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High-resolution temporal gravity 
field data products: Monthly mass 
grids and spherical harmonics from 
1994 to 2021
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Since April 2002, Gravity Recovery and Climate Experiment (GRACE) and GRACE-FO (FollowOn) 
satellite gravimetry missions have provided precious data for monitoring mass variations within the 
hydrosphere, cryosphere, and oceans with unprecedented accuracy and resolution. However, the long-
term products of mass variations prior to GRACE-era may allow for a better understanding of spatio-
temporal changes in climate-induced geophysical phenomena, e.g., terrestrial water cycle, ice sheet 
and glacier mass balance, sea level change and ocean bottom pressure (OBP). Here, climate-driven mass 
anomalies are simulated globally at 1.0° × 1.0° spatial and monthly temporal resolutions from January 
1994 to January 2021 using an in-house developed hybrid Deep Learning architecture considering 
GRACE/-FO mascon and SLR-inferred gravimetry, ECMWF Reanalysis-5 data, and normalized time tag 
information as training datasets. Internally, we consider mathematical metrics such as RMSE, NSE and 
comparisons to previous studies, and externally, we compare our simulations to GRACE-independent 
datasets such as El-Nino and La-Nina indexes, Global Mean Sea Level, Earth Orientation Parameters-
derived low-degree spherical harmonic coefficients, and in-situ OBP measurements for validation.

Background & Summary
GRACE (Gravity Recovery And Climate Experiment) satellites are designed to monitor spatiotemporal varia-
tions of the Earth’s gravitational field to improve our understanding of the changes in the global climate system, 
with the primary goal of properly mapping mass variations, including terrestrial water cycle, ice sheet and gla-
cier mass balance, sea level change, and ocean bottom pressure variations. Data have been acquired for fifteen 
years, exceeding the anticipated five-year mission span from March 17 2002 through October 20171,2. The col-
lection of science mission data ended in October 2017 because of the age-related battery issue on GRACE-B in 
September 2017. GRACE-FO was launched in May 2018 as a successor mission to GRACE in order to ensure 
the mission’s continuity3,4. 11 consecutive months of data gap exist between GRACE and GRACE-FO missions. 
In addition, some of the monthly solutions are missing due to improper retracked orbit issues throughout the 
lifetime of satellites5. In recent years, there have been studies using different methods to fill this gap. While 
mostly focusing only on terrestrial water storage and excluding mass changes over oceans, few studies have also 
reconstructed long-term simulations of total water storage anomaly, i.e., the climate-induced mass anomaly, 
before the GRACE-era using different approaches and spaceborne data.

For instance, Humphrey and Gudmundsson6 simulated six different forms of mass anomaly from 1901 to 
2019 using a statistical approach with three different land surface temperature (TEMP) and two different pre-
cipitation (PPT) data products as meteorological forcing datasets, and two different GRACE mascon solutions. 
Li et al.7, first separated both input (PPT, TEMP, Sea Surface Temperature (SST), and 17 other climate indi-
ces) and output (GRACE mascon mass anomaly) into spatial patterns and temporal modes using independent 
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component /principal component analysis techniques. Then, the temporal modes were further decomposed 
using least squares and seasonal-trend decomposition to obtain trend, seasonal, inter-annual and residual 
components. Excluding the trend, each decomposed component is used in Artificial Neural Networks (ANN), 
AutoRegressive Exogenous (ARX) and Multiple Linear Regression (MLR) approaches independently to simu-
late/predict temporal modes of each component at grid cell scale. Finally, GRACE-estimated trend and spatial 
patterns are restored by adding them back to simulated modes. Thus, the long-term mass anomaly simulations 
from 1979 to 2020 are obtained. Differently from the two studies mentioned above, Löcher and Kusche8 cal-
culated the monthly global gravity field by combining the low-degree gravity solution estimated from Satellite 
Laser Ranging (SLR) observations with the decomposed spatial patterns retrieved from the available monthly 
GRACE gravity field solutions using Empirical Orthogonal Functions (EOF). In this way, the hybrid monthly 
spherical harmonic gravity field models with GRACE-like spatial resolution, i.e., degree/order (d/o) 60 models 
from 1992 to 2019 are obtained though the solutions before 1994 are dominated by very large noise due to worse 
constellation of the SLR satellites prior to 1994.

In this study, we used an in-house developed hybrid deep learning architecture, namely Residual Deep 
Convolutional Autoencoder (ResDCAE), to simulate long-term high resolution (at monthly temporal and 
1° × 1° spatial resolution) mass anomaly from 1994 to 2021. ResDCAE is based on the concept of residual 
learning and utilizes stacked autoencoders to increase learning efficiency and is developed considering the 
TensorFlow9 and Keras10 libraries. No prior detrending, deseasoning, or decomposing processes either to the 
input or to the output datasets are applied. Thus, the simulations avoid possible biasing or aliasing of long-term 
climate signals. In order to successfully simulate trend, interannual, and seasonal signals, we included both 
SLR-based coarse resolution mass anomaly and normalized Day of Year (nDOY) as additional input, where 
the latter is computed by dividing the DOY of the mid-day of that month by 365 (or 366). For this purpose, the 
monthly SLR-only spherical harmonic gravity field models (up to d/o 10)8 are used to effectively simulate the 
long-term trend, since the long-wavelength component of gravitational signals can be derived from SLR-only 
temporal gravity solutions. Interannual and seasonal signals, on the other hand, are simulated more accurately, 
thanks to nDOY. Because all geophysical signals are functions of time, using time epoch (nDOY) as an input 
acts as a constraint to obtain more realistic simulations. These novel ideas have already been tackled in recent 
study by Uz et al.11 comprehensively, but Swarm-derived mass anomaly instead of SLR mass anomaly is used to 
obtain the long-wavelength component of gravitational signals between January 2014 and January 2021. Here, 
we focused on longer-term simulation considering a similar strategy and provided global simulations including 
both continents and oceans. The simulated mass anomalies are validated using the internal and external valida-
tion data. Furthermore, each monthly mass anomaly simulations are also converted to global geopotential field 
models expressed in spherical harmonics complete to degree and order 200.

