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We derive an exact upper bound on the epidemic overshoot for the Kermack–
McKendrick SIR model. This maximal overshoot value of 0.2984 · · · occurs at
R�
0 ¼ 2:151 � � �. In considering the utility of the notion of overshoot, a rudimen-

tary analysis of data from the first wave of theCOVID-19 pandemic inManaus,
Brazil highlights the public health hazard posed by overshoot for epidemics
with R0 near 2. Using the general analysis framework presented within, we
then consider more complex SIR models that incorporate vaccination.
1. Introduction
The overshoot of an epidemic is the proportion of the population that becomes
infected after the peak of the epidemic has already passed. Formally, it is
given as the difference between the fraction of the population that is susceptible
at the peak of infection prevalence and at the end of the epidemic. Intuitively,
it is the difference between the herd immunity threshold and the total
fraction of the population that gets infected [1,2]. As it describes the damage
to the population in the declining phase of the epidemic (i.e. when the
effective reproduction number is less than 1), one might be tempted to dismiss
its relative importance. However, a substantial proportion of the epidemic, and
thus a large number of people, may be impacted during this phase of the
epidemic dynamics.

A natural question to ask then is how large can the overshoot be and how
does the overshoot depend on epidemic parameters, such as transmissibility
and recovery rate? Surprisingly, this question can be answered exactly. In this
paper, we first derive the bound on the overshoot in the Kermack–McKendrick
limit of the SIR model [3]. We then compare the predictions of this feature of the
SIR model with data taken from the first wave of the COVID-19 pandemic in
Manaus, Brazil [4]. Beyond the basic SIR model, we then see if the bound on
overshoot holds if we add additional complexity, such as vaccinations.
2. Results
Over the years, the Kermack–McKendrick SIR model has become largely
synonymous with the following set of ordinary differential equations (ODEs)
due to their simplicity and popularity:

dS
dt

¼ �bSI, ð2:1Þ
dI
dt

¼ bSI � gI ð2:2Þ

and
dR
dt

¼ gI, ð2:3Þ

where S, I, and R are the fractions of population in the susceptible, infected,
and recovered state, respectively. As these are the only possible states within
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Figure 1. The overshoot can be calculated in two ways. (a) Overshoot is calculated as the difference between the fraction of the population that is susceptible at t*
and infinite time. (b) Overshoot is calculated as the integral of the infection incidence curve from t* until infinite time. Therefore, overshoot corresponds to the area
of the region shaded in yellow.
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this model, the conservation equation for the whole popu-
lation is given as S + I + R = 1. It is worth noting that the
original compartmental model formulated by Kermack and
McKendrick in their seminal paper from a century ago [3]
is actually a more general model than the ODE model that
has become synonymous with their names. The original
model considered both infectiousness that depended on the
amount of time since becoming infected, which has been
termed age-of-infection, and demographic effects in the
form of deaths. A considerable amount has been learned
and understood in the case of the more general model that
considers age-of-infection (see [5,6] for an introduction),
which typically takes the form of a nonlinear renewal
equation. While here we have chosen to focus on the simpler
ODE model, under certain assumptions our result for the
overshoot can be carried over to the age-of-infection model
as well.

Conceptually, the overshoot can be equivalently calcu-
lated in two ways. In the first, it is given by the difference
in the fraction of susceptible individuals at the peak of infec-
tion prevalence (St� ) and at the end of the end of the epidemic
(S∞) (figure 1a). Alternatively, it can be viewed as the inte-
gration of the number of newly infected individuals, which
is given by the infection incidence rate (βSI) from the peak
of infection prevalence to the end of the epidemic (figure
1b). We will make use of the former relationship in the results
that follow.

