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ABSTRACT

Localizing the epileptogenic zone (EZ) is a critical step in

the treatment of medically refractory epilepsy. Resting-state

fMRI (rs-fMRI) offers a new window into this task by captur-

ing dynamically evolving co-activation patterns, also known

as connectivity, in the brain. In this work, we present the first

automated framework that uses dynamic functional connec-

tivity from rs-fMRI to localize the EZ across a heterogeneous

epilepsy cohort. Our framework uses a graph convolutional

network for feature extraction, followed by a transformer net-

work, whose attention mechanism learns which time points

of the rs-fMRI scan are important for EZ localization. We

train our framework on augmented data derived from the Hu-

man Connectome Project and evaluate it on a clinical epilepsy

dataset. Our results demonstrate the clear advantages of our

convolutional + transformer combination and data augmenta-

tion procedure over ablated and comparison models.

Index TermsÐ Functional Connectivity, Epilepsy, Deep

Learning, Graph Convolutions, Transformer Models

1. INTRODUCTION

Epilepsy is a debilitating neurological disorder characterized

by recurrent and unprovoked seizures. While anti-epileptic

drugs are effective in many cases, roughly a third of pa-

tients have a medication refractory course [1]. Surgery

is an effective therapeutic approach for medication refrac-

tory epilepsy, provided that seizures have focal onset and

can be accurately localized to a discrete epileptogenic zone

(EZ) [2]. At present, identification of EZ, relies on a localiza-

tion hypothesis based on concordance between noninvasive

electroencephalogram (EEG) and structural MRI for coarse

localization and invasive EEG monitoring over the presumed

target zone using surgically implanted intracranial electrodes.

Inaccurate noninvasive EZ localization can reduce the diag-

nostic efficacy of intracranial EEG monitoring and compound

surgical risks [3]. Resting-state fMRI (rs-fMRI) measures co-

activation patterns in the brain, and may elucidate network

interactions associated with the EZ that could potentially

inform presurgical evaluation and localization [4, 5].

However, localization of the EZ using rs-fMRI is a chal-

lenging problem with limited success described in literature.

The earliest work used graph theoretic measures derived from

rs-fMRI connectivity for EZ localization [6]. The follow-up

study by the same authors extended this method to identify

patient-specific hubs of abnormal functional connectivity [7].

While these works showed good correlation between identi-

fied regions and the EZ, there is limited quantitative evalua-

tion for this approach based on model accuracy and clinical

outcomes. The authors of [8] use independent component

analysis to generate feature maps, followed by EZ classifi-

cation of these components. While promising, this method

relies on visual inspection of the independent components

prior to classification. The automated method proposed by [9]

trains a 3D convolutional neural network on the rs-fMRI data

to determine the hemisphere of the EZ. This approach uses a

data augmentation technique, by which artificial lesions are

inserted into the connectivity data from healthy controls. Fi-

nally, the work of [10] introduces a graph convolutional net-

work for rs-fMRI connectivity matrices that performs region-

wise identification of the EZ. While this method achieves high

AUC, the sensitivity is low, and it occasionally misses the EZ.

Recent work in rs-fMRI literature has increasingly lever-

aged the dynamic evolution of connectivity information to

improve predictive performance [11]. For example, the work

of [12] uses an LSTM network to capture temporal dependen-

cies within the rs-fMRI scan to classify subjects with autism

from controls. Likewise, the authors of [13] use an LSTM

network as a temporal attention module to improve localiza-

tion of eloquent cortex in brain tumor patients. The model

is applied to dynamic functional connectivity (dFC) matrices

computed using a sliding window. Finally, the method of [14]

uses a transformer network applied to dFC to predict the brain

age of patients with Alzheimer’s disease.

