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AbstractÐ We introduce an explainable deep neural archi-
tecture that combines brain structure with genetic influence
to improve disease severity prediction in Alzheimer’s disease.
Our framework consists of an encoder, a decoder, and a rank-
consistent ordinal regression module. The encoder projects
neural imaging and genetics data into a low-dimensional latent
space regularized by the decoder. The ordinal regression module
guides the feature embedding process to find discriminative
patterns representative of disease severity. We also add a
learnable dropout layer that learns feature importance and
extracts explainable biomarkers from the data. We evaluate
our model using structural MRI (sMRI) and Single Nucleotide
Polymorphism (SNP) data provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. In 2-class severity
classification comparison, our model has a median F-score
of 0.86 (baseline median F-score range: 0.57-0.81). In 3-class
classification comparison, our model’s median F-score is 0.50
(baseline range: 0.17 - 0.41). In 4-class classification comparison,
our model’s median F-score is 0.40 (baseline range: 0.14 - 0.39).
We demonstrate that our model provides improved disease
diagnosis alongside sparse and clinically relevant biomarkers.

Clinical relevanceÐThis study provides a deep-learning
model that can predict Alzheimer’s disease severity levels while
identifying consistent and clinically relevant biomarkers.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder

common in the elderly population [1]. Patients develop

mild cognitive impairment, which progresses to dementia.

AD is characterized by gradual loss of brain cells, also

known as brain atrophy, which can be detected through

structural magnetic resonance imaging (sMRI) [2]. Genetic

factors also play a significant role in disease development [3]

and progression [4]. Genetic risk factors, such as single

nucleotide polymorphisms (SNPs), help pinpoint mutations

in the DNA that influence the pathophysiology [5] of AD.

Most research disentangles AD mechanisms by studying the

neural influence and genetic factors separately. However,

separating the data modalities may provide an incomplete

picture of the underlying biological process [6].

Imaging-genetics studies integrate neuroimaging and ge-

netic data to improve disease prediction [7]. Imaging fea-

tures are often derived from structural and functional MRI

*Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI provided
data but did not participate in analysis or writing of this report.

(s/fMRI), and genetic variants are typically captured by

SNPs. Data-driven imaging-genetics methods can be grouped

into four main categories: simple regression, nonlinear meth-

ods, correlation methods, and deep learning approaches. The

first category uses linear models like SVM [8], [9] and

Logistic Regression [10] for AD classification. However,

these methods typically train on single data modality and fail

to discover interactions between modalities. The second cate-

gory leverages gradient boosting [11], [12] and decision trees

[13] for multi-class classification. These models can encode

nonlinear interactions between the features, but they fail to

disentangle the neuroimaging and genetic pathways linked to

AD. The third category uses correlation analysis to identify

associations between genetic variations and quantitative traits

[14], [15], [16]. However, these models do not incorporate

clinical diagnosis directly. Thus, the biomarkers obtained

through such analysis may not align with the predictive

group differences. The last category relies on deep learning

architectures to combine high dimensional, structured data

for imaging-genetic analysis [17]. Deep learning frameworks

are highly complex, lacking model explainablility. Recent

work such as the Genetic and Multimodal Imaging data using

Neural-network Designs (G-MIND) framework can identify

predictive biomarkers of a disease from imaging and genetic

modalities [18]. However, G-MIND performs classification

and cannot accommodate the progression of AD severity.

We introduce a novel framework to combine Genetic and

Imaging data using Rank-consistent mUltimodal multiclaSs

network (GIRUS-net) that identifies neuroimaging and genet-

ics biomarkers for AD diagnosis [18]. This work extends the

G-MIND model and uses a rank-consistent ordinal regression

module [19] to track disease severity from imaging and

genetics data. Thus, GIRUS-net can identify biomarkers that

are associated with the progressive representation of disease

severity. GIRUS-net consists of an autoencoder coupled with

an ordinal regression module. The encoders combine the

imaging and genetics features into latent space and pass it

through the ordinal regression module for disease severity

prediction. We introduce a binary mask with binary concrete

prior [20] as feature selection layer for biomarker detection.