The only two parameters of the ODE model are β and γ.
A key parameter in epidemic modelling combines these
two into a single parameter by taking their ratio, which is
known as the basic reproduction number (R0). The behaviour
of the overshoot can be shown to be only dependent on this
single parameter, R0. Plotting the dependency of overshoot
on R0 (figure 2), we observe a peak in the curve at
(R�

0, Overshoot�) that sets an upper bound on the overshoot.
From a public health perspective, diseases that have
estimated R0 values near this peak region in figure 2 include
COVID-19 (ancestral strain) [7], SARS [8], diphtheria [9],
monkeypox [10], and ebola [11]. This peak phenomenon in
the overshoot was first numerically observed by Zarnitsyna
et al. [12], though not explained. We will now derive the
solution for this maximum point analytically.
2.1. Deriving the exact bound on overshoot in the
Kermack–McKendrick SIR model

Theorem 2.1. The maximum possible overshoot in the Kermack–
McKendrick SIR model is a fraction 0.2984 · · · of the entire
population, with a corresponding R�

0 ¼ 2:151 � � �.

Proof. Let t* be the time at the peak of the infection prevalence
curve. Here, we define the herd immunity threshold as the
difference in the fractions of the population that are suscep-
tible at zero time and at t*. Then, the overshoot is defined
as the difference in the fractions of the population that are
susceptible at t* and at infinite time. This is equivalent
to defining overshoot as the cumulative fraction of the
population that gets infected after t*.

Overshoot ;
ð1
t�
� dS

dt

� �
dt ¼

ð1
t�
bSI dt ¼ St� � S1, ð2:4Þ

where St* and S∞ are the susceptible fractions at t* and infi-
nite time, respectively. We will use St* = 1/R0 [13], which
can be obtained by setting (2.2) to zero and solving for that
critical S. We will use the notation Xt to indicate the value
of compartment X at time t.

Overshoot ¼ 1
R0

� S1: ð2:5Þ

As an aside, it is worth noting that the result that follows
also holds for the more general age-of-infection model [3] if
we restrict our definition of the herd immunity threshold to
be the fraction of people that need to be removed from the
population at the beginning of the epidemic to prevent an out-
break from occurring.While this alternative definition gives an
equivalent herd immunity threshold in the ODE model where
it is defined in terms of the peak of the prevalence curve, this
more robust definition is needed to account for the more
complicated behaviour in the age-of-infection model.
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Figure 2. The overshoot as a function of R0 for the Kermack–McKendrick SIR model.
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Sincewewould like to computemaximal overshoot, we can
differentiate the overshoot equation (2.5) with respect to S∞ to
find the extremum. We will eliminate R0 from the overshoot
equation so that we have an equation only in terms of S∞.

To find an expression for R0, we start by deriving the
standard final size relation for the SIR model [14,15]. We
solve for the rate of change of I as a function of S using (2.1)
and (2.2) to obtain

dI
dS

¼ �1þ g

bS
,

from which it follows on integration that S + I− (γ/β) ln S is
constant along any trajectory.

Considering the beginning of the epidemic and the peak of
the epidemic yields

S0 þ I0 � g

b
lnS0 ¼ S1 þ I1 � g

b
lnS1,

hence

b

g
ðS1 � S0 þ I1 � I0Þ ¼ ln

S1
S0

� �
: ð2:6Þ

We now define the initial conditions: S0 ¼ 1� e and I0 ¼ e,
where e is the (infinitesimally small) fraction of initially infected
individuals. We assume that the number of initially infected
individuals (e) is much smaller than the size of the population
(i.e. e � 1). For the scale that we have in mind, such as those
of city populations and larger, it is thus reasonable to make
the approximation 1� e � 1. We also use the standard asymp-
totic of the SIR model that there are no infected individuals at
the end of an SIR epidemic: I∞ = 0. Taking the above conditions
together and recalling that R0 ¼ b

g, we obtain that

S1 ¼ eR0ðS1�1Þ: ð2:7Þ
The resulting equation (2.7) is the final size relation for the
Kermack–McKendrick SIR model. Importantly, this final size
relation taken together with the alternative definition for the
herd immunity threshold implies the subsequent result for
overshoot holds not only for the simpler ODE model con-
sidered here, but also for the more general age-of-infection
model of Kermack & McKendrick [3]. The robustness of the
final size relation in the context of the more general model
can be more easily viewed through the lens of a renewal
equation for the force of infection; see [6,15–17] for a derivation
and a more complete discussion.

