 
3.1 Generation and selection of stable PGC-1⍺ expressing pools 

After transfection with the PGC-1⍺ expression vector, a total of 20 PGC-1⍺ stable cell lines were generated 

from the antibiotic-resistant mini-pools. Eight of the transfected lines exhibited loss of mAb expression due to 

the selection process and therefore were not studied further. The remaining twelve cell lines were evaluated 

based on the measured qP compared to the parental line and the expression level of recombinant PGC-1⍺ 

mRNA, as measured by RT-qPCR (Fig. 2). While ten of the twelve pools had qP values that trended higher 

than the parental line, three pools exhibited significantly higher qP levels compared to the parental line and 

mid-range mRNA overexpression of recombinant PGC-1⍺. These three PGC-1⍺ overexpressing lines were 

selected for further characterization and are referred to herein as pools 1, 2, and 3. The qP of the other nine 

pools trended higher than the parental line but were not significantly elevated due to variability in the data and 

the low number of replicates used for this initial cell screening experiment. 

 

3.2 Expression of recombinant and endogenous PGC-1⍺ mRNA in stable pools 

To confirm successful integration and expression of PGC-1⍺ in the three selected pools, mRNA levels of both 

recombinant (human) and endogenous (CHO) PGC-1⍺ were evaluated using RT-qPCR. Unique primer sets 

were used to independently quantify mRNA expression of each PGC-1⍺ isoform. On both days 5 and 7 of 

culture, high levels of recombinant PGC-1⍺ mRNA were detected in all three stable pools (Fig. 3). No 

recombinant PGC-1⍺ expression was detected in the parental line, implying there was no endogenous 

interference or non-specific binding of primers. Endogenous PGC-1⍺ mRNA levels were also evaluated to 

determine the extent to which they were altered by recombinant PGC-1⍺ expression, since PGC-1⍺ expression 

is autoregulatory (Amat et al., 2009; Handschin et al., 2003). Relatively low endogenous levels of PGC-1⍺ 

were detected on day 5 of culture in the three engineered pools, but expression increased over 100-fold by day 

7 (Fig. 3). No endogenous expression of PGC-1⍺ was detected in the parental line, suggesting that 

recombinant expression of human PGC-1⍺ upregulated the expression of endogenous CHO PGC-1⍺ to 

detectable levels in the stable pools. 

 



3.3 PGC-1⍺ expression attenuated growth but increased mAb specific productivity  

VCD was measured daily over the course of the fed-batch experiment summarized in Table 1. Both the 

exponential growth rate and peak VCD were significantly lower in the PGC-1⍺ expressing pools compared to 

the parental line (Fig. 4A, B). This reduction in growth rate correlated with an increase in cell volume of ~50% 

on average (Fig. S1). The slower growth of the PGC-1⍺ pools was likely attributable to the increased metabolic 

burden of expressing recombinant PGC-1⍺ in addition to the mAb product. Furthermore, metabolic alterations 

arising from PGC-1⍺ expression may have limited cell growth. Despite this reduction in growth, volumetric 

titers of the three PGC-1⍺ pools were significantly higher (by 1.5- to 2-fold) compared to the parental line (Fig. 

4C,D). The increased titers were due to significantly higher qP values that were nearly 4-fold greater than that 

of the parental line (Fig. 4E). Even when accounting for the increased size of PGC-1⍺ expressing cells, 

productivities were still higher when calculated on a per cell volume, rather than a per cell number, basis.  

 

3.4 PGC-1⍺ expressing pools exhibit higher consumption of oxygen and carbon sources 

Oxygen uptake rates (OURs) are typically elevated in cells and tissues that overexpress PGC-1⍺, which 

serves as an indicator of increased oxidative metabolism (Lehman et al., 2000). OURs were measured for 

each PGC-1⍺ pool and compared to the parental line on the final day of the fed-batch experiment when the 

cultures were in stationary growth phase (Table 1). All pools exhibited significantly higher OURs compared to 

the parental line (Fig. 5). These results indicate that the PGC-1⍺ expressing pools exhibited substantial 

enhancements in oxidative metabolism during stationary phase. Supporting this observation, the consumption 

of several carbon sources was significantly higher in the PGC-1⍺ expressing pools. Glucose uptake rates 

during stationary phase were nearly doubled compared to the parental line, while lactate uptake rates were at 

least 4-fold higher in the PGC-1⍺ pools (Fig. 6). The increased consumption of these two major carbon 

sources likely fueled the increased oxidative metabolism of the PGC-1⍺ expressing pools. Additionally, the 

consumption of nine out of fifteen measured amino acids was significantly higher, while the production of 

alanine, glutamine, and glycine were all significantly enhanced by expression of PGC-1⍺ (Fig. S2). 

 



3.5 13C MFA reveals extensive upregulation of energy metabolism in PGC-1⍺ expressing pools 

To further assess the intracellular metabolic alterations that underpinned the observed increases in OUR and 

substrate consumption rates in stable PGC-1⍺ pools, we applied 13C MFA to quantify metabolic pathway fluxes 

from isotope labeling datasets. Nearly all fluxes in glycolysis and the TCA cycle were elevated in the three 

PGC-1⍺ expressing pools compared to the parental line (Fig. 7). The model-determined increases in glycolytic 

fluxes were consistent with the directly measured increases in GUR (Fig. 6C). Although the OUR 

measurements were not used to constrain the flux solution, the increases in TCA cycle fluxes (ranging from 2- 

to 4-fold) determined by MFA also agreed with the observed increases in OUR (Fig. 5). Therefore, the MFA 

results provide further evidence of global upregulation of oxidative metabolism in the PGC-1⍺ expressing 

pools.  

 

Pyruvate fluxes were previously found to vary strongly in response to shifts in oxidative metabolic capacity 

(Templeton et al., 2014). Although total pyruvate flux increased in the PGC-1⍺ pools, the percentage 

contribution via pyruvate kinase (PK) was consistent across all cell lines, regardless of PGC-1⍺ overexpression 

(Fig. 8A). The percentage of pyruvate consumed by pyruvate dehydrogenase (PDH), the major pyruvate sink 

and primary route of carbon entry to the TCA cycle, was also not significantly different between the parental 

line and the PGC-1⍺ expressing pools (Fig. 8B). This observation suggests that energy metabolism was 

elevated at a global level in PGC-1⍺ expressing pools, as opposed to a local redistribution of fluxes 

surrounding the pyruvate branch point.  