We present the first deep learning model to localize the

EZ in focal epilepsy patients based on dFC. Our deep network



Fig. 1. Network overview. Top: We use a multi-modal GCN and fully-connected layers to obtain node-wise predictions of the

EZ over time R. Bottom: Our transformer and fully-connected layers network extract a temporal attention vector p that selects

specific windows of the dFC input. The attention p is combined with R to obtain the final EZ predictions.

architecture uses an anatomically-regularized graph convo-

lutional network (GCN) for feature extraction. From here, a

transformer network learns a temporal attention vector, which

identifies relevant time windows of the rs-fMRI scan that aid

in localization. Following [9], we train our network entirely

on simulated data derived from the Human Connectome

Project (HCP), and we test it on a clinical epilepsy dataset

from the University of Wisconsin Madison. We demonstrate

the significantly improved performance of our framework,

as compared to both ablated versions of our model and the

method of [10]. Our results highlight the promise of using

rs-fMRI connectivity for preoperative EZ localization.

2. METHODS

Fig.1 shows an overview of our framework. Our method uses

a two layer GCN to obtain intermediate node-wise features

over time. These intermediate features are fed into both a

temporal attention network as well as a node-classifier net-

work for EZ localization. We use the sliding window tech-

nique to generate the dFC inputs to our framework. Formally,

let N be the number of brain regions in our parcellation, T be

the number of sliding windows, and {Xt}Tt=1 be the dFC ma-

trices. Xt ∈ R
N×N is computed from a segment Zt ∈ R

N×d

of the rs-fMRI time series, where d is the sliding window size.

GCN for feature extraction: The first stage of our model

is an anatomically-regularized GCN for feature extraction.

We use diffusion MRI (d-MRI) tractography to construct the

binary adjacency matrix A ∈ R
N×N used for graph filter-

ing [15]. In this case, an entry Aij = 1 denotes an anatomical

connection between regions i and j. Let L = D−
1
2AD−

1
2 be

the normalized graph Laplacian of A, where Dii =
∑

j Aij .

Let A ∈ R
N×N denote the binary adjacency matrix used

for graph filtering [15]. We use d-MRI tractography to con-

struct A. In this case, an entry Aij = 1 denotes an anatomical

connection between regions i and j. Let L = D−
1
2AD−

1
2 be

the normalized graph Laplacian of A, where Dii =
∑

j Aij .

Each layer produces an activation map Hl ∈ R
N×Gl , where

l ∈ {1, 2} denotes the layer number. The learnable param-

eters in each graph convolution are a weight matrix Wl ∈
R

Gl×Gl+1 and a constant bias bl ∈ R
1×Gl+1 . The intermedi-

ate activation H1 is generated via the propagation rule:

Ht
1 = φ

(

LXtW1 + b1

)

, (1)

with the activation H2 generated likewise from H1.

Transformer-Based Temporal Attention: The outputs

{Ht
2}Tt=1 of the GCN correspond to intermediate node-

level features per time point. From here, the temporal at-

tention module leverages the encoder stage of a transformer

network [16], followed by a fully-connected artificial neu-

ral network (ANN). Our transformer employs multi-headed

self-attention (MHA) and feed-forward networks with resid-

ual connections to process sequential data. Formally, let

H′ ∈ R
T×NG2 be a flattened version of {Ht

2}Tt=1. A single

encoder layer in the transformer is computed as follows:

C1 = MHA(H′) +H′ C2 = FF(C1) +C1, (2)

where the FF(·) operation denotes a feed-forward network.

The MHA(·) function in Eq. (2) consists of multiple self-

attention (SA) operations, where each SAi for i ∈ {1 · · · I}
is computed as SAi(Vi) = MiVi. As introduced in [16], the

attention mask Mi ∈ R
T×T captures the similarity between

a query matrix Qi = W
q
iH

′ and a key matrix Ki = Wk
i H

′,

both of which are linear functions of the input data:

Mi = Softmax

(
QiK

T
i√

NG2

)

(3)



Likewise, the value matrix Vi = Wv
iH

′ is also obtained via

a linear layer. The matrices W
q
i , Wk

i , and Wv
i in the above

expressions denote the learned weights for head i.