Rearranging for R0 yields the following expression:

lnðS1Þ
S1 � 1

¼ R0: ð2:8Þ

We then substitute this R0 expression (2.8) into the overshoot
equation (2.5):

Overshoot ¼ S1 � 1
lnðS1Þ � S1: ð2:9Þ

Differentiating with respect to S∞ and setting the equation to
zero to find the maximum overshoot yields

ðlnS1�Þ2 ¼ lnS1� � 1þ 1
S1�

, ð2:10Þ

whose solution is

S1� ¼ 0:1664 � � � ,
and which corresponds to

Overshoot� ¼ 0:2984 � � � , ð2:11Þ
using (2.9). The corresponding R0 calculated using (2.8) is

R�
0 ¼ 2:151 � � � : ð2:12Þ

This concludes the proof. ▪

Additionally, to find the total recovered fraction is
straightforward. In the asymptotic limit of the SIR model,
there are no remaining infected individuals, so R∞* = 1− S∞*:

R1� ¼ 1� 0:1664 � � � ¼ 0:8336 � � � : ð2:13Þ
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In other words, approximately 5 out of every 6 individuals
in the population will have experienced infection when
overshoot is maximized.
3. Conclusion
We have proved that the maximum fraction of the population
that can be infected during the overshoot phase of an epi-
demic in the Kermack–McKendrick SIR model is just under
0.3, with a corresponding basic reproduction number of
R0≈ 2.15.

Given the clear predictions of this feature of the SIR
model, it is reasonable to ask whether the theory matches
any real-world epidemics. While high-quality data on large,
unmitigated epidemics (for which the SIR model would
most directly apply) in human populations are rare, we will
now perform a rudimentary analysis of data from the first
wave of the COVID-19 pandemic in Manaus, Brazil as
given by Buss et al. [4]. While the city did implement some
small level of non-pharmaceutical interventions, for the pur-
pose of calculation let us take at face value that the epidemic
spread through the city practically unmitigated.

To estimate the theoretical prediction of overshoot in the
SIR model, we need to first estimate R0. The conservative,
forward-looking approach we take here is to take the maxi-
mum of the effective reproduction number (Rt) when the
epidemic is first starting. Using data from Buss et al. [4] for Rt

in Manaus as a function of date of symptom onset, which we
take as a proxy for time, the R0 was approximately 2.3 in
Manaus in mid-March (figure 3). For R0 = 2.3, using figure 2
as a reference, the theoretical prediction for overshoot is
approximately 29%. Thus, if R0 can be estimated early on in
the epidemic, the overshoot can be subsequently predicted
within the context of an SIR model before the peak of the epi-
demic occurs, which in practice provides more time for public
health measures and interventions to be implemented before
the overshoot phase takes place.

To calculate the overshoot as observed directly from the
data, we again refer to the time series data for Rt (figure 3).
We will consider the time when Rt = 1 to be when the
epidemic peaks (t*). Reading the data suggests the first
COVID-19 wave peaked in late April. We note that Rt stays
around 1 until mid-August, when it starts rising again. As
the basic SIR model does not consider such complex late-
time behaviour, for the purpose of this analysis, we will con-
sider the first wave to have ended by mid-August. We note
that assigning an endpoint to the data is a strong assumption,
and that actually determining the turning and end point of an
epidemic in the context of epidemic forecasting is not a
simple matter [18].

With the date of an epidemic peak in hand, we now turn to
reading the prevalence curve. Specifically, we will be using the
mean data given by seroreversion-adjusted prevalence at a 1.4
S/C threshold for positive detection (figure 4), which is
adapted from Buss et al. [4]. The seroreversion adjustment is
their best attempt for controlling for antibody waning. Given
this correction, we will take this curve as the cumulative out-
break size. The 1.4 S/C threshold is based on the sampling
threshold in relative light units for deciding whether a
sample has a significant positive chemiluminescence signal
over the calibration. After fitting the time series points to a
simple logistic curve, it can be seen that when Rt first reached
1 (indicating the epidemic had peaked), the cumulative fraction
of the population that had been infected was approximately
36%. From here, we see that the cumulative fraction that
becomes infected between this time point when Rt first reached
1 and the end of the first wave in mid-August (i.e. the over-
shoot) is 30% from the data.

