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Motivated by the growing availability of advanced demand forecast tools, we study how to utilize future
demand information in designing routing strategies in queueing systems under demand surges. We consider
a parallel server system operating in a nonstationary environment with general time-varying arrival rates.
Servers are cross-trained to help non-primary customer classes during demand surges. However, such flex-
ibility comes with various operational costs, such as a loss of efficiency and inconvenience in coordination.
We characterize how to incorporate the future arrival information into the routing policy to balance the
tradeoff between various costs, and quantify the benefit of doing so. Based on transient fluid control analysis,
we develop a two-stage index-based look-ahead policy that explicitly takes the overflow costs and future
arrival rates into account. The policy has an interpretable structure, is easy to implement, and is adaptive
when the future arrival information is inaccurate. In the special case of the N-model, we prove that this
policy is asymptotically optimal even in the presence of certain prediction errors in the demand forecast. We
substantiate our theoretical analysis with extensive numerical experiments, showing that our policy achieves
superior performance compared to other benchmark policies (i) in complicated parallel server systems and

(ii) when the demand forecast is imperfect with various forms of prediction errors.
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1. Introduction

In service systems, there are typically multiple classes of customers with different service needs. It is
of critical importance for service operations management to allocate the proper amount of resources
to meet the needs of each class of customers. The resource allocation problem is particularly relevant
and challenging in a time non-stationary environment when certain classes of customers experience
demand surges, and yet their dedicated capacity cannot be scaled up quickly. Meanwhile, with the
recent advancement of statistical learning tools and the growing availability of data, many advanced
forecasting models have been developed to accurately predict future demand patterns and surges.

Take the COVID-19 pandemic as an example: researchers from different fields have worked together
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to develop prediction models of demand surges for different types of hospital resources (e.g., ICU
beds and ventilators). Figure 1 shows the prediction made on one index date (“today”), including
the realized demand (before today, with multiple demand surges) and the projected demand (after
today) for Intensive Care Unit (ICU) beds of COVID-19 patients in the US from Institute for
Health Metrics and Evaluation (2022). Yet, the majority of these prediction models do not provide
prescriptive solutions for the effective allocation of resources. Hospital management needs more
concrete decision support on how to translate the demand forecasts into determining whether
they have enough beds to accommodate the COVID-19 patients, and, if not, whether they should
use beds from other specialties, e.g., by postponing elective surgeries. More generally, there is a
pressing need to integrate demand forecasts in implementable resource allocation decision support
for various service operations applications. In this paper, we address this need by studying how to
utilize future demand information to design optimal routing strategies to deal with demand surges
in parallel server systems. We explicitly characterize how to incorporate future demand into the
routing decision — matching customers with proper resources — and quantify its benefit.
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Figure 1 Demand for ICU beds for COVID-19 patients in the US, based on IMHE projection (Institute for Health
Metrics and Evaluation 2022).

We first elaborate on our modeling framework. In recent years, customer specialization has
become increasingly sophisticated with the trend of personalized service. To better serve customers’
different needs, it is common for service systems to have primary server pools, each dedicated to
serving a specific class of customers, with “servers” in that pool trained in skill sets tailored to
the primary customer class. For example, hospitals usually partition inpatient beds into different
specialty units and assign nurses trained to care for patients in that specialty. Call centers may
hire agents who speak different languages to serve customers with different language needs. In this
paper, we use servers to refer to the critical resources in service systems, such as staffed hospital

beds, call center agents, etc. While specialization for each class of customers has the obvious
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benefits of delivering high-quality services and improving customer experiences, it is also common
practice for service systems to cross-train servers so that they can serve non-primary customers
when necessary. The main reason is the presence of variability in demand. In particular, while
demand can change significantly from time to time, the capacity in each server pool is rather static,
since it takes time to train new staff or build new facilities.

We distinguish between two types of variabilities in demand: one is normal stochastic fluctuations
due to the randomness in customer arrivals and service requirements; the other is the unusual
increase in demand that can cause prolonged congestion in the system. The latter is often referred
to as a demand surge. To deal with the normal range of stochastic fluctuations in demand, a certain
degree of slackness is usually added in the capacity — employing the square-root staffing rule, where
the staffing level is set to meet the mean demand plus an uncertainty hedging term that is of the
square root order of the mean demand. This staffing principle is shown to be near-optimal for
systems operating in a stationary environment (Borst et al. 2004).

Demand surges happen infrequently, but can lead to severe congestion and service quality dete-
rioration. For example, the ongoing COVID-19 pandemic has put an enormous amount of stress
on healthcare delivery systems. A bad flu season or a mass casualty incident can cause a sud-
den increase in certain types of patients arriving at hospitals. Advancements in machine learning
and predictive analytics have significantly increased our ability to forecast some of these surges.
With the future demand information, system managers may proactively leverage partial flexibil-
ity in customer routing, that is, temporarily assigning customers experiencing demand surges to
non-primary servers, to effectively mitigate the effect of demand surges.

However, concrete decision rules are, in general, lacking to support the routing decision under
time-varying demand, especially when we need to carefully balance the benefits and costs associated
with using flexible resources. For example, in the hospital inpatient flow setting, flexibility comes
in the form of off-service placement — sending patients of a particular specialty to a non-primary
ward that is designated to treat a different specialty. While off-service placement can help achieve
better resource utilization, it can also lead to worse patient outcomes, including a longer length of
stay and higher readmission rate (Song et al. 2019). In addition, it may generate a greater workload
for nurses in the off-service ward due to multi-tasking (Best et al. 2015), and can create a sense of
unfairness among staff (Armony and Ward 2010). Similar tradeoffs between the benefits and the
costs of flexibility are also pervasive in other service systems. Examples include call centers (Aksin
et al. 2007), bike-sharing (Shu et al. 2013), and emergency departments (Song et al. 2015).

In this paper, we take an important first step to study how to leverage future demand information
to deal with temporary demand surges with (partial) flexibility. The goal is to design routing
policies that optimally balance the benefits and costs of flexibility. To model the typical service
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setting, we consider a queueing system with multiple classes of customers and multiple server pools.
Each class has its own dedicated pool of servers, which we refer to as its primary pool. When
the system is congested, customers can be assigned to certain non-primary pools. Such routing is
referred to as “overflow.” Decisions need to be made between routing a customer to the primary
pool or to the non-primary pool. The obvious benefit of overflow is to reduce congestion, captured
via the holding cost. Meanwhile, overflow is associated with the following costs:

1. Service slowdown: To capture the potential efficiency loss when customers are served in a
non-primary pool, the service rates are both class- and pool-dependent. For each class of customers,
the service rates in the non-primary pools are slower than that in the primary pool.

2. Owverflow cost: Assigning customers to non-primary pools not only increases the service time,
but also imposes other inconvenience costs and/or costs caused by compromised service quality.
We model these costs through an overflow cost. That is, a penalty is charged for a customer that
is placed in a non-primary pool. We allow the overflow costs to be both class- and pool-dependent,
which can reflect heterogeneous levels of “utility” (or inconvenience cost) when assigning customers
from different classes to different server pools.

To model demand surges, we allow general time-varying arrival rates whereby one or more
customer classes may experience one or multiple demand surges within a certain time period.
Scenarios with multiple surges are of particular interest in light of the recent COVID-19 pandemic.
To understand the value of demand forecasts, we focus on the scenario where we have access to
future arrival rates, which may be subject to prediction errors.

Our objective for optimal routing is to minimize the cumulative holding (linear waiting) costs
and overflow costs until the demand surge is fully absorbed. The problem is challenging due to the
salient features in our model. Specifically,

1. The general time-varying arrival rate complicates the decision of when to initiate or stop over-
flow: it could be optimal to initiate before the queue builds up in anticipation of congestion caused
by a demand surge; or to end the overflow earlier, before the queue is depleted, in anticipation of
the end of a surge. The prediction error and multiple surges present further complications.

2. Because of service slowdown, a very aggressive overflow policy generates more workload, which
may lead to a higher holding cost than having no overflow.

3. In the presence of overflow costs, the optimal routing policy may not be work-conserving.
That is, when a class has a positive queue, even when the non-primary pools have extra capacity,
it may be better to keep those non-primary servers idle to avoid the overflow cost.

To sum up, the overflow cost and service slowdown, compounded with the general time-varying
arrival rates, make the routing decisions highly nontrivial. Unnecessary overflow can result in both

higher holding costs and higher overflow costs. These complications can cause existing well-known



Author: Optimal Routing under Demand Surges
00(0), pp- 000-000, © 0000 INFORMS 5

policies, such as the cu-rule (Buyukkoc et al. 1985) or the maximum pressure policy (Dai and Lin
2005), to perform highly suboptimally. The non-stationarity and high dimensionality of the problem
also make many existing analytical and numerical tools inapplicable. To derive structural insights
into the routing problem, we take the fluid approximation approach. We formulate a transient
fluid control problem and derive closed-form index-based optimal policies using its dual. Our main
results and contributions are as follows:

I. Prescriptive framework. We are one of the first papers to prescribe how to incorporate
demand forecasts of time-varying arrival rates into real-time routing decisions in a multi-class,
multi-server system. Most existing papers on time-varying queues either assume that the time-
varying arrival rates are known and have some periodic patterns (Liu and Whitt 2011), or they
focus on capacity planning to hedge against the uncertain arrival rates (Bassamboo and Zeevi
2009). On the other hand, most demand forecasting works focus on the prediction side only; see,
for example, Ibrahim and L’Ecuyer (2013) for call center arrivals and Baas et al. (2021) for hospital
occupancy. Our paper bridges demand forecasts with a key operational decision: customer routing.
We explicitly characterize how to incorporate the demand forecast in the routing policy by solving
a transient fluid control problem. We then translate the fluid-based policy to the stochastic system
and provide the performance guarantee by proving its asymptotical optimality for a sequence of
properly scaled stochastic systems even when there are prediction errors, as long as the errors
are of a smaller order than the actual arrival rates. To the best of our knowledge, the asymptotic
optimality result in the presence of prediction errors in a time-nonstationary environment is novel.
II. Two-stage index-based policy using future demand information. Our main develop-
ment focuses on the N-model, a two-class model in which the primary pool for class 2 can provide
help to class 1 but not the other way around. The scheduling policy derived from the fluid control
can be summarized as a two-stage index-based look-ahead policy, which is highly interpretable
and easy to implement. In the first stage, we compare the hu index, where h is the holding cost
and p is the service rate, to decide which class can be prioritized. In the second stage, we look at
another index that combines the hu index, the time it takes to empty the queues with a proper
set of resources, and the overflow costs to decide how long the overflow (if any) should last. The
calculation of the time to empty the queues is where the future arrival rate information is utilized.
The actual policy will be made precise in Section 3.

Interpreting our two-stage index-based look-ahead policy provides insights into the value of future
demand information and how to proactively prioritize different customers under demand surges.
In particular, based on the second-stage index, our policy suggests that other server pools may
start prioritizing the customer class that is about to experience a demand surge, even though this

class is not very congested yet. Similarly, when a customer class has a large queue, but the demand
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surge is about to dissipate, other server pools may stop helping this class in anticipation of the
upcoming drop in demand. This proactive nature of our policy is distinct from other well-known
policies that are agnostic to the arrival rate, such as the cu rule and the maximum pressure policy.
In our numerical experiments, we demonstrate that the cu rule or the maximum pressure policy,
even after adjustments to account for the overflow cost, can sway from performing reasonably well
to significantly worse depending on the arrival rate settings: in certain scenarios, the cost gap
between these policies and our proposed policy can exceed 100%, whereas our policy consistently
performs well across a large combination of parameter settings tested.

We stress that although it is somewhat expected that having future demand information is
beneficial, it is highly nontrivial to identify the proper form of incorporating it in the routing
decision. Our results show that one needs to compare the holding cost and overflow cost in proper
time scales and account for the externality of congestion (Naor 1969).

ITI. Pontryagin’s minimum principle. Due to the time nonstationarity and high dimension-
ality, the corresponding scheduling problem has not been well-studied in the literature. We derive
structural insights by studying the corresponding fluid transient control problem and its dual. In
particular, our index-based policy is derived using Pontryagin’s minimum principle, and the deriva-
tion involves non-trivial applications of the principle due to state constraints. The main difficulty
lies in coming up with the right dual variables. The problem is further complicated by the fact
that there are multiple customer classes and general time-varying arrival rates. By explicitly char-
acterizing the dual variables, we derive a two-stage index structure of the optimal policy. These
developments could shed light on other transient queueing control problems.

IV. Practical applicability to complex systems. For a scheduling policy to be useful in prac-
tice, it needs to be adaptable to (i) complicated network structures and (ii) imperfect demand
forecasts. For (i), we extend the fluid-control analysis beyond the N-model, and explicitly char-
acterize the optimal fluid-control policy for the X-model and some multi-class extensions of the
N-model. Based on the structure of optimal control in these models, we propose a two-stage index-
based look-ahead policy for general multi-class, multi-pool systems. We evaluate the performance
of this look-ahead policy in stochastic systems via simulation. We also compare the performance
of this heuristic policy to other benchmark policies, such as the cu rule and the maximum pressure
policy, and show that our policy achieves superior performance for a wide range of parameters in
different network settings, including 5-by-5 systems that are parameterized based on the setting of
a hospital inpatient ward network.

For (ii), it is worth noting that our policy is adaptive by nature. In particular, the estimation
of the time to empty the queue can be easily updated based on the demand information available

and the observed queue length at each decision epoch. We discuss these extensions in Sections 3.2
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and 3.3. Furthermore, we substantiate our asymptotic optimality results, which require the predic-
tion errors to be of a smaller order than the arrival rates, with numerical evaluation in scenarios
where (1) the demand forecast has errors that increase over time and can correlate across different
time periods, (2) the forecast is only available up to a limited time window, and (3) the forecast has
a delay. Numerical results suggest that our proposed policy continues to perform well even when
the prediction errors are of a similar magnitude as the arrival rates. The index structure of our
proposed policy has built-in resilience to estimation errors. In particular, we note that a) our index
depends on the time to empty the queue, which in turn depends on the aggregated demand over
time — this quantity is more robust to errors than demand prediction at individual time epochs,
e.g., days, since the daily errors may cancel out when aggregating over multiple days; b) the index
is dynamically updated as the queue builds up or more information becomes available; c) the order
of the index determines the overflow action, so as long as the prediction errors do not change the
orders, our policy is not affected. The adaptiveness of our policy to complex systems, its robustness
to noisy arrival rate information, together with its simplicity, make it very appealing for imple-
mentation in real systems when demand surges are present. The comparison with other benchmark

policies also provides useful insights into managing systems under demand surges.

1.1. Paper Organization

The rest of the paper is organized as follows. We conclude this section with a brief review of the
literature. In Section 2, we introduce our main stochastic model, the N-model, and the associated
optimal routing problem. We study a deterministic fluid control problem in Section 3. We start with
a single demand surge and perfect future arrival rate information, and then introduce adaptations
for estimation errors, limited look-ahead time windows, and multiple surges. The fluid control
problem can be viewed as an approximation to the original stochastic problem. We establish the
asymptotic optimality of the policy derived from the fluid control for a sequence of stochastic
systems in Section 4. We study the optimal fluid control problem for several extended models and
propose a two-stage index-based look-ahead policy for general parallel-server systems in Section
5. We substantiate our theoretical analysis with extensive numerical experiments in Section 6. All

proofs are left to the Appendix and E-companion.

1.2. Literature Review

Our work is related mainly to four streams of literature: flexibility in service systems; skill-based
routing; optimal control theory in queueing; and scheduling with future demand information.
Flexibility in service systems. In the operations management literature, it is well-known that
resource pooling, sometimes through creating flexible resources, can drastically improve system

performance (Aksin and Karaesmen 2007, Graves and Tomlin 2003, Simchi-Levi and Wei 2012,



Author: Optimal Routing under Demand Surges
8 00(0), pp- 000-000, © 0000 INFORMS

Smith and Whitt 1981, van Mieghem 1998). Bassamboo et al. (2012) and Tsitsiklis and Xu (2012)
show that in a stationary environment, even a little flexibility can lead to substantial performance
gain. However, in recent years, a growing amount of research has also studied situations in which
pooling may not be as beneficial. This can be due to system architectures (Mandelbaum and
Reiman 1998), different priorities among different classes of jobs (Ata and Van Mieghem 2009),
efficiency loss due to multi-tasking (Pinker and Shumsky 2000), and agent incentives (Song et al.
2015), to name a few. Our work contributes to this line of literature by analyzing how resource
pooling should be utilized when overflow assignment is associated with a slowdown effect and
overflow costs in a time-nonhomogeneous environment.

Skill-based routing (SBR). There is a rich literature on SBR (Garnett and Mandelbaum 2000).
An exact analysis of SBR is usually analytically intractable due to the large state space and policy
space. Much of the SBR literature utilizes a heavy-traffic asymptotic framework to gain analytical
tractability. Our work relates to conventional heavy-traffic scaling. In this regime, van Mieghem
(1995) studies the scheduling problem of multi-class G/G/1 queues with convex holding costs and
establishes the asymptotic optimality of the generalized cp rule. In the N-model setting, Harrison
(1998) shows that naive cpu-rule can lead to instability. A discrete-review policy is proposed for the
setting without overflow cost and shown to achieve asymptotically optimal performance in heavy
traffic. Bell and Williams (2001) show that a threshold-based priority rule is asymptotically optimal.
Mandelbaum and Stolyar (2004) consider a general service system with multiple customer classes
and multiple types of flexible servers. They show that the generalized cu-rule is asymptotically
optimal over all scheduling disciplines (preemptive and non-preemptive).

Apart from the cy rule, the maximum pressure policy is another commonly used policy in SBR.
The maximum pressure policy takes the same form as the MaxWeight policy in parallel server
systems. Dai and Lin (2005) and Bramson et al. (2021) show that the maximum pressure policy
is throughput optimal. Dai and Lin (2008) further prove that with quadratic holding cost, the
maximum pressure policy is asymptotically optimal under the conventional heavy-traffic scaling for
some models. Stolyar (2004) establishes the asymptotic optimality of a general class of MaxWeight
policies with strongly convex holding costs. There is also rich literature on SBR. in the many-server
asymptotic regimes; see Chen et al. (2020) for a survey. Our work focuses on optimal routing to deal
with demand surge, and our proposed policy is fundamentally different from the policies derived
for stationary settings in the literature. In particular, we explicitly characterize how future arrival
rates and overflow costs should be properly considered when making routing decisions.

Fluid transient control. Fluid approximation, which captures first-order system dynamics well
(Liu and Whitt 2011, Mandelbaum et al. 1998), is often used to analyze transient queueing behavior.
Maglaras (2000) and Béauerle (2002) detail how to develop effective queueing control policies based
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on the optimal fluid control. Most of these “fluid-inspired” policies try to track the optimal fluid
trajectory in the original stochastic system. Similar ideas have also been applied to other online
resource allocation problems where probabilistic routing based on the fluid optimal solution has
been proposed (see, for example, Jasin and Kumar (2012), Stein et al. (2020)). Different from this
line of research, we employ optimal control theory to explicitly characterize an index structure for
the optimal fluid control; see Sethi and Thompson (2000) and Grass et al. (2008) for an overview
of optimal control theory. In particular, we leverage Pontryagin’s Minimum Principle (Hartl et al.
1995). Hampshire and Massey (2010) review several applications of optimal control theory to
dynamic rate queues. Compared to previous fluid-tracking policies, our policy has an interpretable
structure and is easy to implement in practice. Recently, Hu et al. (2019) apply Pontryagin’s
Minimum Principle to study the optimal scheduling of proactive service in systems with customer
deterioration. Ata and Peng (2020) leverage optimal control theory to study the optimal call-back
scheduling policy in call centers. The policy developed in their paper also has a look-ahead structure
that takes the future arrival rate into account. However, they focus on a single class of customers
and, thus, need only a single index. In contrast, we identify a two-stage index structure when
dealing with multiple classes of customers. The most relevant work is Chang et al. (2004), who
study scheduling policies in a two-class, single-server system. However, they do not incorporate the
overflow cost, and their analysis is limited to simple arrival patterns (high/low constant arrivals)
without considering possible prediction errors. Our analytical framework allows us to study general
time-varying arrivals and the tradeoff between holding and overflow costs.

The value of future demand information. Our analysis highlights the value of future arrival
rate information in transient control problems. A few recent works demonstrate the value of future
demand information in developing effective admission control or scheduling policies (Ata and Peng
2020, Delana et al. 2021, Xu and Chan 2016). These works require more detailed demand infor-
mation, including the actual arrival times and service times of customers. In contrast, our policy
requires only the average future demand (i.e., arrival rate), which can be estimated more easily
in practice. More importantly, we prove the asymptotic optimality of the fluid-based policy in the
N-model even when there are certain prediction errors. Predicted demand has been utilized to
optimize staffing decisions (see, e.g., Bassamboo and Zeevi (2009), Gurvich et al. (2010) for call
center staffing and Hu et al. (2021) for emergency department nurse staffing). Our work is different
from the above works in two main aspects. First, the above works study stationary performance
metrics while we focus on transient system dynamics. Second, routing decisions are fundamentally

different from staffing decisions as they happen at different time scales.
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2. Problem Formulation
To demonstrate our methodology and key insights, we use the N-model as our main model; other
network structures including the X-model and extensions of the N-model are studied in Section 5.
The N-model consists of two customer classes and two server pools. Customers in class 7, i =1, 2,
arrive at the system according to a time-varying Poisson process with rate (\;(t)):>0. Each class
has its own queue when waiting to get served and customers within the same class are served on
a first-come-first-served basis. Class 1 customers can be served by both pool 1 and pool 2 servers,
while class 2 customers can be served only by pool 2 servers. The number of servers in pool ¢ is
si, ©=1,2. The service times are exponentially distributed with class-and-pool-dependent service
rates. In particular, if a class 7 customer is served by a server in pool j, the service rate is p;;. We
assume that pi; > 12 to capture the efficiency loss of non-primary service. We also define sy =0
to capture the service incompatibility in the N-model.

Let X;(t) denote the number of class i customers in the system and Z;;(t) denote the number
of class ¢ customers in service in pool j at time ¢. Let A; and S;; denote rate-1 Poisson pro-
cesses modeling the arrival and service processes, respectively. Then, the system dynamics can be

characterized via

X1 () = X,(0) + A, ( /0 tAl(s)ds> S, (uu /O t le(s)ds) —Si (ulz /0 t Zlg(s)ds> ,

Xo(t) = X2(0) + A, ( /O t Ag(s)d5> — Sy (;m /O t ZQQ(S)ds) ,

where Z(t) = (Z11(t), Z12(t), Z22(t)), t > 0, is determined by some routing policy. We consider
the class of preemptive Markovian policies, which can be viewed as a mapping from X(¢) =

(X1(t), Xa(t)) to Z(t) = (Z11(t), Z12(t), Zaa(t)), where Z(t) € N3 satisfies
Zh1(t) < 81,212+ Zao(t) < 82, Z11(t) + Z12(t) < X (1), Zoa(t) < Xo(2).

We consider non-anticipative policies that do not know the realizations of underlying stochastic
processes in the future, but we allow the policies to take future arrival rates (or estimated future
arrival rates) into account. Note that the arrival rates can be viewed as part of the system param-
eters. Let m denote a scheduling policy within the considered policy class. We use the superscript
7 to denote the dependence of the system dynamics on the policy — e.g., X™ and Z™. We occa-
sionally suppress the superscript when it is clear from the context. We use the words “routing”
and “scheduling” interchangeably in the rest of the paper. Both refer to the action of matching
customers to servers, i.e., which available server (if any) a customer should be routed to or which

waiting customer (if any) an available server should serve next.
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Focusing on planning under demand surges, we consider time-varying arrival rates that can cause
one or more customer classes to experience surges in demand (arrivals). We assume that time 0 is
the beginning of the demand surge and the surge will last for a finite amount of time. In addition,
the surge is sufficiently large such that the total demand exceeds the total processing capacity
during the surge period (this will be made precise in Assumption 1 in the following section).
Figure 1 in Section 1 illustrates one example of demand surges in the COVID-19 context.

Our goal is to operate the system in the most cost-effective way so that it returns to the normal
state of operation after the demand surge. For the objective function, we consider two types of costs
related to the routing decisions: holding cost and overflow cost. We aim to find a routing policy
that minimizes the total cost of holding customers in the system and overflowing class 1 customers
to pool 2 over a properly defined planning horizon. Mathematically, we denote the holding cost for
class 7 customers as h;, © = 1,2, and the overflow cost for each class 1 customer in pool 2 as ¢;s.

The optimal routing problem is formulated as finding a policy 7 that minimizes
T
V(@)= | [ mXT0+ X0+ 25010t | X(0)=a] . )
0

Here, the planning horizon 7' is deterministic and is a long enough time such that the system can
fully absorb the demand surge by time 7', i.e., T' is a time after the demand surge such that X;(7")
and X,(T') are “small” with a high probability. (The definition of 7" and the interpretation of small
with a high probability will be made precise in Section 4.)

Solving (1) —i.e., finding a policy 7 to minimize V™ (z) — analytically is intractable. Even solving
it numerically can be computationally prohibitive due to the large state space and policy space.
Thus, we take the approach of studying a corresponding deterministic fluid control problem, which

serves as a good approximation to (1).

3. Fluid Optimal Control
We first specify the deterministic fluid model ¢(t) = (¢;(t),q2(t)) that resembles the stochastic
system described in Section 2. The arrival rates and service rates in the fluid model are the same

as those in the stochastic system. The dynamics of the fluid model are characterized via
q1(t) = M (t) — paz (t) — pazz12(1),
g2 (t) =X (t) — H22222 (t)7

where ¢;(t) := dg;(t)/dt. The amount of service capacity assigned to each class in the fluid model,

2(t) = (211(t), 212(t), 222(t)) € R{™®, is determined by a fluid admissible control that satisfies

q1(t) >0,q2(t) > 0,211 (t) < 51, 212(t) + 222(t) < 52, 211(t) >0, 212(t) > 0, 202(t) > 0.
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We denote the set of admissible controls at time ¢ as Z(t). Note that the set of admissible controls
has to satisfy two state constraints: g;(t) > 0,g2(t) > 0. In particular, when q;(t) =0, p1121:(t) +
Haazo2(t) < Ai(t), and when gao(t) =0, f22292(t) < Aa(t). When viewed as an approximation to the
stochastic system described in Section 2, the fluid model is known to be a good approximation when
the system is very congested or when the variability in the arrival rates dominates the stochastic
variation in the arrivals and services (see, for example, Liu and Whitt (2011), Maglaras (2000),
Yom-Tov and Mandelbaum (2014)). The fluid model can also be viewed as the limit of a sequence
of stochastic systems under the conventional scaling, in which we speed up the arrival and service
rates while keeping the number of servers constant (Chen et al. 2020, Iglehart and Whitt 1970).
We utilize this limit interpretation to establish asymptotic performance guarantees when applying
the scheduling policy derived based on the fluid model to the stochastic system in Section 4. We
interpret ¢;(t) as the amount of class ¢ “fluid” in the system, and refer to q(t) = (¢ (t),¢2(t)) as the
fluid queue. z;;(t)/s; can be interpreted as the proportion of time pool j capacity is allocated to
serve class ¢ jobs in [t,t 4+ dt).

We impose the following assumptions on the arrival rate functions.

ASSUMPTION 1. The arrival rates A\i(t) and \o(t) satisfy:
1. Fori=1,2, there exists k; € [0,00) such that \;(t) > s;p; when t < k; and X\;(t) < s;p; when
t > Ky, t.e., k; 1S the length of the demand surge for class i.
2. (Ni(t))o<t<n,; s are piecewise monotone with a finite number of pieces.
3. fg(siuii — \i(t))dt = oc.
4. Given X (0) =z, for any t < k;V Ko, where K1V Ky = max{ky, ks }, W(z,t) >0, where
W(z,t) = ilef q1(t) +g2(t)
s.t. gr(u) = A (u) — parz1 (u) — paeziz(u), @(0) =z,
G2(u) = Aa(u) — p22222(u), g2(0) =2
z(u) € Z(u) for all u € [0,t].

Condition 4 in Assumption 1 indicates that the demand surge is large enough such that the fluid
queue cannot be emptied by any admissible control before ki V ko. It might be violated if the
demand surge for class 1 is small (A;(f) < syp11 + Sap12 for t < k1) and pool 2 has a lot of spare
capacity (A2(t) < sapi22). In addition, note that Assumption 1 considers a single demand surge for
each class. We relax this assumption in Section 3.4 to consider multiple surges.

REMARK 1 (FUTURE INFORMATION ON ARRIVAL RATES). In the baseline fluid analysis, we
assume the arrival rates {\;(¢t)}:>o are known exactly and fully. Later, we show adaptations of

the optimal policy to scenarios where (i) we only have access to estimated arrival rates (Section
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3.2), and (ii) we only have access to a limited look-ahead time window (Section 3.3). When trans-
lating the fluid control policy to the stochastic system, we will show that our proposed policy is
asymptotically optimal even when the arrival rates are estimated with certain errors (Section 4).