 
  



4 Discussion 
 
PGC-1⍺ is a transcriptional co-activator that globally regulates mitochondrial metabolism in a variety of tissues 

(Rodgers et al., 2008). PGC-1⍺ controls mitochondrial biogenesis and remodeling, regulates cellular 

respiration via the expression of cytochrome c oxidase and electron transport chain components (Fig. 1), and  

performs other tissue-specific functions (Austin and St-Pierre, 2012; Chan and Arany, 2014; Puigserver and 

Spiegelman, 2003; Scarpulla, 2011). In muscle, PGC-1⍺ regulates oxidative phosphorylation and increases 

glucose uptake (Chan and Arany, 2014; Mootha et al., 2004). In primary hepatocytes, PGC-1⍺ increases 

mitochondrial DNA content as well as the expression of citrate synthase and electron transport chain proteins 

(Matthew Morris et al., 2012). Additionally, PGC-1⍺ is an important regulator of gluconeogenesis in the liver 

(Chang et al., 2016; Felder et al., 2011; Yoon et al., 2001). In cardiac myocytes, PGC-1⍺ overexpression 

increases the expression of genes involved in energy-production pathways, cellular mitochondrial content, and 

oxygen consumption (Lehman et al., 2000). Knockout of PGC-1⍺ in cardiac tissue lowers cellular ATP levels 

and ATP production per mole of oxygen consumed, indicating lower respiratory efficiency (Lehman et al., 

2008).  Overall, the role of PGC-1⍺ in metabolism has been well characterized in a variety of different tissue 

and cell types but has not been examined in CHO cells. 

 

In light of the extensive effects PGC-1⍺ has on metabolism in other cell types, our study sought to assess the 

extent to which PGC-1⍺ overexpression would enhance oxidative metabolism in an industrial CHO cell line and 

whether these metabolic alterations would correlate with increased qP. Previous studies have identified an 

association between high-producing CHO cell lines and elevated mitochondrial metabolism (Templeton et al., 

2017a, 2013; Templeton and Young, 2018). It has been shown that increasing pyruvate dehydrogenase (PDH) 

activity, which directs pyruvate into the TCA cycle, by inhibiting PDH kinase activity leads to increased mAb 

titers (Buchsteiner et al., 2018; Zhou et al., 2011). Overexpression of the mitochondrial pyruvate carrier (MPC) 

or yeast pyruvate carboxylase (PYC2) was shown to enhance mitochondrial metabolism and specific mAb 

productivity in CHO cells (Bulté et al., 2020; Gupta et al., 2017). Knockout of the pyruvate kinase muscle 

(PKM) isoform also leads to increased specific productivity, alongside reduced lactate production and 

increased TCA cycle flux (Tang et al., 2021). Furthermore, transfection of CHO cells with the microRNA miR-

31* increased oxidative phosphorylation and enhanced mAb specific productivity (Martinez-lopez et al., 2021). 



A selection strategy to enrich CHO host populations with cells exhibiting enhanced mitochondrial membrane 

potential was found to increase the abundance of high-producing clones after stable transfection to secrete 

difficult-to-express bispecific antibodies (Chakrabarti et al., 2022). These studies support our hypothesis that 

enhancing mitochondrial metabolism of CHO host cells can promote improved mAb titer and qP. To our 

knowledge, our study is the first to evaluate the phenotypes of CHO cells that have been rationally engineered 

to increase oxidative metabolism by overexpressing a global regulator of mitochondrial metabolism.   

 

All three PGC-1⍺ expressing pools exhibited increased consumption of glucose, lactate, and amino acids. High 

lactate consumption rates during stationary phase have been correlated to high productivities in CHO cell 

cultures (Le et al., 2012; Templeton et al., 2017a), a finding corroborated in this study. Higher LURs could 

prolong culture longevity by removing toxic lactate buildup from the media. Lactate can also serve as an 

additional carbon source for the TCA cycle upon its conversion to pyruvate. The conversion of lactate to 

pyruvate by lactate dehydrogenase produces NADH, and it is conjectured that CHO cells switch from lactate 

production to lactate consumption to replenish the cytosolic pool of NADH when glycolytic rates are slowed 

(Hartley et al., 2018). The reducing power of cytosolic NADH can indirectly enter the mitochondria through the 

malate-aspartate shuttle, further fueling oxidative phosphorylation. The observation of both increased lactate 

consumption as well as increased oxidative metabolism of the PGC-1⍺ pools supports the hypothesis that 

higher lactate uptake can fuel the increase in mitochondrial metabolism necessary to sustain high mAb 

productivities (Hartley et al., 2018).  

 

The three selected PGC-1⍺ expressing pools exhibited upregulated TCA cycle activity compared to the 

parental cell line. This increase in TCA cycle flux was directly correlated to the increase in oxygen consumption 

observed in these stable pools. The measured OURs closely mirrored the trend in oxidative metabolic fluxes 

and independently confirmed the 13C MFA results, since the OUR measurements were not used to constrain 

the flux solution. These increased OURs and TCA cycle fluxes suggest that PGC-1⍺ has a similar impact on 

oxidative metabolic capacity and oxygen consumption in CHO cells that has been reported in other types of 

mammalian cells (Lehman et al., 2000; Wu et al., 1999).  

 



While increased oxidative metabolism was previously found to correlate with increased qP in CHO cells, it has 

remained an open question whether the increase in qP was a cause or an effect of metabolic alterations within 

the host. Here, we show that CHO cells specifically engineered to upregulate oxidative metabolism exhibit 

enhanced qP, supporting the hypothesis that increased oxidative capacity may promote higher mAb 

production. These findings also further establish that high-producing CHO cell lines (i.e., with qP > ~20 

pg/cell/day) require a highly active TCA cycle to support the energy demands of product biosynthesis and 

secretion. On the other hand, correlations between qP and TCA cycle flux may not hold in low-producing cell 

lines because factors other than energetics likely limit product formation in those cells (Sacco et al., 2022). Our 

results also indicate an inherent trade-off between mAb production and growth, as evidenced by the 

significantly decreased growth rates and peak VCDs, and increased cell size, observed in the PGC-1⍺ 

overexpressing pools. The correlation of increased cell size with increased specific productivity has been 

previously reported (Feary et al., 2017; Lloyd et al., 2000; Pan et al., 2017; Wijaya et al., 2021). Additionally, 

the inverse correlation between cellular growth rate and productivity has been widely observed (Wilkens and 

Gerdtzen, 2015; Wolf et al., 2019; Zou et al., 2018). These results highlight that total protein production (for 

both biomass and mAb) needs to be considered when optimizing metabolism to achieve maximum product 

titers (Templeton et al., 2017b). 