We, therefore, see that the SIR model prediction for over-
shoot aligns with the value derived from the data, suggesting
that the dynamics of the first wave of COVID-19 in Manaus,
Brazil can be approximated by a simple SIR model. While the
crude analysis above makes several strong assumptions
about the nature of the unmitigated spread, the endpoint
of the wave, the accuracy of the seroprevalence testing
and correction methods, and the fidelity of the sampling
intervals, the fit between the data and a SIR model is perhaps
unsurprising given the relatively high population density
of Manaus and general lack of thorough mitigation
measures. To a first-order approximation, the data suggest
that overshoot indeed poses a significant amount of public
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health hazard when R0 is in the neighbourhood of 2. And
that for well-mixed, unmitigated epidemics that may be
approximated by SIR dynamics, overshoot may be a sizeable
portion of the dynamics and overall attack rate.

The mathematical intuition on why there is a peak in the
overshoot as a function of R0 can be seen by inspection of
equation (2.5). The first term, 1/R0, monotonically decreases
with increasingR0. The last term,−S∞, monotonically increases
with R0. Thus a trade-off in the two terms results in a single
intermediate peak. The epidemiological intuition behind a
peak in the overshoot is that the total number of individuals
infected during the epidemic grows monotonically with
increasing R0. However, too high of an R0 leads to a sharp
growth in the number of infected individuals, which burns
throughmost of the population before the infection prevalence
peak is reached, leaving few susceptible individuals left for the
overshoot phase. This is seen by a monotonic decrease in
the fraction of infected individuals that occurs in the overshoot
phasewith increasedR0 (figure 5). Thus themaximal overshoot
occurs as a trade-off between those two directions. It is interest-
ing to note that while the overshoot is a non-monotonic
function of R0, in contrast, the ratio of overshoot to outbreak
size is a strictly decreasing function of R0 (see appendix A for
further discussion).

The fundamental upper bound on the overshoot derived
here also seems to hold under the addition of more complexity
into the SIR model (see appendix A). Upon the addition of
different modes of vaccination, we find the bound on overshoot
still holds in all cases considered. In the 2-strain with vacci-
nation SIR model of Zarnitsyna et al. [12], the overshoot
depends on both the level of strain dominance and vaccination
rate, but from their results it is numerically seen that any
amount of vaccination will produce an overshoot lower than
the bound found here. Different controlmeasures and strategies
may reduce the overshoot as compared to the unmitigated case
[1], keeping this upper bound intact. Future work may explore
how general this bound is for SIR models with other types of
complexities or for models beyond the SIR type.
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Appendix A
A.1. Upper bounds on overshoot in models that include

vaccinations
Beyond the Kermack–McKendrick SIR model, one can ask if
the bound on overshoot still holds if other complexities are
added to the model. First, we will consider the addition of
vaccinations.

We will consider three qualitatively different types of
curves for the vaccination rate (figure 6). These correspond to
different scenarios that might be modelled. The first model
assumes a vaccination rate of zero after the outbreak begins,
which implies all vaccinations occur before the outbreak. The
second model of vaccination assumes a constant per capita vac-
cination rate. This is a situation where all susceptible
individuals get vaccinated at the same rate. This assumption
yields a vaccination curve for the population that is concave
down. The third type of model assumes a risk-driven vacci-
nation rate that depends on the number of infected
individuals. This yields a non-monotonic vaccination curve
for the population that switches from being initially concave
up to being concave down. Depending on the scenario being
analysed, one model might be more appropriate to use than
others. Below we discuss each model in further detail by pro-
viding the corresponding system of equations, relevant
scenarios themodel might correspond to in reality, and the cor-
responding maximal overshoot for each model.

A.1.1. Maximal overshoot when the number of vaccinated

individuals is constant
The first model of vaccination assumes there are no vacci-
nations during the outbreak, which implies a fixed number
of vaccinated individuals over the course of the epidemic.
Such a scenario might be the reintroduction of an infectious
disease into a population that has a pre-existing level
of immunity.