The fluid control problem corresponding to (1) is formulated as

II;lf /l7 h1q1 (t) + h2q2 (t) + ¢12212 (t)dt
st qu(t) = Ai(t) — parz11(t) — pazz12(t), @(0) =y
Go (t) A2 (t) — M22222 (t)> q2 (0) =T

z(t) € Z(t) for all t >0,

where o =inf{t > k1 VK2 : q1(t) + ¢2(t) = 0}. Note that under Assumption 1, with a proper schedul-
ing policy, the fluid queue will eventually hit zero and stay there. Thus, in this case, solving the
optimal fluid control problem with a fixed termination state, i.e., ¢;(t) = ¢2(t) =0 in (3), is the
same as solving an optimal control with fixed planning horizon 7" when T is large enough.

REMARK 2 (SURGE SCENARIOS). Our development applies to two types of surges. The first
(main) demand surge scenario is that for a certain period of time, the arrival rate is substantially
higher than the service capacity of the system, i.e, Condition 1 in Assumption 1. Examples include
demand for hospital resources during a bad flu season, and phone calls to an airline customer
contact center after widespread flight cancellations due to inclement weather. Note that this notion
of demand surge is different from system congestion caused by stochastic fluctuations of the arrivals
and services (i.e., even in a stationary system, we can have periods of time where the queue is
long, especially when the system is critically loaded). The second surge scenario is when the system
starts with an unusually large queue (backlog of demand) while the “future” arrival rates are at the
normal level, i.e., k; = 0 but max{q;(0),¢2(0)} > 0. Examples include mass casualty incidents where
a large number of casualties arrive almost at once or during a very short period of time (Yom-Tov
and Mandelbaum 2014). Numerical examples in the main paper focus on the first scenario, and
those for the second scenario can be found in E-Companion(EC) 3.2.

For i =1,2 and t > 0, define the function G!: R — R{ as follows. For z; >0,

G!(x;) :==inf {A >0: /tHA(si,uii —Xi(s))ds= xi} : (4)

and for x; =0,

GH(0) :=lim G!(z;). (5)

We can interpret G!(x;) as the time it takes to empty queue i after time ¢t using only primary
resources, given that ¢;(t) = z,. For a fixed value of ¢, it is continuous and strictly increasing in x;.

Note that under (5), G%(0) could be positive if there is an upcoming demand surge, and it is the
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time until the effects of the demand surge can be fully absorbed using only primary resources. The

next theorem characterizes the optimal scheduling policy for the fluid control problem.

THEOREM 1 (Optimal control policy in N-model). Under Assumption 1, the optimal con-

trol for (3) takes the following form. Pool 1 serves as many class 1 customers as possible — i.e.,

Mt)) Har(t) =0},

H11
L If hipio > hapias, pool 2 gives priority to class 1 when queue 1 is large enough relative to queue

251 (t) = s11{q:(t) > 0} + <81 A

2. In particular,

a. If hip2GE(qr(t)) > hopioaGh(ga(t)) + @12, pool 2 gives priority to class 1 — i.e.,

25 (8) = 501 {1 (£) > 0} + <s2 a2 - Zfl(t)““) {ai(t) =0}, and

Hi2
£5(0) = (52 = )0 > 0} + (= 5,(0) 220

b. Otherwise, pool 2 serves class 2 only — i.e.,

) ) =0)

Aa(t)

22

215(t) =0 and z3,(t) = s21{qa(t) > 0} + <52 A ) 1{g2(t) =0}.

II. If hypre < hopiaa, pool 2 gives priority to class 2 and helps class 1 only when ¢(t) =0 and
q1(t) is large enough. In particular,

a. If ¢2(t) =0 and hyp12GY(q1(t)) > @12, pool 2 provides partial help to class 1 — i.e.,

250(8) = (52— 2 () L{ar (1) > 0} + (<52 e it “)““) () =0}, and

Hi2
. Ao (1)
Zo5(T) =83 A\ .

5o (t) = 52 Ji23
b. Otherwise, pool 2 serves class 2 only — i.e.,
Aot
21,(t) =0 and z5,(t) = so1{q2(t) > 0} + <32 A ;( )> 1{q2(t) = 0}.
22

The proof for Theorem 1 is in Appendix B. It utilizes Pontryagin’s Minimum Principle. The
indices are derived based on the dual functions which are also known as the adjoint vectors. The
optimal control specified in Theorem 1 can be summarized as a two-stage index-based look-ahead
policy. In the first stage, we compare the hy index to decide whether pool 2 should prioritize
class 1, or only partially help when there is spare capacity. In particular, if hqpio > hopios, pool 2
may prioritize class 1; otherwise, pool 2 prioritizes its own class and may provide partial help to
class 1. Then, in the second stage, we decide how long pool 2 should help class 1 (either through
full prioritization or partial help), by comparing hip12G"(q1(t)) — p12 With hapiaaGh(ga(t)); help is
provided only when the former index is larger than the latter. The Gi(-) term is the “look-ahead”
component as it takes the future demand into account. In what follows, we refer to the scenario in
which pool 2 prioritizes class 1 as providing full help to class 1, and the scenario in which pool 2

serves class 1 only when there is spare capacity as providing partial help to class 1.
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3.1. Interpretation of the Two-Stage Policy

3.1.1. Leveraging future arrival information The optimal policy depends on G(g;(t)),
the time to empty the queue, which requires one to look ahead and take the future arrival rate
into account. In particular, we note that (a) when class 1 is not very congested but is about to
experience a demand surge, pool 2 may already start to prioritize class 1 in anticipation of the
upcoming demand surge; (b) when class 1 has a large queue, but the demand surge is about to
dissipate, pool 2 may decide to stop serving class 1 in anticipation of the upcoming drop in demand.
Figure 2 provides a demonstration of the role of the future arrival rate here. In this example, we set
k1 =20 and ko = 10. For ¢t <10, class 1 is experiencing a moderate demand surge with A (t) = 1.5;
for ¢ € (10,20], class 1 is experiencing a more severe demand surge with A;(¢) =2. We observe that
at time 0, even though class 2 is more congested than class 1 — i.e., ¢2(0) =2 while ¢;(0) =0 —
we still choose to prioritize class 1 in pool 2 — i.e., z12(0) = 4. This corresponds to scenario (a) as
we are anticipating a demand surge for class 1. We also observe scenario (b), that is, even though
the demand surge for class 1 ends at time 20, pool 2 stops prioritizing class 1 at time 15.8 — i.e.,
z12(t) =0 for £ > 15.8.

Even in the case of constant arrival rates, our policy takes the arrival rates into account by

considering the difference between the arrival rate and the service capacity. In this case, Gi(z;) =

Silii—Aq

for x; > 0. The optimal scheduling policy is similar to the maximum pressure policy but

takes the slack capacity s;u; — A; into account.

0 AN —2;,(0)
\
N —q, (0
\
’
12 ! A . - -qz(t)
] \
10 ! \\
L I, .
\
8 ,I ,l" \‘\ * A
’ ! AN A
1 ! . N
6 1 I'l \\\ \\
. \
,I 1 Mo N\
4~ 1 N .
1 y \\\
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Figure 2 Optimal trajectory of the N-model. (Parameter setting: s; =3, so =4, pi1 = p22 = 0.25, pi2 =0.18,
hi=15 ha=1, ¢1a=1, \(t) = 1.5 x 1{0 < t < 10} + 2 x 1{10 < t < 20} + 0.5 x 1{t > 20}, Aa(t) =
1x1{0<t<10}+40.6 x 1{¢t > 10}, ¢1(0) =0 and ¢2(0) = 2).
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3.1.2. The effect of overflow costs As discussed in the introduction, though it seems intu-
itive that one should use future arrival information when available, it is nontrivial to identify the
proper form of incorporating this information, especially when there are costs associated with flex-
ibility. We discuss in this section the importance of comparing the overflow cost and the holding
cost at the right scale in routing decisions.

Our fluid-control policy shows that, when having a positive overflow cost, we should compare
the per customer overflow cost to the holding cost over a time interval that is determined by the
time it takes to empty the queue. To see this, we rewrite the condition for Case I in the following
equivalent form:

MG (a1 (1) — 22 > haGl(aa(t)) 2. (6)

K12 K12

Similarly, in Case II, we check the condition hiG%(qi(t)) > ¢12/p12. Here, ¢i;/pi; corresponds to
the expected overflow cost for a class i customer completing service in pool j (with 1/p;; being
the average service time), while h;G%(g;(t)) corresponds to the expected holding cost accumulated
till the queue is depleted using primary resources only. In other words, the cost comparison needs
to account for the future impact of the routing action via the accumulated holding cost over a
look-ahead time window. Note that for a (virtual) customer joining the queue at time ¢, h;G%(q;(t))
also measures the queueing externality cost of this customer — i.e., the additional holding cost it
imposes on the entire system (Ata and Peng 2020).

We note that this cost comparison is in contrast to comparing both costs (overflow and holding)
at the myopic cost-rate level. For the cost rate, when using pool 2 to serve class 1 customers, the
holding cost decreases at rate hip1o, while the overflow cost increases at rate ¢1opt12. If we compare

the instantaneous cost rate, we should check whether

hipti2 — drapias > haofloo

to decide if pool 2 should prioritize class 1. This myopic rule corresponds to the modified ci rule that
we consider in the numerical experiments in Section 6. This myopic rule can result in significantly
worse performance than our proposed policy in many settings, which suggests that we should look
beyond the instantaneous cost reduction rate and consider overflow versus holding cost from the

system perspective, i.e., how the overflow decision impacts the future system congestion.

3.2. Adaptivity to Estimation Errors
In this section, we consider the case where we only have access to estimated arrival rates. In
particular, the estimated arrival rate for class i takes the form S\i(t) = \i(t) + €;(t) where X\;(t) is

the true arrival rate and ¢;(t) is the prediction error.
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We propose to use the same two-stage policy. The estimation error affects the performance of

the policy because the look-ahead function is now calculated based on the estimated arrival rate:

~ t+A ~

Gﬁ(mi):inf{AEO:/t (siuii—)\i(s))ds:xi}
for x; > 0. In this case, if hip19 > hoiee, pool 2 decides whether to help class 1 by checking whether
hip2G (a1 (t)) — iz > hoptaaGh(ga(2)).

When ¢(t) is small, we expect G!(z;) to be close to Gi(z;), and our policy should perform
well. This intuition will be made rigorous when translating the fluid policy back to the stochastic
systems. In particular, we will show in Section 4 that under suitable conditions on the estimation
error ¢;(t), the policy based on G!(z;) is asymptotically optimal in the stochastic systems. We
substantiate this analytical result with numerical results in Section 6, where we show the robust

performance of our policy under various forms of prediction errors.

3.3. Adaptivity to Limited Look-ahead Windows
In this section, we consider the restriction of having only a limited look-ahead time window.
Specifically, we assume that at time ¢, only the future arrival rate up to time ¢t + W is known. The
constant W > 0 controls the amount of future information available: W = 0 corresponds to a case
with no future arrival rate information; W = oo corresponds to knowing the full future information.
With a limited look-ahead window, we adapt our policy as follows. We define the nominal arrival
rate as the arrival rate after the end of the demand surge, i.e., the arrival rate in “normal” times.
This nominal rate is assumed to be a constant that is less than the service capacity. Then, we can

calculate Gﬁ’s using the nominal arrival rates outside the prediction time window. In particular,
~ t+A A
Gf(xi):inf{AZO:/ (si,uii—)\i(s))ds:xi},
t

where \;(s) = A\;i(s) for t <s <t+ W and \;(s) = A for s >t + W, with A? being the nominal
arrival rate. For example, when W =0, G%(¢;(t)) = :(t)/(s:115; — ). In Section 6.3.2, we test the
performance of our proposed policy with varying values of W in the stochastic system. We observe

that our policy achieves good performance even with a relatively small look-ahead time window.

3.4. Adaptivity to Multiple Surges
Our analytical framework applies to very general arrival rates, including scenarios with multiple
demand surges. In this section, we show an example in which class 1 experiences two demand

surges, as characterized in Assumption 2.

ASSUMPTION 2. The arrival rates A\i(t) and \o(t) satisfy:
1. For class 1, there exist constants 0 < Kk, < Ky < K. such that Ay (t) > syp1; fort € [0, ko] U[Kp, Ke)
and A\ (t) < s1p11 otherwise. For class 2, Ao(t) < Sapige for all t > 0.
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2. (M(t))o<t<r, is piecewise monotone with a finite number of pieces.
3. fooo(Slull - )\1 (t)) dt = 0.
4. Given X (0) ==z, for any t € [0, k.) U(kb, ), W(z,t) >0, where W (x,t) is defined in (2).

We redefine o = inf{t > k. : ¢;(t) + g2(t) = 0}. The following theorem shows that the optimal

control in this two-surge setting takes exactly the same form as before, with G! defined in (4).

THEOREM 2 (Optimal control under two demand surges). Under Assumption 2, the
optimal control for (3) takes the following form. Pool 1 serves as many class 1 customers as pos-
sible. Moreover:

L If hipyg > hopiog, pool 2 gives priority to class 1 when hyp12GL(qi(t)) > hopiaaGh(q2(t)) + d12;
otherwise, pool 2 serves class 2 only.

II. If hipya < hopige, pool 2 gives priority to class 2 and will help class 1 when q(t) =0 and
hip12GY (g1 (t)) > ¢1a; otherwise, pool 2 serves class 2 only.

The proof of Theorem 2 is in the E-companion, and follows a similar framework to that of
Theorem 1. The actual helping behavior of the policy characterized in Theorem 2 depends on
the length of the interval between the two demand surges. We illustrate the idea via a numerical
example: Class 2 has a constant arrival rate \y(¢) = 0.6, while the arrival rate for class 1 follows
2, 0 <t <30,

0.5, 30<t<30+K,

2, 30+K<t<60+K,
0.5, ¢>60+K.

Ai(t) =

In particular, there are two demand surges for class 1, and the length of the interval between the
two surges is K, which we vary in the experiments plotted in Figure 3. When K is small — i.e.,
K =10 in case (a) — the two demand surges are so close to each other that neither queue can be
emptied before the beginning of the second demand surge, and we observe a single helping interval
as in the single demand surge setting. When K is moderate — i.e., K =30 in case (b) — the two
demand surges are far enough apart for the class 1 queue to be emptied by the time the second
demand surge begins, but not far enough apart for the class 2 queue to be emptied then. In this
case, there are two helping intervals. Finally, when K is large — i.e., K =60 in case (c) — both
queues can be emptied before the start of the second demand surge. In this case, the two demand
surges can be decomposed into two single-demand surge periods.

We conclude by remarking that our optimal control policy has the same structure in both the
single-surge and multi-surge settings. This is very appealing for practical implementation because
one can implement the same policy but adjust the estimation of the G values as more information

about the future arrival rates becomes available. We also note that even if the second surge were
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Figure 3  Optimal trajectory of the N-model when the duration between the two demand surges changes. (h; =
1.5,he =1,¢1a = 1,51 = 3,80 = 4, 11 = pran = 0.25, 112 = 0.18, q1(0) = q2(0) =0, M\ (t) =2 x 1{0 < t <
30} +05x1{30<t <30+ K} +2x1{30+ K <t<60+ K}+0.5x 1{t > 60+ K}, X2(t) =0.6.)

not foreseen at the time of the first surge (i.e., the initial policy calculation assumes a single surge),
our policy can quickly adapt to the information on the second surge when it becomes available, as
the G values can be easily updated in real-time. We substantiate this point with more numerical

results in Section 6.3.2 when dealing with two demand surges and limited look-ahead windows.

4. Asymptotic Optimality

In this section, we translate the optimal control defined in Theorem 1 to the original stochastic
system introduced in Section 2. We prove that the translated policy is asymptotically optimal along
a properly scaled sequence of stochastic systems.

To specify the sequence of stochastic systems, we first elaborate on the planning horizon T in (1).
The idea is to have a long enough time such that the system can get back to the normal state of
operation by then. For tractability, we adopt a deterministic planning horizon for the stochastic
system. Given the initial state X (0) = z, we define the planning horizon T'=T(x) based on the
fluid dynamics. Consider a fluid system in which pool 2 fully prioritizes class 1 as long as the class 1

queue is non-empty. Specifically, we define ¢°(t) = (¢§(t),q5(t)) with ¢°(0) =z that satisfies
7 (t) = (A () — s1pnn — s212)1{q7 () > 0} + (A (t) — s1p01 — 2p112) " H{q7 () = 0},

(0 =2alt) - (= BT ggpi o,

(7)

Define
(z) =inf {t > k1 :q{(t) =0} and 75 (z) =inf {t > Ky :¢5(t) =0},

which corresponds to the time by which the class i queue should be emptied if pool 2 prioritizes

class 1 all the time. Note that G{(z1) > 7(z) and G%(z2) < 75(z). Then, we can define

T(x) = max{GY(z1), G3(x2), 77 (), 75 ()} = max{GY (z1), 75 (x) }.
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Note that T'(z) can be interpreted as the time by which the fluid queue will be emptied under any
reasonable scheduling policy. This is because the class 1 queue should be emptied by time G9(z1)
even if pool 2 does not help class 1, and the class 2 queue should be emptied by time 75(x) even
if pool 2 prioritizes class 1 all the time.

We now specify the setup to establish asymptotic optimality. Consider a sequence of systems
indexed by n. The number of servers is fixed along the sequence. We speed up time and scale down
space by n. Specifically, for the n-th system, the arrival rate at time ¢ is A?'(t) = nA;(t) for class i
and the service rate is nu,;;. We use the superscript n to denote quantities related to the n-th
system. For example, X™(t) = (X7(¢), X7 (t)) denotes the number of customers in the n-th system;
ZM(t) = (Z73(t), Z75(t), Z3,(t)) denotes the number of customers in service from each class in each
pool at time ¢. For a given “base” starting state z, we assume that X™(0) =nz. We also define the
fluid-scaled queue length process as

() = %X”(t).

A scheduling policy 7" = {7} : t > 0} for the n-th system maps the state of the system to the
allocation of servers — i.e., Z"(t) = m;"(X"(t)). As discussed in Section 2, the admissible controls
are preemptive and non-anticipative, but we have access to some estimated arrival rate A7 (¢) for

each class i. The server allocation policies satisfy the following conditions:
Z3 () + Z75(t) < XT(), Zoy(t) < X5'(1), 234 (1) < 51, Zi(t) + Zip(t) < 52, Z7(t) €N,

For the n-th system, the optimal scheduling problem is formulated as finding a policy that
minimizes the cumulative holding and overflow costs over [0,7'(z)]. In particular, we want to find
a policy 7" that minimizes the following fluid-scaled objective:

ho

B " T(z) hl "
inf V™™ (z) =inf E / <Xf’7T t)+—
T T 0 n n

X2 () + o 2™ (t)) dt‘X"(O) - na:]
—inf E / (th{““ () + o X2 (8) + 122057 (t)) dt‘X”(O):na: .
g 0

Note that the holding costs and the overflow cost are scaled differently in V™" (z) to have a
meaningful comparison. Specifically, the holding costs are scaled by n —i.e., h* = h;/n — while the
overflow cost is unscaled. This is because the queue length processes scale with n (as the speed
at which arrivals and departures happen scales with n) while the number of servers does not, i.e.,
X7 (t) = O(n) while Z55™ (t) = O(1). To interpret Z5™ (), we note that the number of servers
does not scale with n, so ZI3™ (t)/s; can be interpreted as the fraction of time pool 2 servers are

allocated to serve class 1 customers in [¢,¢+ dt). A similar scaling is used in Bauerle (2000).
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We next translate the optimal fluid policy to the corresponding stochastic systems. Recall that for
the n-th system, the true arrival rate for class i follows A (t) = n\;(t). We assume the corresponding
estimated arrival rate takes the form Al'(t) =n\;(t) + EP'(t), where EI(-) is the estimation error

term. We impose the following assumptions on E7(-):

ASSUMPTION 3. E"(-) is a stochastic process satisfying E!'(-)/n — 0 w.o.c. almost surely as
n— oo, i.e., P(E':)/n—0 w.o.c. as n— o0) =1. In addition, for large enough n, A?(-) satisfies

items 1 and 8 in Assumption 1.

Under Assumption 3, the uncertainty of the arrival rate is of a smaller order than the arrival
rate itself. This is a common assumption in the literature on arrival rate uncertainty, see, e.g.,
Bassamboo et al. (2010), Maman et al. (2009).

For the n-th system, we use the look-ahead function based on the estimated arrival rate:

- t+A
Gi,n(wi) =inf {A Z 0: / (sln,u“ - A:L(S)) ds= mz}
t

for z; > 0. The scheduling policy {"},>1 is defined as follows. For the n-th system: pool 1 serves

class 1 customers as much as possible. Consider the case hyp1o > hopioo. If

hlﬂlgéin(Xin(t)) - ¢12 > h2u2263,n(X;L(t)) (8)

at time ¢, pool 2 gives preemptive priority to class 1; otherwise, pool 2 serves class 2 only. The case

for hyp1o < haoftge is similar. That is, if
hl#lzéi,n(X{l(t)) —¢12>0 9)

at time t, pool 2 serves both classes but gives preemptive priority to class 2; otherwise, pool 2
serves class 2 only. When implementing the policy, @fn(XZ‘(t)) is supposed to be calculated at
every decision epoch (when there is an arrival or a departure). We make two remarks about its
calculation. First, an(X (t)) can be easily calculated numerically, especially when the arrival rate
is piecewise linear. Second, an(ac,) is continuous in ¢ and z;, and the policy only changes when
the inequality (8) or (9) changes sign. Thus, we may not need to update this calculation very
frequently in implementation.

The following theorem shows that {7"},>; is asymptotically optimal. Let V*(z) denote the

optimal objective value of the corresponding fluid control problem (3).

THEOREM 3 (Asymptotic optimality). Under Assumptions 1 and 3, for any sequence of
admissible controls {m"},>1,

liminf V™" (z) > V*(z).

n—oo

For the sequence of systems under policy {0"},>1,

lim V7" (z) = V*(z).

n—oo
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The proof of Theorem 3 is in Appendix C. To incorporate the prediction error in the asymptotic
optimality result, we leverage the continuity properties of the look-ahead function G*. This theorem
suggests that when applied to stochastic systems, the two-stage index-based look-ahead policy
achieves near-optimal performance when the initial queue and/or the demand surge is large. Note
that our asymptotic optimality result requires the estimation error to be of a smaller order than
the arrival rate (Assumption 3). This indicates that if the estimation error is small relative to the
actual arrival rate, the proposed policy achieves near-optimal performance. In Section 6, we go
beyond this theoretical result and numerically investigate the performance of our policy with more
general forms of prediction errors. Numerical results show that even though the performance of
our algorithm deteriorates as the prediction accuracy decays, it performs competitively compared
to benchmark policies that are agnostic to future arrival information. This benefits from the index
structure of our policy, which has some built-in resilience to perturbations. First, calculating G
requires us to integrate the arrival rates over a period of time. The estimation error at individual
times s may cancel out when aggregated over a period of time. Second, as long as the estimation
errors do not reverse the order of the second-stage indices, the same policy will be implemented in

the stochastic system at a given time t.

5. Beyond the N-Model

In this section, we study three models beyond the N-model, which helps us design a heuristic
policy for general multi-class multi-pool systems. The three models are i) the X-model; ii) the
many-help-one extended N-model (exN1), i.e., many server-pools can serve class 1; and iii) the
one-helps-many extended N-model (exN2), i.e., pool 1 can serve many classes. See Figure 4 for a
pictorial illustration of these models together with the N-model. Note that the exN2-model covers
the commonly-studied M-model as a special case when we set the holding cost h; = 0.

For the three models, we focus on the fluid optimal control. Moreover, when presenting the
results, we focus on emphasizing the key difference between these models and the N-model. By
comparing the X-model with the N-model, we highlight the effect of cross-training. By comparing
the extended N-models with the two-class N-model, we generate insights into how the policy
changes when facing multiple classes of customers or multiple pools of servers. These insights lead
us to propose a heuristic policy for general multi-class multi-pool systems in Section 5.3.
General notation for fluid control. Consider I classes of customers and I server pools. We
assume class ¢ fluid flows into the system at rate A;(¢) and flows out at rate > ; MijZzij(t), where
i;; is the service rate of pool j servers working on class i jobs, and z;;(t) is a positive real number

denoting the service capacity from pool j allocated to serve class ¢ fluid at time ¢. Note that if
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(a) N-model (b) X-model (¢) exN1-model (d) exN2-model
Figure 4  Queueing models with partial flexibility

wi; =0, class i customers and pool j servers are not compatible. Let ¢;(t) € [0,00) denote the

amount of class ¢ fluid in the system at time ¢. Then,
I
Gi(t) =Ni(t) = > pajzis (b).
j=1

A fluid scheduling policy 7 specifies the service capacity allocation z(t) = (z;;(t) 14,5 =1,---,1),
where z(t) € Z(t), and

Z(t)—{z(t)z”(t)ZO,z,]—l, 7I7 sz(t)gsjajzla ala Qz(t)ZO,’L—l;;I}

Similar to the N-model, we allow the policies to use the future arrival rate information.

For arrival rates, we consider the scenario in which each class may experience a demand surge
that lasts for a finite amount of time; the extension to multiple surges can be done similarly as
in Section 3.4. Let ; denote the demand surge period for class ¢ and kK = max;<;<y ;. Based on
a set of assumptions that are similar to Assumption 1 (see Assumption 4 in Appendix A for a
full specification of the assumptions for general multi-class multi-pool systems), we define o =
inf{t >K:),¢;(t) =0}, which can be interpreted as the time to fully absorb the demand surge.
Class ¢ fluid in the system incurs a cost of h; per unit job per unit of time. In addition, routing
fluid from class ¢ to pool j incurs an overflow cost of ¢;; per unit job per unit time, with ¢;; =0
by convention. Then, the fluid optimal control problem takes the form:

o I I I
0 =1

i=1 j=1
! (10)

j=1

z(t) € Z(t) for all t > 0.
We also define Gi(z;) as in (4), now for i=1,...,1.
Summary of the optimal policy structure. For the more general models studied in this

section, the optimal policy follows a similar two-stage structure as in the N-model. That is, in the
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first stage, we decide, based on the hu index, whether a certain pool is going to fully prioritize
some non-primary class or just provide partial help. In the second stage, we decide how long the
full- or partial-help lasts. The main difference from the N-model is that, when deciding how long
the “help” will last in the second stage, we compare the time it takes to empty the queues not only
using their primary resources, but also taking into account the help they may receive from other
pools or the help their primary pools may provide to other classes. This idea will be made more

precise in the subsequent sections.

5.1. X-Model

The X-model has a similar network structure except that help can happen in both ways. In par-
ticular, pool 1 can serve class 2 at rate po; > 0 while pool 2 can serve class 1 at rate pi > 0.
We assume that p11 > p12 and pee > pio; to reflect the slowdown effect. Following the development
of the N-model, we first compare the hu index. Note that there are four possible cases in total.
Without loss of generality, we consider two possible cases (the other two cases can be implied from
Cases I and II by swapping the class indices):

I. hip1a > haoptae, which implies that hope; < hipi1. In this case, pool 2 gives priority to class 1
when class 1 has a large enough backlog compared to class 2. When pool 1 empties the class 1
queue, it may provide partial help to class 2 if class 2 has a large enough backlog.

I1. Ajpya < hopias and hopo; < hipgr. In this case, when pool ¢, i = 1,2, empties its own class, it
may provide partial help to the other class if the other class has a large enough backlog.

The key difference between the X-model and the N-model comes up in Case I when deciding
how long pool 2 will help class 1. In the X-model, because pool 1 can later help back class 2 —
i.e., pool 1 can provide partial help to class 2 when the class 1 queue empties — the period during
which pool 2 prioritizes class 1 can be longer than that in an otherwise identical N-model.

To characterize the full helping period in Case I for the X-model, we define P*(q(t)) as the length
of the partial helping period for pool 1 to class 2:

t Uy~
P'(q) = inf {U >0: hzﬂzlG?Gl(QIH (@(t+Gi(q1) +u)) < ¢21} )

where for ¢, its dynamic follows: §(t) = q; for s € (t,t + G%(q:1(t))), pool 1 serves class 1 only; for
s>t+ Gi(qi(t)), pool 1 provides partial help to class 2. The condition hguglG?Gi(quu((}g(t +
G'(q1) +u)) < ¢9; in the definition of P?(g) follows the same rationale as the condition in Case Ila
of Theorem 1. When this condition is satisfied, pool 1 stops providing partial help to class 2. We
define G ,(q(t)) as the time to empty queue 2 when accounting for the partial help from pool 1:

®a1
h2M21

o (a(t)) = Gh(ga(6)1{P*(g(t)) = 0} + (Gi<ql (1)) + P'(a(t)) + ) 1{P"(g(¢)) > 0}.
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The first term in the definition of G% ,(¢(t)) corresponds to the case when queue 2 does not receive
any partial help from pool 1 and it is the same as in the N-model. The second term corresponds to
the case when there is partial helping. Note that G (¢;(t)) is the time to empty queue 1 (before any
partial helping can start), P*(q(t)) is the partial helping period, and ¢s1/(hapio1) is the remaining
time to empty queue 2 using only pool 2, which can be seen from the condition in the definition

of P!(q). The following theorem characterizes the optimal scheduling policy for the X-model.

