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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• An integration of satellite-derived water 
storage estimates is necessary for 
improving the estimates of groundwater 
droughts 

• Data-driven ENSO related groundwater 
droughts are more severe and longer 
than model estimates 

• Global groundwater droughts are 
underestimated in most of the large- 
scale river basins worldwide 

• The Europe’s prolonged droughts of 
2017-2021 are better reflected in data 
sets that are merged with GRACE(-FO) 
data 

• Monitoring groundwater droughts in 
basins with pronounced multi-year 
fluctuations (e.g., Danube and Ob) re
mains challenging  
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A B S T R A C T   

Realistic representation of hydrological drought events is increasingly important in world facing decreased 
freshwater availability. Index-based drought monitoring systems are often adopted to represent the evolution 
and distribution of hydrological droughts, which mainly rely on hydrological model simulations to compute 
these indices. Recent studies, however, indicate that model derived water storage estimates might have diffi
culties in adequately representing reality. Here, a novel Markov Chain Monte Carlo - Data Assimilation (MCMC- 
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DA) approach is implemented to merge global Terrestrial Water Storage (TWS) changes from the Gravity Re
covery And Climate Experiment (GRACE) and its Follow On mission (GRACE-FO) with the water storage esti
mations derived from the W3RA water balance model. The modified MCMC-DA derived summation of deep- 
rooted soil and groundwater storage estimates is then used to compute 0.5∘ standardized groundwater 
drought indices globally to show the impact of GRACE/GRACE-FO DA on a global index-based hydrological 
drought monitoring system. Our numerical assessment covers the period of 2003–2021, and shows that inte
grating GRACE/GRACE-FO data modifies the seasonality and inter-annual trends of water storage estimations. 
Considerable increases in the length and severity of extreme droughts are found in basins that exhibited multi- 
year water storage fluctuations and those affected by climate teleconnections.   

1. Introduction 

Drought is a complex phenomenon whose severity periods may cover 
months and even years (Mishra and Singh, 2010; Van Loon and Laaha, 
2015; Van Loon, 2015). It impacts livelihoods and causes disasters such 
as agricultural losses, water scarcity, and famine (Sheffield and Wood, 
2012; Smith and Katz, 2013). Several studies argue that the likelihood of 
more frequent and stronger droughts will increase due to climate change 
and other anthropogenic influences (Dai, 2013; Toreti et al., 2022). This 
necessitates the development of drought monitoring and forecasting 
systems (Pozzi et al., 2013; Dutra et al., 2014), which are important tools 
for water resources management and should be further complemented 
by drought forecasting facilities (Pozzi et al., 2013). 

Available drought monitoring methods are often index-based, 
considering one or more hydro-climatic variables to generate the 
desired indices summarizing the severity and timing of drought events. 
Drought indices are calculated by applying statistical approaches to 
analyze the historical pattern of the hydro-climatic record (see a review 
of drought monitoring systems in (Hao et al., 2017)). Meteorologically- 
driven droughts are often characterized using precipitation and 
precipitation-evapotranspiration records, e.g., the Standardized Pre
cipitation Index (SPI) (McKee et al., 1993; Guttman, 1999) and the 
Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente- 
Serrano et al., 2010). Hydrologically-driven droughts are expressed in 
storage or moisture contents, e.g., the Standardized Storage Index (SSI) 
(Mishra and Singh, 2010), which uses soil moisture or groundwater 
data. Multivariate drought indices are also defined by relating SPI or 
SPEI and SSI, see e.g., (Hao and AghaKouchak, 2013; Carrão et al., 2016; 
Forootan et al., 2019). Therefore, a reliable estimation of hydrological 
drought indices requires more accurate and consistent (e.g., between 
storage changes and water fluxes) observation records. 

Generally speaking, hydro-climatic variables can be measured by in- 
situ and remote sensing instruments or simulated by models. Though in- 
situ networks are extremely helpful for understanding water cycle pro
cesses, they are limited by spatial and temporal data gaps and instru
mental and human errors. Extrapolation of in-situ measurements outside 
their spatial and temporal observational domain will often introduce 
considerable uncertainty. Remote sensing techniques provide an alter
native opportunity to measure the required variables with bigger spatial 
coverage compared to in-situ measurements (Yang et al., 2013; Fami
glietti et al., 2015; Frappart and Ramillien, 2018). However, these in
struments typically measure electromagnetic radiance or returned radar 
pulses reflected from the Earth’s surface. The relationship between these 
measurements and hydro-climatic variables might be complex and un
certain (Dutta, 2015; Uebbing et al., 2017). Hydrological and climate 
models provide key variables such as evapotranspiration, soil moisture, 
and groundwater storage. Nevertheless, inaccurate inputs and forcing 
fields, data deficiencies (e.g., limited ground-based observations), and 
imperfect (non-physics based/empirical) modeling assumptions intro
duce uncertainties into their simulations (Liu and Gupta, 2007). 

To address the respective disadvantages, merging existing model 

outputs with remote sensing observations through Data Assimilation 
(DA) has gained particular interest, see, e.g., the Global Land Data 
Assimilation System (https://ldas.gsfc.nasa.gov/gldas) and (Kumar 
et al., 2022). DA provides important advantages, including (i) the 
extension of the measurements from a single time and space to be 
spatially and temporally continuous, (ii) the interpretation of mea
surements on the basis of physical relationships embedded within the 
models, (iii) and the weighing of the various uncertainties associated 
with the model inputs and the measurements (Xu et al., 2014; Schu
macher, 2016; Ahmadalipour et al., 2017; Mehrnegar et al., 2020a; 
Forootan and Mehrnegar, 2022). DA also allows to use directly sensed 
surface parameters, such as back-scatter or brightness temperature as an 
input to the models, which are not physical variables in the model, but 
their relative dynamics might be linked to these parameters (van Dijk 
et al., 2018; Baguis et al., 2022). 