The self-attention outputs are concatenated across heads

and fed through a linear layer to obtain one MHA opera-

tion. The transformer combines the MHA(·) operation with a

residual connection. The subsequent FF(·) operation consists

of two fully-connected layers plus another residual connec-

tion. The encoding procedure in Eq. (2) optimizes the mixing

across the sequential input features for the downstream task.

The output of the transformer is fed through two fully-

connected layers and a softmax function to obtain our tempo-

ral attention vector p ∈ R
T×1. The attention p is designed to

identify which time points are more relevant for downstream

node classification. Both the intermediate features {H}Tt=1

and attention vector p appear in the EZ classification stage.

Classification and Loss Function: We treat the problem of

EZ localization as a region-wise classification problem, where

each region is identified as either belonging to the EZ class

or to the ªnormalº class. Formally, the intermediate features

{H}Tt=1 are fed into a two-layer ANN to obtain node-wise

predictions over time {R}Tt=1, where Rt ∈ R
N×2. Our tem-

poral attention vector p is combined with {R}Tt=1 via an inner

product to obtain a single prediction for each region.

We adopt a modified version of the loss function presented

in [10], which uses a weighted cross-entropy loss and a regu-

larization term to suppress activations in regions contralateral

to the EZ. Let Y ∈ R
N×2 be the one-hot encoded labels, Ne

denote the nodes that belong to the EZ class and let c(n) de-

note the contralateral counterpart to region n. Our training

loss function consists of the following two terms:

L({Xt}Tt=1,Y) = −
N∑

n=1

2∑

i=1

δi log
(

σ
( T∑

t=1

Rt
n,c · pt

))

Yn,c

︸ ︷︷ ︸

Weighted Cross Entropy

−λ
1

Ne

∑

n∈Ne

(

σ
( T∑

t=1

Rt
n,2 · pt

)

− σ
( T∑

t=1

Rt
c(n),2 · pt

))

︸ ︷︷ ︸

EZ Contralateral Term

.

(4)

Data Augmentation for Training: Rs-fMRI studies of focal

epilepsy patients are often limited in size. Therefore, fol-

lowing [9], we train our deep network entirely on augmented

data derived from a neurotypical control dataset. For each

training sample, we augment the healthy rs-fMRI data by

first randomly selecting a spatially continuous neighborhood

of voxels to form the EZ and then modifying the time se-

ries at those voxels via one of six noise models: (1) adding

normally distributed noise, (2) adding uniformly distributed

noise, (3) adding power-law noise, (4) adding Brownian

noise, (5) adding noise generated by a Levy walk process,

and (6) randomly permuting the time series. Since there is no

Fig. 2. Resection boundaries (red) for two epilepsy patients.

established ground truth for how the EZ affects rs-fMRI, the

combination of these six noise models exposes our network

to a broad range of data abnormalities during training [9]. To

our knowledge, our work is the first to use data augmentation

for EZ localization based on rs-fMRI connectivity.

Implementation Details: We implement our network in Py-

torch [17] using the ADAM optimizer and a leaky-ReLU acti-

vation function with slope = −0.1 between each layer. To pre-

vent data leakage, all hyperparameters of our network are set

using cross-validation on 100 EZ-augmented subjects from

the Human Connectome Project (HCP) dataset.

Baselines: We compare our proposed framework against

competing methods from the literature (first two below) and

ablated versions of our framework (last four below):

• BN-CNN: A modified version of the BrainNetCNN archi-

tecture developed in [18] that performs region-wise, rather

than subject-level, prediction.

• DeepEZ: The model developed by [10] to localize the EZ

based on static rs-fMRI connectivity.

• NoAttn: Ablation #1 that removes the temporal attention

mechanism. Final predictions are averaged over time.

• ANNattn: Ablation #2 that uses a fully-connected ANN

rather than a transformer as the temporal attention model.

• LSTM: Ablation #3: that uses an LSTM rather than a

transformer as the temporal attention model.