THEOREM 4 (Optimal control policy in X-model). For the X-model, under Assumption 4,
the optimal control for (10) takes the following form.
L. If hipt1a > hopias, pool 1 prioritizes class 1.
ia. If Gt (q1(t)) =0 and hop G5(q2(t)) > ¢a1, pool 1 provides partial help to class 2.
1b. Otherwise, pool 1 serves class 1 only.
For pool 2,
wa. If
Hi2fa1
Hi1f22

a2 G (qu (1)) > Popiaa G 5 (q(t)) — hapin

P'(q(t) + ¢12, (11)

pool 2 gives priority to class 1.
15b. Otherwise, pool 2 serves class 2 only.

1L If hypro < hopios and haopior < hypq1, each pool prioritizes its own class. For1=1,2, if
Gi(qi(t)) =0 and h;p;;G'(q;(t)) > ¢ji, 71,

pool i provides partial help to class j; otherwise, pool i serves class i only.

Similar to the optimal policy for the N-model, the optimal control for the X-model characterized
in Theorem 4 also takes the future arrival rate information into account, and the policy has a

two-stage index structure. The main difference, though, is in Case Liia. As G ,(q(t)) < G5(g(%)),

hapinaG'y 5(q(t)) = hafias Mlzzm P'(q(t)) + ¢12 < hopioaG5(q2(t)) + ¢ra-

This implies that in the X-model, because pool 1 can help back class 2 later, pool 2 may provide
more help to class 1 initially than in the N-model. We elaborate on this further in EC.2.

5.2. Extended N-models
In this section, we discuss the main insights from the optimal policies for the two extended N-
models: many-help-one (exN1) and one-helps-many (exN2) models. To keep the discussion concise,
we delay the full characterization of the optimal policies to Appendix A.

For the exN1-model, the optimal policy still has a two-stage index-based look-ahead structure

(see Theorem 5 in Appendix A). In the first stage, we decide which class to prioritize based on
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the hpu index. In the second stage, we decide how long the full or partial help will last by taking
future arrival rate information into account. The main difference between the exN1-model and the
N-model lies in the second stage. Consider the scenario where hip1o > haopioe and hiprs > hapiss,
i.e., both pool 2 and pool 3 will give strict priority to class 1 if the class 1 queue is large enough.
When pool 2 determines how long it will help class 1, it also needs to take into account the help
that class 1 can receive from pool 3, in which case pool 2 may provide less help to class 1 than in a
similar N-model. To demonstrate this, Figure 5 compares the optimal trajectory of an exN1-model
(plot a) with the optimal trajectory of a similar N-model (plot b). In particular, the two models
share the same parameters for the first two classes. The only difference is that the exN1-model has
an extra class, class 3, and an extra server pool, pool 3. See the caption of Figure 5 for details of
the numerical setting. For the exN1-model, we observe that both pools provide full help to class 1
at the beginning. Pool 2 stops helping class 1 at ¢ = 3.5 in the exN1-model. In contrast, pool 2 stops
helping class 1 at ¢ =6.1 in the N-model. This is because in the exN1-model, class 1 can also get
help from pool 3, and when pool 2 decides how much to help class 1, it also takes this extra help
from pool 3 into account. Lastly, we note that with the extra help from pool 3, the exN1-model is

able to empty the class 1 queue faster than the N-model can.

10 T 10 T T
ol —a,0 || ol —a,0
i —2,0 | i 2t |
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3+ 3r
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OO 5 10 15 20 25 30 35 40 00 5 10 15 20 25 30 35 40

t t

(a) exN1-model (b) N-model
Figure 5 Optimal trajectory of the exN1-model versus the N-model. (s1 =s2 =2, A1 = A2 =0.3, p11 = p22 =0.25,
ui2 =0.2, 12 =1, h1 =1.5, ha =1, ¢i1(0) =10, ¢2(0) =5. For the exN1-model, s3 =2, A\3 =0.3, uss =
0.25, 113 =0.18 ,¢13 =1, hg =1, and ¢3(0) =3.)

For the exN2-model, the optimal policy again has a two-stage index-based look-ahead structure
(see Theorem 6 in Appendix A). The key difference between the exN2-model and the N-model again
lies in the second stage. Consider the scenario where hopia; > hspisy > hipi11, i.e., pool 1 prioritizes
classes 2 and 3 when there are large enough backlogs in these two classes compared to class 1.

When deciding between classes 2 and 3, class 2 enjoys a higher priority. In the second stage, when
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pool 1 determines how long it will help class 2, it also needs to consider the help it can provide to

class 3, in which case pool 1 may provide less help to class 2 than in a similar N-model.

5.3. A Heuristic Two-Stage Index-Based Policy for Multi-class Multi-pool Systems
Based on the results from the X-model and the two extended N-models, we observe that the
structure of the optimal policy remains similar to that of the N-model. Thus, we propose the
following two-stage index-based look-ahead policy for more-general I-by-I networks.

First stage. Denote the set of classes that pool j can serve as Z;, which is sorted by the hp-index.
That is, for class k(i) in the ith position in set Z;, its hp-index is larger than that of class k(i + 1)
in the (i + 1)th position — i.e., Py tn(iy.; > Ps(it1)Mi(i+1),5- The primary class j is in the set Z;, and
we denote its position as ;.

e For class k(i) € Z; with ¢ < ¢, pool j provides full help (strict priority) to class k(i) if the help
is initiated according to the second-stage criteria.

e For class k(i) € Z; with i > ¢;, pool j provides partial help (help only when there is extra
capacity after serving its own class) if the help is initiated according to the second-stage criteria.
Second stage. At any time ¢, for each pool j, we decide which class in Z; it should help according
to the following criteria. Set a tuning parameter 6 > 0.

e For classes k(i)’s with i < /;, let class k(i*) be the first class for which

OT iy fin) 5 Gy (Qiin) (B)) = Priny. g > g G5 (q; (1)) (12)

Pool j provides full help to class k(i*) if there exists such k(i*).

e If none of the full helping is initiated and ¢;(t) > 0, pool j serves class j only;

e If none of the full helping is initiated and g;(¢) =0, for classes k(7)’s with ¢ > ¢;, let k(i*) be
the first class for which

Oh(ie) i), Gy (G i) () > Bray - (13)

Pool j provides partial help to class k(i*) if there exists such k(i*).

To explain the rationale of the tuning parameter 6, we note that from the analysis of the X-
model and the extended N-models, depending on the system architecture, we may need to modify
G!(qi(t))’s to take into account the help that pool i can provide to other classes or the help class i
can receive from other pools. This can be partially captured by the tuning parameter 8. When
0 > 1, we are doing more aggressive overflow than in the N-model; when § =1, it is equivalent
to the optimal N-model policy; when 6 < 1, we are doing more conservative overflow than in the
N-model. We show, via extensive numerical experiments in Section 6, that the performance of the
heuristic policy is robust for 6 close to 1, while a slight tuning down — i.e., setting # = 0.8 — leads

to comparable or, in some cases, better performance than 6 =1.
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6. Numerical Experiments for General Stochastic Networks

The optimal control policies that we derived in prior sections are based on deterministic fluid
models. In this section, we study the performance of our derived policy — namely, the look-ahead
policy specified in Section 5.3, in the stochastic systems via simulation. We compare the perfor-
mance of our proposed policy to that of several well-established benchmark policies in both the
N-model and two more-general 5-by-5 networks. We demonstrate that, in the face of demand
surges, the performance of our look-ahead policy, even using imperfect estimation of arrival rates
(with time-varying and temporally-correlated prediction errors, a limited look-ahead time window,
or prediction delays), is superior to that of the cu rule or the maximum pressure policy or their
adapted versions that account for the overflow costs. These numerical results suggest that the
insights generated from our fluid analysis of parsimonious models are robust and useful for routing
decisions in complex systems under various imperfect demand prediction scenarios.

To calibrate the simulation model, we consider settings motivated by hospital inpatient flow
(Shi et al. 2016). That is, in the multi-class, multi-pool parallel processing network, each class
corresponds to patients from a medical specialty, and each server pool corresponds to an inpatient
ward or several wards that are dedicated to a medical specialty. Unless otherwise specified, we
assume that each pool has a capacity of 20 — i.e., s; =20 for pool 7, corresponding to 20 inpatient
beds. The primary service rates are u;; = 0.25 for each class ¢, corresponding to an average service
time (length-of-stay) of four days. Moreover, we incorporate service slowdown — i.e., longer length-
of-stay when the patient is placed in a bed in a non-primary ward (Dong et al. 2019, Song et al.
2019). In particular, we assume that the overflow service rate is p;; = 0.2 for i # j, corresponding
to an average service time of five days. In what follows, we first present results for our main model
(N-model with perfect information) and then results for more complicated networks and imperfect

predictions.

6.1. Performance Comparison in N-model: Value of Proactive Routing

The baseline arrival rate setting that we test in the N-model follows
A (t) =8 x 1{t <40} +4 x 1{t > 40}

and Ay(t) = 3. That is, class 1 experiences a demand surge lasting x; = 40 days, while class 2 does
not experience a demand surge. The initial state is set as (X1(0), X5(0)) = (60, 70).

Beyond this baseline setting, we test a large combination of settings by varying the following
parameters: (i) the surge arrival rate of class 1, max A;(¢) € {6,8,10}; (ii) the arrival rate of class
2, Ao(t) = Ay € {3,3.5,4,4.5}; (iii) the surge duration « € [20,100]; (iv) the initial states X;(0) €
{40,60,80} and X»(0) € {70,90,110,130}. These parameter combinations lead to different levels of
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system congestion. In general, the system dynamics are closer to the fluid limit when the system
is more congested. Under a given congestion scenario, we fix the holding costs hy =1.5,hy =1 and
vary the overflow cost — namely, (i) ¢12 =2; (ii) ¢12 = 10; and (iii) ¢12 = 25. The holding costs
correspond to Case I of Theorem 1, where pool 2 may provide full help to class 1. We choose to
focus on this case since the resulting policy is less trivial than the partial helping case. In particular,
if the help is not exercised properly, it can lead to both a high overflow cost and a high holding cost.
We simulate 10* replications for each scenario (policy and system) to estimate the expected cost
and the corresponding standard error. Each replication contains 250 days. A common sequence of

random numbers is used when comparing different policies.

6.1.1. Benchmark policies We compare five scheduling policies: (i) our look-ahead policy
(Look-ahead); (ii) the classic cu-rule (Cmu); (iii) the classic maximum pressure policy (MaxPres);
(iv) the modified cu-rule that takes the overflow cost into account (ModCmu); and (v) the modified
maximum pressure policy that takes the overflow cost into account (ModMaxP).

For the modified cu rule, we prioritize different classes according to the following index (from
high to low): h;pt;; — ¢y ;. Similarly, for the modified maximum pressure policy, we prioritize
different classes according to the following index (from high to low): h;X;(t)u:; — ¢ijpij, with
hiX;(t)p;; being the index in the original maximum pressure policy. The intuition of adjusting the
original indices in both policies by the term ¢;;x;; is to maximize the instantaneous cost reduction
rate under the preemptive service setting (with p;; being the rate of clearing a customer). As
discussed in Section 3, comparing our proposed policy with the modified maximum pressure policy,
the main difference is that the latter weights h,u;; by X;(t), while our policy weights h;u;; by

GL(X;(t)), which takes future arrival rate information into account.

6.1.2. Robust performance Table 1 shows the cost comparison among the five policies in
the baseline setting. Our proposed look-ahead policy performs significantly better than the cu and
the modified cu rules. The maximum pressure policy and its modified version perform better than
the cu rules but have a larger gap from our policy when ¢ is large, e.g., the gap is 15% when ¢ = 25.

To have a more complete picture of the our policy’s performance versus that of other benchmarks
beyond just the baseline setting, Figure 6 plots a histogram of the optimality gap among all the
tested combinations of arrival rates, initial states, and overflow costs, as specified earlier. The
optimality gap is defined as the relative cost difference between the investigated policy and the
best-performing policy in the corresponding parameter setting. It is clear from the figure that our
policy always performs the best or near the best (the optimality gap is within 5%) among all tested
parameter combinations. This demonstrates the robustness of our policy, which is an appealing

feature in practice. In contrast, other policies can perform well in some settings but poorly in
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‘ Look-ahead MaxPres ModMaxP Cmu ModCmu

¢ =2 | Holding 1.09 1.10 1.10 1.28 2.75
Overflow 0.14 0.13 0.13 0.17 0.00

Total 1.23 1.23 1.23 1.45 2.75

SE 0.003 0.003 0.003 0.004  0.008

¢ =10 | Holding 1.10 1.10 1.11 1.28 2.75
Overflow 0.56 0.63 0.62 0.86 0.00

Total 1.67 1.74 1.73 2.14 2.75

SE 0.004 0.004 0.004 0.005  0.008

¢ =25 | Holding 1.28 1.10 1.12 1.28 2.75
Overflow 1.00 1.58 1.50 2.14 0.00

Total 2.28 2.68 2.62 3.42 2.75

SE 0.005 0.005 0.005 0.007  0.008

Table 1 Expected total cost for the baseline N-model under different scheduling policies. The costs shown in
the table are in units of 10*. “SE” stands for the standard error for the average total cost (holding + overflow).
Parameter setting: h = (1.5,1), ¢p12 = ¢, A2(t) =3, \1(t) =8 x 1{t <40} +4 x 1{t > 40}, X (0) = (60, 70).

others. For example, the modified cu policy tends to perform well when the surge arrival rate of
class 1 is smaller (e.g., 6) and not much overflow is needed; however, it results in significantly worse
performance when the surge arrival rate is large, and/or the initial queue length of class 1 is large.
On the other hand, the two maximum pressure policies tend to have a better performance when
the system is congested. However, their performance deteriorates when (i) the surge period is short
(e.g., 20), but the initial queue length is high, (ii) the surge period is long, but the initial queue
length is low, or (iii) pool 2 has less slackness in general. This is because the maximum pressure
policy will help class 1 when its current queue length is large compared to the class 2 queue without
looking into the future — this could be unnecessary (as in (i)), or too late (as in (ii)), or hurting
class 2 too much (as in (iii)). Overall, the maximum pressure policies are reactive while our policy

is more proactive, for which we take a deeper dive in Section 6.1.3.
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Figure 6 Histogram of the optimality gap. Parameter setting combinations are described in the main text.
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6.1.3. Reactive versus proactive: the value of future information The modified max-
imum pressure policy is the best-performing benchmark policy in Table 1, i.e., it performs better
than other benchmark policies in most scenarios tested in Figure 6. From this, it may appear
that knowing the future arrival information is not as beneficial as one would expect. However, a
closer investigation into different arrival rate settings reveals that this is not true — not considering
future arrival information in a time-nonstationary setting can result in much worse performance.
For illustration, consider the following arrival rate setting as an example:

8, t<40 3, <40
Al(t)_{ and A2(75)_{41.5, t> 40.

That is, the arrival rate of class 1 drops sharply once the demand surge is over, while the arrival
rate of class 2 increases slightly at the same time. All other parameters are the same as in the
baseline setting. In Figure 7 we compare two sample paths when ¢ =2, one under our policy and

the other under the modified maximum pressure policy.
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Figure 7 Sample path comparison between our proposed policy (left) and the modified maximum pressure policy
(right). (M1 (¢) =8 x 1{t <40} +1 x 1{t > 40}, A2(t) =3 x 1{t <40} +4.5 x 1{¢t > 40}. Other parameters

are the same as the baseline with ¢ =2.)

We see that under the modified maximum pressure policy, pool 2 helps class 1 throughout the
demand surge period (till ¢ = 40). This is because class 1 has a large queue and the policy is reacting
to this. In contrast, under our policy, pool 2 proactively stops helping class 1 much sooner (around
t =8). This is because our policy anticipates that the class 1 arrival rate will soon drop to 1, so that
not much help is necessary. This early stopping also takes into account the information that the
class 2 arrival rate will soon increase to 4.5. We see from the rest of the trajectories that our policy
achieves a much lower holding cost for class 2, while having only a slightly higher holding cost for

class 1. On the other hand, the modified maximum pressure policy provides too much help (from
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pool 2) to class 1, which results in the class 2 queue building up to a high value (around 100) at
t = 40; from then on pool 2 has little slackness and it takes a long time to reduce the class 2 queue.
For the parameter setting in Figure 7, the average costs are 1.11 x 10* under our policy versus
1.68 x 10* under the modified maximum pressure policy — 50% higher than ours. This performance
gap further enlarges to over 150% as ¢ increases to 25. More generally, the maximum pressure
policies can perform much worse than our policy as A\ (t) gets closer to 5 after the demand surge
of class 1 is over, due to over-helping. This indicates that the performance of “arrival-agnostic”
policies can vary a lot depending on the arrival rate patterns, which highlights the value of our
look-ahead policy in a nonstationary environment.

Other variants of index adjustment. We remark that the adjustments to the cy and maximum
pressure policies are heuristic. It is possible to motivate other heuristics such as adjusting by ¢;;
or ¢;;/p;; instead of ¢;;u;;. However, if we use ¢;; or ¢;;/uij, the index would be sensitive to the
time unit we choose, because these terms will scale differently with j;; than h,;p;;. In this case, by
choosing seconds versus hours to be the time unit, the resulting policy can vary drastically from
zero overflow to full-sharing. The main takeaway is that the optimal format to incorporate the
overflow costs is highly nontrivial. The performance can be arbitrarily bad when using the wrong
format, highlighting the necessity of properly comparing the overflow cost with the holding cost

and rigorously deriving optimal routing policies in the presence of demand surges.

6.2. Extensions to General Multi-class Multi-pool Systems
In this section, we test our proposed heuristic policy as given in Section 5.3. In the interest of space,
we focus on the results for two 5-by-5 networks. (See EC.3.2. for additional numerical experiments
for the X-model, which shows that our heuristic policy has a performance comparable to that of
the optimal fluid-translated policy.) For the 5-by-5 networks, we compare the performance of the
heuristic look-ahead policy with that of other modified benchmark policies since the optimal policy
is unknown (prohibitive to get) in this setting.

We set the holding costs to be (1.5,1,1,1.5,1). The overflow costs ¢ are the same for all overflow
assignments. We consider two arrival rate settings. For the first setting, the arrival rates are

12, t<40 8, t<40
M) =47 d M) =4 14
(1) {4.5, p> 40 A {4, £>40° (14)

for Classes 1 and 4 respectively, and the arrival rates for other classes are constants: Ay(t) = 3,
As(t) =4, A\s(t) =3, i.e., Classes 1 and 4 experience demand surges while the others do not. For
the second setting, the arrival rates for classes 1 and 2 are

12, <40 3,  1<40
M) =47 d(t) =147 15
(1) {2, t> 40 04 () {4.5, £ > 40 (15)
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respectively, while the arrival rates for the other classes are the same as in the first setting, including
the surge for class 4. The two arrival rate settings are chosen to be consistent with those used in
the N-model experiments. We consider two network structures as depicted in Figure 8. The first
network has a closed-chain structure, which is a commonly advocated flexibility architecture in

supply chain and manufacturing applications (Simchi-Levi and Wei 2012, Tekin et al. 2002).

,’L](,)l ﬁ'z(t)l A}(t)l ,14(;)1 )_S(t)l l.(f)l lg(t)l 13(1)1 2’4(1‘)1 l5(’)l

(a) Network I (b) Network II

Figure 8 Two network structures. Classes 1 and 4 have demand surge in both arrival rate settings.

Table 2 compares the cost under our policy and two of the most competitive benchmark policies
for different problem instances. The look-ahead policy is our proposed heuristic policy with 8 =0.8
— a 20% tuning down on G. We find that this tuning parameter performs very well across all
experiments. Thus, we recommend this policy for practical use.! We observe that our proposed
policy again performs the best in both network structures and both arrival rate settings. The
modified cp rule does not overflow, and thus performs the worst in the first arrival rate setting.
The modified maximum pressure policy tends to perform better in the first arrival rate setting,
showing a similar performance to that of our policy when ¢ = 2; however, when ¢ = 10 or 25, the
modified maximum pressure policy results in a much higher overflow cost than our policy does.
This is despite the fact that it incorporates overflow costs. The modified maximum pressure policy
shows an even larger performance gap from our policy in the second arrival rate setting. Similar to
what we explained in Section 6.1.3, this is because the maximum pressure policy does not account
for the future arrival rate information, and ends up providing too much help during the demand

surge, which hurts the class 2 queue.

6.3. Impact of Prediction Error in Arrival Rates
In Section 4, we have analytically studied the effects of prediction errors in the N-model. In this
section, we numerically investigate the effect of prediction errors in the stochastic system. Through-

out this section, we assume there is a known constant nominal arrival rate, which is the arrival

! Tuning, in general, improves the cost from the untuned version by 0.5% to 4%; see EC.3.2. for the detailed results
for the X-model and the 5-by-5 network.
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Look-ahead ModMaxP ModCmu Look-ahead ModMaxP ModCmu
Network Structure I Network Structure I

Arrival Rate Setting I Arrival Rate Setting 1T
¢=2 Holding 3.21 3.27 11.08 3.00 4.26 5.94
Overflow 0.52 0.59 0.00 0.29 0.29 0.00
Total 3.73 3.87 11.08 3.29 4.55 5.94
SE 0.007 0.007 0.014 0.005 0.008 0.010
¢=10 Holding 3.45 3.27 11.08 3.36 4.22 5.94
Overflow 2.05 2.75 0.00 0.89 1.42 0.00
Total 5.50 6.03 11.08 4.25 5.64 5.94
SE 0.008 0.009 0.014 0.006 0.009 0.010
¢=25 Holding 4.29 3.31 11.08 4.20 4.14 5.94
Overflow 3.57 6.27 0.00 1.10 3.46 0.00
Total 7.86 9.58 11.08 5.31 7.61 5.94
SE 0.012 0.013 0.014 0.007 0.010 0.010

Network Structure II Network Structure II

Arrival Rate Setting 1 Arrival Rate Setting 1T
¢=2 Holding 3.00 3.27 11.08 2.93 3.69 5.94
Overflow 0.48 0.42 0.00 0.25 0.34 0.00
Total 3.48 3.69 11.08 3.18 4.03 5.94
SE 0.005 0.007 0.014 0.005 0.008 0.010
¢ =10 Holding 3.07 3.27 11.08 3.15 3.64 5.94
Overflow 1.98 2.06 0.00 0.93 1.68 0.00
Total 5.05 5.34 11.08 4.09 5.33 5.94
SE 0.007 0.008 0.014 0.006 0.009 0.010
=25 Holding 357 3.27 11.08 1.19 3.55 5.04
Overflow 3.77 5.03 0.00 1.11 4.05 0.00
Total 7.34 8.31 11.08 5.30 7.61 5.94
SE 0.009 0.010 0.014 0.007 0.010 0.010

Table 2 Simulation costs for the 5-by-5 model. The costs shown in the table are in units of 10*. “SE” stands

for the standard error for the total cost. Parameter setting: h = (1.5,1,1,1.5,1), s; =20, ui; =0.25, p;; =0.2 and
¢i; = ¢ for i # j and X (0) = (30,40, 50,60, 70). Arrival rate settings | and Il are given in (14) and (15) respectively.

rate during the normal days (non-surge period), denoted as A{. We focus on larger values of ¢, i.e.,
¢ =10,25. We compare the performance of our policy with two of the most competitive bench-

marks: the modified maximum pressure policy and the modified cu rule.

6.3.1. Error in estimation We consider two (true) arrival rate settings, one specified in
Table 1 and the other in Figure 7. We assume that the arrival rate for class 2 is known, but the
arrival rate for class 1 suffers from prediction error during the surge. That is, at a decision time ¢,
the estimated arrival rate for the future is A (s|t) = A\ (s) + €1 (s]t) for t < s <y and A (s[t) = \?
for s > k1. To reflect the fact that forecasts tend to be more accurate for the near future than for
the distant future, we allow €,(s|t) to grow in magnitude with time. We also allow correlations in
€1(s|t)’s across different time periods.

Specifically, we define a sequence of random variables {Ry, : k > 1} with R; ~ N(0,1), and R, =
pRr_1 + 1 —p?v, for k > 2, where v,’s are independent and identically distributed standard
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normal. The estimated rate is A, (s[t) = Ay (s) + /€[ (s — t) /€] Ry (s_1)/¢1 at decision time ¢, where £ is
the interval for discretization and [-] is the ceiling function. In the experiments, we set £ =5. This
form of estimated arrival rates is motivated by autoregressive models and deep latent Gaussian
models (Tzen and Raginsky 2019). Note that the standard deviation of the estimation error can
be as large as /40, which is of the same order as the true arrival rate. In other words, the setting
goes beyond the analytical setting in Section 4. When p < 0, successive R values are negatively
correlated, in which case the errors tend to cancel out each other when integrating the arrival
rates to calculate @tl, leading to a more accurate estimate of G%. When p > 0, successive Rj, values
are positively correlated, and there is less of a cancellation effect when calculating é’i Thus, as p
increases, we would expect a less accurate estimate of GY.

Table 3 summarizes the simulation results when using the estimated arrival rates with different
values of p in our look-ahead policy. As expected, the performance of our look-ahead policy tends
to deteriorate as p increases. (The differences are quite small though.) Nevertheless, our policy
performs better than the modified maximum pressure policy (best benchmark policy) in the first
arrival rate setting, and comparable to or better than the modified cu rule (best benchmark policy)
in the second arrival rate setting. Importantly, the robust performance of our policy is in contrast
to the swaying performance of the two benchmark policies: they could perform well in one setting
but poorly in another.

The good performance of our policy, even under the presence of large prediction errors, benefits
from two aspects of our policy. First, taking a closer look at the look-ahead function G’f, we note that
even though X;(s) can be far from \;(s) for some s, as long as ftHA Ai(s)ds is close to f:+A Ai(s)ds,
G! will be close to G!. When taking the integration, some of the estimation errors may cancel
out. Second, éﬁ is dynamically updated as the queue builds up and as more information becomes

available. This helps dynamically adjust the policy to respond to the load of the system.

6.3.2. Limited look-ahead time window We next study the impact of a limited look-ahead
time window. Using the same notation introduced in Section 3.3, we assume that for a given time
window W, at time ¢, only the future arrival rate up to time ¢ + W is known. We test the settings
with two demand surges, where a limited look-ahead time may have a larger impact on performance
than the single-surge setting since the policy might not be able to anticipate the second demand
surge when planning during the first demand surge.