Methods
Residual deep convolutional autoencoders.  Convolutional Neural Networks (CNNs) are special types 
of neural networks and are useful for processing data with a grid-like architecture, such as images or time series 
data12,13. In particular, CNNs utilize the convolutional layers, which are linear operators and convolve the input 
with the set of filters. Therefore, the CNNs can be considered as spatial feature extractors by their layered struc-
ture. For this reason, CNNs have been widely used for problems such as filling the data gap in remote sensing14, 
land surface temperature reconstruction15, etc. In this manner, the relationship between the output vectors a of 
the consecutive layers of CNNs is represented as:

a a W b( ) (1)l l l l( 1) ( ) ( ) ( )σ= ∗ ++

where ∗ denotes convolution operator, σ(·) is the activation function, with weight matrix W and bias vector b 
while the superscript indicates the layer ID. In addition, CNNs mainly comprise three types of layers: convo-
lutional layer, pooling layer, and fully connected layer. Deep Convolutional AutoEncoder (DCAE) is a deep 
learning architecture that may be considered as a combination of two neural networks, namely encoder and 
decoder16–18. In particular, the encoder maps the input space into a lower-dimensional latent space by h = f (x), 
while the decoder maps the latent space into the reconstruction space by r = g (h) and here x is the input vector. 
By this way, the network learns the representations of input data by reducing the dimensionality of data in either 
a supervised or an unsupervised manner. Basically, the high-abstraction features are learned while mapping 
through an internal representation, or code, h, in the intermediate layer. In addition, the distinction between 
standard AutoEncoder (AE) and DCAE is the utilization of convolutional layers. Accordingly, DCAE takes input 
data and maps it to h,

σ= +h Wx b( ) (2)

where σ denotes the activation function, W and b are the weight matrix and bias vector of the encoder. 
Accordingly, the output of the decoder is given as follows:

� �r Wh b( ) (3)σ= +

One of the common themes in deep learning architectures is that the deeper the network, the more advan-
tageous and the better the modelling performance. However, there is the problem of vanishing/exploding gra-
dients due to the successive calculation of gradients with respect to the gradient from the previous layer. To 
overcome this problem, a residual neural network was proposed by He et al.19, which led to an effective strategy 
for developing deeper neural networks. The main reason for this is the fact that instead of calculating gradi-
ents over F(x) which represents the mapping, gradients are calculated over F(x)+x, by introducing the skip 
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connections between layers. Accordingly, output y is obtained by the combination of the input and output of the 
earlier layer as follows.

y F x W x( , ) (4)i= +

where F(x,Wi) is the residual mapping and Wi corresponds the i-th weight matrix in the hidden layer weighted 
value of the layer. It should also be noted that the dimensions of the x and y must be equal. The residual learning 
strategy is successfully applied to problems such as classification20, the spatiotemporal estimation of citywide 
crowd flows21 and influenza trends22.

The proposed architecture is given in Supplementary Fig. S1 and based on the combination of DCAEs and 
CNNs with the concept of residual learning. The main reason for this implementation is that it improves learn-
ing efficiency by developing deeper structures with the help of residual learning. Accordingly, the structure of 
the proposed network may be divided into three parts as follows:

	 1.	 Convolutional building block: The developed architecture is based on the use of the CNN which consists 
of two convolutional layers with 126 and 63 filters in each layer, respectively, followed by a dense layer with 
21 neurons. It should also be emphasized that the size of the filters and neurons is chosen according to the 
channel size of the input. In addition, for each convolutional and dense layer, an Exponential Linear Unit 
(ELU) activation function is used throughout the network, and each convolutional layer also has a regular-
izer to prevent overfitting. Besides, a single convolution layer with 21 filter sizes is utilized as the residual 
connection. In the stage of selecting hyperparameters of CNN, we have considered the lowest generaliza-
tion error subject to runtime and memory constraints. In addition, elastic net is utilized as a regularization 
method which combines the lasso and ridge regulators23, with penalty value of 10−4. It is also worth noting 
that the reason for adopting the ELU as an activation function is that it allows to negative outputs which 
leads to adjusting weights and biases in the correct direction during the iterative optimization process.

	 2.	 DCAE building block: The structure of the DCAE model consists of five convolutional layers with a 
gradually increasing filter size from 21 to 316. Each convolutional layer is followed by a maxpooling layer 
with a pool size 2 × 2 and 3 × 3 respectively. In the intermediate layer, which is also known as latent space, a 
flattened layer and a fully connected layer with 400 neurons are used. In this manner, in the decoding part, 
the fully connected layer of 400 neurons is followed by the four transposed convolutional layers, symmetric 
to the encoder part. In addition, the ELU activation function is used in each layer of the network.

	 3.	 Regression building block: To complete the end-to-end image-to-image regression task, a CNN-based 
structure is employed, which consists of two convolutional layers with 21 and 14 filters, respectively, 
followed by a dense layer with 1 neuron. Furthermore, the ELU activation function is applied to each con-
volutional layer except the dense layer.