Since the number of vaccinated individuals is constant,
this implies all vaccinations occurred prior to the initial
time step. The calculation is then trivial assuming
vaccinations provide complete and permanent immunity. In
that case, vaccinated individuals can simply be ignored
entirely in the dynamics, resulting in the maximal overshoot
simply scaling with the unvaccinated fraction.

Overshoot�SIRV ¼ ð1� VÞ0:2984 � � � : ðA1Þ
A.1.2. Maximal overshoot under addition of constant per capita

vaccination
We next consider a more typical scenario where the vacci-
nation rate per unvaccinated individual is constant per unit
time. Barring any additional information about the popu-
lation or the epidemic, it is reasonable to assume that all
susceptible individuals are vaccinated at the same rate.
Consider the following SIRV model:

dS
dt

¼ �bSI � lS, ðA2Þ

dI
dt

¼ bSI � gI, ðA3Þ

dR
dt

¼ gI ðA4Þ

and
dV
dt

¼ lS: ðA5Þ

In this case, it is easily shown that there is a conserved
quantity, S + I− (γ/β) ln S + (λ/β) ln I, which reduces to (2.6)
when the vaccination rate is zero (i.e. λ = 0). Unfortunately,
having the conserved quantity is not sufficient to compute
the overshoot, since there does not appear to be a way to
separate infected and vaccinated individuals when trying
to extend the previous calculation. Therefore, we turn to
numerical computation (figure 7a). We find that the maximal
overshoot is bounded above by the value already obtained in
the model without vaccinations. As shown in figure 7b, the
overshoot has a complicated dependence on the vaccination
parameter λ and R0.
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A.1.3. Maximal overshoot under addition of a risk-driven

vaccination rate
Lastly consider a vaccination rate that is proportional to
the number of infected individuals. Such risk-driven behav-
iour may arise for a variety of reasons, including initial
vaccine hesitancy, a delay in vaccine availability, or a corre-
lation between willingness to get vaccinated and the
number of infected individuals. Consider the following
SIRV model:

dS
dt

¼ �bSI � lSI, ðA6Þ
dI
dt

¼ bSI � gI, ðA7Þ
dR
dt

¼ gI ðA8Þ

and
dV
dt

¼ lSI: ðA9Þ

Since the model now has an additional compartment, V, com-
pared with the original SIR model, we must update our
definition for overshoot accordingly. Fundamentally, over-
shoot compares the fraction of people who have not been
infected at the epidemic peak and the people who have not
been infected at the end of the epidemic. The fraction of
people who have not been infected at any particular time, t,
is St +Vt. Thus, overshoot can be redefined as follows:

Overshoot ¼ ðSt� þ Vt� Þ � ðS1 þ V1Þ:
Since the equation for dI/dt remains unchanged, St* = 1/R0

still applies. Thus, the overshoot equation for models with
vaccinated compartments is given by

Overshoot ¼ 1
R0

þ Vt�

� �
� ðS1 þ V1Þ: ðA10Þ

To maximize overshoot, we thus need to find expressions for
R0, Vt* and V∞ in terms of S∞.

To find R0, we start by taking the ratio dI/dS and
integrating as before. It follows that I + (β/(β + λ))S− (γ/(β +
λ)) ln S is constant along any trajectory. Considering the
beginning and the end of the epidemic yields

I0 þ b

bþ l
S0 � g

bþ l
ln S0 ¼ I1 þ b

bþ l
S1 � g

bþ l
ln S1:
Using the same initial conditions, asymptotic behaviour, and
parameter substitution as before (S0 ¼ 1� e, I0 ¼ e, I∞ = 0,
R0 = β/γ) yields the following final size relation:

R0 ¼ lnðS1Þ
S1 � 1

: ðA11Þ

Thus, we see that R0 for this SIRV model takes on the same
expression as that for the SIR model (2.8).