We consider two arrival rate settings similar to those studied in Table 3, except that we break
the initial demand surge into two separate surges. Table 4 summarizes the simulation results under
these two arrival rate settings, with the detailed arrival rates specified in the caption. We test three

different values of W: 0,5, and 10. Note that these time windows are smaller than or equal to the
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P -1 0 1 MMP MC -1 0 1 MMP MC
Arrival Rate Setting I Arrival Rate Setting 11
¢=10 Holding |1.104 1.105 1.107 1.108 2.754|1.111 1.110 1.120 1.543 1.282
Overflow | 0.567 0.569 0.569 0.619 0.000|0.119 0.120 0.118 0.449 0.000
Total |1.671 1.674 1.676 1.727 2.754]1.229 1.230 1.238 1.992 1.282
SE 0.004 0.004 0.004 0.004 0.008|0.002 0.002 0.002 0.006 0.002
¢=25 Holding |1.258 1.251 1.260 1.118 2.754|1.278 1.278 1.252 1.466 1.282
Overflow | 1.034 1.054 1.054 1.504 0.000|0.007 0.007 0.050 1.061 0.000
Total |2.292 2.305 2.314 2.622 2.754|1.285 1.284 1.302 2.527 1.282
SE 0.005 0.005 0.005 0.005 0.008|0.002 0.002 0.002 0.006 0.002

Table 3 Simulation costs for the N-model when using our policy with p between -1 and 1, modified maximum

pressure policy (‘MMP’), and modified ci policy (‘MC’). The costs shown in the table are in units of 10*. “SE”

stands for the standard error for the total cost. Parameter setting: h = (1.5,1), ¢12 = ¢, X (0) = (60,70). The first

arrival setting is the same as that in Table 1 and the second the same as that in Figure 7.

length of the interval between the two demand surges, so that the policy does not “know” about the

second demand surge during the first one. To implement the look-ahead policy, we use the adapted

policy introduced in Section 3.3, i.e., when the arrival rate information is not available, we use the

nominal rate A\?. As W increases, more of the arrival rate information is available for surge planning,

and, hence, the value of G(X,(t)) increases. Consequently, more help is offered, which explains

why the overflow cost increases while the holding cost generally decreases. W = oo refers to the

full information case. As expected, the total cost generally decreases with W, but the performance

change is quite small. It is worth noting that our policy, even with a small value of W, generally

performs much better than the two benchmark policies. These numerical results demonstrate that

our policy is robust to limited future arrival rate information in different parameter settings, which

is very desirable for practical implementations.

w 0 5 10 oo MMP MC 0 5 10 co MMP MC
Arrival Rate Setting I Arrival Rate Setting 11

¢=10 Holding | 1.011 0.999 0.992 1.002 0.995 2.553|1.045 1.019 0.979 0.902 1.080 1.049
Overflow | 0.537 0.543 0.549 0.563 0.598 0.000 | 0.003 0.023 0.052 0.111 0.361 0.000

Total |1.549 1.543 1.542 1.565 1.593 2.553|1.048 1.041 1.031 1.013 1.442 1.049

SE 0.004 0.004 0.004 0.004 0.004 0.007|0.002 0.002 0.002 0.002 0.004 0.002

¢ =25 Holding |1.270 1.237 1.215 1.152 1.006 2.553|1.049 1.049 1.049 1.049 1.030 1.049
Overflow | 0.896 0.920 0.939 1.000 1.452 0.000 |0.000 0.000 0.000 0.000 0.841 0.000

Total |2.166 2.158 2.154 2.152 2.458 2.553|1.049 1.049 1.049 1.049 1.871 1.049

SE 0.005 0.005 0.005 0.005 0.005 0.007|0.002 0.002 0.002 0.002 0.005 0.002

Table 4  Simulation costs for the N-model when using our policy with a limited prediction window

W =0,5, and 10. The costs shown in the table are in units of 10*. “SE” stands for the standard error for the

total cost. Parameter setting: h = (1.5,1), ¢12 = ¢, X(0) = (60,70). For arrival rate setting I,

A(t) =8x1{t <20} +4 x 1{20 <t <30} +8 x 1{30 <t < 50} +4 x 1{t > 50} and X2(t) = 3. For arrival rate setting
I, A (5) =8 x1{t <20} +1x1{20 <t <30} +8 x 1{30 <t < 50} + 1 x 1{t > 50} and
Xa(t) =3 x 1{t < 20} 4+ 4.5 x 1{20 <t < 30} + 3 x 1{30 <t < 50} + 4.5 x 1{t > 50}.
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6.3.3. Prediction delay In practice, it is possible that there is a delay (time lag) in the
estimated arrival rate, e.g., when the arrival rate is estimated based on the historical average. To
examine the impact of a potential prediction delay on the performance of our algorithm, we assume
for a given delay d, at a decision time ¢ < d, the predicted future arrival rate is the constant nominal
arrival rate, i.e., Ai(s[t) =\ for s >t. At a decision time ¢ > d, the predicted future arrival rate
is A\i(s]t) = A (s —d) for s >t, ie., there is a constant lag of d between the predicted arrival rate
and the actual arrival rate. In this case, there is a delay of d to detect the start and the end of the
demand surge.

We consider a piecewise-linear arrival rate function for class 1:
A(t)=(5+0.25t) x 1{t <20} + (10— 0.3(t — 20)) x 1{20 <t <40} +4 x 1{t > 40} (16)

and A\y(t) = 3. All other parameters are the same as in the baseline setting. We test the performance
of our look-head policy under different values of d and the results are summarized in Table 5.
We observe that the performance of the look-ahead policy deteriorates as d increases. We tend
to do more overflow as d increases, because the delay causes the system to continue to overflow
for longer than it would otherwise. When ¢ = 10, the look-ahead policy performs better than
the modified maximum pressure policy (best benchmark) when d <5. However, when d > 10, the
modified maximum pressure policy performs slightly better. When ¢ = 25, the look-ahead policy
performs better than the modified cu rule (best benchmark) when d < 20. Only when d =30 does
the look-ahead policy perform slightly worse than the modified cu rule. Overall, when the overflow
cost is large (so that balancing between the cost and benefit from overflow is critical), our policy is
more robust and preferred, even if there may be a large prediction delay. When the overflow cost
is small yet there is a concern for large prediction delays, the arrival-agnostic policies could be a

better choice.

d |0 1 ) 10 15 20 30 MMP MC

¢ =10 Holding |0.854 0.854 0.859 0.870 0.890 0.915 0.948 0.848 2.018
Overflow | 0.462 0.467 0.493 0.526 0.557 0.586 0.615 0.530 0.000

Total |1.316 1.321 1.352 1.396 1.448 1.501 1.563 1.378 2.018

SE 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.007

¢ =25 Holding |1.031 1.017 0.961 0.919 0.913 0.908 0.902 0.855 2.018
Overflow | 0.751 0.771 0.879 0.987 1.040 1.096 1.255 1.282 0.000

Total |1.781 1.788 1.840 1.906 1.954 2.004 2.156 2.137 2.018

SE 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.007

Table 5  Simulation costs for the N-model when using our policy with prediction delay d between 0 and 30. The

costs shown in the table are in units of 10*. “SE” stands for the standard error for the total cost. Parameter
setting: h = (1.5,1), ¢12 = ¢, X(0) =(60,70), A1 (¢) is as in (16), A2(t) = 3.
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7. Conclusion

In this paper, we study how to leverage demand forecasts in designing the optimal routing policy
for systems with partial flexibility under demand surges. Our model incorporates salient features of
service systems, such as general time-varying arrival rates with possibly multiple surges, efficiency
loss and inconvenience costs associated with overflow, and various service compatibility architec-
tures (e.g., the N- and X-models). These features make our research problem highly nontrivial. We
characterize how to properly incorporate demand forecasts that are potentially imperfect into the
routing policies. We study transient fluid control for the N-model, the X-model, and two exten-
sions of the N-model, and we explicitly characterize the optimal control. All of these fluid-based
policies have a two-stage index-based structure with a look-ahead component that takes future
arrival rates into account. Based on the insights from the fluid analysis, we propose a two-stage
index-based look-ahead policy for general stochastic systems. Via extensive simulation results, we
quantify the value of future arrival rate information and show that our policy is able to achieve
superior performance to other benchmark policies in various parallel server networks. In particular,
our policy is robust under various scenarios of prediction errors, due to the built-in resilience of
the index structure.

Several future extensions may be considered. One is to jointly optimize the system’s architectural
design and the real-time routing policy, e.g. N-model versus X-model (see EC.2. for more discus-
sions). Another is to study the effect of more general prediction errors. Our theoretical analysis
assumes the prediction error is of a smaller order than the arrival rate. Our numerical experiments
show that our policy performs well even with relatively large prediction errors, benefiting from the
built-in resilience of the index structure. Investigating how to optimally adjust the routing policy

to account for various forms of prediction errors would be an interesting future research direction.
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Appendix A: Full Characterization of Optimal Policies for Extended N-Models

In this section, we provide the full characterization of the optimal scheduling polices for the two extended

N-models discussed in Section 5. We make the following assumptions about the arrival rate functions.

ASSUMPTION 4. The arrival rate functions \;(t),i=1,--- I satisfy:
1. Ni(8) > ssui when t < k; and A\i(t) < s;p; when t > k;.

2. (Ni(t))o<t<n, 5 piecewise monotone with a finite number of pieces.
3. f:(sluu —\i(t))dt = o0.

4. Given X(0) ==z, for any 0<t<g&, W(z,t) >0, where

W(z,t)= Hzlf Z (1)

I
j=1

I

Zzij(s)§5j7 ]:17 717
=1
qz'(S)ZO,i:L'“aIa Zij(s)z(), Za]:LvI

The proofs of the results in this section are in the E-companion.
A.1. Many-Help-One Extended N-Model

In this section, we consider a 3-by-3 model in which pools 2 and 3 can help class 1, while pool 1 can serve
only class 1 (see Figure 4(c) for a pictorial illustration). We refer to this model as the exN1-model.

Following the development of the N-model, we first compare the hu index. Without loss of generality, we
consider three possible cases:

I. hip1a > hoptos and hqpi3 > hapss. In this case, pool j, j = 2,3 gives priority to class 1 when class 1 has
a large enough backlog compared to class j.

IT. hypi2 < hopioo and hqpis > hapss. In this case, pool 3 gives priority to class 1 when class 1 has a large
enough backlog compared to class 3. Pool 2 provides partial help to class 1 after the class 2 queue empties
and when class 1 has a large enough backlog.

III. hipi2 < hopge and hypgs < hapss. In this case, pool j, j = 2,3, provides partial help to class 1 after
class j queue empties and when class 1 has a large enough backlog.

The key difference between the exN1-model and the N-model is that when pool j, j =2,3 is determining
how long it will help class 1, it also needs to take into account the help class 1 can receive from pool k,
k=2,3, k# j. To make this notion more precise, we introduce the following notation. Define G%, v, 5 ;(q(t))
as the time it takes pool 1 to empty queue 1 while taking into account the help it can receive from pool j.
We first consider the second server pool —i.e., j =2.

For Case I, let Fi(q(t)) denote the full helping period for pool 2 to class 1:
FQt(CI) =inf {U >0: h1u12G§+“(ql (t+u)) < h2M22G5+u(472(t +u))+ ¢12} )

where, for ¢: §(t) = ¢; for s >1t, pool 1 serves class 1 only; pool 3 serves class 3 only; and pool 2 prioritizes
class 1. Then,

— t

Glani (@) = Fi(@) + G (@t + Fy(0)-
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In Cases IT and II1, let Pi(q(t)) denote the partial help period for pool 2 to class 1:
P;(q) =inf {u >0: hlulth+G2(q2)+u( 1(t+Gh(g2) +u)) < ¢12} )

where, for ¢ with ¢(t) = ¢, pool 1 serves class 1 only and pool 3 serves class 3 only for all times s > ¢, while
pool 2 serves queue 2 only for times between ¢ and ¢ 4+ G%(g2), and provides partial help to class 1 for times

s >t+Gh(gz2). Then,

Gt 1.2(a) = Golaz) + Pi(q) + GO (G, (14 Gh(q) + Pila))).

Note that Gy @ (g, (1 G4 (q) + Pi(9)) = 7222 if Py(q) > 0.

We next consider the third server pool —i.e., j =3. In Cases I and II, let F%(g(t)) denote the full helping

period for pool 3 to class 1:
F3(q) = inf {U>0 hl,uwGH (@1 (t+u)) < hapssG +u( 3(t+u)) ‘|‘¢13}

where, for ¢, §(t) = ¢, for s >t, pool 1 serves class 1 only; pool 2 serves class 2 only; and pool 3 prioritizes
class 1. Then,
Grni 15(0) = Fi (@) + G5 (@ (e 4 Fi (@)

In Case III, let Pi(q(t)) denote the partial helping period for pool 3 to class 1:
Pt( ) —inf {u >0 thl Gt+G3(q3)+u( (t-l—Gt (qs) +u)) < ¢13} ,

where, for ¢: G(t) = ¢; for s >t, pool 1 serves class 1 only, and pool 2 serves class 2 only; between ¢t and

t+ G%(gs), pool 3 serves class 3 only; for s >t + G%(gs), pool 3 provides partial help to class 1. Then,
Gl 1.3(0) = G5 (as) + Py(a) + G0 Gy £+ G () + Pi(9))).

Similar to before, GV (G, (¢ 4 G4 (g) + Py(q))) = 5221 if Pi(q) > 0.
Note that when pool j prioritizes class 1, it is possible that ¢;(¢) =0, in which case, it may no longer be
feasible to have z1,(t) = s;. To simplify the analysis, we will make the following assumption, which ensures

that ¢; (¢t) >0 when pool 2 or 3 prioritizes class 1.
ASSUMPTION 5. Fort< K1, Al(t) > Sift11 + Sofb12 + S3f13-
The following theorem characterizes the optimal scheduling policy for the exN1-model.

THEOREM 5. For the exNI1-model, under Assumptions 4 and 5, the optimal control for (10) takes the
following form. Pool 1 serves as many class 1 customers as possible.

L If hl,ulg > hg/}qg and hl,ulg > h,glugg, fO’I" pOOl 2,

iia. If hop22Gh(q2(t)+d12 > hapssGh(q3(t))+d1s and
hipig hip1s
hapna Gy 5(a(t) > hopieaG(ga(t)) + ¢12, (17)

pool 2 gives priority to class 1.
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iib. Otherwise 7If hopoaGh(g2(t))+d12 < hapssGh(as(t))+ 13 and
. 7 hipig hip1s
hp12G1 (g1 () > haptaaGo(ga(t)) + dia, (18)
pool 2 gives priority to class 1.
sic. Otherwise, pool 2 serves class 2 only.
For pool 3,
iiia If h3ussGh(as(t)+o13 > hop2aGh (a2 (t)+p12 and
: hip1s — hipi2
hapasGlonga 2(a(t)) > hapssGi(gs(t)) + ¢as, (19)
pool 3 gives priority to class 1.
iiib. Otherwise Zf h3us3Gh (a3 (t)+o13 < hop22Gh(q2(t)+¢12 and
. ) hip1s hipiz
hipsGi(qi(t)) > hspssGy(gs(t)) + ¢us, (20)

pool 8 gives priority to class 1.
tiic. Otherwise, pool 3 serves class 3 only.
II. If hipyo < hopios and hipys > hspuss, pool 2 prioritizes class 2.
wa. If
G5(g2(t)) =0 and ha oGy, 1 5(a(t)) > d1a, (21)
pool 2 provides partial help to class 1.
1b. Otherwise, pool 2 serves class 2 only.
For pool 3,
wia. If
hip13Gloni1.2(q(t)) > hapssGh(gs(t)) + éis, (22)
pool 3 prioritizes class 1.
1ib. Otherwise, pool 8 serves class 3 only.
HI. If hipiia < hopas and hypiz < hapzs, both pool 2 and pool 3 prioritize their primary classes, respec-
tively. For pool 2,
wa. If
Gy(g2(t)) =0, and hip1aGioyy 1 5(a(t) > dra, (23)
pool 2 provides partial help to class 1.
1ib. Otherwise, pool 2 serves class 2 only.
For pool 3,
wia. If
G3(g3(t)) =0 and by s Gioyy 1 2(a(t)) > dus, (24)
pool 3 provides partial help to class 1.

tiic. Otherwise, pool 3 serves class 3 only.
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To provide more intuition behind Theorem 5, let us consider the case where the conditions of ILiia. hold.
The inequalities of I. involve the hu index, under which we show that pool j, 7 =2, 3, should provide full help
to class 1 if help is initiated. This is consistent with the first stage of the optimal policy for the N-model.
The first inequality in iia. says that the “tolerance” level of overflow to pool 3 is higher than that of pool
2, noting that the index mimics condition (6) if we consider pool 1 and pool 2 (or pool 1 and pool 3) as a
sub-system. This second-stage condition indicates that pool 3 will help class 1 longer than pool 2.

It is worth repeating that the key difference between the exN1-model and the N-model lies in the second
stage; we need to compare only the hy index in the first stage, even when there are more than two classes.
Under iia., when pool 2 determines how long it will help class 1, it also needs to take into account the help
that class 1 can receive from pool 3, as formalized by (17).

Comparing the exN1-model to the N-model, we note that G%,\; ; 5(q(t)) < G%(g:(t)). This implies that in
the exN1-model, because pool 3 can also help class 1, pool 2 may provide less help to class 1 than in the

N-model. Similar observations hold for the other cases, as well.

A.2. One-Helps-Many Extended N-Model

In this section, we consider a 3 x 3 model in which pool 1 can serve classes 1, 2 and 3, while pools 2 and
3 can serve only their corresponding primary class (see Figure 4(d) for a pictorial illustration). We refer to
this model as the exN2-model.

Following the development of the N-model, we first compare the hu index. Without loss of generality, we
consider three possible cases:

I. hopor > hapsr > hipq1. In this case, pool 1 prioritizes classes 2 and 3 when there are large enough
backlogs in these two classes compared to class 1. When deciding between classes 2 and 3, class 2 enjoys
higher priority over class 3.

II. hopoy > hip1r > hspsi- In this case, pool 1 prioritizes class 2 when there is a large enough backlog in
class 2. Pool 1 can provide partial help to class 3 after the class 1 queue empties and when class 3 has a
large enough backlog.

II. hqp11 > hopoy > hapsi. In this case, pool 1 provides only partial help to classes 2 and 3 after the class
1 queue empties and when there are large enough backlogs in the two classes. When deciding between classes
2 and 3, class 2 enjoys higher priority over class 3.

The key difference between the exN2-model and the N-model is that when pool 1 is determining how long
it will help class i, i = 2, 3, it also needs to take into account the help it can provide to class k, k= 2,3, k #i.
To make this notion more precise, we introduce the following notation.

In Case I, let F*(q(t)) denote the length of the full helping period for pool 1 to class 3:
F'(q) =inf {u>0:h3us1 G5 (Gs(t +u)) < hypn G (qu(t +u)) + ¢a1 |,

where for §: ¢(t) = q; for s >, pool 1 prioritizes class 3. Let G,y 1(q(t)) denote the time it takes to empty

queue 1 given that it may provide some help to class 3:

Gl onn (@) = FH(q() + G (G (t+ F(q)).
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In Cases II and IT1, let P*(g(t)) denote the length of pool 1’s partial helping period to class 3:
P(q) =inf {u>0: hapan G5 Gy ¢+ Gllar) +0) < 6}

where, for §: ¢(t) = ¢, between ¢t and G%(q;), pool 1 serves class 1 only; and for s > t+ G%(q;), pool 1 provides
partial help to class 3.

Note that when pool 1 gives priority to class 4, it is possible that ¢ (¢) = 0, in which case, it may no longer
be feasible to have z21(t) = s1. To simplify the analysis, we will make the following assumption, which ensures

that ¢;(t) > 0 when pool 1 gives priority to class i, i =2, 3.
ASSUMPTION 6. Fori=1,2 and t < k;, A;(t) > S1pti1 + Sifbis-
The following theorem characterizes the optimal scheduling policy for the exN2-model.

THEOREM 6. For the exN2-model, under Assumptions 4 and 6, the optimal control for (10) takes the
following form. Pools 2 and 8 serve their primary classes as much as possible.
L If hopoy > hapzr > hipg,
a. If
hatio1 G5 (g2 (1) > hapn1 Gy 1 (9(1)) 4 (Rapss — Rapan) FU(q(t)) + bar, (25)

pool 1 gives priority to class 2.

b. Otherwise, if
haps1Gy(qs(t)) > hip1 G1(q (1)) + ¢s1, (26)

pool 1 gives priority to class 3.
c. Otherwise, pool 1 serves class 1 only.
II. If hoptor > hypra1 > hapst,
a. If

hotior G5(q2(t)) > hapn1 G (qu () + hapsi P (q(t)) + ¢a1, (27)

pool 1 gives priority to class 2.
b. Otherwise, if Gi(q1(t)) =0 and haps1G4(qs(t)) > ¢s1, pool 1 provides partial help to class 3.
c. Otherwise, pool 1 serves class 1 only.
I If hapa1 > hopor > hspss,
a. If

G1(qi (1)) =0 and hopio1 G5(ga(t)) > hapzi P(q(t)) + d21, (28)

pool 1 provides partial help to class 2.
b. Otherwise, if G4 (q1(t)) =0 and hsps1G%(qs5(t)) > @31, pool 1 provides partial help to class 3.

c. Otherwise, pool 1 serves class 1 only.

To provide more intuition behind Theorem 6, let us consider Case I. In the first stage, pool 1 prioritizes

classes 2 and 3 when there are large enough backlogs in these two classes compared to class 1. When deciding
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between classes 2 and 3, class 2 enjoys a higher priority than class 3. The key difference between the exN2-
model and the N-model again lies in the second stage. In particular, when pool 1 is determining how long it
will help class 2, it also needs to consider the help it can provide to class 3, as formalized by (25).

Comparing the exN2-model to the N-model, we note that G’ x, 1(q(t)) > G’ (q:(t)), and

ha a1 Glena,1 (4(t)) + (hapsr — Papan) F*(q(1) + ¢21 > hapan G (qa (1)) + dar

Because pool 1 can also help class 3 in the exN2-model, it provides less help to class 2 than in an otherwise

similar N-model.
Appendix B: Proof of Optimal Fluid Control Results

The proof of Theorem 1 and subsequent fluid optimal control results (Theorems 4 - 6) utilize Pontryagin’s
Minimum Principle. In its most standard version, Pontryagin’s Minimum Principle provides a list of necessary
conditions satisfied by any optimal solution to the optimal control problem. In this section, we first introduce
a special sufficient version of Pontryagin’s Minimum Principle. We then demonstrate how it can be applied
to prove Theorem 1. The proofs of the other results (Theorems 4 - 6) follow similar lines of analysis and are

provided in the E-companion.
B.1. Pontryagin’s Minimum Principle

To state the result in a general form that can be applied to all our subsequent analysis, we first introduce
some notation.

Consider a system with I classes of customers, i.e., ¢ = (q1,...,q) and z = (24,4, = 1,...,I). Let
Flq,z)=>"1_, higi+ > 2 $ij%i; denote the instantaneous cost function. Let ¢,;(t) = fi(¢, 2,t) and f(q,2,t) =
(f1(q,2,%),..., f1(q,2,t)). We also deﬁne gi( )=—q¢; and g(q) = (91(q),---,9:(q)). Lastly, let I;;(2) = —z;,
;(2) =31 zi; — 85, and 1(2) = (1;(2),1;(2),4,5=1,...,I). Consider a general optimal control problem

1nf / F(q (t))dt

st q(t) = f(q(t),2(t),t), q(0)=qo
9(q(t)) <0
I(2(t)) <0

Note that under the assumption that f:o (8iftss — Ni(t))dt =00 for i =1,...,I, the queue will eventually
hit zero and stay there. After this hitting time, F'(¢(¢),2(¢)) = 0. Thus, even though we define (29) as an

(29)

infinite horizon problem, it is the same as a finite horizon problem where the planning horizon is long enough
(possibly depending on the initial condition) that the queue reaches zero by the end of the planning horizon.

Let p(t) = (p1(¢),...,p:(t)) € R" denote the adjoint vector. Let n(t) = (n1(t),...,n:(¢)) € RT and &(t) =
(fij(t),gj(t),i,j =1,....1) ¢ R’**! denote the Lagrangian multipliers for the state and control constraints

respectively. Define the Hamiltonian H as

H(q(t), z(t),p(t),t) = F(q(t), 2(t)) + p()" f (a(t), 2(t), 1)

and the augmented Hamiltonian L as

L(q(t), 2(t), p(t),n(t),7(1), £(2),£) = H(q(t), 2(), p(t), 1) + n(t) " g(a(t)) + () "1(2(t))
The following sufficient conditions are adapted from Theorems 8.2 and 8.4 in Hartl et al. (1995) for (29).
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THEOREM 7 (Arrow-type sufficient condition). Let (¢*,z*) be a feasible pair for the optimal control
problem (29). Assume that there exists a piecewise continuously differentiable function p*(t) : [0,00) — RY and
piecewise continuous functions n* : [0,00) — R and € : [0,00) — R”* | such that the following conditions
hold almost everywhere:

1. Ordinary Differential Equation condition:

¢(0)=q, ¢ ()=Ff(g"(t),2"(t),1) (ODE)
2. Adjoint Vector condition:
P(t) ==V L(g" (), 2" (£),p" (8),n"(£),£"(¢), 1) (ADJ)
3. Minimization condition:
H(q" (), 2" (8),p"(8),t) = min{H(q"(t), 2(t), p"(£), £)} (M)

4. Augmented Hamiltonian condition:

VL(g (), 2" (8),p" (), " (1), " (£),) = 0. (AH)
5. Transversality condition:
lim p (1) (g() 4" (1)) > 0 (1)

for any feasible state trajectory q.

6. Complementarity condition:
n°(8) =0, 0" () g(q"(t)) =0
§()=0, &@B)N(="(t)=0
7. Jump condition: At every point 3 of discontinuity of p*, there exists an w*(3) € R! such that
P (B=) =p"(B+) +w"(B)" V,g(q(B))

w'(B) =0, w(B)"g(qg"(8))=0.
8. Hamiltonian condition (H): If the minimized Hamiltonian H(q*(t),z*(t),p*(t),t) is convex in q*(t) for

)

all (p*(t),t), the pure state constraint g(q(t)) is quasiconvezr in q(t), and the control constraint 1(z(t)) is
quasiconvez in z(t).

Then, (¢*,2*) is an optimal pair.

B.2. Optimal control for the N-Model under single demand surge

In this section, we provide the proof of Theorem 1. The basic strategy is to construct a feasible pair (¢*, z*)
and verify that the assumptions in Theorem 7 hold. Note that condition (T) holds trivially in our case
because p*(t) > 0, ¢*(t) = 0 for ¢ large enough, and for any feasible state trajectory, ¢(t) > 0. In fact, p*(¢) =0
for large enough ¢ in our case, which again ensures condition (T) holds.

We first prove an auxiliary lemma.

LEMMA 1. Under Assumption 1 and the control characterized by Theorem 1, let 71 = inf{t > 0: G%(q:(t)) =
0}. ¥(t) is monotonically decreasing in t for t <7 and ¥(t) <0 fort > 1.
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Proof. Take G!(¢;(t)) as a function of ¢. Note that when class ¢ (i =1,2) is only served by pool ¢ and
Gl(q:(t)) >0, Gi(q:(t)) decreases at rate 1 until it hits zero. When pool 2 provides help to class 1, G4 (¢1(t))
decreases at rate at least 1, while G5(g2(t)) decreases at rate at most 1. Since hqpi1a > haopioa, 1(t) keeps
decreasing in ¢ until G (¢1(¢)) hits zero. After G%(q1(¢)) hits zero, say at time 7, it stays at zero for ¢ > 7.
Since G(g2(t)) >0, ¢(t) <0 fort >7. O

Proof of Theorem 1. In this case,

H(q(t),2(t),p(t),t) =h1q1(t) + haqz(t) + d12212(1)
+p1(t) (A1 (t) — 11211 (F) = pazz12(¢)) + p2(t) (Ma2(t) — p2aza2(t))
and
L(q(t), 2(t),p(t),n(t),£(),v(t), 1) =H (q(t), 2(£), p(t)) — (1) q1 (t) — m2(t) g2(t)
=& (t)z11(t) = E12(t) 212(t) — 2a(t) 222(t)
+71(8) (211 () = 51) +72(t) (212(¢) + 222(t) — 52).
We next verify the sufficient conditions listed in Theorem 7.

Case I: hip12 > hopos. In this case, the policy is that pool 2 gives priority to class 1 for a time

T =1nf{t > 0: hyp12G(q1(t)) — P12 < hapiaaGh(ga(t))} (30)

assuming the inequality in case (Ia) holds initially, and 7* =0 otherwise. After this 7* units of time, pool 2
stops helping class 1. To see this, note that since hqpio > hopoo and ¥(t), if the inequality in case (Ia) does
not hold at some t’, it also does not hold at all subsequent ¢ > ¢’.

Under the policy characterized in Case I, the times to deplete the two queues are
§=T G @), T =7+ G (G (). (31)

Then, we consider the following queue length trajectory:

Q1‘i‘fot()\l(s)—81,U,11—2:162(8)'1112)6@7 tE[O 7_*),
1

q{(t) = q)lk(T*>+f:*()‘1(8)_81/’[/11)d87 tE[T*,T )7
0, te[ry,00),
@+ [y (Aa(s) — 255 (5)pia2) ds, tel0,77),

q; (t) = q; (T*) + f:* ()‘2(5) - 82/’(‘22) dS, t S [T*7T*)a
0, t€[ry,00).

Note that it may be that z7,(¢t) < sy for ¢t € [0,77], if ¢;(¢t) =0 and \;(t) < s1p11 + S2pt12- In this case,
255(t) = 82 — 275(t) (since go(t) > 0 by assumption). However, it is always the case that zj,(t) = s; for
t € 10,7*], since either (i) ¢;(¢) >0 or (ii) ¢1(t) =0 and ¢ < K1, so that Ay (¢) > s1p11.

Assuming 7* > 0, we now partition the interval [0, 7*) into subintervals Iy, --- , I, wheren > 1, I, = [V;_1,V})
and 0=V <V <--- <V, =7*, as follows. In the interior ¢ € (V;_;,V;) of each subinterval, either (i) ¢;(¢) >0
and ¢2(t) > 0, in which case we say that I, is an interior subinterval, or (i) ¢1(f) =0 and ¢(¢) > 0, in
which case we say that I; is a boundary subinterval. Note that it is not possible that ¢;(¢) >0 and ¢»(¢) =0
in some subinterval, because z3,(t) =0 during this time and A2(¢) > 0. The subintervals I,---,I, do not
necessarily alternate between interior and boundary subintervals: it is possible that I, and I;; are both

interior subintervals, with g (¢) hitting zero at the single point V.
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We next define the adjoint vector

. ho(15 — 1), tel0,75),
ps(t) = {02(2 ) te{ *2)
) TQ,OO),

and
. hi(rf —1), tel|r*, ),
pl(t) — 1( 1 ) [ ) 1)
0, t €[y, 00).
For t < 7*, with pj(V,,) = pi(7*) defined, moving backwards in time, we recursively define pj(¢) for ¢t € [0, V},).
We will do this in such a way that (i) the jumps of p3, if any, occur only when ¢;(¢t) =0 and the jumps are

positive; (ii) in any interior subinterval I;,

Pi(t) a2 — 12 — P5 (1) praz > 0; (32)
and (iii) in any boundary subinterval I,

Py () p12 — P12 — p3(t) 22 = 0. (33)
Note that pi(7*)p12 — P12 — P4 (7% ) phae =0 if 7% > 0.