Accordingly, the input features first pass through the DCAE building block and are concatenated to the 
output features of this block. Further, this serves as the input features to the convolutional building block, and 
before the concatenation, input features are convolved. In order to complete image-to-image regression, regres-
sion building blocks are employed as the final layers of the model. Therefore, the model has 6 consecutive DCAE 
and convolutional blocks and 1 regression block. Regarding the implementation of the network, the Adamax 
optimizer is utilized with the initial learning rate equal to 10−3 and a batch size of 27. In addition, the learn-
ing rate is reduced by a factor of 0.8 when learning stagnates by monitoring the validation loss. Furthermore, 
early-stopping is implemented to mitigate overwriting. According to this, validation loss is selected as the moni-
tored metric, and the training procedure is stopped if no improvement is seen for 25 epochs. The Huber function 
has been selected as the training loss function since it is robust against outliers and has fast convergence to near 
negligible loss. The main reason for this implementation is that the input consists of various earth observations 
that have different characteristics. The training is performed on a single NVIDIA Tesla P100-PCIE-16GB GPU. 
It should also be noted that the full memory capacity of the graphic card is used, and the running time of the 
model is about 45 minutes.

Mitigating trend error in backwards extrapolation.  Our objective is to provide monthly gravity 
field data products similar to those within the GRACE era, even for the pre-GRACE period. Achieving this goal 
involves extrapolating data backwards in time, which is a complex task. Extrapolation should be performed with 
caution, especially when dealing with non-stationary processes, as is the case in our study. Non-stationarity in 
Earth and environmental systems, such as spatiotemporal changes in Earth’s water mass, primarily results from 
the inherent secular trend signal. This signal alters the mean rather than the signal variance and may or may not 
follow a linear pattern. Factors like climate change, human interventions, and low-frequency internal variability, 
such as the Atlantic multidecadal oscillation, affected by the slow dynamics of ice sheets and the ocean, contribute 
to this non-stationarity24. This introduces the challenge such that the behaviour of the signal outside the training 
data period (in our case, the GRACE and GRACE-FO period) may differ from that within the training data time 
span, even if the seasonal amplitudes remain relatively consistent25. Like all data-driven approaches, deep learn-
ing (DL)-based methods adjust their parameters through optimization algorithms to find the best fit to available 
output data based on the corresponding input data. This optimization aims to establish a statistically optimal 
mapping from input to output, limited to the training data period. Consequently, deep learning models typi-
cally perform well when producing or predicting outputs for new input values falling within the range of input 
data used for training. However, predicting outcomes outside the range of the training data, referred to as ‘out 
of sample prediction,’ can be challenging. In other words, a deep learning model can provide reasonable results 
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within the hyperspace defined by the boundary of the training data set, which can be seen as a high-dimensional 
interpolation, as long as the number of input data variables is fewer than 10026.

In the case of mass anomaly, an efficient extrapolation requires a priori knowledge about the signal behav-
iour in the extrapolation regime, i.e., in the time span out of the training data period. Unfortunately, this kind 
of information is usually not available, at least globally and at grid cell scale. However, the main differences of 
the mass anomaly signal as well as of the input climate data signal in the extrapolation regime from those in the 
interpolation regime (i.e., training data span) are in the long-term trends while the seasonal amplitudes do not 
vary much (see e.g., Supplementary Fig. S2). Therefore, the main errors of extrapolation are due to mismodeling 
of the trend component which is retrieved from the training data. Some studies6,7 estimate and remove a linear 
trend using the data in the GRACE and GRACE-FO mission spans before calibrating their models based on 
residual signal and then extend and restore this trend to the extrapolation regime by assuming that their esti-
mated linear trends also hold out of the training data period. Such an assumption is too optimistic and may not 
be valid globally. A typical example is the surface mass balance estimates at polar regions, e.g., Greenland and 
Antarctica (see The IMBIE team27,28) exhibit relatively lower mass change rates until late 1990s followed with an 
onset of dramatic increase in mass loss after 2000 due to the accelerated ocean-driven melting of the ice sheets. 
Similar extrapolation errors are also reported29 for the long-term static gravity field solutions with co-estimated 
(TVC) time-variable coefficients (secular and seasonal periodic components), e.g. GOCO06S30, by evaluating 
the differences of mass anomaly from the monthly GRACE-FO solutions and those extrapolated from the static 
field with TVC computed from the data solely within the GRACE era, suggesting that the static gravity models 
with TVC cannot be used for long-term (>2-3 years) extrapolation and at least should be frequently updated 
with the newly available GRACE-FO data, e.g. for mass change studies as well as for improved precise orbit 
determination of low earth orbiting satellites. Also, Mouginot et al.31 and Rignot et al.32 discuss these mass 
changes for the last 40 years. Mouginot et al.31 reported variability in the mass balance of the Greenland Ice Sheet 
since the 1980s, along with a sixfold increase in mass loss. This has resulted in a significant 13.7 mm contribu-
tion to global sea level rise since 1972, with half of this effect occurring during the period from 2010 to 2018. 
According to Rignot et al.32, the primary cause of mass loss in Antarctica is the glacier flow near warm, saline 
circumpolar deep-water regions, particularly in East Antarctica, with significant implications for future sea-level 
rise. In addition to these, Caceres et al.33 studied the land water storage except for the glaciers mass change. 
They reveal that from 1948 to 2016, continents contributed to a sea-level rise of 34–41 mm, with glacier mass 
loss responsible for 81% of the cumulative loss and land water storage anomalies accounting for the remaining 
19%. Climate-driven land water storage anomalies are notably influenced by precipitation and linked to El Niño 
Southern Oscillation, although uncertainties persist in modelling these anomalies, particularly in relation to 
irrigation water use and artificial reservoirs.