Without DA, global models might be less efficient in simulating hy
drological processes and phenomena, such as trends and seasonal and 
inter-annual variations of water storage, as shown, e.g., by (Mehrnegar 
et al., 2020a; Scanlon et al., 2018; Mehrnegar et al., 2020b). Therefore, 
we expect that applying model-derived fields to estimate drought 
indices, e.g., SSIs, would show limitations in representing the charac
teristics of hydrological drought events. Therefore, the focus of this 
study is to quantify the possible contribution of remotely sensed water 
storage for modifying the relevant estimates of large-scale hydrological 
models, and subsequently, the characterization of hydrological 
droughts. 

DA of the remotely sensed Surface Soil Moisture (SSM that is referred 
to as amount of water in a few cm of top soil layers) data has shown 
promising results in improving the top layer soil water storage changes 
and in modifying surface energy flux exchanges (Reichle and Koster, 
2005; Xu et al., 2015; Lievens et al., 2015; Tangdamrongsub et al., 
2020). However, such efforts have less impact on deeper water storage 
estimates. Therefore, in this study, to modify the storage estimates of all 
vertical land layers, we assess the impact of integrating Terrestrial Water 
Storage (TWS) variations derived from the Gravity Recovery And 
Climate Experiment (GRACE) (Tapley et al., 2004) and its Follow-on 
mission (GRACE-FO) (Tapley et al., 2019; Landerer et al., 2020) on 
the computation of storage-based hydrological drought indices. TWS 
variations represent a vertical integration of water content changes in 
the surface water, soil moisture, groundwater, and biomass, and can be 
used to improve the estimation of water states simulated by hydrological 
models (Mehrnegar et al., 2020a; Zaitchik et al., 2008; van Dijk et al., 
2014; Girotto et al., 2016; Khaki et al., 2018; Schumacher et al., 2018; 
Bolaños Chavarría et al., 2022). Although GRACE/GRACE-FO has pre
viously been used to study hydrological droughts (Forootan et al., 2019; 
Houborg et al., 2012; Sinha et al., 2017; Zhao et al., 2017) and has been 
integrated into drought monitoring systems, for example, that of the 
USA (https://grace.jpl.nasa.gov/applications/drought-monitoring/), its 
impact on the characteristics of hydrological droughts (including, for 
example, drought severity, duration, and timing) has not been thor
oughly investigated. Adding such investigation is indeed a major focus 
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of this study. 
Applying DA to merge any types of observations with hydrological 

models does not automatically and always improve simulations. Adding 
new inputs may also violate the water balance equation that relates 
water fluxes (precipitation, evapotranspiration and runoff) to water 
storage changes (Pan and Wood, 2006; Pan et al., 2012). For example, 
(Girotto et al., 2017) pointed out that assimilating GRACE TWS changes 
can introduce unrealistic trends in simulated storage compartments or 
worsen the simulation of evapotranspiration. Conversely, in other cases, 
DA has no significant impact on the simulation of individual water states 
or fluxes, as demonstrated in, e.g., (Schumacher et al., 2018). 

In this study, we apply a newly established Bayesian DA approach, 
Markov Chain Monte Carlo-Data Assimilation (MCMC-DA) (Mehrnegar 
et al., 2020b), to merge GRACE and GRACE-FO TWS changes with the 
Worldwide Water Resources Assessment (W3RA) (van Dijk, 2010) 
model and to estimate hydrological variables globally for 2003–2021. 
MCMC-DA provides the ability to separate GRACE/GRACE-FO TWS 
changes into its individual compartments (e.g., canopy, snow, surface 
water, soil water, and groundwater storage) using W3RA model outputs 
as a priori information of water storage compartments. This technique is 
comprehensively evaluated against groundwater observations within 
the USA, see (Mehrnegar et al., 2020b). An evaluation within 
Bangladesh has been added in the Appendix A. Our motivation to select 
W3RA as our basis is due to its relatively good global performance when 
compared with other commonly used global hydrological or land surface 
models (Mehrnegar et al., 2020a; Bolaños Chavarría et al., 2022). 

Here, the SSI (Mishra and Singh, 2010) is estimated using the sum
mations of deep-rooted soil water and groundwater simulations of 
W3RA, before and after implementing the MCMC-DA (Mehrnegar et al., 
2020b). The integration covers the entire period of 2003–2021, where 
the gaps between the GRACE and GRACE-FO missions are filled by 
methods published previously (Forootan et al., 2020). Our focus is to 
show (1) to what extent W3RA-derived deep-soil water and ground
water simulations can gain from GRACE/GRACE-FO measurements 
through MCMC-DA, (2) how much the updated records in (1) can impact 
the representation of global SSIs, and finally (3) the characteristics of the 
2003–2021 droughts globally and in selected basins. For the remainder 
of this paper, the term ‘groundwater storage’ refers to the sum of deep- 
rooted soil water and groundwater storage, unless stated otherwise. This 
summation is then used to study drought patterns because it can be 
considered as deep water resources. Besides, the separation between 
deep-rooted soil water and groundwater storage is considerably uncer
tain and is influenced by, among others, topography and geology. By 
considering the summation we avoid introducing extra uncertainty to 
our investigations. 

Another motivation to focus on the drought patterns, related to the 
deep water storage changes, is that (i) such investigation represents the 
impact of climate changes on water resources in deep layers, which are 
often used for irrigation and are important for the growth of deep rooted 
vegetation; and (ii) we expect that GRACE and GRACE-FO DA would 
have their largest contribution in these layers, whereas for studying the 
droughts of SSM, other DA attempts, e.g., driven by DA of remotely 
sensed SSM might be more appropriate, see e.g., (Mishra et al., 2017). 