 

The data presented herein supports the hypothesis that highly active mitochondrial metabolism is required for 

maximal qP in CHO cells. However, the study has some inherent limitations that could influence the 

interpretation of these results. First, the shake flask cultures used to characterize the cell lines in this study 

may not reflect their performance in controlled, stirred-tank bioreactors. Second, the selection process used to 

obtain stable pools could have impacted the outcome of the study. Initial pools were selected based on rapid 

growth in the presence of zeocin. Given the observed decrease in growth rate of the PGC-1⍺ pools relative to 

the parental line, the initial selection could have failed to recover stable pools with even higher qP levels due to 

poor cell growth. Third, the three pools selected for in-depth characterization were chosen based on a screen 

to identify cell lines with increased qP relative to the parental line, which introduced another source of potential 

bias. However, the parental cell line had already undergone multiple rounds of selection and screening at 

Janssen prior to this study and therefore was representative of a highly optimized production cell line. 



Furthermore, the selection process used to obtain stable PGC-1⍺ pools is not altogether different from the 

process used in industry to identify lead production cell lines, where large numbers of clones are generated 

and screened based on their relative production levels. If the integration of PGC-1⍺ had no effect, the resulting 

stable pools would be expected to have both higher and lower qP relative to the parental line. In fact, given that 

we only examined 12 stable pools, it is somewhat remarkable that we identified three with substantially 

elevated qP compared to the parental line and that all stable pools had qP values that were at least as high as 

the parental line (Fig. 2A).  

 

In addition to the potential biases introduced by the selection process, clonal variation is a widely reported 

observation in CHO cells (Bandyopadhyay et al., 2019; Ghorbaniaghdam et al., 2014; Lee et al., 2018). In this 

study, random chromosomal integration was used to generate the PGC-1⍺ expressing mini-pools. Due to the 

inherent genomic variation of CHO cells, the integration site has a strong effect on the expression of the 

transgene and possibly other endogenous genes nearby (Lee et al., 2019). Even in daughter clones generated 

from a single stable clone, a variety of different phenotypes have been observed due to the plasticity of the 

CHO genome (Ko et al., 2018). In light of the poorly understood effects of clonal variation, the emergence of 

metabolic phenotypes that are not directly due to PGC-1⍺ expression remains a possibility. However, the use 

of stable pools rather than single-cell clones tends to average these random effects over a larger population of 

cells and thereby minimizes the chances that clonal variation would mask the impact of PGC-1⍺ in our study.  

 

This study tested the hypothesis that increased mitochondrial metabolism promotes elevated product qP in 

CHO cell lines. Overexpressing the global mitochondrial regulator PGC-1⍺ in an industrial IgG-secreting 

parental line led to selection of stable pools with increased qP, OUR, and energy-producing metabolic fluxes. 

Both glucose and lactate consumption were elevated by PGC-1⍺ overexpression. Interestingly, metabolism 

was upregulated throughout glycolysis and TCA cycle pathways without repartitioning flux around pyruvate or 

other major branch points. While decreased growth was apparent in the PGC-1⍺ expressing stable pools, 

volumetric titers were still increased due the dramatic increase in qP. Overall, this study highlights the potential 

of host cell engineering to optimize the metabolic phenotypes of CHO cell lines for efficient biomanufacturing. 
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7 Tables and Figures 
 
Table 1. Experimental timeline of 13C labeling experiment. Cultures were fed labeled glucose on day 5 such 
that total glucose carbon would be approximately 70% 13C enriched. Days 5-8 are shaded to indicate the 
presence of 13C-glucose in the cell culture media. Cell pellet and media samples were collected for metabolite 
analysis on days 7 and 8 at the times indicated (t=40, 48, 60, 72 hrs) following the introduction of 13C-glucose 
on day 5 (t=0). Samples for RT-qPCR analysis to measure gene expression levels were collected on days 5 
and 7. Live cells were harvested on day 8 to measure the oxygen uptake rate (OUR) as described in Materials 
and Methods. 
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Figure 1. Role of PGC-1⍺ as a master regulator of mitochondrial biogenesis. PGC-1⍺ expression is partially 
controlled by an autoregulatory loop (Handschin et al., 2003). PGC-1⍺ can be activated via phosphorylation by 
p38 MAPK and AMPK. Active PGC-1⍺, along with transcription factors such as NRF, tFAM, and ERR⍺, co-
activates the expression of multiple mitochondrial genes. This leads to increased mitochondrial biogenesis and 
increased oxidative phosphorylation. Created with BioRender.com. MAPK, mitogen-activated protein kinase; 
AMPK, AMP kinase; NRF, nuclear respiratory factor; tFAM, mitochondrial transcription factor A; ERR⍺, 
estrogen related receptor alpha.  
 
 



 
Figure 2. Specific productivity and recombinant PGC-1⍺ mRNA expression of selected pools. (A) qP was 
measured for the parental line and 12 PGC-1⍺ expressing pools. For each pool, qP was normalized to that of 
the parental line. The three highlighted pools were selected for further evaluation based on their elevated qP 
values. (B) mRNA expression of recombinant PGC-1⍺ normalized to HPRT (housekeeping gene) expression 
as measured by qPCR. All 12 pools exhibited some level of recombinant PGC-1⍺ mRNA expression; the three 
pools that were selected for further analysis (bars with black border) had mid-range levels of recombinant 
PGC-1⍺ mRNA expression. The parental cell line exhibited no detectable expression of recombinant PGC-1⍺, 
as expected, and is not shown. Data represent mean +/- SEM; * p<0.05, ** p<0.01, *** p<0.01, compared to 
parental line (n=2). 
 
 
 
 
 
  



 
 
Fi g ur e 3 . P G C -1 ⍺  m R N A e x pr e s si o n of s el e ct e d p o ol s  n or m ali z e d t o H P R T e x pr e s si o n . T h e e x pr e s si o n l e v el s 
of b ot h r e c o m bi n a nt ( h u m a n) a n d e n d o g e n o u s ( C H O) P G C -1 ⍺  w er e e v al u at e d o n d a y s 5 a n d 7 of c ult ur e f or 
t h e p ar e nt al li n e a n d t hr e e s el e ct e d p o ol s. N o e x pr e s si o n of eit h er r e c o m bi n a nt or e n d o g e n o u s P G C -1 ⍺  w a s 
d et e ct e d i n t h e p ar e nt al li n e at eit h er ti m e p oi nt. D at a r e pr e s e nt m e a n +/ - S E M ( n = 4) . 
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Figure 4. Growth and productivity of the parental line and selected PGC-1⍺ pools. (A) Viable cell density 
during the fed-batch study. (B) Specific growth rates during exponential phase. (C) Volumetric titer over the 
course of the fed-batch study. (D) Final mAb titer measured on day 8 of culture. (E) Specific productivity during 
the 13C labeling experiment. Data represent mean +/- SEM. ** p<0.01, *** p<0.001, **** p<0.0001 compared to 
the parental line (n=4). 
 