The power of DL, besides the computational resources, is attributed to the number of training data, that is, 
higher the number of data higher the accuracy can be achieved by large neural networks whose parameters are 
updated through deep learning algorithms (Aggarwal34, pp. 3).

After training the deep learning model with initial training and test data (see section Data Architecture for 
details of the training and test data) within the GRACE/-FO era and simulating the a priori monthly mass anom-
aly of 3-years backwards in time (i.e. from April 1999 to March 2002), here we applied a step-by-step piecewise 
trend correction approach where at each step the number of training data is incrementally increased backwards 
in time. The overall approach can be summarized as follows. We start with retraining our deep neural network 
after removing the first three years of the initial training data within the GRACE/-FO era (i.e., 3 years of data 
starting from April 2002 to March 2005) without altering the network architecture or any of the hyperparam-
eters or the learning algorithm. The retrained model was then used to simulate global 1° × 1° monthly mass 
anomaly grids for the period coinciding with that of the removed 3-years of initial training data. For each grid 
cell, the linear trends from both the simulated and the corresponding original monthly mass anomaly data in the 
initial training set in these 3-years were estimated by least squares fit, and the difference between the two trends 
was computed. The computed trend difference at each grid cell was then applied to correct the simulated mass 
anomaly of the earlier 3-years (i.e., the monthly mass anomaly from April 1999 to March 2002). These new cor-
rected simulations were added to the initial training data set which now constitutes the extended training data 
set for the next iteration. With the extended training data, the procedure above was repeated with removing the 
first 3-years (i.e., this time April 1999 to March 2002) and computing trend-corrected mass anomaly simulations 
for the previous 3-years (i.e., April 1996 to March 1999). This step-by-step correction process was applied once 
again with the updated training data from previous iteration so that the trend-corrected mass anomaly simula-
tions from January 1994 to the beginning of GRACE/-FO era (i.e., April 2002) were completely obtained. The 
efficiency of the above procedure and the adequacy of the chosen step-size, i.e., 3-years have been verified with 
results shown in Technical Validation section.

Descriptions of the input and output data of our DL-based simulation model.  Our DL architec-
ture possess the multichannel input consisting of seven variables and a single output variable. Input are monthly 
coarse resolution SLR-only mass anomaly and five different Hydroclimatic/meteorological Variables (HV) from 
ERA5 (European Centre for Medium-Range Weather Forecast-ECMWF Reanalysis-5) as well as normalized 
(Day-of-Year) time epoch of these monthly dataset, i.e., nDOY. The five HV from ERA5 are PPT, TEMP, SST, 
Cumulative Water Storages Changes (CWSC) and mass anomaly retrieved from ERA5 model data while the 
single output is the monthly CSR RL06 Mascon (CSRM) mass anomaly solutions. The details of both input and 
output are given in the following.
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GRACE mass anomaly data.  The monthly mass anomaly of GRACE/-FO is derived from CSR RL06 
Mascon (CSRM) solutions35,36. The time span of this dataset is fragmented into two main parts that are April 
2002–June 2017 for GRACE and May 2018–to 2021 for GRACE-FO missions. There is an 11 successive months 
of so-called intermission data gap between GRACE and GRACE-FO, but there are also missing months during 
the operational time period of each mission. All the standard post-processing corrections have been applied to 
CSRM models, i.e., degree 1 correction37, replacement of C20 and C30 coefficients38, Glacial Isostatic Adjustment 
(GIA)39 and Ellipsoidal correction40. The monthly mass anomalies are calculated considering the mean baseline 
between 2004.0 and 2009.9999. Besides, while the temporal resolution is monthly for CSRM, the spatial coverage 
is global, with a spatial sampling resolution of 0.25° × 0.25°. We resampled the original CSRM to 1.0° × 1.0° grids 
considering the native resolution of CSRM which determines the spatial resolution of our target mass anomaly 
simulations.

SLR mass anomaly data.  The monthly SLR-only spherical harmonic gravity field models8 up to d/o 10 
are provided by Dr. Anno Löcher from the Astronomical, Physical, and Mathematical Geodesy Institute of Bonn 
University via personal communication. The coarse resolution SLR-only monthly gravity field solutions are avail-
able from November 1992 to January 2021. The monthly mass anomalies from SLR-only models are calculated by 
applying post-processing to the spherical harmonic coefficients of those models after removing the same mean 
baseline (2004.0–2009.9999) with CSRM for consistency. A 1500 km Gaussian smoothing filter is applied, i.e., the 
filter radius is decided after applying both 1000 and 2000 km, but the optimum results are obtained from using the 
1500 km radius showing a compromise between signal loss and noise reduction. No de-striping filter was applied 
as suggested by the data provider (Dr. Anno Löcher, pers. comm.) Mass anomalies are directly calculated for each 
1.0° × 1.0° grids on the globe including both ocean and land.

