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Abstract— We introduce an explainable deep neural archi-
tecture that combines brain structure with genetic influence
to improve disease severity prediction in Alzheimer’s disease.
Our framework consists of an encoder, a decoder, and a rank-
consistent ordinal regression module. The encoder projects
neural imaging and genetics data into a low-dimensional latent
space regularized by the decoder. The ordinal regression module
guides the feature embedding process to find discriminative
patterns representative of disease severity. We also add a
learnable dropout layer that learns feature importance and
extracts explainable biomarkers from the data. We evaluate
our model using structural MRI (sMRI) and Single Nucleotide
Polymorphism (SNP) data provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. In 2-class severity
classification comparison, our model has a median F-score
of 0.86 (baseline median F-score range: 0.57-0.81). In 3-class
classification comparison, our model’s median F-score is 0.50
(baseline range: 0.17 - 0.41). In 4-class classification comparison,
our model’s median F-score is 0.40 (baseline range: 0.14 - 0.39).
We demonstrate that our model provides improved disease
diagnosis alongside sparse and clinically relevant biomarkers.

Clinical relevance—This study provides a deep-learning
model that can predict Alzheimer’s disease severity levels while
identifying consistent and clinically relevant biomarkers.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
common in the elderly population [1]. Patients develop
mild cognitive impairment, which progresses to dementia.
AD is characterized by gradual loss of brain cells, also
known as brain atrophy, which can be detected through
structural magnetic resonance imaging (sMRI) [2]. Genetic
factors also play a significant role in disease development [3]
and progression [4]. Genetic risk factors, such as single
nucleotide polymorphisms (SNPs), help pinpoint mutations
in the DNA that influence the pathophysiology [5] of AD.
Most research disentangles AD mechanisms by studying the
neural influence and genetic factors separately. However,
separating the data modalities may provide an incomplete
picture of the underlying biological process [6].

Imaging-genetics studies integrate neuroimaging and ge-
netic data to improve disease prediction [7]. Imaging fea-
tures are often derived from structural and functional MRI

*Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI provided
data but did not participate in analysis or writing of this report.

(s/fMRI), and genetic variants are typically captured by
SNPs. Data-driven imaging-genetics methods can be grouped
into four main categories: simple regression, nonlinear meth-
ods, correlation methods, and deep learning approaches. The
first category uses linear models like SVM [8], [9] and
Logistic Regression [10] for AD classification. However,
these methods typically train on single data modality and fail
to discover interactions between modalities. The second cate-
gory leverages gradient boosting [11], [12] and decision trees
[13] for multi-class classification. These models can encode
nonlinear interactions between the features, but they fail to
disentangle the neuroimaging and genetic pathways linked to
AD. The third category uses correlation analysis to identify
associations between genetic variations and quantitative traits
[14], [15], [16]. However, these models do not incorporate
clinical diagnosis directly. Thus, the biomarkers obtained
through such analysis may not align with the predictive
group differences. The last category relies on deep learning
architectures to combine high dimensional, structured data
for imaging-genetic analysis [17]. Deep learning frameworks
are highly complex, lacking model explainablility. Recent
work such as the Genetic and Multimodal Imaging data using
Neural-network Designs (G-MIND) framework can identify
predictive biomarkers of a disease from imaging and genetic
modalities [18]. However, G-MIND performs classification
and cannot accommodate the progression of AD severity.
We introduce a novel framework to combine Genetic and
Imaging data using Rank-consistent mUltimodal multiclaSs
network (GIRUS-net) that identifies neuroimaging and genet-
ics biomarkers for AD diagnosis [18]. This work extends the
G-MIND model and uses a rank-consistent ordinal regression
module [19] to track disease severity from imaging and
genetics data. Thus, GIRUS-net can identify biomarkers that
are associated with the progressive representation of disease
severity. GIRUS-net consists of an autoencoder coupled with
an ordinal regression module. The encoders combine the
imaging and genetics features into latent space and pass it
through the ordinal regression module for disease severity
prediction. We introduce a binary mask with binary concrete
prior [20] as feature selection layer for biomarker detection.
On a population study of AD, GIRUS-net yields sparser and
more consistent biomarkers than baselines methods, while
maintaining competitive classification performance.
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Fig. 1. GIRUS-net architecture. The inputs i,, and g, correspond to the
imaging and genetic modalities. £(-) and D(-) capture the encoding and
decoding operations, and )(-) captures the ordinal regression operation.
£™ is the combined latent representation. z?,, z, are the learnable dropout
mask for imaging and genetic features, respectively. by ---bg 1 are the
bias terms learned during ordinal regression that ensures rank consistency.