To find Vt*, let us take the ratio of time derivatives of the S
and V compartments (A 6) and (A 9):

ðdS=dtÞ
dV=dt

¼ �bSI � lSI
lSI

and

dS
dV

¼ � bþ l

l

� �
,

from which it follows on integration that S + ((β + λ)/λ)V is
constant along any trajectory. Considering the beginning
and the peak of the epidemic yields

S0 þ bþ l

l

� �
V0 ¼ St� þ bþ l

l

� �
Vt� :

Using the initial conditions (S0 ¼ 1� e, I0 ¼ e, V0 ¼ 0) and
recalling that St* = 1/R0, we obtain the following formula forVt*:

Vt� ¼ 1� 1
R0

� �
l

bþ l

� �
: ðA12Þ

To findV∞, recall that S+ ((β+ λ)/λ)V is constant along any tra-
jectory. Considering the peak of the epidemic and the end of the
epidemic yields

St� þ bþ l

l

� �
Vt� ¼ S1 þ bþ l

l

� �
V1:

Using the equation forVt* (A 12) and recalling that St* = 1/R0,we
obtain the following equation for V∞:

V1 ¼ ð1� S1Þ l

bþ l

� �
: ðA13Þ
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Figure 8. The overshoot for the SIRV model with dV/dt = λSI as a function of λ for different levels of β (or equivalently R0).
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Substituting the expressions for R0 (A 11), Vt* (A 12), V∞

(A 13) into the overshoot equation (A 10) yields

Overshoot ¼ S1 � 1
lnðS1Þ � S1

� �
1� l

bþ l

� �
: ðA14Þ

We see that this expression for the overshoot is simply the
overshoot expression for the original SIR model (2.9) scaled
by a factor 1− (λ/(β + λ)):

OvershootSIRVðlSIÞ ¼ OvershootSIR 1� l

bþ l

� �
: ðA15Þ

Assuming β > 0, λ≥ 0, then the factor 1− (λ/(β + λ)) can never
be greater than 1. This implies that the bound on maximal
overshoot given by the theorem holds, becoming exact in
the limit of no vaccinations (i.e. λ = 0). For this model, the
maximal overshoot decreases as a function of λ in a nonlinear
way and has a nonlinear dependence on R0 (figure 8).

A.2. The ratio of overshoot to outbreak size
In themain text, we consider the calculation of overshoot alone.
It is also interesting to ask how the overshoot compares to the
final attack rate given by the outbreak size. It turns out we can
do the calculation analytically using the previous definition for
Overshoot = (1/R0)− S∞ (equation (2.5)) and defining the total
outbreak size as Outbreak Size = 1− S∞ =R∞.

Taking the ratio of the two definitions yields

Overshoot
Outbreak Size

¼ ð1=R0Þ � S1
1� S1

¼ 1
R0ð1� S1Þ �

S1
1� S1

: ðA16Þ
Substituting R0 using the relationship given by (2.8) yields

Overshoot
Outbreak Size

¼ �1
ln S1

� S1
1� S1

: ðA17Þ

Differentiating this equation with respect to S∞ and
setting it to zero to find the extremal points S�1 yields

dðOvershoot=Outbreak SizeÞ
dS1

¼ 0

¼ 1

S�1ðln S�1Þ2
� 1

ð1� S�1Þ2
: ðA18Þ

It can be seen upon inspection that the only real solution for
ð1� S�1Þ2 ¼ S�1ðlnS�1Þ2 is at the point S�1 ¼ 1: This only occurs
in the limit ofR0 = 1. Thus, atR0 = 1, the overshoot exactly equals
the outbreak size. Then, the overshoot becomes a strictly
decreasing fraction of the total outbreak size with increasing R0.

It can be shown that the only real solution to
ð1� S�1Þ2 ¼ S�1ðln S�1Þ2 for 0 � S�1 � 1 is at the point S�1 ¼ 1.

Since S�1 ¼ 0 is clearly not a solution, we rule that out.
Since ð1� S�1Þ2 ¼ S�1ðln S�1Þ2 at S�1 ¼ 1, it suffices to show
that f ðS�1Þ :¼ ð1� S�1Þ2 � S�1ðlnS�1Þ2 . 0 for all 0 , S�1 , 1.
Since f 0ðS�1 ¼ 1Þ ¼ 0, it suffices to show that
f 00ðS�1Þ ¼ ð2ðS�1 � 1� ln S�1ÞÞ=S�1 . 0 for all 0 , S�1 , 1.
Since ln x < x− 1 for all x≠ 1, then it follows that the second
derivative must be positive.
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