ERA5 data.  The ERA5 dataset is released by the European Centre for Medium-Range Weather Forecast 
(ECMWF - https://cds.climate.copernicus.eu/) and consists of both monthly averaged and hourly sub datasets. 
Besides, ERA5 has two different parameter levels, i.e., single and pressure levels. We used the monthly averaged 
single level from 1979 to present;41 a subset of ERA5 considering the timespan of the available SLR-only input 
data. Therefore, ERA5 was downloaded and used from November 1992 to January 2021. The basic input HV data 
are chosen in order to be used in the DL algorithm which are PPT, TEMP, SST, RunOff (RO), evapotranspiration 
(ET), snow water storage (SnWS), soil moisture storage (SMS) and Canopy Water Storage (CnWS). The input 
ERA5 mass anomaly and cumulative water storage changes (CWSC) are calculated using these downloaded var-
iables applying the equations given in e.g., Uz et al.11, and Mo et al.42. Similar to the CSRM and SLR-only mass 
anomaly, each input data from ERA5 is referenced to the mean baseline, i.e., 2004.0–2009.9999, by removing its 
mean within this baseline period. Finally, all HV data are resampled from 0.25° × 0.25° to 1.0° × 1.0° to ensure 
consistency between all input and output data.

Data architecture.  There are two considerations while designing the DL architecture which are addressed 
with the questions; (i) how do the temporal patterns of input and output data for each grid vary throughout 
their own time-spans? and (ii) how do the temporal correlations change with respect to time lags? The answers 
to these questions could give information about how many additional layers should be considered for the input 
data variables. In other words, how many channels should be used for the input data. We answered these ques-
tions by inspecting the Partial AutoCorrelations (PAC) computed for varying time lags in Amazon River basin. 
The Amazon River basin was chosen because it is a good example of reserving climate change signatures43. The 
grid closest to the centre of the basin, according to the basin boundaries from Total Runoff Integrating Pathway 
(TRIP) database44, was selected, and the PACs for each input and output were computed and plot. The time series 
of the input and output data and their corresponding PACs are given in Supplementary Fig. S2 and, except for 
SLR-only mass anomaly, all other input and output data show more or less a certain annual signal pattern. The 
SLR-only mass anomaly between December 1992 and December 1993 has higher variations with respect to those 
during the rest of the time span. Similar results are also reported in Löcher and Kusche8. The obvious reason for 
this is that the SLR-only models in the first couple years were computed without using the Stella satellite, which 
joined the constellation in September 1993 and is an important part of SLR-only temporal gravity field recovery 
due to its low polar orbit and hence providing more redundant sets of normal equations for gravity inversion. 
Thus, the time series of SLR-only mass anomaly includes even higher noise until September 1993 (Dr. Anna 
Löcher, pers. comm.). On the other hand, PACs are calculated from the time series of input and output, starting 
from zero lag up to a 12-month time lags. All correlations are computed throughout the GRACE/-FO time period 
and are illustrated in Supplementary Fig. S2e. It is clearly seen that almost all correlations reduce to below zero at 
a two-month lag and are almost zero beyond the two-months. Thus, we decided to set the number of additional 
layers to 2, i.e., the successive two months of relevant time epoch of input, i.e., t and t-1.

According to the pre-analyses above, DL architecture is constituted considering both the time-span of 
SLR-only models with lower noise level and the computed temporal correlations. In addition, our initial train-
ing and testing data sets are randomly selected from the GRACE/-FO time period. While the total number of 
initial training months is 135, the number of testing months which is kept unchanged when applying the trend 
correction procedure is 57. The entire time series of predicted/simulated monthly mass anomaly cover both the 
pre-GRACE era as well as the existing data gaps within the GRACE/-FO time period after the step-by-step trend 
correction was applied. The number of predictions where no GRACE/-FO data is available is 136, starting from 
January 1994 due to a higher noise issue in SLR-only solutions between 1992 and 1994.
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Data Records
The simulated monthly dataset is released both in the form of gridded mass anomalies with and spherical har-
monic coefficients in accordance with the ICGEM (International Center for Global Earth Models) format. These 
datasets are available in figshare repository45. The datasets cover the time span from January 1994 to December 
2021, hence provides simulations for 324 months in total. The gridded dataset is available to users with data for-
mat identical to official CSR mascon data products in figshare as netcdf file with four variables: lat, lon, time and 
mass anomaly. Lat and lon are latitude and longitude vectors of dimension 180 × 1 and 360 × 1, representing the 
positions of the centre of 1.0° × 1.0° grid cells on the surface of the Earth. The mass anomaly represents the rel-
ative change in the water mass with respect to the mean baseline (2004.0-2009.9999) in terms of cm Equivalent 
Water Height (EWH); thus, the associated netcdf file has a dimension of 324 × 180 × 360 while the time is a 
column vector of dimension 324 × 1 with days since 1994 01 01 00 00 00.0 UTC. The monthly mass anomaly in 
the form of spherical harmonic coefficients from degree 2 up to degree/order 200 were released as ASCII files. 
The file naming convention similar to the official GRACE data processing centers was adopted, i.e., determined 
by the year and the day of the year corresponding to the first and last day of the respective month. Each file has 
a header that contains information regarding constant values.

Technical Validation
This section evaluates the simulation performance of our models and summarizes the findings in two catego-
ries: internal and external validation. Internal validation is performed by comparing our simulations to CSRM 
mass anomaly solutions and to those from previous studies in terms of common mathematical goodness-of-fit 
metrics such as Root Mean Square Error (RMSE), Nash - Sutcliffe efficiency (NSE46), and Pearson Correlation 
Coefficient (PCC). On the contrary to internal validation, the simulated mass anomalies (or spherical harmonic 
coefficients derived from them) are validated externally by comparisons to GRACE-independent datasets, such 
as the long-term surface mass balance estimates of Greenland, the El Niño/La Niña SST index, global barystatic 
mean sea level changes, degree 2 order 1 spherical harmonic coefficients (a.k.a. C21, S21) retrieved from daily 
Earth Orientation Parameters (EOP) series, degree 2 order zero spherical harmonic coefficient (i.e., C20) from 
SLR and in situ Ocean Bottom Pressure observations.