2. Data and model 

2.1. GRACE and GRACE-FO data 

In this study, the latest GRACE and GRACE-FO Level 2 (L2) products 
of the Center for Space Research (CSR, http://www2.csr.utexas.edu/) 
are used that cover January 2003–June 2017 (GRACE) and June 
2018–December 2021 (GRACE-FO), respectively. To generate monthly 
TWS changes, first the recommended corrections are applied, including 
changing the degree-1 coefficients by those from (Swenson et al., 2008) 

and the degree-2 coefficients by that of (Chen et al., 2007). The latest 
Glacial Isostatic Adjustment (GIA) model of ICE-6G-D(VM5a) GIA model 
(Argus et al., 2014; Peltier et al., 2015; Richard Peltier et al., 2018) is 
applied to account for postglacial deformation anomalies. The DDK3 
filter (Kusche et al., 2009) is applied to account for correlated errors. 

The filtered potential coefficients are resampled to 0.5∘ × 0.5∘ grid
ded TWS changes fields globally. Uncertainties in the TWS changes 
fields are computed using a collocation technique, as in (Awange et al., 
2016; Ferreira et al., 2016), considering the TWS estimates from the 
CSR, Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum 
(GFZ) L2 data, respectively. 

To fill the gap between GRACE and GRACE-FO data, we followed the 
approach in (Forootan et al., 2020) who applied an iterative decompo
sition approach. This reconstruction approach uses the TWS changes 
derived from the temporal gravity field products of ESA’s Swarm 
mission (Bezděk et al., 2016) as initial values for the missing fields. Next, 
Independent Component Analysis (ICA, (Forootan et al., 2012; Forootan 
and Kusche, 2013)) is applied to update these initial values using the 
statistics existing in the time series of GRACE, GRACE-FO, and Swarm 
TWS changes fields. This iterative procedure is initially noisy and in- 
homogeneous because the signal content and noise of Swarm fields 
are different from those of GRACE and GRACE-FO data. However, the 
iteration adjusts the empirical independent components to build a 
consistent evolution derived from the original GRACE and GRACE-FO 
time series and those of the updated gap values. The reconstructed 
data can be downloaded from the Github of the Geodesy research group 
at Aalborg University: https://github.com/AAUGeodesy/Reconstr 
ucted-GRACE-GRACE-FO-TWSC.git. 

2.2. W3RA water balance model 

The Worldwide Water Resources Assessment (W3RA) (van Dijk, 
2010) is a grid-distributed water balance model that simulates landscape 
water storage in the vegetation and soil systems. Here, the original 
model code (http://wald.anu.edu.au/challenges/water/w3-and-ozwal 
d-hydrology-models/) was modified to be run globally at daily time- 
step but with ∼ 0.1∘ × 0.1∘. As input climate forcing we used ERA5- 
Land fields (Muñoz Sabater et al., 2019) of precipitation, surface solar 
radiation downwards, albedo, and 10-meter wind, as well as minimum 
and maximum temperature (Hersbach and Dee, 2016). 

The monthly averaged model states (snow, surface water storage, 
surface soil water (top layer), shallow-rooted soil water, deep-rooted soil 
water storage, and groundwater storage), that together comprise the 
W3RA water storage components were used as a priori information to 
separate reconstructed TWS changes to its compartments. Model un
certainty is estimated following (Renzullo et al., 2014) by perturbing the 
forcing data. For this, an additive error is assumed for the short-wave 
radiation perturbation of 50 Wm2, a Gaussian multiplicative error of 
30% for rainfall perturbation, and a Gaussian additive error of 2 ∘C for 
temperature fields. The estimated model uncertainty is used in MCMC- 
DA as the initial value of the variance/covariance matrix of the un
known state parameters. 

2.3. Global river basins 

The world’s 33 largest river basins are considered to study the SSI 
evolution. The selected basins are the same as in several previous 
studies, e.g., (Llovel et al., 2011; Forootan et al., 2014), and the river 
basin contours are based on masks of 0.5∘ resolution from (Oki and Sud, 
1998). The basins are shown in the Appendix B. From these, we selected 
the Amazon, Amur, Euphrates, Aral, Caspian, Ob, Yukon, Zambezi, 
Brahmaputra, Danube, and Mekong River Basins to compute and 
analyze basin averages from GRACE/GRACE-FO and other products in 
greater detail. To account for differences in spatial resolution, the 
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leakage reduction and averaging approach in (Vishwakarma et al., 
2017) is implemented in the spectral domain. This approach simulta
neously minimizes the summation of leakage-in and leakage-out 
contributions. 

2.4. ENSO index 

The El Niño Southern Oscillation (ENSO) is a large-scale ocean
–atmosphere interaction in the Tropical Pacific, which affects the 
climate of many regions of the Earth (Trenberth and Hoar, 1996; For
ootan et al., 2016). El Niño refers to the warm phase of ENSO, while its 
opposite (cold) phase is known as La Niña. The evolution of ENSO is 
measured by indices, where the Multivariate ENSO Index (MEI, 
http://www.esrl.noaa.gov/psd/enso/mei/) is the first principal 
component of the combined fields of sea level pressure, zonal and 
meridional components of wind, surface air pressure, and total cloudi
ness fraction. The unit of MEI is normalized here, i.e., the temporal mean 
is removed, and anomalies are divided by the standard deviations to be 
compared with the PCA investigation of changes in water storage and 
drought indices. For example, Anyah et al. (2018) compared MEI with 
the Niño 3.4 indices and found negligible differences between their 
correlation values. 