More specifically, suppose p;(V},) has been defined for some k, with p;(V;)p12 — d12 — 05 (Vi) prae > 0. If I,
is an interior subinterval, we set
pi(t) =hi(Vi —t) + p1 (Vi)

for t € [V_1,V4). That is, p} is continuous at V;, and has slope —h; in the subinterval I;,. Thus, p}(¢)u12 —
¢12 — P (t) 12 has slope hopioe — hypi12 < 0, which implies that p; (Vi_1)p12 — ¢12 — p5 (V1) oo > 0. If I, is
a boundary subinterval, we set p%(Vi_1) = p3(Vi_1) 22/ f12 + 12/ 12 and pi(t) = pi (Vi) — 22£22(t — V)

K12

for t € (Vi_1, V). That is, p has a jump at V}, and has slope — hi‘EQ in the subinterval I,,. This ensures that
¢12 —p; (£)p12 = —p5(t) piaa everywhere in I. The size of the jump at V;, is p; (Vi) — p5 (Vi) 2z /12 — d12/p12 >
0, which is non-negative because pj (V)12 — @12 — p5 (Vi) piz2 > 0. This way, we have defined p; for ¢t € [0,7*)
that satisfies conditions (i), (ii) and (iii).

Lastly, define the multipliers

0, t € I, and I, is an interior subinterval,

. hy — hapez t € I, and I, is a boundary subinterval,
i (t) = ez

0, telr, ),

hi, t € [ry,00),
; 0, te[0,73),
Q(t) = "

ho, tE€[r5,00)

’7* (t) — pT (t)/ullv [0,7_1*)7
! 0, € [r7,00),
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0 te
é‘* t — b . i
12( ) P12 —P1(t),u12 +P2(t)M22, te

[0,
[
€5,(t) = {0’( M2 = P2 = p3(t)pzz, E {
and &7, (¢t) =0 for all ¢ > 0. Note that if 7* > 0, p; ()12 — P12 — p5(t) 122 > 0 for te[0,7%), and p;(t)pi2 —
12 — () oz <0 for ¢ € [7*,00). Thus, &, and &5, are non-negative.

The conditions (ODE), (ADJ), (J), and (H) are straightforwardly verified, i.e., by construction.

For (C), we only need to check that when z3,(¢) > 0 in a boundary subinterval [V, _1,V},), £55(t) = 0. This
holds because of (33). (Note that z5,(V},) =0.)

For (AH), we have that

vZuL( ( )7 *(t)ap* (t),ﬂ* (t),"}’* (t),f* (t)) =-pi (t),ull +’7;(t) - gfl(t) =
because &5, (t) =0 and ~; () = p; (¢)11. Next,

Voo L(q™ (), 27 (), p" (8), 0" (£), 77 (2), €7 () = —p3(t) oz + 73 (1) — &35(£) =0
because &5, (t) =735 (t) — p5(t) ez for t € [0,7%), and &3, () =0 and 3 (t) = p3(t) oo for t > 7*. Finally,
Ve (@™ (), 27 (), 07 (8), 0" (£), 77 (), €7 () = b1z — Pi(H) a2 + 73 (1) — &1 (1) =0

because {7, (t) =0 and 3 (t) = pi(t)p12 — g1z for t €[0,77), and 7y (t) = P12 — pi(t)pa2 + 73 (t) for £ > 77

Lastly, for (M), it is easy to see that z3;(¢) should always be maximal. Note that even when ¢;(¢) =0
for some t < 7*, (M) follows because under the constraint that 23, (¢)p11 + 275 (t)p12 < A1(t), the coefficients
of z7,(t) and zi,(t) are —pi(t)u11 and ¢ro — pi(¢)u12. For t < 7%, the coefficients of z7,(¢) and z3,(t) are
respectively ¢1o — pi ()12 and —ph(t)po2. Since pi(t) 12 — 12 > pi(t)f122, it is optimal to have z7,(t) being
maximal. When ¢ > 7%, p3 (¢) 12 — d12 < p5(t) 22, and so it is optimal to have z3,(¢) being maximal. This in
turn implies 27, (t) =0 for ¢t € [7*,75) is optimal (pool 2 has no spare capacity to help class 1). When t > 75,
¢12 — pi(t) 12 <0, so again zj,(t) =0 is optimal.

Case II: hypio < hopias. Let 7, = G2(g;(0)) for i =1,2. In this case, the policy is that each pool serves
only its own class for ¢ € [0,75). Under Assumption 1, 7o > ko. Thus, Ay (t) < sap0o and go(t) =0 for ¢ > 7.
Then, pool 2 gives partial help to class 1 for t € [12, 72 + 7*), where

7'* = mf{t Z O : h1M12G1—2+t(ql (7_2 +t)) S ¢12}.
If hip12G2(q1(12)) < ¢1a, 7 = 0. For t > 75 + 7%, the inequality in (ITa) does not hold. Thus, each pool
serves its own class only.

Note that if 7y <75, we have 7* =0, which will be discussed below. Suppose for now 7 > 75. Let 70 =75 +

T+ G727 (¢; (o +77)) be the time at which queue 1 empties. Note that if 7% > 0, then hyu12G72 "™ (g1 (72 +

T*)) = ¢12 by continuity, so that 7{ =75 +7" 4 ¢12 . Then, we consider the following queue length trajectory:
1+f0 1( —Slﬂll)dsa te[0,m2),
gi(t) = q;(2) + f:2(>\1(3) — s1pi11 — (82— Aa(s)/p22) pa2) ds, €lr2,m2+77),
! q; (72 —|—T*)—|—f:2+T*(/\1(s)—sluu)ds, tem+1*17)
0, € [r{,00),

v @2t [y (a(s) —sapa)ds,  tE€[0,72),
a(t) = {O, t € [12,00).
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Note that the expression for ¢;(t) holds because, under Assumption 1, queue 2 will only be emptied once. Also,
Assumption 1 implies that ¢} (¢) > 0 for ¢t € [2, 72 + 7%), so that 27,(t) = s2 — Aa(s) /a2 and 27, (t) = s1p11.
Finally, Assumption 1 implies that ¢;(¢) > 0 for t € [0,72), except possibly for an initial interval containing
0 in which Ay (¢) = s1p11 if ¢1(0) =0. Thus, 2§, (¢) = s1p11 for ¢ € [0, 72).
Next, define the adjoint vectors
. hi(mf —1), te|0,77),
p1(t) — 1( 1 ) [ ’ 1)
0, t € [ry,00),
hQ(TQ—t)+h1%T*7 tG[O,TQ),
py(t) = § 2 (my + 7% —t), te[r, 2o +77),

K22

0, tE€[ra+7",00).

Lastly, define the multipliers

i) = {o, tefo,7),

hi, te[ry,00),
0, tE[O,TQ),
n;(t) = hg*hlﬁ, tG[TQ,TQ +T*),
ho, t € [m+7*,00);
T (t telo,
'Y;(t) _ pl( )/’Llla E[ 7*7—1)’
0, tery,o00),
5(t tel0
'_Y;(t) — pZ( )M227 E[ ;T2 +*T )7
0, te€[r+7",00);
$12 — pi (H) a2 + 5 () paz, t€[0,72),
6;2(15) = 07 t€[7'277'2+7'*),
P12 — P; (1) pa2, te[r+7",00);

and &5, () =&55(t) =0 for all ¢ > 0. Note that n3(t) > 0 because hapias > hipi12 by assumption. In addition,
because hi 12 < hofiog, Efo(t) = ¢ro — hapiia (75 — ) + hopioa (T2 — t) + ki 127" is non-increasing on [0, 75). If
7 >0, £55(t) = 0 as t — 75 because hipi1o(7) — 7" — 7o) = p10. If 77 =0, &5 (t) = 12 — 1 p112GT2 (g1 (12)) >0
as t — 15. Thus,

B12 — hapiaz (77 — 1) + hafioa (T — ) + hypt127" >0 (34)

and &5, (t) > 0.
The conditions (ODE), (ADJ), (C), (J), and (H) are verified straightforwardly by construction. For (AH),

Vo L(g(8), 27 (), p" (), 17 (), 7" (8), € (t)) = —p5 () pas + 71 (1) — 5, (1) =0
because &}, () =0 and ~; (£) = p; ()1 Similarly,

Vi L(q (£), 27 (1), p7(8),m7 (1), 77 (1), £ (1)) = —p3(t) 2z + 73 (t) — §35(¢) =0
because &5, (1) =0 and 3 (t) = p5(t) paz. Finally,

VZIZL(q* (t)a Z*(t),p* (t)a 77* (t)v ’7* (t)a g* (t)) = ¢12 _pi (t)pﬂ? + ’75 (t) - 5;2 (t)
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For £ 7+ 7°, 613 — pi(E)pinz + 75 () — E5(t) = 0 because the 43(t) = 0 and &,() = éra — pj (t)purz. For
te [7_277_2 +T*)7

P12 — D} (a2 + P (E) paz = dro — hupaz (77 — ) — (T2 + 7" — 1)) = d12 — hap12G7*™ (gf (2 +77)) =0.

Finally, for ¢t € [0,72), ¢12 — pi ()12 + 73 () — &12() = 0 because 75(t) = P12 — pi(t) a2 + 75 (¢).

Lastly, for (M), it is easy to see that 27, (t) should always be maximal. The coefficients of z7,(¢) and z5,(t)
are respectively ¢12 — pi(t)p12 and —p5(t)p2e. When t € [0,72), pi(t)p12 — d12 < pi(t) 2 (see (34)), and it
can be verified that the inequality holds for all other ¢ with equality for ¢ € [y, 75 + 7*). Thus, it is optimal
to have z3,(t) being maximal for ¢ > 0. When t < 7o, ¢5(t) > 0, and so z3,(t) =0 is optimal (there is no spare
capacity for pool 2 to help class 1). When ¢ € [ro, 72 +7*), ¢12 — pi(t)1112 <0, so it is optimal to maximize
z}5(t) in the sense of partial sharing, i.e. z7,(t) = s2 — 255(¢). When ¢ > 75 + 7%, ¢12 — pi ()12 >0, so it is
optimal to have z7,(¢) = 0. This completes the proof. [

Appendix C: Proof of Asymptotic Optimality

In this section, we provide the proof of Theorem 3. Lemma 2 establishes the first part of the theorem. For
the second part of the theorem, we take the following steps:

1. We first show in Theorem 8 that there exists a fluid limit under any admissible control.

2. We then show in Theorem 9 that the fluid limit under the fluid translated control {#"},>; follows the
optimal fluid trajectory given in Section 3.

3. The key to verifying Theorem 9 is the continuity in the G and G factors, which is established in Lemma 3
and Lemma 4, respectively.

For notational convenience, we define the scaled version of the estimated arrival rate:

A (t) = AnT@) = \;(t) + €' (t), where €7(t) = Er(t)/n.

K3

Then, we can rewrite G* , (nz;) as G%,, (nx,) = inf {A >0: ftHA (811 — NP (8)) ds = xl} With a little abuse
of notation, we redefine the input of the function as x;, instead of nx;, i.e.,

B t+A
G (x:) :inf{AEO:/ (siuii—)\?(s))ds:xi}. (35)
t
We start from proving the following lemma, which establishes the results in the first part of Theorem 3.
LEMMA 2. For any admissible control ™ for system n, V™" (z) > V*(x).

Proof. 'We suppress the superscript 7" from the corresponding processes to simplify the notation. Let
g (t,x) = AP (t) = 32, (w7 (2))iynpns; for t € [0,T(2)],2 € Ng. Note that
M;() == X7 () — na; —/ g7 (s, X"(s))ds
0

is a zero-mean martingale by the Dynkin formula. Taking expectation gives
t t
E,[X" ()] = na: + / E.[g" (s, X" (s))] ds = na: + / (n/\,-(s) —nYE, [z;;(s)]uij> i (36)
0 0 ,
J

for t € [0,T'(x)].
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Consider the (fluid) policy w: u,(E.[X™(¢)/n]) = E.[Z"(t)], i.e., if at time ¢t we have ¢(t) =E,[X"(t)/n],
then z(t) = E,[Z"(t)]. u,(z) for other values of ¢ and x can be defined arbitrarily. Note that for each j,
> 2i(t) =22, E[Z] ()] < s5, and (36) implies that

0<EL X7 (0)/n] =, + | (w - E. [Z:j(s)]uij) ds

for t € [0,T(x)]. Thus, u is an admissible control for the fluid problem and the corresponding fluid dynamics

take the form:
0:(t) =EL[X7(t)/n], 2;(t) =E.[Z(t)] forte[0,T(x)].

Then,

Ve (z) =K,

/T(I) <Z %in(t) + Z Gij 2y (t)) dt‘|

i i#]

T(z)
0 i i#j
>V*(z). O
To prove the second part of Theorem 3, we first introduce a notion of a fluid limit and show in Theorem 8

below that there exists a fluid limit under any admissible control. Let ¥ = (}711, Vi, }722), where
t
Y (t) :/0 Z(s)ds
is the total amount of time spent by pool j servers on class i customers up to time t.

THEOREM 8. There exists almost surely a subsequence {n, : k € N} such that (X", Y™) — (X,Y) uni-
formly on compact intervals (u.o.c.) as n— oo. Moreover, (X,Y) is Lipschitz continuous and satisfies

(a) X(0)=z, X(t) >0 fort>0;

(b) Xi(t) = Xi(0) + fy Mi(s) ds — 30, Vi (D) ey

(¢c) Y(-) is non-decreasing with Y;;(0) =0;

(d) >, (Yi;(t) = Yi;(s)) < s;(t—s) for j=1,2 and 0 < s <.

Proof. By Strong Law of Large Numbers, the scaled number of arrivals

A0(t) = %si (/Ot A?(s)ds) - %si <n/0t A(s) ds) ,

where S; is a rate-1 Poisson process, satisfies

t

Ar(t) —>/ Ai(s)ds

0
uniformly on compact sets (u.o.c.) as n — co. The rest of the proof follows from Theorem 6.5 in Dai and
Harrison (2020). O

From Theorem 8, there exists a fluid limit for the sequence of systems under the fluid translated control

{?"}n>1 of Theorem 3. We next show that any fluid limit of the sequence of systems under policy {7"},>1

is equal to the optimal fluid trajectory. Let (¢*,y*) denote the optimal fluid trajectory, i.e., (¢*,2*) is as
defined in Theorem 1 and y;;(t) = fot z;;(s)ds.
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THEOREM 9. Let ()_( Y)= (Xl,Xg,Yll,Ylg,YQQ) be a fluid limit for the sequence of systems under policy
Y)= (¢

{Pntnz1. Then, (X Y.
Before we prove Theorem 9, we first present two auxiliary lemmas that will be used in the proof.

LEMMA 3. If t+— Z,(t) is continuous, t — GL(Z;(t)) is also continuous.

Proof. We will show that ¢ — Gi(z) is continuous for any fixed z > 0. To simplify notation, let a;(t) =
Siptss — Ni(t). Fix t >0 and let € > 0 be an arbitrarily small constant.
Case I: t > k;. We may assume that ¢ — e > ;. Note that ftJrG () a;(s)ds > x if § <e. Thus,

G (z) < GH(z) + 0 < GH(x) + ¢

Next, note that &;(0) := f: ; HGi@) a;(s)ds is a continuous function of §. As &;(0) < z, there exists §; >0

such that for all 0 <§ <y, & () < z. Thus,
G (x) > Gi(x) —

Above all, for 0 <5 < eA6y, |G (x) — G (x)| <, i.e., we have left- continuity.
For the right continuity, we first note that for 0 <4 <e fH_G @ g s)ds < x. Thus,

G (z) > Gi(x) — 6 > Gl (x) —

Next, note that &(6) := ftir;JrG (e a. (s )ds is a continuous function of d. As & (0) > z, there exists do > 0

such that for all 0 <§ < da, £3(9) > . Thus,
Git(z) <Gi(z)+e
Above all, for 0 <& < €Ay, |GIT(z) — Gi(z)| <, i.e., we have right-continuity.
Case II: t < k,. Note that for 0 <§ <k; —1t, fHG (x) a;(s)ds > x. Thus,
G (@) < GU(2) — § < G(w),

t
Next, note that £3(6) = f:_:_éc"'(z)feﬂ a;(s)ds is a continuous function of §. As &3(0) < z, there exists d3 > 0,

such that for 0 <§ < d3 &3(6) <z Thus,
G () 2 Gia) — /25

Above all, for 0 <5 <83 A ¢€/2, |G (2) — Gl (z)| = Gi(x) — Gi1°(x) <, i.e., we have right-continuity.
For the left continuity, we first note that for 0 <§ < x; — ¢, ft+G (@) a;(s)ds < x. Thus,

G (@) 2 Gi(z) +0 = Gi(2).

Next, note that £4() := f:J;G (@) re/2 a;(s)ds is a continuous function of §. As £,4(0) > x, there exists d4 >0

such that for 0 <§ <44, £4(8) > = Thus,
G (z) < Gi(x) +¢€/2+ 6.

Above all, for 0 <6 <6, Ae/2, |GE0(z) — Gi(z)| = G °(z) — GY(z) < ¢, i.e., we have left-continuity.
Case III: t = k,. The right-continuity follows the right-continuity argument of case I and the left-continuity
follows the left-continuity argument of case II.

The proof that ¢ — G%(g;(t)) is continuous in ¢ follows similarly. O
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For the next lemma, recall the definition of @:n(x) in (35).
LEMMA 4. If X1(t) is bounded on [0,k41], X7(t) >0 and X7 (t) = X1(t) uniformly on t € [0, k1], then
G (X7 (1) = Gy (X (1))

uniformly on t € [0, k1] as n— co. The same is true on the interval [k1, A] for any A > ki. The same is also

true for class 2 on any closed bounded interval.

Proof of Lemma 4. Note that the assumptions imply that there exist Ny > 0 and B > 0 such that X7 (¢t) <
B for all n > Ny and all ¢t € [0, k1]. Let a> 0 (we use « instead of € to avoid confusion with the error function

€"(+)). It suffices, then, to show that there exist N; >0 and § > 0 such that

G (21) = G (22)| S @

for all n > Ny, t€[0,k1] and 0 <zq,29 < B and |z, — 22| < 0.
Note that because Gi(B) is a continuous function of ¢, Gi(x) is bounded, say by C, for ¢t € [0,;] and
0<z<B. Let

K1+s+a
D(a) = inf / (Sllu]_l — )\1(U>) du.

o<s<e [, o,
Note that D(«) > 0 because syu11 > Ar(u) for u > k;.

Now, observe that

t+Gl (z1) +o
/ (s1p11 — A1 (u) — €} (u)) du
t

t+G (z1)+o
2/ (s1p11 — A1 (u) — €] (u)]) du
t

t+G (x1) t+GY (z1)+o t+GY (z1)+o
= [ - ) dus [ (sup = Ma(w) du— [ €7 (u)| du
t t t

+Gt (21)
>r14+D(a)—(C+a) sup |ef(u)]

t<u<t+CHa
>z, + D(a)/2
for n > Ny large enough, since €*(-) — 0 u.o.c. by assumption. Therefore, if x5 < 21 + D(«)/2, then

étl’n(acQ) <Gi(z1)+a.

Next, observe that
t—‘rG’i(zl)fa
/ (514111 — A1 (u) — €7 (u)) du
t

t—‘rG’i(zl)fa
S/ (51411 — A1 (u) + €7 (w)]) du
t

t—‘rth'(zl) t+Gt1(:vl) t—‘rG%(zl)fcx
- / (514021 — A () du— / (514021 — A (w)) du + / 5 () du
t t t

+Gi(z1)—a
<z1—D(a)+(C—a) sup |ef(u)l

t<u<t+C—a

<1 — D(a)/2
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for n > Ny large enough, as before. Therefore, if x5 > 21 — D(«)/2, then
G (22) > Gl (21) —

(We have assumed above that t + G (z1) — a > K1, since otherwise it is trivial that C:'ﬁn (x2) > Gi(z1) — )
Hence, if |z3 — 21| < D(«)/2, then
G (21) =G (@) <@

for n > Ny, as required. The proof for [r1, A] and for class 2 are similar. [

Proof of Theorem 9. We divide the analysis into two cases.
Case I: hip1o > hopios. Let 171 > 0 be the time that pool 2 stops helping class 1 under the optimal fluid

control. That is,

hip2G(qi () — 12 > hapoa G (g5 (t))

for t €]0,71) and
hipa2G(qr (1) — d12 < hapoa G (g5 (1))

for t >Tj.

Supppose Ty > 0, so that hyp12GT (¢ (T1)) — dr2 = hapiaGa' (g5 (T1)). We partition [0,7}) into finitely
many subintervals [V;,Vi11) (i=0,--,n) such that 0=V <--- <V, 41 =71, and on each open subinterval
t € (V;,Viy1), either ¢;(t) =0 only or ¢;(t) > 0 only. The fact that are finitely many such intervals comes
from piecewise monotonicity assumption, i.e., Assumption 4 and the proof of Theorem 1.

We next show inductively that (X,Y) = (¢*,y*) on each [V;,V;;;). Suppose that X (V;) = ¢*(V;) and
Y (Vi) =y*(V;) for some i.

We first consider the case that ¢;(t) >0 on (V;,V;11). Because ¢;(t) decreases at the maximum possible
rate for ¢t < Ty under the optimal fluid control, we have that X, (¢) > ¢;(t) > 0 and X, (t) < ¢5(t) for all t €
(Vi, Vig1). Hence, for s € (Vi, Viy1), hip12G5(X1(8)) — 12 > hafioaG5(Xo(s)). By continuity of ¢ — GE(X,(t))
(Lemma 3), we have

hip12GY (X1 (1) — 12 > 0+ hopoa Gy (Xa(t))
for all t € [s — ¢, s+¢], for some €, > 0. Since (X7 (t)/n, X5(t)/n)) = (X1(t), X2(t)) w.o.c., we have by Lemma
4 that
hapi2GY L (X7 (1) /1) — dr2 > 8/2+ hopiosGhy (X5 (t)/n) and X7(t) > 51+ s
for all t € [s —¢,5+ €], for n large enough. According to the scheduling policy, for each such nth system and
t € [s—¢€,5+¢], pool 2 prioritizes class 1, so that dY™(t)/dt = (s1, s2,0). In addition, since h;pu12GY (g} (t)) —
P12 > hopaaG(g3(1)),
hipn2GLX1 (1)) — dra > hapiza G5 (Xa(t))

for all t € (V;, Viy1). Then, dY (t)/dt = dy*(t)/dt for all (regular) ¢ € (V;,Vi;,), which implies that (X,Y) =
(q¢*,y*) on t € [V;,Viyq]. In particular, X (Vi 1) =¢*(Viy1) and Y (Viy1) = y*(Viy1). This technique — applying
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Lemma 4 to derive inequalities involving é:n(in (t)/n) based on inequalities involving Gt(X,(t)) — is also
used in subsequent cases in the proof.

We next consider the case ¢f(t) =0 on (Vi,Viy1). Suppose that X;(t) > 0 for some t € (V;,V,y1). Let
S =sup{s <t:X,(s) =0}. Note that X,(S) =0 by continuity, and that S > V; because X;(V;) =0. By
definition X (s) > 0 for all s € (S,#]. Then, following similar lines of analysis as in the case when g;(t) > 0,
dY™(t)/dt = (s1,82,0) for large enough n and dX;(t)/dt = \i(t) — s1p11 — Sapt12 < 0. In this case, X;(s) is
non-increasing in (5,¢]. Thus, X;(s) > X;(t) >0 for s € (S,t]. This implies that X,(s) is not continuous at
s =9, a contradiction. This implies that X, (t) =0 for t € (V;, Vi41). In addition, by Assumption 1, X5 () >0
on (V;,Viy1), which implies that d(Y12(t) 4+ Yaa(t))/dt = sy on (V;,Viiy). As dYy(t)/dt = s; and X, (t) =0,
we have ~

dYi2(t) _ Aul(t) —sipan _ dyis(t)

dt [i12 dt or E( (2] z+l)

Thus, (X,Y) = (¢",y") on [V;, Vij4].

By induction, (X,Y) = (¢*,y*) on [0,7}).

Lastly, we analyze (X(t),Y(t)) for t > T}. Note that for Ty >0, ¢;(T}) > 0. Let T, > T} be the first
time ¢; empties, i.e., Ty = inf{t > T} : ¢;(t) = 0}. Let Sy > T; be the first time X; empties, i.e., Sy =

inf{t > T, : X;(t) =0}. For Ty <t < Sy, X;(t) > 0. By the same reasoning as before, we have that there
exists € > 0 such that X7 (s) > s; for s € [t — ¢,t + €], for n sufficiently large. Thus, according to our
scheduling policy, dY;;(t)/dt = s;. This implies that hu12G% (X, (t)) — ¢1o decreases at rate at least hyjiio,
whereas haf22G5 (X5 (1)) decreases at rate at most hofigs. Since hyfirs > hopins and hy 112G (X1 (Th)) — 1o <
hopiaaGat (Xo(T)) (strict inequality is possible if 7} =0), we have that for all Ty <t < Ss,

hip12GY (X1(t) — d12 < hopaa Gy (X (t)).

Following similar lines of argument as before, we can show that for each ¢t € (71, 5>) and large enough n,
pool 2 only serves class 2 in the nth system at time t. Therefore, X, (t) = g;(t) for t € (11, S2) and Sy =Ts.
For t > Ty, X,(t) =0. Hence, X, (t) = ¢:(t) for all t.

The above also establishes that X, = ¢3, Y12 =45, and Yas = 43, on (T, Ts), where Ts = inf{t > T} : ¢5(t) =

0} is the common emptying time of the class 2 queue for both ¢ and X,. For ¢t > T3, we again have that
hap12GE (X1 (1)) = b1z < haopiaa G5 (Xa (1)),

as shown above if ¢ < S, and trivially if ¢ > S,. Therefore Y;5 =y}, for t > Ty, and pool 2 only serves its
own class for large enough systems. Since X; = ¢, this also implies that Y;; = y},. Finally, for ¢ > Sy, since
X5 () <0 whenever Xy () >0, Xa(t) = q5(t) =0 and Yoo (t) =y, (t).

Case II: hqp1o < hopios. The case of interest is the one where pool 2 provides partial help to queue 1 in
q*, i.e., after queue 2 has emptied, queue 1 is still large. If no partial help occurs, the result will follow from
the analysis in case I.

Let T} =inf{t > Ky : ¢3(t) = 0}. Similarly, let S; = inf{t > k3 : X5(t) = 0}. For t < S; AT}, we have X,(t) > 0.
By the same reasoning as in Case I, dY;(t)/dt = s, = dy},(t) /dt. This implies S; =T. Thus, (X,Y) = (¢*,y*)
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on t € [0,Ty]. For t > T}, we can show as in Case I that X}(t) <0 if X5(t) > 0, so that X5(t) =0 = g5(t).
Hence also Yo (t) = y3,(t) for t > Ty.

Next, let T5 > T be the time at which partial help by pool 2 ends under the optimal fluid control. For t €
[T1,Ts), hip12GL (g (t)) > ¢12 and g3(t) = 0. Note that X, (t) =0 for ¢ € [T}, T,) as well. Because the optimal
fluid control minimizes ¢, (t) for ¢ € [T}, T») while keeping ¢ (t) at zero, we have that X, (t) > ¢;(t) >0 for t €
[T}, Ty). Hence, hyp112GY (X1 (1)) > ¢1o for t € [T1,Ty). Thus, d(Yia(t) + Yao(t))/dt = so = d(yi,(t) +yie(t))/dt
for t € (T1,Ty). Since Yay = ¥, this implies that Yi(t) = yi,(t) for t € [T}, T»). Hence also X (t) = ¢:(t) for
teTy,Ts).