Internal validation.  Comparison of different input scenarios.  The first step in our internal validation pro-
cess is to assess the GRACE-like mass anomaly simulations generated by our deep learning algorithm, namely the 
ResDCAE model. Our objective is to determine how the inclusion of SLR and nDOY inputs in the model affects 
these simulations. To do so, we have devised four distinct simulation scenarios, which we refer to as DL models. 
These scenarios are grouped based on whether they incorporate SLR and/or nDOY inputs, while all DL models 
consistently include all four ERA5 layers.

To make it easier to distinguish between these various combinations, we have assigned specific names to 
them: Sol1 (which includes both SLR and nDOY), Sol2 (which includes only SLR), Sol3 (which includes only 
nDOY), and Sol4 (which excludes both SLR and nDOY). We then compare the mass anomaly simulations from 
these four solutions with the reference mass anomaly data from original CSR Mascon solutions. In each of these 
comparisons, we calculate two commonly used metrics, namely RMSE (Root Mean Square Error) and NSE 
(Nash-Sutcliffe Efficiency), for all test months. These metrics allow us to effectively assess the performance of the 
models and gain insights into the impact of different input configurations.

From April 2002 to August 2020, RMSE and NSE metrics for each of the randomly chosen 57 test months 
and their overall mean are computed and shown in Fig. 1. The overall mean values of the metrics are also listed 
in Table 1. Furthermore, the metrics are separately computed over (i) entire globe (land + ocean), (ii) land-only, 
and (iii) ocean-only areas. All three scenarios (i-iii) exhibit a level of accuracy in retrieving the missing test 
months, with RMSE of 4 cm, 5 cm, and 3 cm, respectively. The corresponding NSE metrics are computed as 0.86, 
0.91, and 0.68. A similar comparison was made by Uz et al.11 between April 2014 and September 2020 for the 
thirteen test months but only over land areas. The simulative performance of test months that either encompass 
the ACC (accelerometer) transplanted47 time period or those which uses the piled data from two successive 
months to solve for the corresponding CSRM mass anomaly is worse than those within the other time spans (see 
Fig. 1 of Uz et al.11). The same is also reported over oceans (see Fig. 2 of Chen et al.48). From this point of view, 
while the CSRM products of GRACE after November 2016 are calculated using transplanted ACC data to mit-
igate the effect of the GRACE-B battery issue49, the ACC transplantation has been carried out since the start of 
the GRACE-FO mission because the standard ACC data derivation procedure from Level-1A (L1A) to Level-1B 
(L1B) does not ensure sufficient accuracy for gravity field recovery50,51. Thus, the Science Data System (SDS) 
produces and distributes the transplanted and calibrated ACC data product on a regular basis. Additionally, the 
specifics of Level-2 (L2) data products, metadata including whether the ACC transplantation is applied or piled 
data from consecutive months used for gravity inversion, are listed in Table 2 of the SDS Newsletter(https://isdc.
gfz-potsdam.de/grace-isdc/grace-gravity-data-and-documentation/). As expected, the RMSE of all solutions 
over land are greater than those over the oceans. This is because the mass anomaly signal over land is stronger 
while those over ocean has lower magnitude which is dominated by noise. Therefore, the computed NSE over 
ocean are lower due to the low signal-to-noise ratio of CSRM over ocean at grid cell scale.

The lowest RMSE are found in time series between 2004 and 2010, which is attributed to the better orbit 
configuration and availability of telemetry data with minor gaps during this time span (Fig. 1). Additionally, 
the NSE over oceans is at its lowest level within this time period while the RMSE is still minimum (~2 cm), 
implying that the DL algorithm successfully mitigated the high frequency spatiotemporal ocean mass change 
errors of CSRM at grid cell scale (Fig. 1c). There is a significant jump in RMSE of all simulations, which is clearly 
seen in the comparison over land-only areas (Fig. 1b), around August 2014. According to the August 2014 SDS 
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Newsletter, the swap manoeuvre, during when the satellite twins exchange positions52,53, was carried out in July 
2014. It may have impacted the satellite observations in August 2014 and in the following few months.

The overall metrics in Table 1 reveal the following. Over land, the RMSE and NSE of Sol1 and Sol2 are higher 
and lower, respectively, than those of Sol3 and Sol4. However, the metrics of Sol3 and Sol4 are nearly identical. 
The primary distinction between Sol1-2 and Sol3-4 is the presence of SLR-only mass anomaly as a training 
input. It is expected that SLR-only mass anomaly would be noisier and will propagate to the Sol1 and Sol2 simu-
lated models. Thus, mass anomalies that incorporate the spatiotemporal variations of the SLR-only mass anom-
aly through input are noisier than those that do not. On the other hand, the relationships of the metrics with 
the simulation models over oceans are different from those over land. While Sol2 metrics continue to have the 
greatest RMSE and the lowest NSE values over the ocean, Sol1 metrics reveal the opposite. Differently from Sol2, 
Sol1 uses normalized time (nDOY) as an additional training input. Although Sol1 exhibits propagated noise 
from input SLR-only mass anomaly, the simulated model is also associated with the temporal changes of nDOY 
input. On Earth, the oceanic regions have more complicated dynamics, and gravitational signals are influenced 
by the higher-frequency mass redistributions at oceans. Thus, the temporal variations retrieved by the aid of 
nDOY parameter may guarantee to provide more accurate description of the signal throughout the ocean. The 
metrics computed considering both land and ocean (global) grids are used to assess which simulation model has 
the best mathematical fit.