• NoAugment: Ablation #4 that trains the deep network di-

rectly on the clinical data with no augmentation.

3. EXPERIMENTAL RESULTS

Datasets: Our training data consists of 300 HCP sub-

jects [19]. We generate training three samples per subject

(S = 900 total) by varying the EZ location and/or noise

model used for data augmentation. We use the Brainnetomme

atlas [20] to define N = 246 cortical and subcortical regions

for our analysis. We construct the adjacency matrix A used

in our GCN from d-MRI tractography of 50 additional HCP

subjects. Individual structural connectivity matrices are gen-

erated according to [21]. We average and threshold these

matrices to compute A, used for both training and testing.

Our clinical dataset consists of 14 pediatric patients with

focal epilepsy from the University of Wisconsin (UW) Madi-

son. Preoperative rs-fMRI data was acquired using an echo

planar imaging sequence (EPI, TR = 802 ms, TE = 33.5
ms, flip angle = 50◦, res = 2 mm isotropic). The rs-fMRI



Fig. 3. Ground truth (red) and model predictions (yellow) for three test subjects.

Method Sens Spec Acc AUC p-value

BN-CNN 0.17 0.81 0.69 0.58 < 10−8

DeepEZ 0.34 0.88 0.87 0.7 0.011
NoAttn 0.35 0.86 0.86 0.69 < 0.01

ANNattn 0.41 0.86 0.88 0.71 0.019
LSTM 0.41 0.88 0.88 0.73 0.052

NoAugment 0.28 0.90 0.90 0.68 < 0.01
Proposed 0.51 0.89 0.92 0.77

Table 1. Performance metrics for EZ classification.

data is preprocessed using the CPAC pipeline [22]. Postop-

erative T1-weighted MRI was acquired using a 3D gradient-

echo pulse sequence (MPRAGE, TR = 604 ms, TE = 2.516
ms, flip angle = 8◦, res = 0.8 mm isotropic). As shown in

Fig. 2, we manually segment the resection cavity and consider

this area as the pseudo ground truth EZ for each patient.

Quantitative Performance: Table 1 reports the performance

of each model. We use a De Long’s test on the AUC met-

ric [23] to determine statistically significant improvement be-

tween our proposed framework and each baseline. We note

an improvement in sensitivity and AUC when using the trans-

former to extract the temporal attention weights. Likewise,

we note an improvement when using data augmentation for

training. This is likely because our clinical dataset is too

small to extract information from using our dynamic model.

Finally, Fig. 3 shows model the ground truth (red) and pre-

dicted (yellow) labels for three Epilepsy patients among all

models. The observed trends reflect the metrics in Table 1.

Temporal Attention: Fig. 4 shows the temporal attention

weights recovered from each method that uses attention (pro-

posed, ANNattn, and LSTM) for each of the 14 epilepsy pa-

tients during the testing phase. We observe a larger dynamic

range in the weights recovered from the proposed framework,

as compared to the ablated models. We conjecture that the

transformer learns more nuances in the dFC data that improve

Fig. 4. Temporal attention weights recovered for Left: the

proposed framework, Middle: the ANNattn ablation model,

and Right: the LSTM ablation model for all epilepsy patients.

the region-wise EZ classification. We hypothesize that the

MHA operation, which inherently captures similarities and

differences between time-points, is responsible for better hon-

ing in on the relevant intervals for prediction.

4. CONCLUSION

We propose a novel end-to-end model based on dynamic

functional connectivity to localize the EZ in focal epilepsy

patients. Our model leverages a combined GCN + trans-

former architecture for feature extraction and temporal track-

ing. In parallel, we leverage a simple yet effective data

augmentation strategy for robust training. We show statis-

tically significant improvements over the baseline methods,

and hypothesize that the performance gain is directly related

to using the transformer-based attention module, which hones

in on relevant intervals of the dFC time series for EZ predic-

tion. Our work shows increased promise in using rs-fMRI as

a preoperative protocol for noninvasive EZ localization.
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