For t > Ty, hyp12G4 (X1 () < ¢12. Following similar lines of argument as before, Yo (t) =y, (t) = iy (T2),
Yii(t) =yiy () and X11(t) = ¢5,(t). O

With Theorem 9, we are now ready to prove the second part of Theorem 3.
Proof. Recall that (X™,Y™) — (¢*,y*) uniformly on [0,7(x)] almost surely, which implies that X (¢) is
uniformly bounded in n and ¢. Also, note that Y3 (T (x)) < soT(x) is bounded. We have

o () _ _
@) <E| [ h X O+ V(T ()

_ / ST RELR () de + B (T())] since X7 (1) 20

7

T ()
—>/ Z hiq; (t) dt + ¢12y55(T(x)) as n — oo by bounded convergence
0 i

=V*(z). O
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E-companion for “Optimal Routing under Demand Surges:
The Value of Future Arrival Rates”

In this E-companion, we provide results from additional numerical experiments as well as the
proofs for Theorems 2, 4, 5, and 6. These proofs require constructing the optimal fluid trajectories
q¢* and the corresponding adjoint vectors p* so that we can verify the conditions in Theorem 7.

The derivations are similar to those of Theorem 1.

Appendix EC.1: Simple Priority Switching Structure for the N-model
The optimal scheduling policy derived in Theorem 1 can be characterized via a time-and-state-

dependent switching curve, which is defined as

PY(t) = hlﬂlQGi (q1(t)) — d12 — h2M22G§(Q2(t))-

In Case I, when v(t) > 0, pool 2 gives priority to class 1; otherwise, pool 2 serves class 2 only.
Furthermore, Lemma 1 indicates that in Case I, pool 2 switches priority at most once throughout
the planning horizon. If it switches priority, it is from class 1 to class 2. If it does not switch priority,
it serves class 2 only throughout the planning horizon. This is a highly desirable feature for policy
implementation, since frequent priority switching can impose additional administrative burdens.

In the case of constant arrival rates, the switching curve reduces to a simple threshold policy.
In particular, the switching curve partitions the state space of (q;(t),q2(t)) into two regions. In
one region, pool 2 gives priority to class 1; in the other region, pool 2 serves class 2 only. To
demonstrate this, Figure EC.1 (a) plots the optimal fluid trajectory (q;(t), g2(t)) for different initial
queue lengths. The switching curve is the grey line in the figure. When (g, (%), ¢2(t)) is below the
curve (i.e., when ¢, (t) is sufficiently larger than ¢,(t)), pool 2 prioritizes class 1; otherwise, pool 2
serves class 2 only.

The switching curve structure also allows us to conduct sensitivity analyses to visualize the
impact of different system parameters. For example, Figure EC.1 (b) compares the fluid trajectories
when ¢, =1 (solid) to the fluid trajectories when ¢, =5 (dashed). As the overflow cost increases,

the optimal policy switches priority from class 1 to class 2 “earlier”.

Appendix EC.2: Value of Cross-training

The N-model and the X-model differ in whether pool 1 is cross-trained to help class 2 (pool 2
can help class 1 in both models). The X-model has the obvious advantage that when class 2 is
overloaded, pool 1 can help class 2 to alleviate the demand surge and bring the system back to

normal faster than in the N-model. Meanwhile, somewhat surprisingly, even when only class 1 is
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Figure EC.1 Optimal trajectory of the N-model with different initial queues and overflow costs. (Parameter

setting: S§1 =582 =2, 11 = p22 =0.25, p12=0.2, A =X=0.3, h1=1.5, ho = 1.)

experiencing a demand surge, the extra flexibility in the X-model is beneficial. In particular, as
we explained in Section 5.1, because pool 1 can later help back class 2 in the X-model, pool 2 can
provide more help to class 1 (prioritize class 1 for a longer period of time) in the initial stage. This
helps reduce the class 1 congestion faster in the X-model than in the N-model. To demonstrate
the latter point, Table EC.1 compares the time to empty queue 1 and the time to empty queue
2 (which is also the time to empty the whole system) under the optimal control for the X-model
versus the N-model. We vary the level of demand surge experienced by class 1, while class 2 does
not experience any demand surge. Note that in all cases, not only is the X-model able to empty
the class 1 queue faster than an otherwise identical N-model, but also it empties the system (both

queues) faster than the N-model does.

A | 2] 4] 6
Time to empty queue 1

Table EC.1

X-model

50.0

108.1

166.4

N-model

51.4

117.8

184.2

Time t

o empty queue 2

X-model

09.2

138.2

217.2

N-model

99.6

140.8

222.1

Compare the N-model and the X-model under different levels of demand surge for class 1 (s1 =3,

S2 = 4, M11 = 22 = 0.25, H12 = 0.18, h1 = 2, h2 = 1, ¢12 = 1, )\1(t) = )\H X 1{0 S t S 20} +0.5 x l{t > 20},
A2(t) = 0.6, q1(0) =10, ¢2(0) = 0. For the X-model, p2; =0.18 and ¢2; =1.)

Appendix EC.3:
EC.3.1.

Additional Numerical Experiments
Fluid trajectory for exIN2-model

Figure EC.2 compares the optimal trajectory of an exN2-model (a) with the optimal trajectory of

a similar N-model (b). For the N-model, we assume that pool 1 can serve both classes 1 and 2,
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while pool 2 can serve only class 2. The two systems share the same parameters for the first two
classes (see the caption of Figure EC.2 for more details).

For the exN2-model in our example, we have hapia1 > hspzr > hip1. Thus, we observe that pool
1 first provides full help to class 2 and then switches priority to help class 3. Pool 1 stops helping
class 2 at t =4.6. In contrast, in the N-model, pool 1 stops helping class 2 at ¢t = 6.1. This is
because in the exN2-model, pool 1 can also help class 3 and, thus, may provide less help to class
2 in order to help class 3. In the exN2-model, pool 1 provides full help to class 3 from ¢t =4.6 to
t =7.6. Lastly, we note that because class 2 gets more help from pool 1 in the N-model, its queue

empties faster in the N-model than in the exN2-model.

10 . 10 . .

ol —a,(t) ol —a,(®) | |
—2z,,) —2,,(1)

8f z.. ()] 8f ]
<1l

7F 7t

6F 6l

5t 50

41 4l

3t 3p

2 - 2

1

1 : 1t

0 - 0

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

t t

(a) exN2-model (b) N-model
Figure EC.2 Optimal trajectory of the exN2-model versus the N-model. (s; =s2 =2, \{ =2 =0.3, p11 = po2 =
0.25, p21 =0.2, ¢p21 =1, hi =1, ha = 1.5, ¢1(0) =5, g2(0) = 10. For the exN2-model, s3 =2, A\3 =0.3,
piaz = 0.25, pz1 =0.18, 13 =1, hy =1, and g3(0) = 10.)

EC.3.2. Performance of different policies in the stochastic systems

EC.3.2.1. Tuned versus untuned policies for the N-model Table EC.2 shows the cost
comparison between the tuned and untuned policies for the N-model. We set the tuning parameter
0 = 0.8 in the tuned policy, where 0 is used for 0Gj . (gru+)(t)) on the left-hand side of (12)
and (13) in the heuristic policy. Note that the untuned policy (with § =1) is the fluid optimal
control policy for the N-model. From this table, we observe that the tuned policy can achieve a
slightly better performance than the untuned policy can in the stochastic system. The relative cost

difference between the tuned and untuned policies is 1.1% to 2.1%.

EC.3.2.2. Additional comparisons for the N-model Table EC.3 reports the average costs
under our policy as well as those under the benchmark policies in the following arrival rate setting:

8, t<40 3, t<40
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Tuned (0 =0.8) Untuned (#=1)
First Arrival Setting

¢ =2 | Holding 1.08 1.09
Overflow 0.13 0.14

Total 1.21 1.23

SE 0.003 0.003

¢ =10 | Holding 1.13 1.10
Overflow 0.51 0.56

Total 1.64 1.67

SE 0.004 0.004

¢ =25 | Holding 1.47 1.28
Overflow 0.78 1.00

Total 2.25 2.28

SE 0.005 0.005

Tuned (# =0.8) Untuned (0 =1)
Second Arrival Setting

¢ =2 | Holding 2.72 2.78
Overflow 0.28 0.29

Total 3.00 3.07

SE 0.007 0.007

¢ =10| Holding 2.68 2.70
Overflow 1.31 1.37

Total 3.99 4.08

SE 0.008 0.008

¢ =25 | Holding 2.78 2.72
Overflow 2.81 2.98

Total 5.59 5.70

SE 0.010 0.010

Table EC.2  Simulation costs for the N-model over 10000 replications. The holding cost 2 = (1.5,1). The costs
shown in the table are in units of 10*. “SE” stands for the standard error for the corresponding total cost. The
tuning parameter 6 is for GGZ@*)(qk(i*)(t)) on the left-hand side of (12) and (13) in the heuristic policy.
(h=1(1.5,1), s; =20 and p;; =0.25, for i =1,2, 12 =0.2, ¢12 = ¢, A\2(t) = 3. First arrival setting:

A1(t) =8 x 1{t <40} +4 x 1{¢t > 40} and X (0) = (60,70). Second arrival setting:

A(t) =12 x 1{t <40} +4.5 x 1{t > 40} and X (0) = (30,40).)

That is, the arrival rate of class 1 drops sharply once the demand surge is over, while the arrival
rate of class 2 increases slightly at the same time. All other parameters are the same as in the
baseline setting.

The costs for policies in Figure 7 are in the first panel (¢ =2): 1.11 x 10* for our policy versus
1.68 x 10* for the modified maximum pressure policy — 50% higher than ours. This performance
gap further enlarges as ¢ increases. The cost under modified maximum pressure policy is around
twice the cost under our policy when ¢ = 25. More generally, the two maximum pressure policies
can perform arbitrarily worse than our policy as the arrival rate of class 2, after the demand surge

of class 1 is over, gets closer to 5. This is because too much help during the demand surge will
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result in the class 2 queue taking an extremely long time to deplete when the slackness of pool
2 approaches 0. On the other hand, the modified cu policy performs well in this case, since it is
a no-overflow policy. However, the modified ¢y policy doubles the cost of our policy in Table 1.
This indicates that the performance of policies that do not use future arrival rate can vary a lot
depending on the arrival rate patterns, which highlights the value of our look-ahead policy in a

time-nonstationary environment.

‘ Look-ahead MaxPres ModMaxP Cmu ModCmu

=2 | Holding 1.07 1.60 1.59 291  1.28
Overflow  0.03 0.09 0.09 0.14  0.00

Total 1.11 1.69 1.68 3.05  1.28

SE 0.002 0.006 0.006  0.010  0.002

é =10 | Holding 111 1.60 1.54 201  1.28
Overflow  0.11 0.46 0.44 0.73  0.00

Total 1.22 2.06 1.99 364  1.28

SE 0.002 0.006 0.006  0.010  0.002

6 =25 | Holding 1.28 1.60 1.46 201 1.8
Overflow  0.00 1.16 1.06 1.84  0.00

Total 1.28 2.76 2.52 475  1.28

SE 0.002 0.007 0.006  0.012  0.002

Table EC.3 Expected total cost for the N-model under different scheduling policies. The costs shown in the
table are in units of 10*. “SE” stands for the standard error for the corresponding average total cost (holding +
overflow). (A:(t) =8 x 1{t <40} + 1 x 1{t > 40}, A2(¢t) =3 x 1{t <40} +4.5 x 1{t > 40}. Other parameters are the

same as the baseline.)

EC.3.2.3. Different policies for the X-model For the X-model, we consider the same two
settings for the N-model: the baseline setting specified in Section 6.1, as well as the second setting
of Section 6.2. In the X-model, pool 1 can also serve class 2 customers if necessary. Table EC.4
reports the cost comparison among different policies. The “Look-ahead (opt)” policy corresponds
to the optimal fluid control derived in Section 5.1, while the “Look-ahead (heu)” policy is the
heuristic policy — i.e., (12) and (13) — with tuning parameter § = 0.8. In all cases tested, our
heuristic policy achieves performance that is comparable to (slightly worse or slightly better than)
that of the fluid-optimal policy.

Table EC.5 shows the cost comparison between the tuned and untuned policies for the X-model.
In the table, the “N-policy Untuned” and “X-policy Untuned” stand for the directly translated
optimal fluid control policies derived for the N- and X-models, and for the “N-policy Tuned”, we
use the tuning parameter # = 0.8. From this table, we observe that the relative cost difference

between the tuned and untuned policies is 0.6% to 2.1%.
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Look-ahead (opt) Look-ahead (heu) MaxPres ModMaxP Cmu ModCmu
Arrival Rate Setting I
¢ =2 | Holding 1.09 1.08 1.10 1.10 1.08 2.75
Overflow 0.14 0.13 0.13 0.13 0.22 0.00
Total 1.23 1.21 1.23 1.23 1.29 2.75
SE 0.003 0.003 0.003 0.003 0.003  0.008
¢ =10 | Holding 1.10 1.13 1.10 1.11 1.08 2.75
Overflow 0.56 0.51 0.65 0.62 1.08 0.00
Total 1.67 1.64 1.75 1.73 2.16 2.75
SE 0.004 0.004 0.004 0.004 0.005  0.008
¢ =25| Holding 1.28 1.47 1.10 1.13 1.08 2.75
Overflow 1.00 0.78 1.63 1.41 2.70 0.00
Total 2.28 2.25 2.73 2.54 3.78 2.75
SE 0.005 0.005 0.005 0.005 0.007  0.008
| Arrival Rate Setting IT
¢ =2 | Holding 0.95 1.08 0.93 0.93 0.90 1.28
Overflow 0.08 0.03 0.20 0.20 0.31 0.00
Total 1.03 1.11 1.13 1.13 1.22 1.28
SE 0.002 0.002 0.002 0.002 0.003  0.002
¢ =10| Holding 1.02 1.15 0.93 0.92 0.90 1.28
Overflow 0.28 0.07 1.01 0.98 1.59 0.00
Total 1.30 1.23 1.95 1.90 2.50 1.28
SE 0.002 0.002 0.002 0.003 0.004  0.002
¢ =25 | Holding 1.27 1.28 0.93 0.93 0.90 1.28
Overflow 0.00 0.00 2.54 2.12 3.98 0.00
Total 1.28 1.28 3.48 3.05 4.89 1.28
SE 0.002 0.002 0.006 0.006 0.008  0.002

Table EC.4 Expected total cost for the X-model under different scheduling policies. The costs shown in the
table are in units of 10*. “SE” stands for the standard error for the corresponding average total cost (holding +
overflow). (Parameter setting: h = (1.5,1), s; =20, pi; =0.25, pi; = 0.2, ¢y; = ¢ for i # j and X (0) = (60,70). For

the first arrival rate setting, A\ (¢t) =8 x 1{t <40} +4 x 1{t > 40} and \2(¢) = 3. For the second arrival rate setting,
AM(t) =8 x 1{t <40} +1 x 1{t > 40} and Ao (t) =3 x 1{t <40} +4.5 x 1{t > 40}.)

EC.3.2.4. Tuned versus untuned heuristic policies for the 5-by-5 networks
Table EC.6 shows the cost comparison between the tuned and the untuned policies for the 5x5
model. We set the tuning parameter 6 = 0.8 in the tuned policy. We observe that the relative cost

difference between the tuned and untuned policies is 1.2% to 4.1%.

EC.3.2.5. Clearing a large backlog with constant arrival rates We consider a setting
where there is a large initial queue to be cleared, and where arrival rates are constant. Specifically,
the initial queue lengths are X (0) = (400, 70), while the constant arrival rates are A\; =3 and Ay = 3.
As in the baseline setting, we set costs hy = 1.5 and hy =1 and service rates 1, = 22 = 0.25 and

12 =0.2. Also s; = s3 = 20. The results are shown in Table EC.7.
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N-policy Tuned (6 =0.8) N-policy Untuned X-policy Untuned
First Arrival Setting

=2 | Holding 1.08 1.09 1.05
Overflow 0.13 0.14 0.16

Total 1.21 1.23 1.21

SE 0.003 0.003 0.003

¢ =10 | Holding 1.13 1.10 1.10
Overflow 0.51 0.56 0.56

Total 1.64 1.67 1.67

SE 0.004 0.004 0.004

¢ =25 | Holding 1.47 1.28 1.28
Overflow 0.78 1.00 1.00

Total 2.25 2.28 2.28

SE 0.005 0.005 0.005

N-policy Tuned (6 =0.8) N-policy Untuned X-policy Untuned
Second Arrival Setting

¢ =2 | Holding 2.63 2.64 2.64
Overflow 0.30 0.32 0.32

Total 2.94 2.96 2.96

SE 0.007 0.007 0.007

¢ =10| Holding 2.67 2.67 2.67
Overflow 1.31 1.40 1.40

Total 3.99 4.07 4.07

SE 0.008 0.008 0.008

¢ =25 | Holding 2.78 2.72 2.72
Overflow 2.81 2.98 2.98

Total 5.59 5.70 5.70

SE 0.010 0.010 0.010

Table EC.5 Simulation costs for the X-model over 10000 replications. The costs shown in the table are in units
of 10*. “SE” stands for the standard error for the corresponding total cost. In the table, the “N-policy Untuned”
and “X-policy Untuned” stand for the optimal fluid control policies derived for the N- and X-models, and for the
“N-policy Tuned”, we used the tuning parameter 0 = 0.8 for 0G/, ;) (qx(i)(t)) on the left-hand side of (12) and
(13). (h=1(1.5,1), s, =20 and p;; =0.25, for i =1,2, p12 =0.2, ¢12 = ¢, A2(t) = 3. First arrival setting:
A1(t) =8 x 1{t <40} +4 x 1{t > 40} and X (0) = (60,70). Second arrival setting:
A1(t) =12 x 1{t <40} +4.5 x 1{t > 40} and X (0) = (30,40). For the X-model, ;21 =0.2 and ¢2; = ¢.)

Note that G%(q;(t)) = ¢;(t)/2 for i = 1,2. Thus, when ¢ =2 is small, our policy is almost the
same as the (modified) maximum pressure policy. However, when ¢ is larger than 2, our policy
performs better than the two maximum pressure policies. Our policy is better than the cu policies

throughout.

Appendix EC.4: Proof of the optimal fluid control for the N-model
with multiple demand surges

Proof of Theorem 2. We will construct the optimal primal and dual trajectories under the

policy characterized in Theorem 2 and show that the conditions in Theorem 7 are satisfied. We
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Tuned (0 =0.8) Untuned (#=1)
Network Structure 1
¢ =2 | Holding 3.21 3.24
Overflow 0.52 0.53
Total 3.73 3.77
SE 0.007 0.007
¢ =10 | Holding 3.45 3.33
Overflow 2.05 2.24
Total 5.50 5.58
SE 0.008 0.008
¢ =25 | Holding 4.29 4.04
Overflow 3.57 3.95
Total 7.86 7.99
SE 0.012 0.011
| Network Structure 2
¢ =2 | Holding 3.00 3.08
Overflow 0.48 0.50
Total 3.48 3.58
SE 0.005 0.006
¢ =10 | Holding 3.07 3.12
Overflow 1.98 2.15
Total 5.05 5.26
SE 0.007 0.008
¢ =25 | Holding 3.57 3.42
Overflow 3.77 4.19
Total 7.34 7.61
SE 0.009 0.010
Table EC.6  Simulation costs for the 5x5 model over 10000 replications. The holding cost = (1.5,1). The

costs shown in the table are in units of 10*. “SE” stands for the standard error for the corresponding total cost.
The tuning parameter 0 is for 0G} ;-\ (qr(i+)(t)) on the left-hand side of (12) and (13) in the heuristic policy.
(Parameter setting: h = (1.5,1,1,1.5,1), s; =20, pi; =0.25, pi; =0.2 and ¢;; = ¢ for i # j;
A(t) =12 x 1{t <40} + 4.5 x 1{t > 40}, A2(t) =3, A3(t) =4, M\(t) =8 x 1{t <40} +4 x 1{t > 40}, As(¢t) =3, and
X (0) = (30,40, 50,60,70).)

first note that (T) holds trivially because ¢*(t) =0 for ¢ large enough and for any feasible state

trajectory, ¢(t) > 0.
Case I: hypi1o > hopios. In this case,

H{(q(t),z(t),p(t),t) =h1qi(t) + haqa(t) + P12212(t)
+p1(t) (M) — 11211 () — paazi2(t)) +pa(t) (Aa2(t) — po2zo2(1))

and
L(q(t), (1), p(t),n(t),&(t),v(t), 1) =H (q(t), 2(), p(t),t) — m () @1 (t) — m2(t)q2(t)

=& (t)211(t) — §12(t) 212(t) — Eaa(t) 202(2)
+ 71 () (211 (t) — s1) + 72(t) (212(F) + 222(F) — 82).
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‘ Look-ahead MaxPres ModMaxP Cmu ModCmu

¢ =2 | Holding 3.47 3.47 3.47 4.11 5.55
Overflow 0.16 0.17 0.17 0.25 0.00

Total 3.63 3.64 3.64 4.36 5.55

SE 0.004 0.004 0.004 0.005  0.007

¢ =10 | Holding 3.52 3.47 3.47 4.11 5.55
Overflow 0.68 0.84 0.83 1.26 0.00

Total 4.20 4.31 4.30 5.37 5.55

SE 0.004 0.004 0.004 0.006  0.007

¢ =25 | Holding 3.89 3.47 3.47 4.11 5.55
Overflow 1.11 2.11 2.01 3.14 0.00

Total 5.00 5.58 5.48 7.25 5.55

SE 0.005 0.005 0.005 0.007  0.007

Table EC.7 Expected total cost for the N-model under different scheduling policies. The costs shown in the
table are in units of 10*. “SE” stands for the standard error for the corresponding average total cost (holding +

overflow). (Parameter setting: h = (1.5,1), ¢12 = ¢, s; =20, A\1 =3, A2 =3, X (0) = (400,70).)

There are three scenarios to consider, depending on the queue lengths at time &, (i.e., the beginning
of the second demand surge).

Scenario A: gj(ky) = ¢5(kp) = 0. That is, both queues have been emptied by the start of the
second demand surge. Following the proof of Theorem 1, we obtain ¢}, p;, 2;;,n;,&;;,7; for t € [0, k).
We can then solve an “independent” optimal control problem using the initial state (0,0) to obtain
the values of ¢}, pj, 2};,n;,¢&;;,7; for t € [Ky,00). The verification of the conditions in Theorem 7
follows exactly the same lines of analysis as the proof of Theorem 1.

Scenario B: ¢j(k;) > 0. This implies that ¢;(t) >0 and ¢t + G (q;(t)) > Ky for ¢t € [0, k) (except
possibly ¢;(t) =0 in an initial interval containing zero). In this case, G (q;(t)) decreases at rate at
least one until it hits zero. As such, pool 2 does not resume helping class 1 once it stops helping

class 1. Pool 2 gives priority to class 1 for an initial time

7" =inf{t > 0: h1p1oG1(qu (1) — Pra < hapinaGi(qa(t)) }- (EC.1)

*

Thereafter, each queue is served by its primary server pool only, and is emptied at time 7, =

?

7 + GT (¢ (7*)). Note that 77 ¢ (ks, k., because the class 1 queue cannot be emptied at time

t € (Kp, k. without help from pool 2.

The optimal queue length trajectory follows:

G+ [ (a(s) = supnn — 255 (s)pna) ds,  te[0,77)
.

G (t) = G (7)) + [1 (Ai(s) = supuan) ds, telr,m),
07 te[Tl*,OO),
G+ [1(Na(s) = 255(8)ua) ds,  t€[0,77),

G(t) = S @3 (77) + [L(Na(s) — sopen)ds,  t€[r7,75),
0, t € [ry,00).
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Note that ¢;(¢)’s have exactly the same dynamics as ¢;(¢)’s in Case I in the proof of Theorem 1.
Thus, the proof of this scenario follows exactly the same lines of analysis as Case I in Theorem 1
(i.e., the two demand surges can be treat as a single demand surge).

Scenario C: ¢;(k,) =0 and g;3(ks) > 0. Pool 2 gives priority to class 1 for an initial time

7' =inf{t > 0: 7 p12Gl (a1 (1) — Pra < hofiaaGy(ga(t))}- (EC.2)

At time 77 = 7" 4+ G7 (¢ (7*)) < Ky, pool 1 is emptied.
Next, at time ry,, G%(q:(t)) jumps from zero to a positive number due to the second demand

surge, and hence pool 2 may resume helping class 1. Let
T =1nf{t > ky : hip2GL(a1 (1)) — 12 < hopiaaGo(ga(t))} (EC.3)
be the time this helping period ends. In addition, let
T =7+ G (¢ (1a))

be the subsequent time that class ¢, i = 1,2, queue is emptied.

The optimal queue length trajectory follows:

(Q1+f(;()‘1(3) — 1011 — 212(8) pa2) ds, tel0,7),
gi () + [ (a(5) = s1p111) ds, telr,m),
gi(t) = O,t ter, k),
' f,gb(/\l(s) — S1p11 — 212(8)pu2) ds, tE [k, ),
[ (s) = s1p) ds, telr,m),
O’ te [7—1/7 OO),
(g2 + [y (Na(s) — 255 (5)piz2) ds, tefo,7),
g (T7) + f:* (A2(s) — sapin2) ds, tem™, k),
g3(t) = { @3 (m) + [ (Na(s) = 25o(8)a) s, t€ [y, ),
QS(T/)+f:d()\2(S)—52M22)d8, te(r', ),
0, t € [r5,00)

Note that it may be that 27,(t) < sy for t € [0,7*) or t € [k, 7’), if 1 (t) =0 and A (t) < s1pe11 + Sapt12.
In this case, z3,(t) = so — 275(t) (since g»(t) > 0 by assumption). However, it is always the case that
25 (t) = s for t € [0,77].

Assume 7* > 0. We now partition the interval [0,7*) into subintervals I;,---, I, where n > 1,
I;=[V,.1,Vi) and 0=V, <V} <--- <V, =7*. The subintervals are defined such that in the interior
of each subinterval, i.e., t € (V;_1,V}), either (i) ¢1(¢) > 0 and g2(t) > 0, in which case we say that I;
is an interior subinterval, or (ii) ¢;(¢t) =0 and ¢2(t) > 0, in which case we say that I; is a boundary

subinterval. Note that it is not possible that ¢;(¢) > 0 and g»(t) =0 for t € I;, because when
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q1(t) >0, 23,(t) =0 and A\y(¢t) > 0 during this time. The subintervals I, -- , I, do not necessarily
alternate between interior and boundary subintervals: it is possible that I, and I,,; are both
interior subintervals, with ¢;(¢) hitting zero at the single point V.

Define the adjoint vector

P2 0, t € [15,00).

*(t) _ {hQ(TQ* _t)’ le [0’72/)7

We also define
hi(1y —1t), telr*, ),

pi(t) = {0, t €[, kp).

With p;(V,,) = pi(7*) defined, we recursively define pi(¢) for t € [0,V,,). We will do this in such a
way that (i) the jumps of pj, if any, occur only when ¢;(¢) =0 and are positive; (ii) in interior
subintervals I;,

P () iz — 12 — p5(t) paz = 0; (EC.4)

and (iii) in boundary subintervals I,
P11z — P12 — p5(t) piaz = 0. (EC.5)

Note that this is done exactly as in the proof of Theorem 1.

Likewise, define

(1) {hl(T{—t), telr,m),

b 0, te [, k).
With p;(7') defined, we can again recursively define pj(t) for t € [k, 7") such that (i) the jumps of

pi, if any, occur only when ¢;(¢) =0 and are positive; (ii) in interior subintervals I; of [k, 74),

pi ()12 — @12 — p3(t) praz > 0; (EC.6)
and (iii) in boundary subintervals I; of [k, 74),

Py () 12 — P12 — P5(t) pra2 = 0. (EC.7)

Note that while p;(¢) decreases linearly to zero, pj(t) may not always be decreasing as it has a
jump at time &y,

Define the multipliers

0, t € I, and I}, is an interior subinterval,

0 (1) = h, — %, t € I, and I}, is a boundary subinterval,
! 0, te ) Ulra ),
h17 te[Tl*vﬁb)U[Tl/?OO)v

{o, tel0,70),

hg, tG[TQ/,OO)
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pipar, e (0,m)Ulke, ),
tefr,m)Ulr 00),

=2
=y
S

~+
SN—

I

—_—
=

pi(t) 12 — P12, te[0,7)UlKs, ")
Y5 (t) = 5 () a2, telr, m)UlT, 7)),
0, t € [r3,00)

G12 — i (t) pae + 05 () poe, t

e o) PI(®) a2 — d12 — P5 (L) pro2,
€alt) = {07

() = {0’ .

and &5, (t) =0 for all ¢ > 0. Note that if 7% > 0, pj ()12 — P12 — p3(t) e > 0 for t € [0,7*) by
construction, and pj(¢)pia — P12 — pi(t) a2 <0 for t € [7%,00) since pi (7)) 12 — P12 — P5(T* ) 122 <0
(it is worth noting that strict inequality can occur if ¢ (¢) hits zero exactly at time xy, since then
GY (g5 (t)) will jump at time 77) and hqp12 — hofioe > 0. Thus, &, and &}, are non-negative on [0, k).
Similarly, they are non-negative on [k, 00).