Fig. 1  Comparison of overall RMSE and NSE values computed over (a) land + ocean (global), (b) land-only 
and (c) ocean-only areas on Earth from 57 test months.

Region Sol1 Sol2 Sol3 Sol4

RMSE

Global - RMSE 3.9 4.4 3.8 3.7

Land - RMSE 5.6 6.0 4.6 4.6

Ocean - RMSE 2.8 3.4 3.3 3.3

NSE

Global - NSE 0.87 0.85 0.88 0.88

Land - NSE 0.90 0.89 0.93 0.93

Ocean – NSE 0.73 0.62 0.64 0.65

Table 1.  Overall monthly RMSE (cm) and NSE metrics for 57 test months.
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The simulation models are further evaluated based on the spatial distribution of RMSE, NSE, and PCC by 
the illustration given in Fig. 2. These metrics are calculated for each 1.0° × 1.0° grid cell from monthly differ-
ences between DL-based simulations and corresponding CSRM mass anomaly in the 57 testing months. While 
the rows of Fig. 2 correspond to RMSE (a, b, c, and d), NSE (d, e, f, and g), and PCC (h, i, j, and k), the columns 
correspond to simulations Sol1 to Sol4, from left to right. The highest RMSE is seen in the same regions for all 
simulations, i.e., the Amazon, Ganges, Greenland, and Gulf of Alaska. This result is also observed by previous 
studies (e.g., see Fig. 2a of Humphrey and Gudmundsson6, Fig. 2d of Li et al.7, Fig. 4j-1 of Mo et al.42 and Fig. 3 
of Uz et al.11). These basins are hydrologically active in terms of signal variations and are the main contributors 
to ice sheet melting areas on Earth. For example, the Amazon is the largest drainage basin and is subject to the 
largest seasonal changes that can be surpassed by variations as much as 1 m of EWH in Total Water Storage 
(TWS) globally54. The Ganges basin is under the coupled effects of groundwater depletion due to human inter-
vention for irrigation55 and the melting of ice sheets in High Mountain Asia glaciers. The ice sheet mass loss in 
Greenland and the Gulf of Alaska, moreover, contributes to global sea-level rise27,56. The mass anomaly signals 
and variations in these regions are higher than those in other basins on Earth. Thus, the discrepancy between 
CSRM and simulated mass anomaly is sourced from this outcome, and systematically worse or higher RMSE are 
calculated at these regions. In addition, the spatial distribution of RMSE for Sol1 and Sol2 is more intense than 
for Sol3 and Sol4 due to the propagation of the noise of the SLR-only input into the simulations. The Empirical 

Fig. 2  Spatial distributions of RMSE (a–d), NSE (e–h) and PCC (i–l) metrics of different solutions (Sol1, Sol2, 
Sol3 and Sol4) calculated from 57 test months and the ECDF illustrations of (m) RMSE, (n) NSE and (o) PCC 
for all solutions over land and over oceans on Earth.

Pre-GRACE GRACE/-FO

ΔC20

ResDCAE - SLR 0.70 0.80

ResDCAE - CSRM — 0.96

CSRM - SLR — 0.80

ΔC21

ResDCAE - EOP 0.58 0.65

ResDCAE - CSRM — 0.94

CSRM - EOP — 0.68

ΔS21

ResDCAE - EOP 0.65 0.85

ResDCAE - CSRM — 0.96

CSRM - EOP — 0.86

Table 2.  Correlations between ResDCAE-, CSRM-, EOP- and SLR-derived degree-2 spherical harmonic 
coefficients ∆C20, ∆C21 and ∆S21 within GRACE/-FO and pre-GRACE era. (Note that the pre-GRACE era is not 
shown for comparisons to CSRM because there are no CSRM solutions available for that period.).

https://doi.org/10.1038/s41597-023-02887-5


9Scientific Data |           (2024) 11:71  | https://doi.org/10.1038/s41597-023-02887-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Cumulative Distribution Functions (ECDF) of RMSE over land are illustrated in Fig. 2m. While 80% of RMSE 
are below 5 cm for all simulations, there is a significant difference between SLR-only mass anomaly included 
simulations, i.e., Sol1, Sol2, and not included ones, i.e., Sol3, Sol4. Similarly, NSE and PCC values over land can 
be evaluated by considering the spatial distributions of these metrics as shown in Fig. 2. Both NSE and PCC of 
all simulations are almost zero throughout arid regions on Earth, e.g., North Africa. These results are similar to 
those of Uz et al.11. Although the RMSE at arid regions are almost the same and having the lowest values, there 
is also very little correlation between CSRM and simulated mass anomaly which can be explained by the low 
signal-to-noise ratio of CSRM at these regions.