The time-variable Terrestrial Water Storage TWS(t), with t repre
senting time, reflects difference between precipitation P(t) as mass input 
minus evapo-transpiration E(t), runoff R(t), and the water storage at the 
previous time step t − 1, at any given location. This can be written as the 
water balance equation: TWS(t) = TWS(t − 1) + P(t) − E(t) − R(t), 
where the units are in Equivalent Water Height (EWH). ENSO directly 
impacts the temperature and precipitation, globally. This and changes in 
the available water in land lead to changes in the distribution of evapo- 
transpiration and river discharge, see, e.g., (Phillips et al., 2012; Scanlon 
et al., 2022). As a result, the integral effect of ENSO can be reflected in 
GRACE and GRACE-FO TWS changes because they are related to 
changes in water fluxes through the water balance equation (Anyah 
et al., 2018; Eicker et al., 2016). The ENSO’s impact on fluxes might be 
detected faster than its effects on TWS changes because of the memory of 
hydrological processes and the processes driving the exchanges between 
various water storage and water flux states that can add delays to this 
evolution. Besides, in this study, we evaluate changes of the deep soil 
water storage and groundwater storage. Therefore, it is expected that the 
vertical and lateral under-surface hydrological exchanges cause differ
ences in the phase and magnitude of ENSO impact on evolution of these 
deep water resources. To account for such ‘out-of-phase’ variability, we 
apply the Hilbert transformation on the normalized MEI. Therefore, the 
original MEI and the transformed one would represent all (semi-)cyclic 
components that are associated with the instantaneous ENSO and its 
out-of-phase effects, see also (Phillips et al., 2012). 

3. Methods 

3.1. MCMC-DA for merging GRACE/GRACE-FO data with models 

MCMC-DA is a Bayesian approach to merge GRACE-like TWSC data 
with models, which was introduced in (Mehrnegar et al., 2020b). This 
approach takes advantage of the multi-variate ‘state-space model’ 
(Bernstein, 2005) (Eqs. (1) and (2)), which is used to recursively update 
individual water storage components from the W3RA (as a priori in
formation), and taking GRACE/GRACE-FO TWS changes as observa
tions. This is written as: 

Yt = ZtΘt + εt, (1)  

Θt = Θt−1 + δt. (2)  

where Eqs. (1) and (2) are the ‘observation equation’ and the ‘state 
equation’ of the multivariate state-space model, respectively. This 
means that a linear relationship is assumed between GRACE/GRACE-FO 
TWS variations (Yt) and the modeled individual water storage compo
nents from W3RA (Zt) using the unknown state parameters Θt . In these 
equations, εt and δt are the residuals that are assumed to be Gaussian 
distributed and independent from each other with a mean value of zero 
and an error covariance matrix of Vt and Q, respectively. These formu
lations allow both state parameters and error covariance matrix of the 
additive innovations to vary in time, where t = 1, 2, …, T is the time 
step, and T the length of the time series (223 months). Uncertainty in 
GRACE/GRACE-FO TWS changes is reflected in Vt, while the error 
covariance matrix Q corresponds to the error vector δt, and defines the 
unknown temporal dependency between water storage changes at each 
time point to previous time steps. 

Within the procedure of MCMC-DA, the unknown state parameters 
(δt) and temporal dependency between them (Q) are estimated using 
Gibbs sampling (Gelfand and Smith, 1990; Smith and Roberts, 1993), 
where the joint posterior distribution of the unknown parameters is 
estimated using the forward-filtering backward-smoothing recursion 
approach as in (Kitagawa, 1987). Full details and equations of this 
MCMC-DA approach can be found in (Mehrnegar et al., 2020b). 

Here, we apply the MCMC-DA to merge T = 223 months (between 
2003 and 2021) of reconstructed GRACE/GRACE-FO TWS data with 
those of W3RA. The estimated storage of the top-soil, shallow-rooted 
soil, and groundwater compartments can be found from: https://github. 
com/AAUGeodesy/MCMC-DA-water-storage-changes.git. An example 
of the water storage separation using the original W3RA model and 
MCMC-DA within the Euphrates River Basin is provided in Appendix C. 

3.2. Standardized Storage Index (SSI) 

SSI can be interpreted as a hydrological drought index, which is 
computed here based on the probabilistic behavior of water storage 
changes time series. To compute SSI, we first removed the linear trend of 
1980–2021 derived from the global run of the W3RA model. This trend 
reduction assumes that the bias between model outputs and GRACE/ 
GRACE-FO measurements is temporally invariant, see an example in 
(Forootan et al., 2019). The remaining linear trend of 2003–2021 is 
considered to be a result of the climate change and anthropocentric 
impacts, whose signals are of interest of this study. To concentrate on the 
GRACE and GRACE-FO era, we then fit a gamma probability density 
function to the water storage changes of 2003–2021 and compute their 
cumulative distribution. These are then transformed to standard normal 
distributions following (Wu et al., 2001). The transformed probability 
varies between 3.0 and −3.0 (Edwards, 1997), which can be interpreted 
as drought unit or the level of wetness and dryness, respectively. 

3.3. Principal component analysis (PCA) 

PCA (Jolliffe, 1986) is applied in this study to explore spatial and 
temporal data records, through the Singular Vector Decomposition 
(SVD) that expands data sets (such as X) in terms of new sets of empirical 
base functions, i.e., 

X = P̃kΛkẼ
T
k = P̃kET

k = PkẼ
T
k . (3) 

The matrix E = ΛẼ contains spatial Empirical Orthogonal Functions 
(EOFs). The EOFs in E represent anomaly maps that carry the unit of 
data sets and Ẽ contains unit-less eigenvectors, see, e.g., (Forootan et al., 
2012). Entries of E or Ẽ are associated with the unit-less matrix P̃ or P, 
respectively, whose columns are temporally uncorrelated and known as 
Principal Components (PCs). In Eq. (3), k is the number of retained 
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modes that represent the dominant portion of variance to reconstruct 
the original data matrix X. The portion of the variance of each mode (e. 
g., Vk) can be computed by dividing the quadratic values of the corre
sponding singular value by the sum of the squares of all singular values, 
i.e., 

Vk = Λ2
k

/ ∑(
Λ2)

(4) 

To compare various global data sets of this study, we made use of the 
orthogonal and unit-less properties of the EOFs. For example, to 
compare two data sets X and Y, PCA (Eq. (3)) is applied on the first data 

set to decompose it as X = PXẼ
T
X. Then, the second data set Y is pro

jected onto the EOFs of the first data set (ẼX) as 

P̂Y = YẼX, (5)  

where P̂Y represents the projections of the second data, and can be 
compared with PX. 