On a population study of AD, GIRUS-net yields sparser and

more consistent biomarkers than baselines methods, while

maintaining competitive classification performance.
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Fig. 1. GIRUS-net architecture. The inputs in and gm correspond to the
imaging and genetic modalities. E(·) and D(·) capture the encoding and
decoding operations, and Y(·) captures the ordinal regression operation.
ℓn is the combined latent representation. zin, z

g
n are the learnable dropout

mask for imaging and genetic features, respectively. b1 · · · bK−1 are the
bias terms learned during ordinal regression that ensures rank consistency.

II. METHODS

Figure 1 illustrates our GIRUS-net framework. The inputs

are the genotype data gn ∈ RG×1 for each subject n and

the corresponding imaging features in ∈ RI×1. The class

labels yn ∈ {1, 2, 3, 4} corresponds to different severity of

AD: cognitive normal (CN), early mild cognitive impairment

(EMCI), late mild cognitive impairment (LMCI), and mild

Alzheimer’s disease (AD). The diagnosis (phenotype) yn is

known during training but not during testing.

A. Encoder-Decoder Framework

We jointly model the imaging and genetic data using an

autoencoder, coupled with an ordinal regression module.

a) Bayesian Feature Selection: The first layer of the

encoder incorporates Bayesian feature selection using a

learnable dropout layer. Unlike Bernoulli dropout where the

underlying probability is fixed a priori, here we parameterize

the dropout layer using Gumbell-Softmax distribution. The

reparameterization trick relaxes the standard binary dropout

to a continuous representation, which allows us to learn the

posterior probability of the binary vectors. Mathematically,

the subject specific dropout masks zmn are generated as:

zmn = σ
(1

t

(

log(pm)−log(1−pm)+log(um
n )−log(1−um

n )
)

)

.

(1)

where m indexes the data modality, pm represents the un-

derlying importance map, t captures the extent of relaxation

from Bernoulli dropout, and ui
n is a random vector sampled

from Uniform(0, 1) for stochasticity. During each forward

pass and for every subject n, the network randomly samples

zin for imaging and zgn for genetics, respectively. The contin-

uous representation of the dropout masks allow us to learn

the underlying importance maps during training. We also

incorporate a KL divergence loss KL(Ber(q)∥Ber(pm)) to

enforce sparsity in pm. As seen in Eq. (1), higher values in

pm are representative of the most selected features and can

be identified as potential biomarkers.

b) Multimodal Latent Fusion and Decoder: The imag-

ing and genetic features are passed through the learnable

dropout layers to two separate encoders to obtain latent

embeddings. These embeddings are then fused to leverage

the common structure shared between both modalities. Math-

ematically, the fusion operation is

ℓn =
1

2

(

Ei(in, zin) + Eg(gn, zgn)
)

(2)

where Ei(·), Eg(·) denote the encoding operations for imag-

ing and genetics. After fusion, the latent vectors ℓn are

passed through the decoders Di(·) and Dg(·) to reconstruct

the imaging and genetic data, ensuring that information is

preserved during encoding. The reconstruction loss is an L2

loss between the input and the reconstructed outputs:

λ1

B

N
∑

n=1

∥in −Di(ℓ
n)∥

2
2 +

λ2

B

N
∑

n=1

∥gn −Dg(ℓ
n)∥

2
2 (3)

where B is the batch size, and λ1, λ2 capture relative

contribution of the loss terms.

B. Rank Consistent Ordinal Regression

Our auto-encoder is coupled with an ordinal regression

module to predict the level of disease severity. The regression

module ensures that the latent embeddings and the dropout

masks learn discriminative information from the data.
a) Rank Consistent Prediction: Our regression module

consists of a sequence of fully connected layers which pre-

dicts the disease severity level from the latent embeddings.

Mathematically, the prediction probabilities are calculated as

P (ŷn = k) = σ(Y(ℓn;W) + bk) (4)

where ŷn is the predicted class label, Y(·) is the fully

connected layers parameterized by W, and bk are separate

biases associated with each severity level. To ensure rank

consistency among prediction probabilities (i.e., P (ŷn =
k) > P (ŷn = K + 1)), we need to ensure that bk > bk+1.