 



 
Figure 5. Oxygen uptake rates (OURs) of the parental line and selected PGC-1⍺ pools. OUR was measured 
on the final day of culture. Data represent mean +/- SEM. ** p < 0.01, *** p < 0.001, compared to parental line 
(n=2). 
 



 
Figure 6. Glucose and lactate consumption rates. (A) Glucose profile over the course of the fed-batch study. 
(B) Lactate profile over the course of the fed-batch study. (C) Glucose uptake rate (GUR) measured during the 
13C labeling experiment. (D) Lactate uptake rate (LUR) measured during the 13C labeling experiment. Arrows 
indicate addition of feed. Data represent mean +/- SEM. ** p<0.01, *** p<0.001, **** p<0.0001 compared to 
parental line (n=4). 
 



 
Figure 7. Comparison of metabolic flux maps for the parental line and PGC-1⍺ expressing pools. Fluxes are 
shown in units of C-mmol/Mcell/day. The width and color of arrows are scaled to the magnitude of carbon flux. 
Dotted lines indicate that the flux value was approximately zero (i.e., undetectable). 
 
  



 
Figure 8. Flux distribution at the pyruvate node. The percent contributions of (A) pyruvate-forming or (B) 
pyruvate-consuming reactions were calculated based on best-fit fluxes determined by 13C MFA. AAT=alanine 
aminotransferase, Cys=flux from cysteine catabolism, LDH=lactate dehydrogenase, ME=malic enzyme, 
PC=pyruvate carboxylase, PDH=pyruvate dehydrogenase, PK=pyruvate kinase, Thr=flux from threonine 
catabolism. 
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Figure S1. Cell size comparison. (A) Average cell diameter was measured using a Cedex XS automated cell 
counter. (B) Cell volume was calculated using the measured cell diameter, assuming cells were spherical. Data 
represent mean +/- SEM. **** indicates statistical significance p < 0.0001, compared to parental line. (n≥7) 
  



 

 
 
 
Figure S2. Amino acid extracellular fluxes. Negative values indicate uptake and positive values indicate 
excretion. Data represent mean +/- SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, compared to parental line (n=4). 



 
Table S1. qPCR primers used for analysis of gene expression. 
 
Gene Primer Pair 
Recombinant (human) PGC-1⍺ 5’-GTCACCACCCAAATCCTTAT-3’ (forward) 
 5’-ATCTACTGCCTGGAGACCTT-3’ (reverse) 
Endogenous (CHO) PGC-1⍺ 5’- ACACACCGCAATTCTCCCTT-3’ (forward) 
 5’- ACGGCGTTCTTCAATTGCTT-3’ (reverse) 
CHO HPRT 5’- GGACCTCTCGAAGTGTTGGA-3’ (forward) 
 5’- ATGGGACTCCTCGTGTTTGC-3’ (reverse) 

 
  



Table S2. Model goodness-of-fit metrics as determined by the INCA software. Fits are acceptable if the SSR is 
below the upper bound of the expected range. SSR=sum-of-squared residuals. DOF=degrees of freedom. 
 

Cell line Best-fit SSR SSR expected range DOF 
Parent 142.2 104.7-169.1 135 
Pool 1 127.7 85.5-144.3 113 
Pool 2 88.7 103.8-167.9 134 
Pool 3 79.1 89.8-150.0 118 

 
  



Table S3. Net fluxes determined by 13C MFA for the parental line. Best-fit flux values with 95% confidence 
intervals indicated by lower bound (LB) and upper bound (UB). 
 

Pathway Enzyme Reaction Net Flux LB UB 

Glycolysis 

HK Glc ↔ G6P 0.720 0.645 0.797 
PGI G6P ↔ F6P  0.709 0.469 0.787 
PFK F6P → DHAP + GAP 0.704 0.612 0.781 
TPI DHAP ↔ GAP 0.700 0.605 0.776 

GAPDH GAP ↔ 3PG 1.401 1.247 1.555 
PGM 3PG ↔ PEP 1.425 1.269 1.580 
PK PEP → PYR.C 1.427 1.272 1.678 

LDH LAC ↔ PYR.C 0.060 0.052 0.068 

PPP 

G6PDH G6P → Ru5P 0.000 0.000 0.243 
PPE Ru5P ↔ X5P -0.006 -0.007 0.152 
PPI Ru5P ↔ R5P 0.006 0.004 0.087 

TKT1 X5P ↔ EC2 + GAP -0.006 -0.007 0.152 
TKT2 F6P ↔ EC2 + E4P 0.003 -0.076 0.003 
TKT3 S7P ↔ EC2 + R5P 0.003 -0.076 0.003 
TAL1 F6P ↔ EC3 + GAP 0.003 -0.076 0.003 
TAL2 S7P ↔ EC3 + E4P -0.003 -0.003 0.076 

TCA Cycle 

PDH Pyr.m → AcCoA.m + CO2 1.041 0.831 1.254 
CS OAA + AcCoA.m → Cit 1.307 1.087 1.526 

IDH.m Cit ↔ aKG + CO2 1.218 0.992 1.444 
aKGDH aKG → Suc + CO2 0.746 0.551 1.659 

SDH Suc ↔ Fum 0.825 0.626 1.737 
FUS Fum ↔ Mal 0.838 0.639 1.752 

MDH.m Mal ↔ OAA 0.838 0.486 1.164 

Anaplerosis 

ME Mal → Pyr.m + CO2 0.000 0.000 1.022 
PC Pyr.m + CO2 → OAA 0.195 0.079 0.380 

ATP CS Cit.c → AcCoa.c + OAA 0.089 0.067 0.110 
PEPCK OAA → PEP + CO2 0.002 -0.080 0.161 
GOT1 OAA ↔ Asp -0.188 -0.205 -0.171 

Carboxylase ProCoA + CO2 → Suc 0.078 0.066 0.091 

Amino Acid 
Metabolism 

GS Gln ↔ Glu -0.026 -0.029 -0.023 
GluDH aKG ↔ Glu 0.472 -0.462 0.568 
AsnS Asn → Asp -0.187 -0.203 -0.172 
SHMT Ser ↔ Gly + C1 0.017 0.011 0.023 

PGHDH 3PG ↔ Ser 0.024 0.011 0.037 
GlyS CO2 + C1 ↔ Gly 0.024 0.021 0.028 
ALT Ala ↔ PYR.c -0.255 -0.274 -0.237 