It is worth mentioning here that the PCA modes, extracted from 
various data sets of this study, should be considered as statistical modes 
that reflect a dominant portion of the variance. However, they do not 
necessarily represent physical processes. Despite this, in the Results 
section, we will show that some of these modes contain strong correla
tions with physical processes such as that of ENSO’s footprint. Applying 
more sophisticated data exploration techniques such as complex inde
pendent component analysis or non-linear techniques (Eicker et al., 
2016; Forootan et al., 2018; Boljka et al., 2022) can be tested to explore 
their potentials for improving the results. 

4. Results 

4.1. A global assessment of SSI estimates 

Changes in the magnitude and phase of seasonal water storage 
components could have an impact on the estimation of droughts, espe
cially on their duration and severity. To understand to what extent 
GRACE/GRACE-FO data might alter the estimation of groundwater 
storage, the PCA (Eq. (3)) is applied on the corresponding MCMC-DA 
estimates. The first five PCA modes that are associated with consider
ably bigger (than the rest of) eigenvalues are selected to be interpreted 
in this study. For comparison, we also used the computed EOFs as the 
basis, and the time series of the original W3RA and the SSI from the 
MCMC-DA and original W3RA are projected onto these EOFs (using Eq. 
(5)). 

Fig. 1 summarizes the results of the first three PCA modes repre
senting 35 %, 17 %, and 9 % of the total variance of groundwater 
changes, respectively. The first two modes (EOF1 & PC1 and EOF2 & 
PC2) indicate seasonal changes, with differences in the magnitude of 
seasonality found to be in the range of (20–120 mm). The differences 
between the projects of SSI indices (orange and gray colors) indicate that 
the seasonal differences of the storage estimates are translated to an 
under- or overestimation of drought severity (i.e., between 0.2 and 0.5 
drought unit). The third PCA mode (EOF3 & PC3) of Fig. 1 represents a 
superposition of semi- and inter-annual differences in the storage 
changes, which have led to multi-year differences in the SSI estimates. 
The differences become more evident after the year 2017, where the 
indices from MCMC-DA indicate that the prolonged global droughts of 
2017–2021 are more pronounced than those from the original model. 

Fig. 1. First 3 modes (EOF & PC) derived from applying PCA on groundwater storage changes (named as “GW storage” in the figure) of MCMC-DA and W3RA, and 
their associated SSIs (named as “SSIGW”). 

E. Forootan et al.                                                                                                                                                                                                                               



Science of the Total Environment 912 (2024) 169476

6

Fig. 2. Groundwater storage changes that are associated with the ENSO index (i.e., the original index and its Hilbert transformed time series). The results are derived 
from W3RA and MCMC-DA groundwater storage changes, and by fitting a multi-linear regression models described in the text. The top-left and middle-left plots are 
associated with the ENSO index (bottom-left), those on the right with the Hilbert-transformed (out-of-phase) storage changes. 

Fig. 3. Mode four (EOF4 & PC4 top-left and -right) and mode five (EOF5 & PC5 middle-left and -right) derived from applying PCA to groundwater storage changes of 
MCMC-DA and W3RA model outputs. The Standard Deviations (StD) of the ENSO mode (P̃4,5 × ET

4,5) derived from the MCMC-DA groundwater and its difference with 
original W3RA are shown on bottom-left and -right plots, respectively. 
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Previous studies (e.g., Anyah et al., 2018; Eicker et al., 2016) have 
already shown that GRACE TWS variations contain the footprint of 
teleconnection processes, especially those related to ENSO. To demon
strate how GRACE/GRACE-FO TWS variations might alter the inter- and 
intra-annual components of water storage changes, we compare the 
dominant ENSO modes of groundwater storage changes of MCMC-DA 
with those of W3RA in Fig. 2. 

Therefore, we applied a multi-linear regression to extract global 
water storage changes related to ENSO. For this, a constant term, a linear 
trend, the seasonal, and ENSO components (with the normalized ENSO 
index (E) and its Hilbert transform (H(E)), H(.) being a Hilbert trans
formation operator) are fitted to the time series of groundwater storage 
changes. The last two indices are used to capture the in-phase and out- 
of-phase patterns of water storage changes due to the ENSO, respec
tively, see also (Phillips et al., 2012). The global storage time series are 
stored in the data matrix X(ϕ,λ, t). The regression of each gridded time 
series (associated with the latitude ϕ and longitude λ) will follow 
x(ϕ, λ, t) = a + b t + ccos(2πt) + dsin(2πt) + ecos(4πt) + fsin(4πt) + g E +

h H(E(t) ) + n(t), where n(t) represents temporal random noise and t is 
time in year. The coefficients a to h carry the same unit as the data sets 
and can be computed using the least squares approach (Koch, 2007). 

The values of a from the original model and MCMC-DA estimates 
cannot be interpreted because they are referred to the long-term biases, 
and it is not observed by GRACE and GRACE-FO estimated. Though the 
coefficients of b to f are considerable, and they are related to the annual 
and semi-annual components and important, we do not interpret them 
here because such variations are well discussed in previous hydrological 
studies, e.g., (Scanlon et al., 2018). The globally distributed coefficients 
g and h (in mm water storage) are associated with the ENSO and its out- 
of-phase evolution shown in Fig. 2, where the top plots are from the 
original W3RA, the middle ones from MCMC-DA and the bottom plots 
represent the normalized ENSO index and its Hilbert transformed time 
series. Comparing the plots, it is evident that integrating GRACE/ 
GRACE-FO data increases the magnitude of the ENSO mode (i.e., the 
ENSO mode of the MCMC-DA is more pronounced, by between 10 and 
15 mm for the Amazon River Basin, North Asia, South Africa, and 
Australia). The influence of ENSO on precipitation changes of these re
gions is reported in previous studies, see e.g., (Forootan et al., 2016; 
Davey et al., 2014). 