Previously, the work of [19] has shown that rank consistency

can be achieved using multi-label cross entropy loss:

Lordinal =

B
∑

n=1

K−1
∑

k=0

y(k)n log (P (ŷn = k))

+ (1− y(k)n ) log (1− P (ŷn = k))

where y(k)n = 1 if k <= yn (5)

where B is batch size, y
(k)
n is a binary multi-class vector

generated from yn, and ŷn is the predicted label.

Combining Eqs. (1-5), the GIRUS-net loss function is:

L =
λ1

B

B
∑

n=1

∥in −Di(ℓ
n)∥

2
2 +

λ2

B

B
∑

n=1

∥gn −Dg(ℓ
n)∥

2
2

+
λ3

B
· Lordinal + λ4

∑

m∈{i,g}

θm(KL(Ber(q)|Ber(pm)))

(6)

where λ1, λ2 capture the contribution of the reconstruction

losses, λ3 controls the contribution of ordinal loss and θm
captures the relative contribution of the sparsity penalties.
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b) Prediction on New Data: During testing, the imag-

ing and genetic data are multiplied by the dropout proba-

bilities and passed through the encoder. The latent encoding

then pass through the ordinal regression module for disease

severity prediction. Disease severity is predicted by

ŷtest = k if P (ŷtest = k) > 0.5

and P (ŷtest = k + 1) < 0.5. (7)

C. Implementation and Parameter Sweep

The model parameters, {λ1, λ2, λ3, λ4}, are selected so

that individual loss terms lie within the same order of

magnitude. This criterion is model agnostic and does not

require us to optimize them. We weighted each sparsity

penalty by θm to adjust for difference in number of features:

θi =
number of Genetic Features
number of Imaging Features

, and θg = 1. The learning rate and

batch size are fixed based on validation performance in a 10-

fold cross validation setting. We perform grid search over

learning rate ∈ [0.00001, 0.001] and batch size ∈ [8, 128].
For all experiments, we fixed the Bernoulli probability to

q = 0.0001, temperature t = 0.1, and batch size = 32. Model

parameters were set to λ1 = 0.0001, λ2 = 0.001, λ3 = 0.5,
and λ4 = 0.0001, where λ1, λ2, λ3 were scaled to be on the

same scale as sparsity penalty. Learning rate is 0.001 for 2-

class and 0.0005 for 3-class and 4-class experiments. Fig. 1

shows additional architecture details.

D. Baseline Methods

We compare GIRUS-net with four standard baseline mod-

els that operate on the concatenated data modalities, i.e.

x = [iT , gT ]. Hyperparameters are fixed using a grid search

approach in a 10-fold cross validation setting.

a) Random Forest Classifier (RF): Random Forest is an

ensemble method that constructs decision trees and average

their outputs to provide a robust and accurate prediction.

Feature importance is calculated as mean decrease in infor-

mation gain [21] associated with each feature.

b) Support Vector Machine (SVM): Support vector ma-

chines create a hyperplane that maximally separates the data

belonging to two different classes. Here, we extend the

linear SVM by building
K(K−1)

2 separate binary ºone vs.

oneº classifiers to perform multi-class prediction [22]. We

construct the feature importance map by taking the mean of

the absolute values of weights of the linear kernels.

c) Artificial Neural Network (ANN): We train an ANN

to perform classification based on input x. ANNs can model

complex patterns from the data, but usually lack feature

explainability, particularly for deeper networks. Thus, the

feature importance maps are calculated post hoc using Shap-

ley Additive Explanations [23].

d) Ordered Logit Model (O-Logit): O-Logit is a gener-

alized linear model that performs ordinal regression [24].

Here, we learn a linear layer of weights w and bias

b1 · · · bK−1. Similar to the implementation of GIRUS-net,

we extended each label yn to K-1 labels, y
(0)
n · · · y

(K−1)
n .

The predicted probability for the severity level are given by

P (ŷn = k) = σ(w · xn + bk). (8)

We train O-Logit with the multi-label cross entropy loss in

Eq. (5). We use the learned weights w as feature importances.