Histidase His → C1 + Glu.c 0.007 0.002 0.013 
PAH Phe → Tyr 0.009 0.006 0.011 

TDO Trp → CO2 + CO2 + Ala + 
aKetoadi 0.003 0.002 0.004 

AA 
Intermediates 

aKetoadi → CO2 + CO2 + 
AcCoA.m + AcCoA.m 0.018 0.005 0.031 



SBCAD Ile → AcCoA.m + CO2 + 
ProCoA 0.048 0.039 0.058 

IVD 
Leu + CO2 → CO2 + 

AcCoA.m + AcCoA.m + 
AcCoA.m 

0.052 0.043 0.061 

IBD Val → CO2 + CO2 + 
ProCoA 0.021 0.016 0.026 

AASS Lys → aKetoadi 0.015 0.003 0.028 
ARGS Arg → Glu + Urea 0.008 0.001 0.015 

PO Glu ↔ Pro 0.521 -0.408 0.624 
CTH Cys → Pyr 0.022 0.019 0.025 

MAOX Thr → Pyr.m + CO2 0.004 0.000 0.010 

TH  Tyr → CO2 + Fum + 
AcCoA.m + AcCoA.m 0.013 0.008 0.018 

MAT Met + Ser → C1 + Cys + 
ProCoA + Co2 0.009 0.007 0.011 

Transport 

Glucose Glc.e → Glc 0.720 0.645 0.797 
Pyr.m Pyr.c ↔ Pyr.m 1.232 1.073 1.483 
Lys Lys.e → Lys 0.040 0.029 0.052 
Thr Thr.e → Thr 0.024 0.019 0.029 
Phe Phe.e → Phe 0.019 0.017 0.020 
Tyr Tyr.e → Tyr 0.014 0.010 0.017 
Val Val.e → Val 0.042 0.038 0.045 
Leu Leu.e → Leu 0.077 0.070 0.085 
Ile Ile.e → Ile 0.062 0.053 0.071 
Trp Trp.e → Trp 0.006 0.004 0.007 
His  His.e → His 0.014 0.008 0.019 
Met Met.e → Met 0.015 0.013 0.017 
Ser Ser.e ↔ Ser 0.074 0.064 0.083 
Ala Ala ↔ Ala.e 0.233 0.216 0.251 
Arg Arg.e ↔ Arg 0.023 0.017 0.029 
Asp  Asp ↔ Asp.e -0.020 -0.022 -0.018 
Cys Cys.e ↔ Cys 0.019 0.019 0.020 
Glu  Glu ↔ Glu.e -0.077 -0.086 -0.068 
Gln Gln ↔ Gln.e -0.012 -0.013 -0.011 
Gly  Gly.e ↔ Gly -0.014 -0.017 -0.011 
Pro Pro.e ↔ Pro -0.505 -0.610 0.424 
Asn  Asn.e ↔ Asn 0.200 0.185 0.216 
Lac Lac ↔ Lac.e -0.060 -0.068 -0.052 

Antibody 
Production   

0.033*Ala + 0.016*Cys + 
0.031*Asp + 0.031*Glu + 
0.021*Phe + 0.04*Gly + 
0.013*His + 0.018*Ile + 

0.047*Lys + 0.053*Leu + 
0.007*Met + 0.026*Asn + 
0.049*Pro + 0.031*Gln + 
0.016*Arg + 0.078*Ser + 
0.059*Thr + 0.058*Val + 

0.097 0.091 0.103 



0.012*Trp + 0.029*Tyr → 
Antibody 

Biomass 
Production   

0.1776*Ala + 0.1116*Arg + 
0.1396*Asp + 0.08529*Asn 

+ 0.04292*Cys + 
0.09528*Gln + 0.1143*Glu + 
0.1948*Gly + 0.04229*His + 
0.09591*Ile + 0.167*Leu + 
0.1687*Lys + 0.04085*Met 

+ 0.06487*Phe + 
0.09267*Pro + 0.1305*Ser + 
0.1143*Thr + 0.01305*Trp + 
0.05389*Tyr + 0.1232*Val + 

0.08538*G6P + 
0.06892*R5P + 0.07548*C1 

+ 0.03599*DHAP + 
0.7326*AcCoA.c -> 

Biomass 

0.121 0.092 0.150 

 
  



Table S4. Net fluxes determined by 13C MFA for stable PGC-1⍺ pool 1. Best-fit flux values with 95% 
confidence intervals indicated by lower bound (LB) and upper bound (UB). 
 

Pathway Enzyme Reaction Net Flux LB UB 

Glycolysis 

HK Glc ↔ G6P 1.486 1.232 1.755 
PGI G6P ↔ F6P  1.474 1.165 1.742 
PFK F6P → DHAP + GAP 1.467 1.211 1.737 
TPI DHAP ↔ GAP 1.462 1.206 1.731 

GAPDH GAP ↔ 3PG 2.926 2.417 3.463 
PGM 3PG ↔ PEP 3.005 2.494 3.543 
PK PEP → PYR.C 3.464 2.467 4.208 

LDH LAC ↔ PYR.C 0.458 0.397 0.520 

PPP 

G6PDH G6P → Ru5P 0.000 0.000 0.295 
PPE Ru5P ↔ X5P -0.007 -0.009 0.158 
PPI Ru5P ↔ R5P 0.007 0.005 0.105 

TKT1 X5P ↔ EC2 + GAP -0.007 -0.009 0.158 
TKT2 F6P ↔ EC2 + E4P 0.003 -0.079 0.004 
TKT3 S7P ↔ EC2 + R5P 0.003 -0.079 0.004 
TAL1 F6P ↔ EC3 + GAP 0.003 -0.079 0.004 
TAL2 S7P ↔ EC3 + E4P -0.003 -0.004 0.079 

TCA Cycle 

PDH Pyr.m → AcCoA.m + CO2 2.684 2.143 3.360 
CS OAA + AcCoA.m → Cit 3.180 2.626 3.866 

IDH.m Cit ↔ aKG + CO2 3.077 2.515 3.767 
aKGDH aKG → Suc + CO2 2.523 1.815 4.101 

SDH Suc ↔ Fum 2.667 1.942 4.247 
FUS Fum ↔ Mal 2.690 1.987 4.266 

MDH.m Mal ↔ OAA 2.385 1.551 3.427 

Anaplerosis 

ME Mal → Pyr.m + CO2 0.304 0.000 1.837 
PC Pyr.m + CO2 → OAA 0.897 0.000 1.236 

ATP CS Cit.c → AcCoa.c + OAA 0.104 0.072 0.136 
PEPCK OAA → PEP + CO2 0.459 -0.545 0.940 
GOT1 OAA ↔ Asp -0.253 -0.274 -0.232 