To understand how the differences in the ENSO mode might affect 

the representation of drought events, we used mode four (EOF4 & PC4) 
and mode five (EOF5 & PC5) derived from applying PCA as a dominant 
portion of the global ENSO impact on the evolution of global ground
water storage changes. The spatial and temporal differences between 
those of MCMC-DA and W3RA are shown in Fig. 3. It is worth 
mentioning here that ENSO mostly affects the interannual variability of 
water fluxes and water storage, see, e.g., (Phillips et al., 2012; Eicker 
et al., 2016; Forootan et al., 2018). Since the trend, as well as annual, 
and semi-annual components of TWS changes were not removed before 
applying the PCA in Fig. 3, the ENSO modes appeared on the third and 
fourth components (i.e., EOF3, 4, PC3, and PC4). If these components 
had been removed, we expected to extract the dominant part of ENSO in 
the first two modes, see, e.g., (Forootan et al., 2018). However, a com
parison of these modes with the multi-linear analysis of Fig. 2 indicates 
similarities in the amplitude (i.e., varying between −40 to 40 mm EWH 
in majority of the global grid), and the pattern of ENSO, which shows 
that the performance of PCA in extracting the average impact is 
reasonable. 

The differences between the PCs are found to be as big as each in
dividual PC. This is due to the fact that the GRACE/GRACE-FO DA 
modifies the timing (phase differences) of water storage estimates, as 
shown in Appendix D, (Fig. D.1). After merging W3RA with GRACE/ 
GRACE-FO TWS changes, temporal correlation coefficients between 
ENSO index and the ENSO mode of groundwater storage are increased 
from 0.38 to 0.49, and correlation coefficients between the Hilbert- 
ENSO index the Hilbert ENSO mode of groundwater storage are 
increased from 0.29 to 0.36. The standard deviation of the ENSO mode 
of MCMC-DA groundwater storage is found to be in the range of 5 − 30 
mm, while the standard deviations of the differences between MCMC- 
DA and W3RA ENSO modes are found to be in the range of 5 − 15 
mm (Fig. 3, bottom). 

The PCs of the original model output and MCMC-DA were used to 
compute SSIs, as a measure of global impact on drought representation 
due to the ENSO. The differences between indices indicate an average 6 
months in the timing and 18 months in the duration of the major ENSO- 
related droughts. Fig. 4 indicates the translation of PC4 and PC5 to SSI. 
One could expect this impact to be more dominated in ENSO hot spots, 
where the anomalies of EOF4 and EOF5 (in Fig. 3) are stronger, e.g., in 
South America, East and South Africa, Australia, the west of North 
America and, to a less extent, Europe and Asia. 

Fig. 4. SSIs translated from PC4 and PC5 of MCMC-DA and W3RA groundwater storage changes in Fig. 3.  
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4.2. Characteristics of SSIs in selected large river basins 

SSIs are computed from the original W3RA and MCMC-DA derived 
groundwater storage estimates for the world’s 33 largest river basins as 
defined in (Oki and Sud, 1998, see also Fig. B.1). The results can be 
found from https://github.com/AAUGeodesy/Standardize-Storage-In 
deces.git. Here, we focus on selected basins that experienced different 
temporal water storage updates after introducing GRACE and GRACE- 
FO measurements through the MCMC-DA. 

4.2.1. Amazon, Mekong, and Zambezi River Basins 
In Fig. 5, results for the Amazon (South America), Mekong (South

east Asia), and Zambezi (South Africa) River Basins are shown, where 
the storage differences are found to be dominated by the annual 
component. The amplitude of storage differences in these basins was 
∼ 80, ∼ 15, and ∼ 120 mm on average, respectively. Though the storage 
differences are considerable, we did not find major differences in the 

magnitude of SSIs in Amazon and Mekong between the original and 
MCMC-DA outputs, except those of wet periods of 2015–2016, and 
2020–2021 in the Amazon, where the latter was found to be more 
intense (SSI of >2 for MCMC-DA). The main impact of the annual 
storage differences in these basins is on the timing of the drought pe
riods, especially for the peaks after 2015 in the Amazon and that of 2011 
in the Mekong Basin. For example, the wet event of 2020–2021 in the 
Amazon was found to be six months longer than the SSI of the original 
model. The water storage time series of Zambezi contained a super
position of the annual and a slow-evolving periodic component with a 
period of ∼ 10 − 15 years. This slow process has an impact on the length 
and magnitude of the extreme events, for example that of 2009–2014 in 
the Zambezi Basin was more intense (1 unit higher) than the SSI of 
MCMC-DA (see Fig. 5). 

4.2.2. Euphrates, Yukon, and Brahmaputra River Basins 
Integrating observed TWS changes into models can introduce 

distinguished multi-year trends into storage estimates. Depending on the 
hydrological setting and the history of water storage changes in the 

Fig. 5. Basin averaged time series of SSIs and groundwater storage changes 
derived from W3RA and MCMC-DA within the Amazon (top), Mekong (middle), 
and Zambezi (bottom) River Basins. 

Fig. 6. Basin averaged time series of SSIs and groundwater storage changes 
derived from W3RA and MCMC-DA within the Euphrates (top), Yukon (mid
dle), and Brahmaputra (bottom) River Basins. 
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basins, the resulting impact on representing the drought evolution can 
vary. Here, we focus on the Euphrates (in the Middle East), Yukon (West 
America), and Brahmaputra (South Asia), where there basins exhibited a 
long-term water storage decline (Fig. 6). 