E. Evaluation Strategy

GIRUS-net is compared to the baseline methods across

three experiments. In the first experiment, we classify Cog-

nitive Normal (CN) and Alzheimer’s Disease (AD) patients

in 2-class classification task. We set up the second ex-

periment as a 3-class classification task, where we predict

Cognitive Normal (CN), Mild Cognitive Impairment (MCI)

and Alzheimer’s Disease (AD). Finally, in the third exper-

iment we aim to predict Cognitive Normal (CN), Early

Mild Cognitive Impairment (EMCI), Late Mild Cognitive

Impairment (LMCI), and Alzheimer’s Disease (AD) patients

in a 4-class classification task. In the 3-class classification

task, we combine the EMCI and LMCI to a common class

called MCI. We evaluate all the models for classification

performance and biomarkers explainability. The biomarkers

are identified by assessing the feature importance maps. For

GIRUS-net, imaging and genetic feature importance maps

are calculated from pi, pg and the classification predictions

are the output of the ordinal regression branch.

a) Model Prediction Evaluation: We perform 10 re-

peats of stratified 10 fold cross validation. We evaluate the

classification performance based on accuracy, f1-score (F1),

Cohen’s kappa (Kappa) [25], recall, and precision.

b) Feature Importance Evaluation: The feature impor-

tance maps are evaluated based on sparsity and consistency

across classification task. We re-scaled the feature impor-

tance maps to [0, 1]. For all baseline methods, we scale

imaging and genetic features importance maps collectively

because imaging and genetic data are concatenated during

training. For GIRUS-net, we scale the two feature maps

separately as they come from separate branches of the model.

III. RESULTS

A. Data Credit

Data used in the preparation of this article were ob-

tained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database [26]. The ADNI was launched in 2003

as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biologi-

cal markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cogni-

tive impairment and early Alzheimer’s disease.

B. Data Preprocessing

The subjects in this study are included from the

ADNI2/GO database. The subjects are classified as cognitive

normal (CN), early mild cognitive impairment (EMCI), late

mild cognitive impairment (LMCI), or mild Alzheimer’s

disease (AD) based on ADNI2 protocol. Table 1 summarizes

the demographics of the 934 subjects, which contains both

MRI and genetic data. The data are pre-processed and

provided as a part of the TADPOLE challenge [27].
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TABLE I

SUBJECT DEMOGRAPHIC ACROSS DISEASE CATEGORIES

Categorya Counts Age(years) Gender(M/F)b MMSE

CN 269 75.6 ± 5.2 146/123 29.1 ± 1.1
EMCI 153 71.6 ± 7.1 91/62 28.3 ± 1.5
LMCI 346 74.8 ± 7.2 225/121 27.2 ± 1.5
AD 166 75.7 ± 7.7 93/73 23.4 ± 2.0

Table 1. Subject demographics of the dataset, including number of subjects
per category, age, gender distribution, and Mini-Mental State Examina-
tion(MMSE). The data are expressed as mean ± SD.
a CN: Cognitive Normal; EMCI: Early Mild Cognitive Impairment; LMCI:
Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.
b M: Male; F: Female.

a) MRI Imaging Data: The T1-weighted MRI imaging

data are collected using a 3T scanner. The data are processed

with gradient non-linearity, B1 non-uniformity correction

and peak sharpening [28]. This study uses cross-sectional

cortical thickness as imaging features, which are extracted

via Freesurfer [29]. The imaging features consists of 68

brain regions of interest (ROIs), with 34 features from the

right hemisphere and 34 from the left, based on the Desikan-

Killiany atlas [30]. As an additional preprocessing step, we

normalize all testing, validation, and training imaging data

with the mean and standard deviation of the training data.

b) Genetics Data: In parallel, genotyping was done

with GenomeStudio v2009.1 (Illumina). Quality control was

performed using PLINK, resulting in 141912 Linkage Dise-

quilibrium (LD) independent SNPs. We subselect 1165 SNPs

by thresholding the p-value p ≤ 0.001 based on an auxiliary

genome-wide associated study data (GWAS) [31].

C. Classification Performance

Fig. 2 quantifies the classification performance of all the

methods across the three experimental setups. Compared to

the baselines, GIRUS-net is consistently showing better, or

comparable performance across all the performance metrics.

The confusion matrices in Fig. 3 further show that the

baseline models fail to handle class imbalance. Especially

in 3-class and 4-class scenarios, the baselines tend to predict

all subjects as the majority class(es). In comparison, GIRUS-

net can successfully distribute its predictions across class

labels. The improved performance suggests that GIRUS-net

can extract discriminative patterns of disease severity.