II. METHODS

Figure 1 illustrates our GIRUS-net framework. The inputs
are the genotype data g, € R*! for each subject n and
the corresponding imaging features i, € R/*!. The class
labels y,, € {1,2,3,4} corresponds to different severity of
AD: cognitive normal (CN), early mild cognitive impairment
(EMCI), late mild cognitive impairment (LMCI), and mild
Alzheimer’s disease (AD). The diagnosis (phenotype) y,, is
known during training but not during testing.

A. Encoder-Decoder Framework

We jointly model the imaging and genetic data using an
autoencoder, coupled with an ordinal regression module.

a) Bayesian Feature Selection: The first layer of the
encoder incorporates Bayesian feature selection using a
learnable dropout layer. Unlike Bernoulli dropout where the
underlying probability is fixed a priori, here we parameterize
the dropout layer using Gumbell-Softmax distribution. The
reparameterization trick relaxes the standard binary dropout
to a continuous representation, which allows us to learn the
posterior probability of the binary vectors. Mathematically,
the subject specific dropout masks z]* are generated as:

7" = a( (log(p™)—log(1—p™)+log(u")—log(1— u’”)))

(D
where m indexes the data modality, p”* represents the un-
derlying importance map, ¢ captures the extent of relaxation
from Bernoulli dropout, and u!, is a random vector sampled
from Uniform(0,1) for stochasticity. During each forward
pass and for every subject n, the network randomly samples
z!, for imaging and z¢ for genetics, respectively. The contin-
uous representation of the dropout masks allow us to learn
the underlying importance maps during training. We also
incorporate a KL divergence loss K L(Ber(q)||Ber(p™)) to
enforce sparsity in p™. As seen in Eq. (1), higher values in
p™" are representative of the most selected features and can
be identified as potential biomarkers.

m

b) Multimodal Latent Fusion and Decoder: The imag-
ing and genetic features are passed through the learnable
dropout layers to two separate encoders to obtain latent
embeddings. These embeddings are then fused to leverage
the common structure shared between both modalities. Math-
ematically, the fusion operation is

1 .
5(&;(%#2) +5g(gnaZ%)) @)

where &;(-), £4(-) denote the encoding operations for imag-
ing and genetics. After fusion, the latent vectors ¢, are
passed through the decoders D;(-) and D,(-) to reconstruct
the imaging and genetic data, ensuring that information is
preserved during encoding. The reconstruction loss is an Lo
loss between the input and the reconstructed outputs:

A
Znn— Di()|I5 + QZHgn

where B is the batch size, and )\1,)\2 capture relative
contribution of the loss terms.

0, =

] )

B. Rank Consistent Ordinal Regression

Our auto-encoder is coupled with an ordinal regression
module to predict the level of disease severity. The regression
module ensures that the latent embeddings and the dropout
masks learn discriminative information from the data.

a) Rank Consistent Prediction: Our regression module
consists of a sequence of fully connected layers which pre-
dicts the disease severity level from the latent embeddings.
Mathematically, the prediction probabilities are calculated as

P(fn = k) = o(V(ln; W) + bi) )

where ¢, is the predicted class label, Y(-) is the fully
connected layers parameterized by W, and by, are separate
biases associated with each severity level. To ensure rank
consistency among prediction probabilities (i.e., P(p

k) > P(y, = K + 1)), we need to ensure that by, > bgy;.
Previously, the work of [19] has shown that rank consistency
can be achieved using multi-label cross entropy loss:

B K-1
Lordinal = Z Z yy(Lk) IOg (P(gn = k))
n=1 k=0
+ (1 —y" N log (1 — P(jjn = k)
where y,(l ) =1if k<= Un &)

where B is batch size, y( ) is a binary multi-class vector
generated from y,,, and ¢, is the predicted label.
Combining Egs. (1-5), the GIRUS-net loss function is:

] Z Jin — Z g, — Dy

A3 m
+ ¥ -Lordinal + M EE{- }Gm(KL(Ber(q)|Ber(p )))
me{i,g

Dy(¢")|l5 +

(6)
where A1, Ao capture the contribution of the reconstruction
losses, A3 controls the contribution of ordinal loss and 6,,
captures the relative contribution of the sparsity penalties.
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b) Prediction on New Data: During testing, the imag-
ing and genetic data are multiplied by the dropout proba-
bilities and passed through the encoder. The latent encoding
then pass through the ordinal regression module for disease
severity prediction. Disease severity is predicted by

:gtest - k if P(gtest - k) > 0.5
and s = k+1) <05 (7)

C. Implementation and Parameter Sweep

The model parameters, {1, A2, A3, A4}, are selected so
that individual loss terms lie within the same order of
magnitude. This criterion is model agnostic and does not
require us to optimize them. We weighted each sparsity
penalty by 6,,, to adjust for difference in number of features:
0; = :l‘;l‘:l‘lg’:rr gff S;:;tr'fg FFZ[[‘;Z, and 6, = 1. The learning rate and
batch size are fixed based on validation performance in a 10-
fold cross validation setting. We perform grid search over
learning rate € [0.00001,0.001] and batch size € [8,128].
For all experiments, we fixed the Bernoulli probability to
q = 0.0001, temperature ¢ = 0.1, and batch size = 32. Model
parameters were set to A\; = 0.0001, Ay = 0.001, A3 = 0.5,
and A4 = 0.0001, where A1, A2, A3 were scaled to be on the
same scale as sparsity penalty. Learning rate is 0.001 for 2-
class and 0.0005 for 3-class and 4-class experiments. Fig. 1
shows additional architecture details.

D. Baseline Methods

We compare GIRUS-net with four standard baseline mod-
els that operate on the concatenated data modalities, i.e.
X = [iT, g”']. Hyperparameters are fixed using a grid search
approach in a 10-fold cross validation setting.

a) Random Forest Classifier (RF): Random Forest is an
ensemble method that constructs decision trees and average
their outputs to provide a robust and accurate prediction.
Feature importance is calculated as mean decrease in infor-
mation gain [21] associated with each feature.

b) Support Vector Machine (SVM): Support vector ma-
chines create a hyperplane that maximally separates the data
belonging to two different classes. Here, we extend the
linear SVM by building K(g_l) separate binary “one vs.
one” classifiers to perform multi-class prediction [22]. We
construct the feature importance map by taking the mean of
the absolute values of weights of the linear kernels.

c) Artificial Neural Network (ANN): We train an ANN
to perform classification based on input x. ANNs can model
complex patterns from the data, but usually lack feature
explainability, particularly for deeper networks. Thus, the
feature importance maps are calculated post hoc using Shap-
ley Additive Explanations [23].

d) Ordered Logit Model (O-Logit): O-Logit is a gener-
alized linear model that performs ordinal regression [24].
Here, we learn a linear layer of weights w and bias
b1---brg_1. Similar to the implementation of GIRUS-net,
we extended each label y, to K-1 labels, y7(10) . --yﬁLKfl).
The predicted probability for the severity level are given by

P(gn =k) = o(w-x, + bg). ®)

We train O-Logit with the multi-label cross entropy loss in
Eq. (5). We use the learned weights w as feature importances.