The Euphrates Basin has been hit by climate change; with less 
snowfall in winter and hot summers over the last decade (Abdelmohsen 
et al., 2022) along with heavy extraction for irrigation (see, e.g., Voss 
et al., 2013; Forootan et al., 2017). The storage depletion in the 
Euphrates Basin translated to more intensified and prolonged drought 
events after 2009. The SSIs of the MCMC-DA outputs are found to be 
around half to one unit drier than those of the original model. We also 
found that even very wet years (e.g., 2020) did not return the index to 
strongly positive values. 

In the Yukon Basin, a substantial contribution of mountain glaciers 
on observed TWS variability can be expected, but rather poorly repre
sented in all hydrological models (see, e.g., Zhang et al., 2016). A long- 
term trend of TWS changes can be detected from MCMC-DA results, 
which does not appear in the original model estimates. We found a rate 
of −5.79 km3/year TWS changes lost in this basin, consistent with the 
recent study by (Ferreira et al., 2023). In Yukon, the long-term trend is 
strongly reflected in the SSI of MCMC-DA, where the occurrence of wet 
and dry periods is found to be opposite. As the separation of the glacier 
melt and sub-surface water storage is extremely difficult in this basin 
(Zhang et al., 2016; Melkonian et al., 2014), the results must be inter
preted with caution. 

In the Brahmaputra Basin, after integrating the GRACE/GRACE-FO 
data, the amplitude of the annual peaks decreased. In combination 
with the overall negative trend this affected the amplitude of SSI esti
mates. The SSI of MCMC-DA indicated a prolonged drought after 2010, 
which was not fully recovered after the wet season of 2018. However, 
the original model suggested that the hydrological drought terminated 
in 2018, which contrasts with local experience (Parajuli et al., 2021). 
The time series of differences in Brahmaputra contains a long-term trend 
∼ −2 mm/year that is likely related to groundwater withdrawal in this 
basin (Pandey et al., 2020). 

4.2.3. Danube and Ob River Basins 
The existence of multi-year trends alongside multi-year and seasonal 

fluctuations in the historical trends represents a considerable impact on 
the characteristic of SSIs. This can be clearly detected in the Danube 
River Basin (Europe), where the positive peaks of 2007 and 2012 are 
considerably underestimated. The impact during major droughts is 
found to be considerably larger, for example, the severe drought of 
2019–2021 (Barbosa et al., 2021) was underestimated by the original 
model by ∼ 2 units. We also found up to 3–6 months differences in the 
timing of drought development and termination (compare 2013–2014 in 
Fig. 7). 

In the Ob River Basin, MCMC-DA indicates stronger water storage 
fluctuations. In some years, e.g., 2012, and 2016 their amplitude is 
relatively stronger (∼ 35 and ∼ 15 mm, respectively), and coincides 
with changes in the trend in the water storage time series. As a result, 
there are clear timing differences in the termination of droughts in 
2013–2014 and the extension of the slightly wet episode in 2018–2019, 
Fig. 7. 

5. Conclusions 

Large-scale drought events, which strongly influence global and 
regional water resources, can be determined using water storage esti
mates, which are often derived from hydrological models. The quality of 
representing droughts will be to a large extent depends on the quality of 
model estimates. Here, we applied a novel Bayesian Data Assimilation 

(MCMC-DA, Mehrnegar et al., 2020b) to merge a gap-filled time series of 
TWS changes from GRACE and GRACE-FO data with the W3RA global 
water balance model. The improved estimates of groundwater (i.e., the 
sum of model deep-rooted soil and groundwater storage) were used to 
assess to what extent such an integration is important for representing 
water storage related (i.e., hydrological) drought events. This is done by 
computing Standardized Storage Indices (SSIs) using the output of the 
original W3RA model and those of MCMC-DA as input. This study covers 
the large-scale groundwater changes of 2003–2021 globally, as well as 
individual large river basins. In summary, we conclude that: 

• The PCA of global groundwater storage variations and the corre
sponding SSIs indicate that seasonal and multi-year differences be
tween the storage estimates of the original model and MCMC-DA can 
affect the estimates of SSIs. This relationship is not directly propor
tional, and can translate differently into SSIs depending on the water 
storage record and the timescale of the differences. Overall, we found 
that after introducing GRACE and GRACE-FO data, the prolonged 
drought events of 2016–2021 became more pronounced in South 
America (e.g., Amazon River Basin), South Africa (e.g., Zambezi 
River Basin), West America (e.g., Yukon River Basin), and South Asia 
(e.g., Brahmaputra River Basin). The timing of drought events was 
also modified on average by ∼ 3 months at the time scale of ∼ 1.5 
years. The results are found to be considerable for drought moni
toring applications. 

• We found that the integration of GRACE and GRACE-FO data in
creases the footprint of ENSO in the groundwater storage estimates 
(up to 40 mm in, e.g., South America, Europe, and South Africa). The 
translation of ENSO-related water storage estimates into SSI 

Fig. 7. Basin averaged time series of SSI and groundwater storage derived from 
W3RA and MCMC-DA within the Danube (top) and Ob (bottom) River Basins. 
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indicates that ENSO can move the timing of the drought events by 18 
months and might change its magnitude by up to 0.8 SSI units.  