D. Feature Importance Sparsity and Consistency

The imaging and genetics biomarkers are identified by the

mean feature importance maps across 10 repeats of 10-fold

cross validations. As shown in Fig. 4, the baseline models

rely mainly on one modality for diagnosis: imaging for RF,

SVM, and ANN; genetics for Ordered Logit. In comparison,

GIRUS-net puts equal importance on both the data modalities

and extract a sparse set of biomarkers.

Additionally, the low importance scores demonstrate that

these baseline methods fail to jointly extract discriminative

information from both the data modalities. The superior per-

formance of GIRUS-net suggests that the learnable dropout

Fig. 2. Prediction performance of each method across 10 repeats of 10
fold cross validations. The box plots capture the mean and the deviation of
the metrics across all the folds.

layers can selectively find brain and genetics biomarkers that

are crucial for the downstream severity prediction.

E. Analysis of Imaging Biomarkers

We average the imaging feature importance maps learned

from GIRUS-net across the three classification experiments.

In Fig. 5, we plot top 10 regions onto the brain with colors

corresponding to the value of feature importance. Our model

identifies brain regions including lateral ventricle, medial

temporal lobe, inferior temporal lobe, and parahippocampal

gyrus. Correspondingly, AD is characterized by enlarged

ventricles [32] and loss of tissue in inferior parietal gyrus

[33] and parahippocampal gyrus [34]. Functionally, the hip-

pocampus is crucial for episodic and spatial memory [35]

which is affected by AD. Overall, GIRUS-net identifies brain

regions with high association to AD in the literature.

F. Analysis of Genetics Biomarkers

Fig. 6 shows the mean of the genetic feature selection

maps identified by the learnable dropout layer across the

three classification experiments. A higher value indicates

genetic variants containing discriminative information about

all the classification tasks and are potential AD risk loci. We

annotate the top 10 SNPs and their overlapping or affected

genes as listed in The Ensemble Variant Effect Predictor

and the GWAS Catalog [36], [37]. Our model identifies

well established Alzheimer’s risk factors such as TOMM40

[38] and APOE [39] with high feature importance. Using

the GTEx database, we identify the set of brain tissues

where the set of genes show high expression levels. Aside
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Fig. 3. The confusion matrices are constructed with all the testing data across 10 repeats of 10-fold cross validation. The diagonal boxes, colored in blue,
are representative of correct predictions, and the off-diagonal orange boxes capture the inconsistency between the actual and predicted class labels.

Fig. 4. The mean feature importance maps are calculated across all the cross validation folds in each experimental setting. A high feature importance
value captures the location of consistent and discriminative biomarkers.
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Fig. 5. The brain regions correspond to top 10 important features. The feature importances are calculated by taking the mean across all the experimental
settings. The color bar corresponds to the feature importance values.

Fig. 6. Left: Mean genetic importance of all SNPs across the three classification tasks. The variants are color coded according to their location on the
chromosomes. Right: The gene expression pattern of the selected set of genes in different brain tissues based on the GTEx database.

from APOE and TOMM40, we identify NDUFA4, which

plays a regulatory role in the expression of synaptophysin in

the hippocampus, and gene mutation could potentially lead

to AD [40]. Aside from already established genes, several

intergenic and non-coding SNPs are also selected with high

feature importance by GIRUS-net . Their association to

AD is unknown. The explainability study demonstrated that

the genetic biomarkers identified by GIRUS-net aligns with

research findings and may assist in future genetic analysis.

IV. CONCLUSIONS

In this paper, we introduce GIRUS-net, a deep learning

framework for multi-modal fusion, biomarker extraction, and

severity prediction for AD. As compared to prior work, we

introduce a rank-consistent ordinal regression module that

extracts discriminative features that have a progressive effect

on disease severity. In a population study of AD, GIRUS-

net successfully integrates imaging-genetic data for disease

severity prediction. Compared to standard baselines, GIRUS-

net extracts consistent, distinctive, and clinically relevant

information from imaging and genetic features across various

complex diagnosis tasks. In addition, GIRUS-net is not tied

to any specific data modality; the flexible design allows

the user to combine diverse data modalities and provide a

comprehensive view of various diseases.
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