Carboxylase ProCoA + CO2 → Suc 0.144 0.120 0.169 

Amino Acid 
Metabolism 

GS Gln ↔ Glu -0.075 -0.082 -0.068 
GluDH aKG ↔ Glu 0.554 -0.856 1.081 
AsnS Asn → Asp -0.252 -0.269 -0.235 
SHMT Ser ↔ Gly + C1 0.056 0.047 0.066 

PGHDH 3PG ↔ Ser 0.079 0.051 0.107 
GlyS CO2 + C1 ↔ Gly 0.069 0.064 0.075 
ALT Ala ↔ PYR.c -0.368 -0.394 -0.341 

Histidase His → C1 + Glu.c 0.015 0.008 0.021 
PAH Phe → Tyr 0.016 0.010 0.022 

TDO Trp → CO2 + CO2 + Ala + 
aKetoadi 0.000 0.000 0.001 

AA 
Intermediates 

aKetoadi → CO2 + CO2 + 
AcCoA.m + AcCoA.m 0.039 0.018 0.060 

SBCAD Ile → AcCoA.m + CO2 + 
ProCoA 0.097 0.078 0.116 



IVD 
Leu + CO2 → CO2 + 

AcCoA.m + AcCoA.m + 
AcCoA.m 

0.092 0.069 0.115 

IBD Val → CO2 + CO2 + 
ProCoA 0.038 0.027 0.050 

AASS Lys → aKetoadi 0.039 0.018 0.060 
ARGS Arg → Glu + Urea 0.010 0.000 0.020 

PO Glu ↔ Pro 0.585 -0.826 1.122 
CTH Cys → Pyr 0.000 0.000 0.019 

MAOX Thr → Pyr.m + CO2 0.026 0.016 0.037 

TH  Tyr → CO2 + Fum + 
AcCoA.m + AcCoA.m 0.023 0.013 0.032 

MAT Met + Ser → C1 + Cys + 
ProCoA + Co2 0.009 0.006 0.012 

Transport 

Glucose Glc.e → Glc 1.486 1.232 1.755 
Pyr.m Pyr.c ↔ Pyr.m 3.555 2.539 4.311 
Lys Lys.e → Lys 0.087 0.067 0.107 
Thr Thr.e → Thr 0.072 0.063 0.081 
Phe Phe.e → Phe 0.036 0.031 0.040 
Tyr Tyr.e → Tyr 0.029 0.022 0.035 
Val Val.e → Val 0.085 0.075 0.095 
Leu Leu.e → Leu 0.143 0.121 0.164 
Ile Ile.e → Ile 0.120 0.101 0.138 
Trp Trp.e → Trp 0.008 0.007 0.009 
His  His.e → His 0.027 0.021 0.033 
Met Met.e → Met 0.018 0.015 0.021 
Ser Ser.e ↔ Ser 0.202 0.177 0.227 
Ala Ala ↔ Ala.e 0.326 0.301 0.352 
Arg Arg.e ↔ Arg 0.034 0.024 0.043 
Asp  Asp ↔ Asp.e -0.036 -0.044 -0.028 
Cys Cys.e ↔ Cys 0.005 0.000 0.024 
Glu  Glu ↔ Glu.e -0.114 -0.128 -0.099 
Gln Gln ↔ Gln.e -0.046 -0.052 -0.040 
Gly  Gly.e ↔ Gly -0.078 -0.087 -0.069 
Pro Pro.e ↔ Pro -0.547 -1.080 0.867 
Asn  Asn.e ↔ Asn 0.277 0.261 0.293 
Lac Lac ↔ Lac.e -0.458 -0.520 -0.397 

Antibody 
Production   

0.033*Ala + 0.016*Cys + 
0.031*Asp + 0.031*Glu + 
0.021*Phe + 0.04*Gly + 
0.013*His + 0.018*Ile + 

0.047*Lys + 0.053*Leu + 
0.007*Met + 0.026*Asn + 
0.049*Pro + 0.031*Gln + 
0.016*Arg + 0.078*Ser + 
0.059*Thr + 0.058*Val + 
0.012*Trp + 0.029*Tyr → 

Antibody 

0.502 0.454 0.550 



Biomass 
Production   

0.1776*Ala + 0.1116*Arg + 
0.1396*Asp + 0.08529*Asn 

+ 0.04292*Cys + 
0.09528*Gln + 0.1143*Glu + 
0.1948*Gly + 0.04229*His + 
0.09591*Ile + 0.167*Leu + 
0.1687*Lys + 0.04085*Met 

+ 0.06487*Phe + 
0.09267*Pro + 0.1305*Ser + 
0.1143*Thr + 0.01305*Trp + 
0.05389*Tyr + 0.1232*Val + 

0.08538*G6P + 
0.06892*R5P + 0.07548*C1 

+ 0.03599*DHAP + 
0.7326*AcCoA.c -> 

Biomass 

0.142 0.098 0.186 

 
 
  



Table S5. Net fluxes determined by 13C MFA for stable PGC-1⍺ pool 2. Best-fit flux values with 95% 
confidence intervals indicated by lower bound (LB) and upper bound (UB). 
 

Pathway Enzyme Reaction Net Flux LB UB 

Glycolysis 

HK Glc ↔ G6P 1.868 1.481 2.278 
PGI G6P ↔ F6P  1.853 1.443 2.263 
PFK F6P → DHAP + GAP 1.846 1.456 2.256 
TPI DHAP ↔ GAP 1.839 1.450 2.250 

GAPDH GAP ↔ 3PG 3.681 2.905 4.502 
PGM 3PG ↔ PEP 3.826 3.015 4.647 
PK PEP → PYR.C 3.826 2.908 4.947 

LDH LAC ↔ PYR.C 0.235 0.193 0.277 

PPP 

G6PDH G6P → Ru5P 0.000 0.000 0.344 
PPE Ru5P ↔ X5P -0.008 -0.011 0.176 
PPI Ru5P ↔ R5P 0.008 0.005 0.100 

TKT1 X5P ↔ EC2 + GAP -0.008 -0.011 0.176 
TKT2 F6P ↔ EC2 + E4P 0.004 -0.088 0.005 
TKT3 S7P ↔ EC2 + R5P 0.004 -0.088 0.005 
TAL1 F6P ↔ EC3 + GAP 0.004 -0.088 0.005 
TAL2 S7P ↔ EC3 + E4P -0.004 -0.005 0.088 