The conditions (ODE), (ADJ), (J), and (H) are easily verified. For (C), we only need to check
that when 25,(¢) > 0 in boundary subintervals t € [V._1, Vi), &5, () = 0. This holds because of (EC.5)
and (EC.7). We now verify (AH). Note that

Ve L(q (), 27(8), p™ (), 0" (), 7" (), €7 (£)) = —pi (E)par + 71 (1) — &51(£) =0

because &7, (1) =0 and v; (t) = pi(¢)p11. Next,
VZQQL(q* (t)? Z*(t),p* (t)a n*(t)a 7* (t)7 g* (t)) = _p; (t):u22 + ’V; (t) - 652 (t) =0

because &3, (t) =3 (t) — p3(t)paz for t € [0,77) Ulks, 7a), and €5,(t) = 0 and 3 (¢) = p5(¢) paa other-

wise. Finally,
Vz12L(q4< (t)a 2" (t)ap* (t)a 77* (t)vfy* (t)ag* (t)) = ¢12 _p*{ (t)Mm + 7; (t) - 6;2(15) =0

because &}, (t) =0 and v5(t) = pi ()12 — ¢12 for t € [0,7%) U[kb, Ta), and &f5(t) = P12 — pi (¢) pa2 +
v4(t) otherwise.

It remains to verify (M). It is clear that z7,(¢) should always be maximal. (This is slightly less
clear if ¢j(t) =0 for some ¢t < 7*, since there is a constraint zj, (t)p11 + 255(t) 12 < A1(t) when

¢;(t) = 0. In this case, (M) follows because the coefficients of zj;(¢) and zj,(t) are —pi(t)u11 and
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¢12 — pi(t)p1a.) For t € [0,7*) [kp, Ta), the coefficients of z7,(t) and z5,(t) are respectively ¢1o —
P ()2 and —p5(t)paz. Since pi(t)pz — d12 > p3(t)poe, it is optimal to have z{,(t) maximal. For
other ¢, the reverse inequality is true, and so it is optimal to have zj,(¢) maximal. This in turn
implies that z7,(t) =0 for ¢ < 75 is optimal (pool 2 has no spare capacity to help class 1). When
t > 715, ¢12 — pi(t)p12 <0, and again zj,(t) =0 is optimal.

Case II: hip1s < hopiss. The proof is similar to that of Theorem 1 and we provide a roadmap here
only. In this case, pool 2 will serve only its own class until the class 2 queue is emptied. Thereafter,
it may provide partial help to class 1 for up to two different intervals, one for each demand surge
period of class 1.

If ¢} (ky) > 0, the two demand surges for class 1 behave as a single demand surge, and the proof
of Theorem 1 applies directly. If G5(g2(0)) > £y, there is at most one demand surge for class 1 after
pool 2 is ready to provide partial help. The proof of Theorem 1 again applies directly. Suppose
instead q; (k) =0 and G5(g2(0)) < kp. In this case, we can apply the proof of Theorem 1 separately

to each of the two intervals [0, k) and [k;,00). Noting that in this case, ¢} (ky) = ¢5(ky) =0. O

Appendix EC.5: Optimal control for the X-Model

Proof of Theorem 4. 'To prove that the policy characterized in Theorem 4 is optimal, we shall
construct the optimal primal and dual trajectories and show that the conditions in Theorem 7 are
satisfied. We first note that (T) holds trivially because ¢*(¢t) =0 for ¢ large enough and for any
feasible state trajectory, ¢(t) > 0.

Let ¢1(0) =¢; and ¢2(0) = g. For the X-model, the Hamiltonian takes the form:

H(q(t),2(8),p(t),t) = Y higi(t) + 12212(t) + 1221 (£) + Y pi(t) </\i(t)— > mjzz'j(t)>-
The augmented Hamiltonian takes the form:

L(q(t), 2(t),p(t), n(t),~(t), £(t), 1)
= H(q(t),2(t),p(1),t) - Zni(t)qi(t) + 7 () (211(8) + 221 (8) — 51) +72(8) (212(¢) + 222(¢) — 52)

- Z &ij(t)zi;(1).

Consider first the case hjpuis > hopos. We further consider two sub-cases, depending on
whether pool 2 initially prioritizes class 1, i.e., whether (11) holds at ¢t = 0.

Case I: Pool 2 does not initially prioritize class 1, i.e., (11) does not hold at ¢ = 0. In this case,
the policy is that each pool serves only its own class for ¢t < 7 := G%(q;(0)). Then, pool 1 gives
partial help to class 2 for ¢ € [1y, 71 + 7*), where

T* = 1nf{t 2 O : h2M21G51+t(QQ(T1 + t)) S ¢21}'
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At all subsequent times, each pool serves only its own class again. In what follows, intervals of the

form [a,b) for b <a are empty.

Let 75 denote the first time at which queue 2 empties. That is, 75 = 75 := G9(¢2(0)) if 72 < 7, and
Ty =T +T" —|—G;1+T* (g5 (11 +717%)) if 75 > 71. Note that if 7 > 0, then hopo G5 1t (q;k (T +7%)) = o
921

by continuity, so that 75 =7m + 7"+

hapaot

The optimal queue length trajectory follows:

q1+f0t()\1(8)_81:u11>d87 le [077-1)7

q2+f0t()\2(3) — Safloz) ds, e 0,7 ATZ),
Gt = ¢ (m)+ f:l (A2(8) — sapton — (51— A1 (8)/ 1) pror) ds, € [r,m 4+ 1),
i ¢(n+77) + f:HT* (A2(8) = s2p122) ds, €ln+713)
. & [r3,00).

Define the adjoint vectors

hl(Tl —t) h £21 T*, t € [0,7’1),

#11

pi(t) = q hot2 (T + 77 1), telm,n+71),
0, tem+1*00),
. h —t te|0,75),
pz(t) — 2( ) [ ! 2)
0, t€[ry,00).
Define the Lagrangian multipliers
O, te [0,7’1),
T]T(t) = h1 thﬁ te [7'1,7'1"‘7'*),
hl, te [7'1+7_*,OO),
0, te0,75),
* t) =
2 (t) {hg, t € [ry,00).
T(t €0
"Yf(t) — pl( )#117 [ »yT1 +7" )
0, tG[Tl +7*,00)
S(t te |0
’7;(15) _ p2( )M227 6[ 7*7- )7
0, t € [rs,00).

() = $12 — Py (t) a2 + 05 (t) pr22, tE€[0, 714+ T77),
2 P12+ P5(t) pi22, te[n+7*00),
Pa1 — p5(t) a1 +pi(t)pr, t€[0,71),
&i(t) = 10, €ln,n+71),
[

P21 — 3 (t) po1, tern+71%00),
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and &5, (t) =&, (t) =0 for all t > 0. Note that 77 (t) > 0 because hypu1; > hapiz; by assumption.

To see that &, (t) > 0, note that because hapio; < hqpi11, &5, (t) is non-increasing on [0, 71). More-
over, if 7% > 0, it approaches zero as t — 71 (because hopio; (75 — 7% — T1) = ¢p21), while if 7% =0, it
approaches ¢g; — hopia1 G5 (¢2(71)) > 0 instead, even if 75 < 7y.

To see that &,(t) > 0, note that it is non-decreasing on [0,7,) (because hypis > hapigs), it is
monotone on [11,7; + 7%), and it attains the value ¢o + pi(71 + 7% )2 > 0 at 7y + 7*. Thus, it
suffices to check that &},(0) > 0. Meanwhile &;,(0) > 0 is equivalent to (11) is violated, which is
assumed in this case.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-
tion.

We now verify (AH). We have for i =1,2 that

Vi L(q" (t), 27 (1), p" (8), 07 (), 7" (£),€7(8),£) = —p; () pai + 77 (1) — &5(¢) =0
because £55(t) =0 and ~;(t) = pi (t) ;. Next,
Vo L(q" (), 27 (1), " (8), 0" (£), 7" (1), €7 (), £) = dr2 — pi (D)2 + 75 (1) = §15(1) =0
because {15 (t) = @12 — pi(t) sz + p3(¢) poz. Finally,
Vo L(q"(8), 27 (), p7 (), 07 (£), 77 (), €7 (£) 1) = @21 — p3(E) par + 77 (1) — &5, (1)

For t > 7 4+ 7%, ¢a1 — p5(t) o1 +v5 () — &, () = 0 because the v;(t) =0 and &, (t) = ¢o1 — pi(t) 21 -
For t € [y, 71 +7%), we get

Pa1 — 3 (1) a1 + P} (E)p11 = b1 — haptor (15 — 1) — (1 + 7" — 1)) = b1 — hopzn G377 (g3 (1 +7%)) = 0.

Finally, for ¢ € [0,71), da1 — p3(t)pa1 +77 (1) — &5, () = 0 because &3, (t) = pa1 — p5 () pa1 + 77 (1)

It remains to verify (M). The coefficients of z;;(¢) and 25, (t) are respectively —pj(t)u11 and ¢o; —
D5 (t)pa1. Note that ¢ay — ph(t)par + pi ()1 = &51(t) >0 for all ¢, so the Hamiltonian is minimized
by setting 2z}, (t) maximal, i.e. pool 1 prioritizing class 1. For t <71, G%(q,(t)) > 0, so pool 1 has no
capacity to help class 2, i.e. z5,(t) =0. For t € [11, 71 + 7%), ¢pa1 — p5(t) 21 =0, so it is Hamiltonian-
minimal (i.e. minimizes the Hamiltonian) for pool 1 to partially help class 2 (not helping is also
Hamiltonian-minimal), i.e. z3,(t) = N1 — 27, (). Finally, for t > 7 + 7%, ¢a1 — p3(t)p121 > 0, and so it
is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of z7,(t) and z3,(t) are respectively ¢1o — pi(t)u12 and —pi(t)pge. Note
that @1 — pi(t) 12 + ps(t)pes = &55(t) > 0, for all ¢, so the Hamiltonian is minimized by setting

23,(t) maximal, i.e., pool 2 prioritizing class 2. Thus, for ¢ < 75, it is Hamiltonian-minimal to have
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255(t) = Ny and 25,(t) =0. If 75 <7 and t > 75, ¢12 — pi(t) 2 = &5(t) > 0, and so it is again
Hamiltonian-minimal to have z;,(¢) =0. This completes the proof for case I.

Case II: Pool 2 initially prioritizes class 1, i.e., (11) holds at t = 0. Let 77 > 0 be the length
of time pool 2 initially prioritizes class 1. By continuity, equality holds for (11) at t =T;. In the
next period [T1,7T3), each pool serves its own primary class until queue 1 empties at time T5. Next,
in [T,,T3), pool 1 partially helps class 2, i.e. z5,(t) = s; — 2§, (¢). Finally, for all remaining time
t > T3, each pool again serves only its own primary class. Here, 0 <17 < T, <Tj, with Ty =13 if
GzT2 (3(Ty)) < hjfél. Also, Ty =T5 is only possible if ¢, =0.

Let T, be the time other than zero that queue 2 empties after its demand surge ends, i.e.

=inf{t > 0:G4(g;(t)) = 0}. It is possible that Ty < Ty or Ty > T,. If Ty > Ty, then T, = T3 +
G2 (q;(Ty)). Note that the restriction that ¢ > 0 is necessary because it is possible that G9(g2(0)) =0
if ¢2(0) =0 and ko =0.

The optimal queue length trajectory follows:

Q1+ fot()\l(s) — S1pt11 — 279(8) p12) ds, te[0,Ty),
a(t) =qa(n)+ f:l (A1(s) = s1p11) ds, te[Ty,T3),
LO, t e [Ty, 00),
G+ fy (Aa(s) = 23,(8)pa2) ds, tel0,Ty),
q; (1) + fn 2(8) — Sapize) ds, te [Ty, Ty NTy),
G () = < a3(m2) + [ (Aa(8) = Saptzn — (51— Mi(8) /i ) pmn ) ds, € [Tn, Ty),
¢ (T5) + ng (A2(8) — s2p122) ds, te[Ts,T)y),
0, t € [Ty, 00).

Note that it is possible that z7,(t) < s2 and z5,(t) = so — 2{,(t) > 0 for ¢t € [0,77) when pool 2
prioritizes class 1, because it may be that ¢;(¢) =0 and A (t) < syp11 + Sap012 but Gi(g;(t)) > 0.

Define the adjoint vector

cim ) he(Ty—1), tel0,1y),
(t) = {0, te [Ty, 00).

We also define

hi(To—t) +ho™2N(Ty = Ty),  te[T1,Ty),
pi(t) = hzZﬁ(Ts—t)’ te[13,Ts),

0, te [T3, OO)

We also need to define pj(t) for ¢ € [0,77). We partition the interval [0,7}) into subintervals
Li,---,I, where n>1, I; =[V,_1,V;) and 0=V, < V; <--- < V,, =T}, as follows. In the interior
t € (Vi_1,V;) of each subinterval, either (i) ¢j(¢) >0 and ¢;(¢) > 0, in which case we say that [; is
an interior subinterval, or (ii) ¢;(¢f) =0 and ¢;(¢) > 0, in which case we say that I; is a boundary

subinterval. Note that it is not possible that ¢;(¢) > 0 and ¢5(¢) =0 in some subinterval, because
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z3,(t) = 0 during this time and Ay(¢) > 0. Also, Assumption 4 rules out the case ¢;(t) =¢3(t) =0
(such a subinterval cannot occur after k; V kg, because then G%(q;(t)) =0 for ¢ =1,2 and (11)
cannot hold).

The subintervals Iy,---, 1, do not necessarily alternate between interior and boundary subin-
tervals: it is possible that I;, and I;,; are both interior subintervals, with ¢;(¢) hitting zero at
the single point V. The fact that there are finitely many such subintervals follows from piecewise
monotonicity in Assumption 4, because the class 1 queue length can only leave zero once during
each monotone period.

With p;(V,,) = pi(T}) defined, we recursively define pj(t) for ¢ € [0,V},). We will do this in such
a way that (i) the jumps of pj, if any, occur only when ¢;(¢) =0 and are positive; (ii) in interior
subintervals I;,

p1(t) 2 — dr2 — p5 () poz > 05 (EC.8)

and (iii) in boundary subintervals I;,

Pi(t)p12 — d1a — p3 () a2 = 0. (EC.9)

Note that
P1(Th) 12 — ¢12 — p5 (T ) pran = 0. (EC.10)

Indeed, this statement is equivalent to equality for (11) at t =T}, which follows from continuity.
Suppose p;(V;) has been defined for some k, with pi(Vi)pi2 — ¢p12 — pi (Vi) piae > 0. If I, is an

interior subinterval, we set
pi(t) =h (Vi —t) +pi (Vi)

for t € [Vk_1,Vi). That is, p} is continuous at V, and has slope —h; in the subinterval I;. Thus,
Py (t) 12 — P12 — p3(t)pea has slope haopios — hipzs < 0, which implies that pi(Vi_1)piz — ¢12 —
P5(Vi—1) 22 = 0.

Suppose instead I is a boundary subinterval. We set pi(Vi_1) = p5(Vi_1) o/ 12 + ¢12/ 12 and
pi(t) =pi(Vi1) — %(t —Viy) for t € (Vi_1, V). That is, p; has a jump at V} and has slope
—% in the subinterval I,. This ensures that ¢15 — pj(t)p12 = —ps(t) o2 everywhere in I. The
size of the jump at Vi is pi(Vi) — p5(Vi)pae/ 12 — ¢12/112 > 0, which is non-negative because
(Vi) iz — d12 — 5 (Vi) piae > 0. Thus, we have defined pj for ¢ € [0,T}) satisfying conditions (i),
(ii) and (iii).

Define the multipliers
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0, t € I, and I is an interior subinterval,
h, — hQ%, t € I, and I}, is a boundary subinterval,
n;(t) = 07 te [T17T2)7
h/17 t € [Tg, OO)7
. 0, t€0,7y),
Up) (t) =
hg, te [T4, OO)

Note that hypi1a > hopios and hqpy > hapiar, so that ni(t) > 0. Define also

En(t) = {0’

f;l (t) = 07

p;(t),u/lh te [O7T3)7
te [Tg, OO),
Py (t) a2 — P12, te[0,Ty)
p;(t)ﬂzg, te [T17T4)a
te [T4, OO)
te0,T1),
12 — P (t) paa + i (t) poz, te [T, 00),
Go1 — P5(t) o1 + pi (t) a1, te(0,73),
te[1,T3),
$21 — D3 (t) o, te[T3,00)
_p;(t)/vb227 te [07T1)7
t S [Tl, OO)7

e )P — dio
() = {07

and &, (t) =0 for all t > 0. Note that pj(t)u12 — ¢12 — p3(t) e > 0 for ¢t € [0,77) by construction.

Also, ¢12 = pi(T1)paz +p5(T1) po2 = 0 from (EC.10). Since hypiz —hopizz = 0, ¢12 — pi () paz +p5 (1) a2
is non-decreasing for ¢ € [T1,73), after which point it equals ¢12 + p3(t)pee > 0. Thus, &, and &5,

are non-negative.

To see that &, (t) > 0, note that because hopioy < hypurr, §5,(t) is non-increasing on [0,7%) (its

slope is at most hopio; — hipy for t €10,74)). If T3 > Ty, &5, (To—) =0 and &, (t) is non-decreasing

from its value of zero for ¢ € [T3,00), so that &;(t) > 0 everywhere. If instead T3 = T5, we have

&, (Ty—) > 0 instead, and the same result holds.

The conditions (ODE), (ADJ), (J), and (H) can be straightforwardly verified by our construction.

For (C), we only need to check that when z3,(¢) > 0 in boundary subintervals t € [V_1, Vi), £55(t) =
0. This holds because of (EC.9). (Note that z5,(V) =0.)

We now verify (AH). We have that

Ve L(q"(8), 27 (1), p" (), " (8), 7" (1), €7 (), ) = =pi () par + 77 (8) — &5, (8) = 0
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because &7, (t) =0 and ~; (t) = pi(t)p11. Next,

vz22L(q* (t)7 z" (t),p* (t>7 77* (t)77* (t)7§* (t)7 t) - _p; (t):u'22 + 7; (t) - 552“) =0

because &5, (t) =75 (t) — p5(t) oz for t € [0,77), and &5,(t) =0 and 5 (t) = pi(t)pee for t > Ti. Next,
Vo L(g"(8), 2°(8), " (1), 07 (), 7" (8), €7 (1), 1) = 1o = PT(E) 12 + 75 (1) — £15(8) = 0

because £55(t) =0 and 75 (t) = pi(t)p12 — P12 for t € [0,T1), and &, (t) = P12 — pi(t) 12 + 3 (t) for
t > T;. Finally,

Voo L(g"(8), 2°(8), " (1), 07 (), 7" (8), €7 (1), 8) = a1 = p3 () + 771 (1) = €5, (8) =0

because &3, (t) = ¢a1 — p5(t) a1 + 71 (¢) for all £ > 0.

It remains to verify (M). The coefficients of z7,(¢) and zj,(t) are respectively —pj(¢)u;; and
¢21 — D3 (t)p21. Note that ¢or — pi(t)par + pi(t)p1n = &, () > 0 for all ¢, so the Hamiltonian is
minimized by setting zj;(#) maximal, i.e. pool 1 prioritizing class 1. For ¢t < Ty, G'(q:1(t)) > 0, so
pool 1 has no capacity to help class 2, i.e. z;5,(t) =0. For t € [T,T3), ¢21 — p5(t)p21 =0, so it is
Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is also Hamiltonian-minimal),
ie. z5, (t) =51 — z7,(t). Finally, for ¢t > T3, ¢o; — p5(t)p2; > 0, and so it is Hamiltonian-minimal for
pool 2 to serve only its own class.

Next, the coefficients of z},(t) and z3,(t) are respectively ¢1o —pj (t) 12 and —pj(t)poe. For t < T7,
12 — D1 (V) 1o + pi(t)paa = —E&5,(t) <0, so it is Hamiltonian-minimal to have zj,(t) maximal, i.e.
pool 2 prioritizing class 1. Since pj3(t) > 0, it is also Hamiltonian-minimal to have any remaining
pool 2 servers serve its own class, i.e. z5,(t) = 8o — 27,(t). For t > Ty, ¢15 — pi(t) 12 + pi (1) pioe =
&55(t) > 0, so it is Hamiltonian-minimal to have z3,(¢) maximal, i.e. pool 2 prioritizing class 2.
Thus, for ¢ < T}, it is Hamiltonian-minimal to have z3,(t) = so and 2{,(t) = 0. If T) <715 and
t> Ty, ¢12 — pi(t)pia =& (t) >0, and so it is again Hamiltonian-minimal to have z7,(¢) = 0. This
completes the proof.

Consider next the other case hjp; < hajige and hopoy < hypyr. Let 7, = G2(q;(0)) for i = 1,2
be the time for each queue to empty using its own pool. By symmetry, we may assume without
loss of generality that 7 < 75. Thus, the trajectory under the stated policy is as follows. First, in

[0, 71], each pool serves only its own class until queue 1 empties. Let

T*:inf{tzo:Ggl“(qz(nth))g d21 }
hapigy

Then, pool 1 will partially help class 2 for t € [, 7 + 7*), after which helping stops and both pools

again serve only their own class, until queue 2 is also emptied.
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Let 75 =1 + 7"+ G377 (g3 (71 +7*)) be the time until queue 2 empties. Note that if 7* > 0,
then hguglG;—l—H—* (q5 (11 +7%)) = ¢ho1 by continuity, so that 7} =7y +7* 4 22

hapor
The optimal queue length trajectory follows:

“(t) = {% +f(f(>\1(5) — s1p11) ds, tel0,m),

1

0, t € [m,00),
q2+f0t()\2(8)_82u22)d8, te [0,7’1),
t
G(t) = ¢ (m) + fTI (A2(8) — sapt22 — (81— >\1(5)/M1)M21) ds, te [7'1771 +7),
’ (1 +T*)+f:1+7*()‘2(3>—32M22)d5> teln+7,15)
0, tery, ).

Define the adjoint vectors

ha (11 —t) + hot2L 77, te0,m),

p;(t) = hQ%(Tl—'I_T*_t), t6[71,71+7*),
0, tem + 1%, 00),
ho(Ts —1t te 0,7
p;(t) _ 2(7-2 )7 E[ ;7-2)’
0, ters,00).
Define the Lagrangian multipliers
O, te [0,7’1),
’I’]ik(t) = hl h2ﬂ21 te [7'1,7'1"‘7'*),
hi, te[m+1%00),
. 0, te0,75),
t) =
72(t) {hg, te[r5,00).
*(t
’Yik(t) _ pl( )Mlla [0 T1 +7" )
07 [Tl +7— OO)
. D5(t) phaz, 0,75),
'72(75) — 2( ) 22 [ . )
0, € [75,00).

£,(t) = b1 — DI () p1a +pi(t) o, tE€[0,71+7%),
12 P12+ p3(t) a2, t€[m 47, 00),

Pa1 — p5(t)par +pi(t)pr, t€[0,71),
& (t) =10, tem,n+1),
P21 — P (t) pha, te[mn+7%,00),
and &7, (t) =&5,(t) =0 for all t > 0. Note that n;(¢t) > 0 because hypy1 > hopio; by assumption.
To see that &, (t) > 0, note that because hapia; < hqpi11, &5, (t) is non-increasing on [0, 71). More-
over, if 7* > 0, it approaches zero as t — 71 (because hapio1 (75 — T* — T1) = ¢21), while if 7* =0, it

approaches ¢g; — hopia1 G5 (¢2(71)) > 0 instead, even if 75 < 7y.
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Next, note that £;,(¢) is non-increasing on [0,7;) (because hip12 < hapias) and decreasing on
[11,71 + 7%), at which point it attains the value ¢15 + p3 (71 + 7 ) oo > 0. Thus, &}, (¢) >0 for all ¢.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-
tion.

We now verify (AH). We have for i =1,2 that

Ve L(q (), 27 (8),p" (8), 17 (£), 77 (£), €7 (1)) = —pj () s + 77 () — &55(£) =0
because €% (t) =0 and v (t) = pt (£) 5. Next,
Vi L(g™ (£), 27 (8),p" (1), 0" (£),7" (£), €7 (£)) = b1z — Py () paz + 3 (1) — &75() =0
because {15 (t) = @12 — pi (t) 2 + p3(¢) poo. Finally,
Vo Lq(2), 2°(2), " (£), 17 (), 7" (£),§7 (1)) = P21 — p3(t)par + 77 (£) — €5, (1)

For t > 7 + 7%, ¢a1 — p5(t)p21 + 75 (t) — &5,(t) = 0 because the third term is zero and &5,(t) =

o1 — Ps(t) a1 For t € [1y, 7 +7%), we get
Ga1 — p5 () pror + 7 (E) pa1 = Po1 — hopior (75 —1) = (M1 + 7" — 1)) = o1 — h2M21G£1+T* (g3(ri+77))=0.

Finally, for ¢ € [0,71), ¢21 — p5(1) 21 + 77 (¢) — &5, (1) = 0 because &, (1) = do1 — p3(t) 21 + 71 (1)

It remains to verify Hamiltonian minimization. The coefficients of z},(¢) and z3,(t) are respec-
tively —pj(t)p1n and ¢oy — ph(t)par. Note that ¢or — pi(t)per + pi(t) 1 = &, (t) > 0 for all ¢, so
the Hamiltonian is minimized by setting zj,(¢f) maximal, i.e. pool 1 prioritizing class 1. For t <
71, G4(q1(t)) > 0, so pool 1 has no capacity to help class 2, i.e. z3,(¢t) =0. For t € [r, 7 + 77),
¢21 — P5(t)p21 = 0, so it is Hamiltonian-minimal for pool 1 to partially help class 2 (not helping is
also Hamiltonian-minimal), i.e. 25, (¢) = s; — 27, (¢). Finally, for ¢t > 7 + 7%, ¢21 — p5(t) 121 > 0, and
so it is Hamiltonian-minimal for pool 2 to serve only its own class.

Next, the coefficients of z7,(t) and z;,(t) are respectively ¢1o — pj(t)p12 and —pj(t)pas. Note
that ¢1o — pi(t)p1a + pi(t) a2 = &5 (t) > 0, for all ¢, so the Hamiltonian is minimized by setting
23, (t) maximal, i.e. pool 2 prioritizing class 2. Thus, for ¢ < 7, it is Hamiltonian-minimal to have
255(t) = 85 and 255(t) = 0. If 75 <7 and t > 75, ¢12 — pi(t) 12 = &5(t) > 0, and so it is again

Hamiltonian-minimal to have z;,(¢) = 0. This completes the proof. [
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Appendix EC.6: Optimal control for the exIN1-Model

Proof of Theorem 5. We will construct the optimal primal and dual trajectories under the
policy characterized in Theorem 5 and show that the conditions in Theorem 7 are satisfied. We
first note that (T) holds trivially because ¢*(t) =0 for t large enough and for any feasible state
trajectory, q(t) > 0.

Case I: hypi1a > hopias and hypigs > hspss. Let ¢*(t),2*(t) be the trajectories under the given
control. The trajectory is such that each pool i = 2,3 gives priority to class 1 for some (possibly
zero) time, then only helps its own class thereafter. To see this, suppose without loss of generality
that pool 2 is the first pool to stop giving priority to class 1. After this point, GL v, ;5(q(t))
decreases at rate 1 while pool 3 continues to give priority to class 1, and G5(g2(t)) decreases at
rate 1 as well. Since hy 1o > hopige, (17) does not hold at all subsequent times. When pool 3 stops
helping class 1, G,y 1 5(q(t)) = Gi(q:1(t), and again, because hypua > hofise, the second inequality
in (18) is never subsequently triggered.

Define A 3(t) = A1(t) — 255(t) 13 to be the class 1 arrival rate ‘seen’ by pool 2, after accounting
for the effects of pool 3’s help. We claim that (g; (), q5(t), 211(t), 255(t)), z35(t)) corresponds to that
of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by A 5(¢). To see this,
consider the two cases: (i) pool 2 stops helping class 1 after pool 3, and (ii) pool 2 stops helping
class 1 before pool 3. If (i), then pool 2 stops helping class 1 when (18) is violated, which is precisely
the same condition as in the N-model. If (ii), note that pool 2 stops helping class 1 when (17) is
violated. Recall the definition of F}(g). Note that when pool 2 stops helping class 1 at time ¢, pool
3 continues to help class 1 for time Fi(q), by construction. After which, pool 1 will take a further

t t
time G} B9 G (4 GL(q) + PL(q))) to empty. As such,

Gile,l,:s(Q(t)) = Gi (. (1)),

where in the definition of G, the arrival rate of class 1 is replaced by A; 3(¢). This proves the claim.
From the proof of Theorem 1, we obtain p}(t),n; (t),v; (t),&5;(t), &5 (¢) for i =1,2. Repeating the
above procedure of considering A () = A1 (t) — z12(t) p12, we obtain p;(t),n; (), v, (t),&5:(t), &5 ()
for i =1,3. Note that the obtained values of pi(t),n;(t),~i(t),&;,(t) are the same.
The conditions (ODE), (ADJ), (AH), (C) and (J) follow directly from the N-model analysis. It
remains to verify (M).