E. Evaluation Strategy

GIRUS-net is compared to the baseline methods across
three experiments. In the first experiment, we classify Cog-
nitive Normal (CN) and Alzheimer’s Disease (AD) patients
in 2-class classification task. We set up the second ex-
periment as a 3-class classification task, where we predict
Cognitive Normal (CN), Mild Cognitive Impairment (MCI)
and Alzheimer’s Disease (AD). Finally, in the third exper-
iment we aim to predict Cognitive Normal (CN), Early
Mild Cognitive Impairment (EMCI), Late Mild Cognitive
Impairment (LMCI), and Alzheimer’s Disease (AD) patients
in a 4-class classification task. In the 3-class classification
task, we combine the EMCI and LMCI to a common class
called MCI. We evaluate all the models for classification
performance and biomarkers explainability. The biomarkers
are identified by assessing the feature importance maps. For
GIRUS-net, imaging and genetic feature importance maps
are calculated from p?, pY and the classification predictions
are the output of the ordinal regression branch.

a) Model Prediction Evaluation: We perform 10 re-
peats of stratified 10 fold cross validation. We evaluate the
classification performance based on accuracy, fl-score (F1),
Cohen’s kappa (Kappa) [25], recall, and precision.

b) Feature Importance Evaluation: The feature impor-
tance maps are evaluated based on sparsity and consistency
across classification task. We re-scaled the feature impor-
tance maps to [0,1]. For all baseline methods, we scale
imaging and genetic features importance maps collectively
because imaging and genetic data are concatenated during
training. For GIRUS-net, we scale the two feature maps
separately as they come from separate branches of the model.

III. RESULTS
A. Data Credit

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [26]. The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cogni-
tive impairment and early Alzheimer’s disease.

B. Data Preprocessing

The subjects in this study are included from the
ADNI2/GO database. The subjects are classified as cognitive
normal (CN), early mild cognitive impairment (EMCI), late
mild cognitive impairment (LMCI), or mild Alzheimer’s
disease (AD) based on ADNI2 protocol. Table 1 summarizes
the demographics of the 934 subjects, which contains both
MRI and genetic data. The data are pre-processed and
provided as a part of the TADPOLE challenge [27].
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TABLE I

SUBJECT DEMOGRAPHIC ACROSS DISEASE CATEGORIES

Category® Counts Age(years) Gender(M/F)® MMSE

CN 269 756 £ 5.2 146/123 29.1 £ 1.1
EMCI 153 71.6 £ 7.1 91/62 283 £ 1.5
LMCI 346 748 + 7.2 225/121 272 + 1.5
AD 166 757 £ 7.7 93/73 234 +£20

Table 1. Subject demographics of the dataset, including number of subjects
per category, age, gender distribution, and Mini-Mental State Examina-
tion(MMSE). The data are expressed as mean & SD.

2 CN: Cognitive Normal; EMCI: Early Mild Cognitive Impairment; LMCI:
Late Mild Cognitive Impairment; AD: Alzheimer’s Disease.
b M: Male; F: Female.

a) MRI Imaging Data: The T1-weighted MRI imaging
data are collected using a 3T scanner. The data are processed
with gradient non-linearity, B1 non-uniformity correction
and peak sharpening [28]. This study uses cross-sectional
cortical thickness as imaging features, which are extracted
via Freesurfer [29]. The imaging features consists of 68
brain regions of interest (ROIs), with 34 features from the
right hemisphere and 34 from the left, based on the Desikan-
Killiany atlas [30]. As an additional preprocessing step, we
normalize all testing, validation, and training imaging data
with the mean and standard deviation of the training data.

b) Genetics Data: In parallel, genotyping was done
with GenomeStudio v2009.1 (Illumina). Quality control was
performed using PLINK, resulting in 141912 Linkage Dise-
quilibrium (LD) independent SNPs. We subselect 1165 SNPs
by thresholding the p-value p < 0.001 based on an auxiliary
genome-wide associated study data (GWAS) [31].