TCA Cycle 

PDH Pyr.m → AcCoA.m + CO2 3.377 2.575 4.398 
CS OAA + AcCoA.m → Cit 4.061 3.239 5.095 

IDH.m Cit ↔ aKG + CO2 3.937 3.105 4.933 
aKGDH aKG → Suc + CO2 3.093 2.250 4.673 

SDH Suc ↔ Fum 3.225 2.379 4.806 
FUS Fum ↔ Mal 3.269 2.421 4.850 

MDH.m Mal ↔ OAA 3.269 2.421 4.851 

Anaplerosis 

ME Mal → Pyr.m + CO2 0.000 0.000 0.679 
PC Pyr.m + CO2 → OAA 0.227 0.000 0.479 

ATP CS Cit.c → AcCoa.c + OAA 0.124 0.077 0.170 
PEPCK OAA → PEP + CO2 0.000 -0.386 0.717 
GOT1 OAA ↔ Asp -0.440 -0.497 -0.384 

Carboxylase ProCoA + CO2 → Suc 0.132 0.097 0.167 

Amino Acid 
Metabolism 

GS Gln ↔ Glu -0.120 -0.134 -0.107 
GluDH aKG ↔ Glu 0.844 NaN 1.059 
AsnS Asn → Asp -0.477 -0.528 -0.425 
SHMT Ser ↔ Gly + C1 0.045 0.029 0.061 

PGHDH 3PG ↔ Ser 0.145 0.105 0.185 
GlyS CO2 + C1 ↔ Gly 0.092 0.081 0.103 
ALT Ala ↔ PYR.c -0.510 -0.571 -0.449 

Histidase His → C1 + Glu.c 0.053 0.036 0.071 
PAH Phe → Tyr 0.025 0.015 0.034 

TDO Trp → CO2 + CO2 + Ala + 
aKetoadi 0.000 0.000 0.003 

AA 
Intermediates 

aKetoadi → CO2 + CO2 + 
AcCoA.m + AcCoA.m 0.118 0.073 0.163 



SBCAD Ile → AcCoA.m + CO2 + 
ProCoA 0.087 0.060 0.115 

IVD 
Leu + CO2 → CO2 + 

AcCoA.m + AcCoA.m + 
AcCoA.m 

0.091 0.066 0.116 

IBD Val → CO2 + CO2 + 
ProCoA 0.038 0.022 0.055 

AASS Lys → aKetoadi 0.118 0.072 0.163 
ARGS Arg → Glu + Urea 0.033 0.015 0.051 

PO Glu ↔ Pro 0.874 0.213 1.104 
CTH Cys → Pyr 0.017 0.000 0.071 

MAOX Thr → Pyr.m + CO2 0.053 0.025 0.082 

TH  Tyr → CO2 + Fum + 
AcCoA.m + AcCoA.m 0.044 0.025 0.064 

MAT Met + Ser → C1 + Cys + 
ProCoA + Co2 0.007 0.002 0.011 

Transport 

Glucose Glc.e → Glc 1.868 1.481 2.278 
Pyr.m Pyr.c ↔ Pyr.m 3.551 2.630 4.674 
Lys Lys.e → Lys 0.167 0.123 0.212 
Thr Thr.e → Thr 0.099 0.071 0.126 
Phe Phe.e → Phe 0.045 0.037 0.053 
Tyr Tyr.e → Tyr 0.042 0.026 0.058 
Val Val.e → Val 0.085 0.071 0.100 
Leu Leu.e → Leu 0.143 0.120 0.166 
Ile Ile.e → Ile 0.112 0.085 0.138 
Trp Trp.e → Trp 0.008 0.007 0.010 
His  His.e → His 0.066 0.049 0.084 
Met Met.e → Met 0.017 0.013 0.021 
Ser Ser.e ↔ Ser 0.253 0.219 0.287 
Ala Ala ↔ Ala.e 0.465 0.405 0.525 
Arg Arg.e ↔ Arg 0.059 0.042 0.075 
Asp  Asp ↔ Asp.e -0.001 -0.020 0.018 
Cys Cys.e ↔ Cys 0.025 0.002 0.078 
Glu  Glu ↔ Glu.e -0.098 -0.126 -0.069 
Gln Gln ↔ Gln.e -0.090 -0.103 -0.078 
Gly  Gly.e ↔ Gly -0.086 -0.100 -0.073 
Pro Pro.e ↔ Pro -0.836 -1.069 NaN 
Asn  Asn.e ↔ Asn 0.503 0.451 0.554 
Lac Lac ↔ Lac.e -0.235 -0.277 -0.193 

Antibody 
Production   

0.033*Ala + 0.016*Cys + 
0.031*Asp + 0.031*Glu + 
0.021*Phe + 0.04*Gly + 
0.013*His + 0.018*Ile + 

0.047*Lys + 0.053*Leu + 
0.007*Met + 0.026*Asn + 
0.049*Pro + 0.031*Gln + 
0.016*Arg + 0.078*Ser + 
0.059*Thr + 0.058*Val + 

0.448 0.397 0.499 



0.012*Trp + 0.029*Tyr → 
Antibody 

Biomass 
Production   

0.1776*Ala + 0.1116*Arg + 
0.1396*Asp + 0.08529*Asn 

+ 0.04292*Cys + 
0.09528*Gln + 0.1143*Glu 

+ 0.1948*Gly + 
0.04229*His + 0.09591*Ile 
+ 0.167*Leu + 0.1687*Lys 

+ 0.04085*Met + 
0.06487*Phe + 

0.09267*Pro + 0.1305*Ser 
+ 0.1143*Thr + 

0.01305*Trp + 0.05389*Tyr 
+ 0.1232*Val + 
0.08538*G6P + 
0.06892*R5P + 
0.07548*C1 + 

0.03599*DHAP + 
0.7326*AcCoA.c -> 

Biomass 

0.170 0.105 0.232 

 
 
  



Table S6. Net fluxes determined by 13C MFA for stable PGC-1⍺ pool 3. Best-fit flux values with 95% 
confidence intervals indicated by lower bound (LB) and upper bound (UB). 
 