• In most of the large river basins studied here, we observe an increase 
in the magnitude, extent, and length of groundwater droughts. In 
Amazon and Mekong, where the differences between the MCMC-DA 
and original model are greatest at annual scale, the timing of drought 
events was found to be most affected. In basins with a long-term 
trend (such as the Euphrates and Brahmaputra River Basins), 
bigger errors might be expected when using purely modeled data, 
especially in detecting the onset, termination and duration of 
droughts. In such cases, the magnitude of droughts remained less 
affected but in some cases the sign of SSIs was reversed, as in Yukon. 
From our results, the most challenging basins, where the usage of 
pure hydrological models might mislead the interpretations, were 
those exhibiting multi-year trends and seasonal (amplitude) differ
ences. For example, in the Danube River Basin, the duration and 
magnitude of the severe 2019–2021 drought was not correctly re
flected in the SSIs if the model was not improved by GRACE/GRACE- 
FO integration. 
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Appendix A. Evaluation of groundwater storage changes using in-situ groundwater measurement within Bangladesh 

To evaluate the performance of MCMC-DA, besides the USGS groundwater level observation within the USA that was already performed in 
(Mehrnegar et al., 2020b), we used the groundwater level time series from 265 monitoring stations from the national network operated by the 
Bangladesh Water Development Board (BWDB). Time series data were processed by (Shamsudduha et al., 2022) and aggregated within 13 grids (1∘ ×

1∘) to cover the entire Bangladesh. Fig. A.1 shows a comparison between the W3RA groundwater storage changes and those of derived from MCMC- 
DA, in terms of temporal correlation coefficients with the level measurements for the available period of 2003–2018. 

The obtained results indicate that while both W3RA and MCMC-DA groundwater storage are highly correlated with in-situ data (correlations 
bigger than 0.7), MCMC-DA slightly improved the correlations with in-situ measurements. However, to understand the impact on the actual water 
storage estimates, a comparison is done between after converting the groundwater level measurements to storage estimated. For this, a specific yield of 
0.01 is used (Shamsudduha et al., 2011) for the conversion, and the results of 5 stations are shown in Fig. A.1. We selected those stations that had 
similar correlation coefficients with the water level measurements, when using the original W3RA and MCMC-DA outputs. The results indicate that, 
after implementing MCMC-DA, the magnitude of model-derived groundwater storage changes is considerably changed to be close to those of in-situ 
observations, where the Root Mean Square of Differences (RMSD) are reduced from around 180 mm to 97 mm in Fig. A.1(a), or from 155 mm to 88 mm 
in Fig. A.1(b). It is worth mentioning here that in this study we only investigate whether the magnitude of the DA results is closer to the measurements 
(than the original model), and the absolute magnitude of the in-situ water storage is not our focus. A realistic conversion of the in-situ groundwater 
level to groundwater storage needs more investigations (than simply using a constant converter as applied here). 
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Fig. A.1. Temporal correlation coefficients (in percentage) between in-situ groundwater level changes and the storage changes of the original W3RA and MCMC-DA 
within Bangladesh, covering 2003–2018. A comparison between the time series of groundwater storage changes are shown for five selected stations. 

Appendix B. An overview of the world’s 33 large-scale river basins 

The world’s 33 large river basins that are considered in this study to evaluate groundwater storage changes and drought indices before and after 
MCMC-DA assimilation are shown in Fig. B.1. These river basins contours are based on masks of 0.5∘ resolution from (Oki and Sud, 1998) where among 
them, we show Amazon, Amur, Euphrates, Aral, Caspian, Ob, Yukon, Zambezi, Brahmaputra, Danube, and Mekong to compute the basin averages 
from groundwater storage changes of the model, before and after implementing MCMC-DA, and their associated SSIs.

Fig. B.1. The world’s 33 largest river basins are examined in this study. Each river basin is presented with a numerical label including: 1:Amazon, 2:Amur, 3:Aral, 4: 
Brahmaputra, 5:Caspian-Volga, 6:Colorado, 7:Congo, 8:Danube, 9:Dnieper, 10:Euphrates, 11:Lake Eyre, 12:Ganges, 13:Indus, 14:Lena, 15:Mackenzie, 16:Mekong, 
17:Mississippi, 18:Murray, 19:Nelson, 20:Niger, 21:Nile, 22:Ob, 23:Okavango, 24:Orange, 25:Orinoco, 26:Parana, 27:St. Lawrence, 28:Tocantins, 29:Yangtze, 30: 
Yellow, 31:Yenisei, 32:Yukon, and 33:Zambezi. 

Appendix C. Basin averaged comparison of the MCMC-DA and W3RA water storage changes 

Changes in the water storage components of W3RA before and after integrating with the GRACE and GRACE-FO observations (through MCMC-DA) 
are found to be considerable. Fig. C.2 presents the results for the Euphrates River Basin. Considering the magnitude of the updates, we see that our 
integration introduces a big portion of updates to the deep soil and groundwater compartments. The surface water storage and snow compartments are 
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not considerably changed. The amplitude of the annual variability of the top soil and shallow soil compartments has been changed respectively by 
∼40 % and 100 %, e.g., during 2003–2009. However, the dynamics of the updates, introduced to the top layers, might be interpreted with cautions. 
We recommend to apply a constraint against soil moisture remote sensing products, as e.g., in (Mehrnegar et al., 2023), to achieve a more reliable 
drought monitoring of the close to surface compartments.

Fig. C.2. Basin averaged time series of MCMC-DA and W3RA water storage compartments within the Euphrates River Basin.  

Appendix D. Reducing phase shifts in water storage changes by MCMC-DA 

In this appendix, we present the timing impact of integrating GRACE and GRACE-FO TWS into a large-scale hydrological model. Fig. D.1 shows 
differences of the annual phase between GRACE/GRACE-FO TWS changes and those derived from the original W3RA model outputs (left), and the 
MCMC-DA (right) outputs. These results indicate that MCMC-DA performed well in reducing the phase differences between the modeled and measured 
TWS changes, where the median of phase differences between the annual amplitude of W3RA and GRACE TWSC is considerably reduced from ±180 
deg. to zero after implementing MCMC-DA. These results can be interpreted as modification in the seasonal evolution of the TWS changes, where a 
phase modification of up to 6 months can be detected globally.

Fig. D.1. Phase differences between the GRACE and GRACE-FO TWS changes and those of the original (left) and MCMC-DA (right), i.e., after the Bayesian inte
gration with the GRACE and GRACE-FO TWS changes. 
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