C. Classification Performance

Fig. 2 quantifies the classification performance of all the
methods across the three experimental setups. Compared to
the baselines, GIRUS-net is consistently showing better, or
comparable performance across all the performance metrics.
The confusion matrices in Fig. 3 further show that the
baseline models fail to handle class imbalance. Especially
in 3-class and 4-class scenarios, the baselines tend to predict
all subjects as the majority class(es). In comparison, GIRUS-
net can successfully distribute its predictions across class
labels. The improved performance suggests that GIRUS-net
can extract discriminative patterns of disease severity.

D. Feature Importance Sparsity and Consistency

The imaging and genetics biomarkers are identified by the
mean feature importance maps across 10 repeats of 10-fold
cross validations. As shown in Fig. 4, the baseline models
rely mainly on one modality for diagnosis: imaging for RF,
SVM, and ANN; genetics for Ordered Logit. In comparison,
GIRUS-net puts equal importance on both the data modalities
and extract a sparse set of biomarkers.

Additionally, the low importance scores demonstrate that
these baseline methods fail to jointly extract discriminative
information from both the data modalities. The superior per-
formance of GIRUS-net suggests that the learnable dropout
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Fig. 2. Prediction performance of each method across 10 repeats of 10
fold cross validations. The box plots capture the mean and the deviation of
the metrics across all the folds.

layers can selectively find brain and genetics biomarkers that
are crucial for the downstream severity prediction.

E. Analysis of Imaging Biomarkers

We average the imaging feature importance maps learned
from GIRUS-net across the three classification experiments.
In Fig. 5, we plot top 10 regions onto the brain with colors
corresponding to the value of feature importance. Our model
identifies brain regions including lateral ventricle, medial
temporal lobe, inferior temporal lobe, and parahippocampal
gyrus. Correspondingly, AD is characterized by enlarged
ventricles [32] and loss of tissue in inferior parietal gyrus
[33] and parahippocampal gyrus [34]. Functionally, the hip-
pocampus is crucial for episodic and spatial memory [35]
which is affected by AD. Overall, GIRUS-net identifies brain
regions with high association to AD in the literature.

F. Analysis of Genetics Biomarkers

Fig. 6 shows the mean of the genetic feature selection
maps identified by the learnable dropout layer across the
three classification experiments. A higher value indicates
genetic variants containing discriminative information about
all the classification tasks and are potential AD risk loci. We
annotate the top 10 SNPs and their overlapping or affected
genes as listed in The Ensemble Variant Effect Predictor
and the GWAS Catalog [36], [37]. Our model identifies
well established Alzheimer’s risk factors such as TOMM40
[38] and APOE [39] with high feature importance. Using
the GTEx database, we identify the set of brain tissues
where the set of genes show high expression levels. Aside
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value captures the location of consistent and discriminative biomarkers.
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Left: Mean genetic importance of all SNPs across the three classification tasks. The variants are color coded according to their location on the

chromosomes. Right: The gene expression pattern of the selected set of genes in different brain tissues based on the GTEx database.

from APOE and TOMMA40, we identify NDUFA4, which
plays a regulatory role in the expression of synaptophysin in
the hippocampus, and gene mutation could potentially lead
to AD [40]. Aside from already established genes, several
intergenic and non-coding SNPs are also selected with high
feature importance by GIRUS-net . Their association to
AD is unknown. The explainability study demonstrated that
the genetic biomarkers identified by GIRUS-net aligns with
research findings and may assist in future genetic analysis.

IV. CONCLUSIONS

In this paper, we introduce GIRUS-net, a deep learning
framework for multi-modal fusion, biomarker extraction, and
severity prediction for AD. As compared to prior work, we
introduce a rank-consistent ordinal regression module that
extracts discriminative features that have a progressive effect
on disease severity. In a population study of AD, GIRUS-
net successfully integrates imaging-genetic data for disease
severity prediction. Compared to standard baselines, GIRUS-
net extracts consistent, distinctive, and clinically relevant
information from imaging and genetic features across various
complex diagnosis tasks. In addition, GIRUS-net is not tied
to any specific data modality; the flexible design allows
the user to combine diverse data modalities and provide a
comprehensive view of various diseases.
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