Pathway Enzyme Reaction Net Flux LB UB 

Glycolysis 

HK Glc ↔ G6P 1.860 1.460 2.279 
PGI G6P ↔ F6P  1.844 0.445 2.258 
PFK F6P → DHAP + GAP 1.835 0.697 2.250 
TPI DHAP ↔ GAP 1.828 0.688 2.243 

GAPDH GAP ↔ 3PG 3.659 2.858 4.489 
PGM 3PG ↔ PEP 3.798 2.970 4.657 
PK PEP → PYR.C 3.795 2.832 4.655 

LDH LAC ↔ PYR.C 0.235 0.194 0.277 

PPP 

G6PDH G6P → Ru5P 0.000 0.000 3.824 
PPE Ru5P ↔ X5P -0.009 -0.017 -0.009 
PPI Ru5P ↔ R5P 0.009 0.000 1.285 

TKT1 X5P ↔ EC2 + GAP -0.009 -0.017 -0.009 
TKT2 F6P ↔ EC2 + E4P 0.004 0.004 0.009 
TKT3 S7P ↔ EC2 + R5P 0.004 0.004 0.009 
TAL1 F6P ↔ EC3 + GAP 0.004 0.004 0.009 
TAL2 S7P ↔ EC3 + E4P -0.004 -0.009 -0.004 

TCA Cycle 

PDH Pyr.m → AcCoA.m + CO2 3.352 2.466 4.486 
CS OAA + AcCoA.m → Cit 4.017 3.033 5.295 

IDH.m Cit ↔ aKG + CO2 3.877 2.814 5.295 
aKGDH aKG → Suc + CO2 3.055 2.022 4.661 

SDH Suc ↔ Fum 3.182 2.123 4.809 
FUS Fum ↔ Mal 3.224 2.146 4.873 

MDH.m Mal ↔ OAA 3.064 2.153 4.336 

Anaplerosis 

ME Mal → Pyr.m + CO2 0.160 0.000 0.872 
PC Pyr.m + CO2 → OAA 0.375 0.000 0.658 

ATP CS Cit.c → AcCoa.c + OAA 0.140 0.000 0.274 
PEPCK OAA → PEP + CO2 -0.002 -0.483 0.186 
GOT1 OAA ↔ Asp -0.436 -0.526 -0.364 

Carboxylase ProCoA + CO2 → Suc 0.127 0.068 0.203 

Amino Acid 
Metabolism 

GS Gln ↔ Glu -0.122 -0.145 -0.094 
GluDH aKG ↔ Glu 0.822 0.218 1.209 
AsnS Asn → Asp -0.475 -0.536 -0.420 
SHMT Ser ↔ Gly + C1 0.049 0.006 0.083 

PGHDH 3PG ↔ Ser 0.138 0.074 0.220 
GlyS CO2 + C1 ↔ Gly 0.092 0.079 0.104 
ALT Ala ↔ PYR.c -0.514 -0.584 -0.426 

Histidase His → C1 + Glu.c 0.052 0.032 0.075 
PAH Phe → Tyr 0.023 0.008 0.043 

TDO Trp → CO2 + CO2 + Ala + 
aKetoadi 0.000 0.000 0.005 

AA 
Intermediates 

aKetoadi → CO2 + CO2 + 
AcCoA.m + AcCoA.m 0.116 0.060 0.188 



SBCAD Ile → AcCoA.m + CO2 + 
ProCoA 0.086 0.052 0.127 

IVD 
Leu + CO2 → CO2 + 

AcCoA.m + AcCoA.m + 
AcCoA.m 

0.088 0.048 0.140 

IBD Val → CO2 + CO2 + 
ProCoA 0.036 0.008 0.072 

AASS Lys → aKetoadi 0.116 0.060 0.186 
ARGS Arg → Glu + Urea 0.030 0.002 0.066 

PO Glu ↔ Pro 0.844 0.207 1.304 
CTH Cys → Pyr 0.015 0.000 0.078 

MAOX Thr → Pyr.m + CO2 0.050 0.014 0.095 

TH  Tyr → CO2 + Fum + 
AcCoA.m + AcCoA.m 0.042 0.012 0.081 

MAT Met + Ser → C1 + Cys + 
ProCoA + Co2 0.006 0.000 0.017 

Transport 

Glucose Glc.e → Glc 1.860 1.460 2.279 
Pyr.m Pyr.c ↔ Pyr.m 3.517 2.518 4.415 
Lys Lys.e → Lys 0.169 0.124 0.213 
Thr Thr.e → Thr 0.098 0.070 0.125 
Phe Phe.e → Phe 0.045 0.037 0.053 
Tyr Tyr.e → Tyr 0.042 0.026 0.058 
Val Val.e → Val 0.085 0.071 0.100 
Leu Leu.e → Leu 0.144 0.121 0.166 
Ile Ile.e → Ile 0.112 0.085 0.139 
Trp Trp.e → Trp 0.008 0.005 0.011 
His  His.e → His 0.066 0.048 0.083 
Met Met.e → Met 0.017 0.013 0.021 
Ser Ser.e ↔ Ser 0.253 0.218 0.287 
Ala Ala ↔ Ala.e 0.465 0.405 0.525 
Arg Arg.e ↔ Arg 0.059 0.042 0.075 
Asp  Asp ↔ Asp.e -0.001 -0.020 0.018 
Cys Cys.e ↔ Cys 0.025 -0.009 0.078 
Glu  Glu ↔ Glu.e -0.098 -0.126 -0.069 
Gln Gln ↔ Gln.e -0.090 -0.103 -0.078 
Gly  Gly.e ↔ Gly -0.086 -0.100 -0.073 
Pro Pro.e ↔ Pro -0.804 -1.283 -0.158 
Asn  Asn.e ↔ Asn 0.503 0.451 0.554 
Lac Lac ↔ Lac.e -0.235 -0.277 -0.194 

Antibody 
Production   

0.033*Ala + 0.016*Cys + 
0.031*Asp + 0.031*Glu + 
0.021*Phe + 0.04*Gly + 
0.013*His + 0.018*Ile + 

0.047*Lys + 0.053*Leu + 
0.007*Met + 0.026*Asn + 
0.049*Pro + 0.031*Gln + 
0.016*Arg + 0.078*Ser + 
0.059*Thr + 0.058*Val + 

0.447 0.417 0.477 



0.012*Trp + 0.029*Tyr → 
Antibody 

Biomass 
Production   

0.1776*Ala + 0.1116*Arg 
+ 0.1396*Asp + 
0.08529*Asn + 
0.04292*Cys + 

0.09528*Gln + 0.1143*Glu 
+ 0.1948*Gly + 

0.04229*His + 0.09591*Ile 
+ 0.167*Leu + 0.1687*Lys 

+ 0.04085*Met + 
0.06487*Phe + 

0.09267*Pro + 0.1305*Ser 
+ 0.1143*Thr + 
0.01305*Trp + 

0.05389*Tyr + 0.1232*Val 
+ 0.08538*G6P + 
0.06892*R5P + 
0.07548*C1 + 

0.03599*DHAP + 
0.7326*AcCoA.c -> 

Biomass 

0.191 0.000 0.375 

 