The Hamiltonian is
H(q(t),2(t),p(t),t) = Y haai(t)+ D bz (t) + > pi(t) (Mt) - Zuijzm)) -(BC.11)
i j#1 i j
For ¢ = 2,3, the coefficients of zy,(t) and z;(t) are ¢1; — pi(t)p1; and —pi(¢)ps;. By the proof of
the corresponding N-model, ¢1; — pi(t)p1; < —p;i(t)p; < 0 whenever pool i is prioritizing class
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1, ¢ — pi(t) s > —pi(t)us; whenever pool i is prioritizing its own class and G%(g;(t)) > 0 and
¢1i — pi(t)p1; > 0 whenever pool Gi(g;(t)) = 0. Moreover, by Assumption 5, g;(t) > 0 whenever pool
i is prioritizing class 1. This establishes (M).

Case II: hyp12 < hapize and hypiyz > hajiss.

The argument is similar to that of Case I. Let ¢*(t), z*(t) be the trajectories under the given con-
trol. Define A\; 3(¢) = A1 (t) — 275(¢) 13 to be the class 1 arrival rate ‘seen’ by pool 2, after accounting
for the effects of pool 3’s help. We claim that (¢;(¢),q5 (), 271 (t), 215(t)), 2z35(t)) corresponds to that
of Theorem 1 for the N-model, where the arrival rate of class 1 is replaced by A 3(¢). To see this,
note that pool 2 stops partial helping class 1 when the inequality in (21) is violated. At this time,
pool 3 will continue to prioritize class 1 until (22) is violated (if it has not yet stopped prioritizing

class 1). Thus, the class 1 queue will take an additional
— t t
Glonn1(0) = Gila) + Bi(a) + GO 0G4 Gl (o) + ()

time to empty, as required.

From the proof of Theorem 1, we obtain p}(t),n:(t),v:(t),&5;(t), &5 (t) for i = 1,2. Repeating the
above procedure of considering A\ () = A\ (t) — z12(¢) 12, we obtain pi(t),n;(t),v:(t),&;5:(t), & (¢)
for i =1,3. Note that the obtained values of pi(t),n;(t),~v;(t),&;;(t) are the same.

The conditions (ODE), (ADJ), (AH), (C), and (J) all follow directly from the N-model analysis.
It remains to verify (M).

The Hamiltonian is

J#1

For ¢ = 2,3, the coefficients of zy,(¢) and z;(t) are ¢1; — pi(t)p1; and —p;(t)ps;. By the proof of
the corresponding N-model (consisting of classes 1 and 3), ¢13 — pi ()13 < —pi(t) a3 < 0 whenever
pool 3 is prioritizing class 1, ¢13 — p;(t) 13 > —pi(t) s whenever pool 3 is prioritizing its own class
and G4(g3(t)) > 0 and ¢13 — pi(t)p13 > 0 whenever pool G%(gs(t)) = 0. Also, by the proof of the
corresponding N-model (consisting of classes 1 and 2), ¢12 — pj(t)p12 > —pi(t) oo for all ¢, so it is
optimal for pool 2 to prioritize its own class for all ¢. It also follows from the proof of the N-model
that @12 — pi(t)p12 <0 when pool 2 is partially helping class 2, and ¢12 — pj(t)p12 > 0 otherwise.
Moreover, by Assumption 5, ¢;(t) > 0 whenever pool i is providing help to class 1. This establishes

Case III: hjp1s < hoptoo and hqpis < hspss. The argument is similar to the previous two cases.
Let ¢*(t),z*(t) be the trajectories under the given control. Define A 5(t) = A1 () — 255(¢) 13 to be

the class 1 arrival rate ‘seen’ by pool 2, after accounting for the effects of pool 3’s help. It follows
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similarly to the other cases that (q;(t),qs(t),251(t), 215(t)), z55(t)) corresponds to that of Theorem
1 for the N-model, where the arrival rate of class 1 is replaced by Ay 5(¢).

From the proof of Theorem 1, we obtain p}(t),n;(t),v;(t),&5;(t),&5(t) for i =1,2. Repeating the
above procedure of considering A; 5(t) = A\ (t) — 212(t) 12, we obtain pf(t),n; (t),v; (t),&5:(t),&5(t)
for i =1,3. Note that the obtained values of pi(t),n;(t),~i(t),&;,(t) are the same.

The conditions (ODE), (ADJ), (AH), (C), and (J) all follow directly from the N-model analysis.
It remains to verify (M).

The Hamiltonian is

H(q(0), 2(),p(1), 1) = 3 haai(t) + 3 gz () + 3 pi(t) ( Z'U"J 2 ) (EC.13)

J#1
For i =2, 3, the coefficients of z1,(¢) and z;;(t) are ¢1; — p;(t)1; and —p;(t) ;. By the proof of the
corresponding N-model, ¢1; — pj(t)p1; > —pi(t) i for i =2,3 and all ¢, so it is optimal for pool i to
prioritize its own class for all ¢. It also follows from the proof of the N-model that ¢,; — p(t)p,; <0
when pool i is partially helping class 2, and ¢y; — pi(t)u1; > 0 otherwise. Moreover, by Assumption
5, q1(t) > 0 whenever pool i is providing help to class 1. This establishes (M). O

Appendix EC.7: Optimal control for the exN2-Model

Proof of Theorem 6. We will construct the optimal primal and dual trajectories under the
policy characterized in Theorem 6 and show that the conditions in Theorem 7 are satisfied. We
first note that (T) holds trivially because ¢*(t) =0 for ¢ large enough and for any feasible state
trajectory, ¢(t) > 0.

Let ¢1(0) = ¢ and ¢2(0) = ¢2. For the exN2-model, the Hamiltonian takes the form:

H(q(t),z(t),p(t),t)—Zhiqi(t)+Z¢j1zﬂ(t)+zpi(t)( ZM,J% ) (EC.14)

The augmented Hamiltonian takes the form:

L(q(t), 2(t),p(t),n(t),7(t),£(t), t)
= H(q(t),z Zm qi(t) +71(1)(211(1) + 221 () + 231 (¢) — s1)

+72(t) (222(t) — 82) +73(t) (233(t) — 83) qu

Case I: hopia; > hspsy > hipgr. In this case, the policy is that pool 1 first fully serves class 2 for
a time 7; > 0, then fully serves class 3 for a time 75 > 0, then serves only its own class thereafter.

To see this, note first that

h2ﬂ21G51 (Q2(71)) < h1/111@emN2,1(Q(7'1)) + (h3u31 - hlun)Ft(Q(t)) + a1
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where equality holds by continuity if 7, > 0. Subsequently, hopa1G5(g2(t)) decreases at rate hopiag,
while the RHS decreases at rate hspus; when pool 1 fully helps class 3 and at rate hipu; when pool
1 serves its own class. Because hapio; > hspzy > hipi1, the inequality (25) never holds subsequently,
and so pool 1 will not fully serve class 2 after time 7.

Next, note that

Ratis1 G372 (qs (T + 72)) — 31 < i G772 (qu (11 + 72))

with equality holding by continuity if 75 > 0. Subsequently, when pool 1 serves its own class,
haps1GL(qs(t)) decreases at rate hzpuz, while hypg1GY(qi(t)) decreases at rate hiui;, and since
hspizi > hipq1, the inequality (26) never holds subsequently, and so pool 1 will not fully serve class

3 after time 7 + 7o.

The times to deplete the three queues are

T =T +7'2+G;1+72(<ﬁ(7'1 + 7)),
=11 +G3 (g5 (1)),

75 = min {G(g3(0)), 11 + 72 + G5 (g5 (1 + 7)) } -

The optimal queue length trajectory follows:

@+ Jy () = 211 () ds, 0,7 +7),
¢ (t) = qa (Tl+7'2 +f1+72 1(s) = s1p41) ds, €[n+7,7),
0, € [r,00),
Q2+f()t()\2(8) — Soflor — 231 (8)pa1)ds,  t€[0,7),
¢ (1) = § (1) ‘|‘f:1(/\2(3) — Safla2) ds, teln, ),
0, t€[ry,00),
g5+ 3 (Na(s) — sspiss — 23, (s)pan) ds, £ € [0,min{ry, 7 +72}),
q;(t) = Q@5 (11 +72) +f1+72 3(8) — s3puss) ds, te[mn+712,75),
0, t €1y, 00).

Note that by Assumption 6, ¢;(t) > 0 for ¢ € [0,71) and ¢;(¢) > 0 for ¢t € [0, 71 +72). Thus, when pool
1 is fully helping class 2, z5,(t) = s; and similarly, when pool 1 is fully helping class 3, 23, (t) = s;.
Define the adjoint vectors, for i =1,2,3,

Define the multipliers
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. 0, te [0,7’1*),
t) =
m(?) {hl, t € [ry,00),
. 0, tel0,735),
t p—
m(t) {hg, t € [r,00)
. 0, tel0,73),
t) =
s (#) {hg, te[rs,00)

D3 () a1 — dan, tel0,m),

[
Vi (L) = () a1 — ¢z, te[n,n+m),
' p;(t)/illa te [Tl +7—27T1)7
0, te[r,00),
p;(t)/‘ﬂv te [077—2*)7
0, t €[y, 00),

i
|

*(t) _ pfs(t)ﬂe»?n te [077-;)7
0, t€[rs,00)

o, te[0,7),
521(0 - {¢21 *p;(t),ual —{—71‘(75), te [7’ )

) o, € 11,11 + T2),
Eailt) = {(;531 —pi(t) sy + 3 (1), §é (71,71 +T2)

* _ ’Yik(t)_pi(t):ulla te [O7Tl+7_2>7
& (1) =
O, te [7'1 +7'2,00)

and &35, (t) = &33(t) = 0 for all £ > 0. We next show ~;(t) and &;(¢) are non-negative. Suppose first

that 7 >0 and 75 > 0. By construction of the policy, we have

h2,u21 (Tg* - 7'1) — o1 = thn(Tl* —T1— 7'2) + h3M31TQ

and
hapizi (75 — 71 — T2) — P31 = hapn (77 — 71 — T2).
Then,
D5 (7'1)#21 — ¢ :p§(7'1)H31 — P31
and

P5(T1 4+ T2) 31 — P31 =Dy (11 + T2) phas.-

In particular, 77 (t) is continuous. Since ~; () is decreasing in each of the intervals [0,71), [11, 71+ T2)

and |1, + 72, 7]), before reaching zero, it is non-negative. Moreover, because hapia; > hapizy > hy i1,
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i (t) decreases at a rate that is at least the rate at which pj(¢)u1; changes in [0,7 + 72), 75 (t) >
pi(t)par in [0, 71 +72), Le., & (1) > 0.

Next, from the above discussion, we have that &, (71) = 0. Because hopio; > hapzy > hypin, &5, (%)
is non-decreasing for ¢ € [11,75), and is non-negative for ¢ > 75 because p3(t) = 0. Thus, &, (t) > 0.
We also have that 3, (11—) = 0= &, (71 +72). A similar reasoning shows that &5 (¢) is non-increasing
in [0,7;) and non-decreasing in |13 + 72,75 ), and so &;;(¢) >0 for all ¢.

The analysis for the cases involving 71 =0 and 7, = 0 follows similarly.

The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-
tion.

We now verify (AH). For i =2, 3,

Ve L™ (@), 27(8), " (8), 7 (£),7"(8), €7 (1), 1) = —pi (Dpai + 77 (1) = €5() =0

because £ (t) =0 and v/ (t) = p; (t)pii- Next,
Ve Lq"(8), 2 (8),p" (), " (8), 7" (), €7 (), ) = =Py () paa + 71 (8) — &5, (£) = 0

because &, (t) =1 (t) — pi(t)p1y for t € (0,71 +72), and &5, (t) =0 and ;5 (t) = pi(t) 11 for t > 11 + 7.
Next,

Voo L(g"(8), 2°(8), " (8), 07 (), 7" (8), €7 (1), £) = a1 = p3 () + 71 (1) — €5, (8) = 0

because &, (t) =0 and ~y;(t) = p5(t) a1 — Pa1 for t € [0,71), and &, (t) = ¢a1 — p3(t) a1 + 5 (t) for
t > 1. Finally,

Vg L(q" (), 27 (@), (8), 0" (8),7"(£), €7 (), 8) = b — p5(H) s + 771 (1) = &5, (H) =0

because &3, (1) =0 and 1 (¢) = p5(t)ps1 — @z for t € [y, 71+ 72), and &5 (¢) = da1 — p5(1) a1 + 7 (1)
for t ¢ 11,11 + 72).

It remains to verify (M). It is easy to see that z3,(f) and z3;(t) should always be maximal.
The coefficients of z7,(t), z5,(t) and z3,(t) are respectively —pj(t)p11, pa1 — p5(t)por and ¢z —
P4 (t)ps1. For t < i, we have that pi(t)uar — o1 > p5(t) a1 — ¢31 > pi(t)p1y (this follows from the
earlier discussion of v;(t)), it is optimal to have z3,(¢) maximal. When ¢ € [ry, 71 + 72), we have
D5 () a1 — 31 > max(ph () a1 — Pa1, P () 11), so it is optimal to have z3; () maximal. Finally, when
t > 11 + 1o, we have pi(t)u11 > p5(t)ps1 — da1 > p3(t) a1 — P21, so it is optimal to have pool 1 give
class 1 priority. When p3i(t) =0 so that ¢;(¢t) =0, we have that p}(¢)u; — ¢ <0 for i =2,3, so it
is optimal for pool 1 to not partially help classes 2 and 3.

Case II: hopoy > hipin > hspsi. In this case, the policy is that pool 1 first fully serves class 2

for a time 71 > 0, then serves only its own class 1 for time 7, = G7'(q1(71)) until it empties, then
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partially helps class 3 for some time 75 > 0, then serves only its own class thereafter. To see this,

note first that

hotin1 G5 (q2(T1)) < hapn G (qa (1)) + hapsi P (q(11)) + ¢
where equality holds by continuity if 7; > 0. Subsequently, hops1G5(g2(t)) decreases at rate hopior,
while the RHS decreases at rate hipu; when pool 1 serves only its own class and at rate hspus;
when pool 1 partially helps class 3. Because hapia) > hypiy; > hapss, the inequality (27) never holds

subsequently, and so pool 1 will not fully serve class 2 after time 7.

The times to deplete the three queues are

=71 +G (g (),
7, =1+ Gy (g5 (1)),

7 = min {Gg(qg(o)),ﬁ* + 75+ G;Hrs(qg(ﬁ* + rg))} )

The optimal queue length trajectory follows:

¢ +f0t()\1t(s) — 25, (s)pn1) ds, tel0,m),
i (t) = { ai(r)+ [ (\i(s) = sipun)ds,  t€[m,m),

0, t €1y, 00),
qQ+fot(>\2(3) — Saflon — 25, (8)pa1) ds, te[0,7),
* * t *
3 (t) = Q2(Tl)+f71<)‘2(3) — Safla2) ds, te[mn, ),
0, t € |1y, 00).
In addition, if 75 >0,
q3+ fot()\g(S) — S3u33) ds, te[0,7y),
t
(1) Q§(Tf)+fﬁ()\3<3)—33,“33—(31—/\1(3)/M11)M31)d87 terf, 1 +13),
qf e
3 @ (mf +713)+ f:l*(/\g(s) — S3pu33) ds, ter+13,715),
0, t €[5, 00),
otherwise,

gty =487 Joa(s) = sapsa)ds, — tE€[0,75),
3 0, Le [r2,00).

Assumption 6 ensures that g;(¢) > 0 for ¢ € [0,71). Thus, when pool 1 is fully helping class 2,
25, (t) = s1.

Define the adjoint vectors, for i =2,3,

p; (1)
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Define also

hl(Tl*—t)—f—h?,%Tg, te [O,Tl*)
pf(t) = h3ﬁ%(7—1*+7-3_t)7 te [7—1*’7-1*—’_7-3)7
0, te[r +73,00).

Define the multipliers

0, te[0,71y),
ni(t) = < b _hB%a telry, +13),
hq, t € [rf +713,00),

) o1 — Po1, te0,71),
(t),un, te [7'1,7'1* + 7'3),

p
= 3\P
0 t € [rf +T73,00),

t),UQQ, te 0,7'2*),
t €[y, 00),
{ )

5
*
1
)
5 (
)
5(

t,LL33, tE O'T;),

7 (t)
Y5 (t)
v5(t)

p
0
p*
0

¢21 _pg(t)NQI + fﬁ (t)7 te [Th OO)
07 te[vaTl*"i_TB)a
Gs1 —p3(Opst +71 (1), tE[r 7 +7)

Y (t) = pi(t)pr, te0,7),
0, t € [r,00)

gxwz{a e,

€51 (t) =

51‘1(1‘) =

and &5,(t) = &5(t) =0 for all t > 0. Note that n; > 0 because hipq1 > hypsi. We next show ~;(t)
and £;;(t) are non-negative. Suppose first that 7, > 0. Note that

hz,u21(7'; - 7'1) - ¢21 = thu(Tl* - 7'1) + h3/1317'37

from which it follows that

P5(T1) a1 — ¢21 = Py (T1) pta1



ec30 e-companion to Author: Optimal Routing under Demand Surges

In particular, i (¢) is continuous. Since 77 () is decreasing in each of the intervals [0,7;) and
[11, 75 +73) before reaching zero, it is non-negative. Moreover, because hopio; > hyp11 > hapar, 75 (t)
decreases at a rate that is at least the rate at which pi(¢)u1; changes in [0,71), 75 (t) > p;(t)p11 in
[0,71), i.e., &4 (t) > 0.

Next, from the above discussion, we have that &, (1) = 0. Because hapa; > hypiyn > hapzi, &, (t)
is non-decreasing for ¢ € [Ty, 75 ), and is non-negative for ¢t > 7 because p}(t) =0. Thus, &, (¢) > 0.

Next, &3, (t) is zero if 73 = 0; suppose instead 73 > 0. For t € [}, 7 4+ 73), we have

E1(t) = @31 — p5(t) sy + P (E) pr1 = P31 — hapua (77 — ) + hs%ﬂu(ﬁ* +73—1) =0,
11
because 7} =7 + 75+ hfﬁ;l .

The analysis for the cases involving 71 =0 and 7, = 0 follows similarly.
The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforwardly verified by construc-
tion.

We now verify (AH). For i =2,3,
Ve L(a" (1), 27 (1), p"(8), 0" (), 7" (1), € (1), 1) = —p; (Dpai +7; (1) = &;(¢) =0
because €5 (t) =0 and 7 (t) = pt (£) 5. Next,
Ve L(q (), 27(8), p™ (), 0" (£), 7" (1), £7 (), 1) = —pi () prar + 77 (£) = &1, (1) =0
because &, (£) = ~; () — pi ()11 for t €[0,71), and & () =0 and 7} (t) = p ()1 for t > 7. Next,
Vo L(q(8), 27(£), 07 (£), 07 (), 7" (£), €7 (), 8) = a1 — p3 () iz + 77 (8) — &5, (£) =0

because &, (t) =0 and ~;(t) = p5(t) a1 — Pa1 for t € [0,71), and &, (t) = ¢a1 — p3(t) a1 + 5 (t) for
t > 7. Finally,

Ve (g7 (2), 27 (2),p" (), 17 (), 7" (£), €7 (), 1) = Pa1 — p5 () par + 71 () = €1 (1)

When ¢ & [1, 77 +73), ¢a1 — p3(t)par + 71 (t) — &3, (1) = 0 because &3, (t) = @31 — p3(t) a1 + 75 (t). For
t€[rf, 1 +713), &1 (t) =0 and we have

¢31 — Dy (U psr + i (E) a1 = 31 — hapsi (77 — ) + hg%ﬂu(ﬁ* +713—1)=0,

11

because 74 =7 4 75 + 23,
3 1T hgpuay

It remains to verify (M). It is clear that z3,(¢) and z3,(¢) should always be maximal. The coeffi-
cients of z7,(t), z3,(t) and 23, (t) are respectively —p3 ()11, ¢21 — pi(t) o1 and ¢z1 — pi(t)psr. From
the earlier discussion, we have that p}(t)ua — ¢o1 > pi(t)pyy for t € [0,71), and that pj(t)u; =
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5 (t) 31 — ¢s1 for t € [17, 77 +73). Because hapio > hypiyr > hapz, we have that pi(t)u1; > pi(t) s —
¢a1 for t € [11,7]), and hence also pj(t) 21 — p21 > pi(t)p1r for t € [0,71). As such, for ¢ € [0,71), it is
optimal to have z;; (t) maximal. When t € [, 7]), we have p}(¢)p11 > max(ph(t) a1 — da1, pi(t) a1 —
¢31), so it is optimal to have pool 1 serve only class 1. When t € [7}, 77 + 73), we have p}(t)u1; =
D5 (E) a1 — P31 > pi(t)pa1 — @21, so it is optimal to have pool 1 to partially help class 3. When
t > 7 473, pi(t) =0, and we have that pf(t)ui1 — ¢ <0 for i =2,3, so it is optimal for pool 1 to
not partially help classes 2 and 3.

Case I11I: hqp11 > hopor > hapsi. In this case, the policy is that pool 1 first serves only its own
class 1 for a time 77 = G9(¢q1(0)) > 0 until it empties, then partially helps class 2 for time 7 > 0,
then partially helps class 3 for some time 73 > 0, then serves only its own class thereafter. To see

this, note first that
hainn G372 (o (T +72)) < hapis P2 (q( +72)) + o

where equality holds by continuity if 75 > 0. Subsequently, hopa1G5(g2(t)) decreases at rate hapiag,
while the RHS decreases at rate hsus;. Because hopay > hapsr, the inequality (28) never holds
subsequently, and so pool 1 will not partially help class 2 after time 77" + 7.

The times to deplete the three queues are

7 = Gi(0:(0)),
Ty = min{Gg(qg(O)),T{k + 75 +G72—f+7'2(q;(7'1* +7'2))}7

7y = min {G(as(0)), 77 + 2 7+ GE T g3 (77 + o 7)) |

The optimal queue length trajectory follows:

qi(t) = {gl+fo(/\1(5) —sip)ds,  telo,r),

’ te I:Tl*’oo)7

Q2+fot(/\2(8) —82M22)d8, t € [0, min{r7, 75,

4 (77) +ft —82M22—25‘1(8)u21)ds, te[r, 18 +T),
% (1) = :

5 (7'1 + 1)+ f +72 (S) — Saflaz) ds, tc [ + 7Ty, 7] )7

0, t€lry,00),

45+ fot(/\?’(s) - 83“33) ds, t € [0, min{7}, 75 }),
@ (t) = a5 (17) +ft — Sapiaz — 24, () p31) ds, t € [rf, min{r; + 70+ 73,75 }),
3 @G (T + T+ T3) + f +T2+T3()\3(s) — S3fu33) ds, te[r 41+ 73,7,

0, t €15, 00).

Note for example that if 7" > 7, then 75 =0 and [7}, 7] + 72) is empty and so the corresponding

expression for ¢;(t) can be ignored. Assumption 6 ensures that ¢;(t) > 0 for ¢t € [17, 7] + 72) and
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q5(t) >0 for t € [1{ 4+ T2, 7F + 72 + 73). Thus, when pool 1 is partially helping class i =2,3, z¥ (t) =
s1—211(t) = 51— Au(s)/pr-

Define the adjoint vectors, for i =2, 3,

o (t) = {hi(ﬁ‘—t), tef0,77),

0, te[r},00).
Define also
h (Tik_t)_‘_hQMTQ_‘_hS%TJ, [0, )
() = ho B2 (] 72 — 1) + ha {2173, €lr, M+ ),
hs 3 (1) + 12 + 73— 1), €rf+m, 17 + 12 +T3),
0, €[] + T2+ 73,00).

Define the multipliers

0, €[0,77),
*(t) . hl h2 Z?i [7'1* 7_1 +7-2)
! hy — hgﬁﬁ €+ 1,1+ 1+ T13),
hi, € [1f + 1o+ 73,00),
. 0, te [0,7'2*),
t) =
m(t) {hz, t€ry,00)
t *
RS St
hs, ters,00)
7*(15) _ pf(t),uu, te [0,7'1* ‘|‘7_2 +7'3),
! 0, te [7‘1*—|—7‘2—|—7’3,OO),
’7*(25) — p;(t):uﬂa te [OaTQ*)’
? 0, te€ [, 00),
’y*(t) _ p;(t):u‘337 te [07T§)7
’ 0, t€[ry,00)
£t = PE LT+
2 Po1 — 3 (E)par + 5 (1), t &[5, 7 +72)
e (1) = 0, t €1 + 7o, T + T2+ T3),
o Gs1 —P5(H)ps1 +75 (1), L& [T + 72T + T2+ Ts)

and &7, (1) =&, (t) =&55(t) =0 for all ¢ > 0. Note that n7 () > 0 because hqp11 > hopiar > hapsi. We
next show &, (¢) and &, (t) are non-negative. Consider first &, (t). Because hypig > hapior > hapiar,
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Vi (t) — pi(t)par + ¢a1 is decreasing on [0,7;), constant on [r7,7; + 72) and non-decreasing on
[15 4+ 79,75 ), after which it is positive since p3(t) = 0. So, it suffices to show that v; (t) — p5(¢) po1 + P21

is non-negative at t =7, 4+ 72. This holds because

*

G21 — P53 (1 + T2) o1 + PI (7] + T2) par = Ga1 — hopior (75 — T — 7o) + haopor (77 — 71) + hapizr 75 > 0,

since hopioy (5 — 7 — T2) — @21 < hapus1 73 by construction of the policy (equality holds if 75 > 0).
We next turn to &3, (¢). Because hq 11 > hopior > hapisi, 75 (t) —p5(t) a1 + ¢31 is non-increasing on

[0, 7] + 73) and constant on [} + 7o, 7] + T + 73), after which it is non-decreasing since ~v; (t) = 0.

So, it suffices to show that 7 () — p5(t)us1 + P31 is non-negative at t* = 7 + 7, + 73. This holds

because we have

31 — P53t ) a1 + 07 (E ) 11 = pa1 — hapsr (75 — ) + hapsy (77 + o+ 73 — ) >0,

*_

because hspzi (75 — 7 — T2 — 73) < ¢31 by construction of the policy (equality holds if 73 > 0).
The conditions (ODE), (ADJ), (C), (J), and (H) can be straightforward verified by construction.
We now verify (AH). For i=1,2,3,

Ve L(q™(t), 2°(8),p"(8), " (£), 7" (£), £ (1), 1) = —p; () pwas + 77 () — §i() =0
because & (t) =0 and v/ (t) = p; (t)pii- Next,
vz21 L(q* (t)') z" (t),p* (t)v 77* (t)a 7* (t)7 g* (t)7 t) - ¢21 - p; (t)Mm + 7; (t) - §;1 (t)

When t ¢ [17, 7] + T), this is zero because &, (t) = ¢o1 — p3 ()21 + 75 (t). For t € [77, 77 + 72),
&5, (t) =0 and we have

Ga1 — P5(t) pror + P (E) 11 = Po1 — hopior (75 —t) + hopior (77 + 72 — t) + hapiz1 75 =0,
because hgugl(T; - Tl* - T2) - ¢21 = h3[,6317'3, when Ty > 0. Finally,
vzglL(q* (t)7 Z*(t),p* (t)v 77* (t)a ’7* (t)7 5* (t)7 t) = ¢31 - Pg(t)/m + f)/ik (t) - &;1 (t)

When t € [1] + 72,71 + T2 + 73), this is zero because &, (t) = ¢31 — p5(t)pus1 + i (t). For t € [r7 +

To, Ty + T2+ 73), &, (t) =0 and we have

31 — P53 (t) a1 + 01 () i = P31 — hapsi (15 —t) + hapsi (77 + o+ 13— ) =0,

because hspgi (75 — 7 — T2 — T3) = ¢31, when 75 > 0.
It remains to verify (M). It is clear that z3,(f) and z3;(¢) should always be maximal. The coef-

ficients of zj,(t), z3,(t) and z3 (t) are respectively —pj(t)u11, P21 — P5(t)por and ¢z — pi(t)par-
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From the earlier discussion on the non-negativity of &5, (¢) and &3, (t), we have that p}(t) a1 — ¢a1 <
p;(t)pq for all ¢, and that p;(t)ps1 — ¢dz1 < pi(t)par for all t. Thus, it is optimal for pool 1 to give
priority to class 1 at all times. For ¢ € [7, 7 + 72), p;(t) 11 = p3(t) a1 — P21, and so it is optimal
for pool 1 to partially help class 2. For t € [y + 7o, 7 + T2 + 73), pi(t)p11 = p5(t) 31 — @31, and so
it is optimal for pool 1 to partially help class 3. For ¢t > 77 + 7 + 73, p;(t) =0, which implies that
i ()i — ¢in <0 for i =2,3, and so it is optimal for pool 1 to not help classes 2 and 3. [