The simulative performances of the DL models over oceans are also demonstrated spatially with the same 
metrics. The geophysical dynamics are more complex in oceans. This complexity is sourced from the oceano-
graphic variables and their temporal variations. Thus, the variations of these variables are more difficult to model 
when compared to land and seem to degrade the simulation performances over oceans in all four simulations. 
As shown in Fig. 2a–d, the RMSE at high latitude regions are even higher compared to the other parts. These 
regions may be influenced more by polar climatic characteristics. On the other hand, NSE and PCC over the 
ocean possess the lowest values not only in areas that are close to polar regions but also in different parts of the 
ocean, i.e., the Atlantic Ocean. There is a significant difference between Sol1 and other simulations, based on 
the ECDF of RMSE and NSE scores computed over the oceans (see Fig. 2m,n and Table 1). The simulations of 
Sol1 clearly exceeds other simulations in terms of metrics meaning that the oceans are better modelled using 
the input combination adopted for Sol1, i.e., when both SLR-only mass anomaly and nDOY are included as 
additional input data. For example, among all only the NSE of Sol1 is above zero, which indicates that only Sol1 
modelled the mass change over oceans realistically. In general, if the NSE of a simulation model is below zero it 
means that the mean of observation is better than the simulation results57. According to our analyses so far, Sol1 
and Sol2 suffer from propagation of noise in SLR-only input mass anomaly over land, but Sol1 provides better 
simulations over oceans.

Comparison with previous studies.  Based on the comparisons among the four DL simulation models in the 
previous section we pick the simulation results of Sol1 as our final reconstructed data products. Thus, the sim-
ulations of Sol1 are compared to the previous similar studies of Humphrey and Gudmundsson6, Li et al.7, and 
Löcher and Kusche8 (which are called Humphrey, Li, and Löcher in the rest of the paper, respectively) regarding 
the performance metrics. The chosen reconstruction of Humphrey uses both JPL RL06 mascon and ERA5 HV, 
and the spatial resolution is 0.5° × 0.5° covering the time span from January 1979 to July 2019. The simulated 
mass anomaly of Li is calculated based on the CSR RL06 mascon with a spatial resolution of 0.5° × 0.5° and cov-
ers the time span between July 1979 and June 2020. On the other hand, hybrid models of Löcher were released 
as spherical harmonic coefficients up to degree and order 60 from November 1992 to January 2021. Thus, mass 
anomaly is calculated from the model coefficients with spatial resolution of 1.0° × 1.0°, removing the mean-field 
between 2004.0 and 2009.9999. To ensure consistency, Humphrey and Li’s mass anomalies are also calculated 
by removing this mean-field and up-sampled to 1.0° × 1.0° grids. The time period of comparison of all studies 
was chosen to be within the GRACE/-FO time period. In total, comparisons based on overlapping 175 months 
are made, and the illustration of the metrics is given in Fig. 3. The columns of Fig. 3 are represented by Sol1, 
Li, Humphrey, and Löcher from left to right, respectively. Similar to the results of the four DL simulations as 
shown in the previous section, the RMSE of all models are higher in hydrologically dominant regions on Earth. 
The order of RMSE performances of the models from best to worst with respect to CSRM mass anomaly are 
Sol1, Li, Humphrey, and Löcher. A similar performance order is also clearly seen for NSE and PCC. The illus-
trated ECDF in Fig. 3m,n,o also represent the model accuracies prominently. Throughout the GRACE/-FO 
era, the Sol1 simulation has the lowest spatial RMSE and the highest NSE and PCC with CSRM. In contrast to 
our DL-based simulation, the Li, Humphrey, and Löcher used different approaches or estimation strategies, 
therefore the long-term trend of each study may be different from the other. For consistency, the RMSE, NSE 
and PCC metrics are recalculated using detrended and detrended-deseasoned mass anomalies and are given 
in Supplementary Figs. S3 and S4, respectively. These results reveal that the Sol1 provides significantly the best 
simulation and outperforms the previous studies when compared to CSRM within the GRACE/-FO period. For 
simplicity, we will use the name ‘ResDCAE’ to represent the DL model ‘Sol1’ in the rest of the paper.

External Validation.  Comparison with Greenland long-term surface mass balance estimates.  In order to 
validate our simulation results, we performed a comparison with independent surface mass balance estimates 
of Greenland. Greenland is particularly chosen as a test bed because of the following three main reasons, among 
others. First, Greenland surface mass balance data is a unique independent data set which has a long temporal 
coverage, e.g., the IMBIE (Ice sheet Mass Balance Inter-comparison Exercise) surface mass balance data record 
starts ten years before the GRACE era. Second, the beginning of a dramatic increase in the ice mass loss trend was 
observed in ~200258, almost right before the launch of GRACE mission. Thus, Greenland is the most challenging 
region on the Earth with a perfect data set to test the performance of the strategy adopted to mitigate the trend 
error in backwards extrapolation in this study. Third, as a consequence of the exacerbated global climate change, 
the melting of the Greenland ice sheets, and its peripheral glaciers and ice caps is the major contributor to con-
temporary sea level rise59.

Here, we use the most recent Greenland surface mass balance data from the IMBIE as the reference for com-
parison. The IMBIE data has been produced using 26 estimates of ice sheet mass balance derived from satellite 
altimetry (9 datasets), satellite gravimetry (14 datasets) and the input–output method (3 datasets) to assess 
changes in the Greenland Ice Sheet mass balance27. Prior to 2003, the estimates are solely from input-output 
method consistency of which with the estimates from satellite altimetry and gravimetry has been shown for 
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common spatial and temporal domains after 2003 (see Fig. 2 of The IMBIE team27 for the number of individual 
mass balance estimates and the temporal coverage of the ach measurement type used). The final IMBIE surface 
mass balance data is available as a reconciled time series of cumulative total mass changes between 1992 and 
2018 along with the uncertainty estimates and can be downloaded from http://imbie.org/data-downloads/.

The cumulative total mass change has been produced by integrating the rates of mass changes computed at 
annual intervals from time series of relative mass change using a 3-yr window. Therefore, for a fair comparison, 
we applied a 13-months moving average filter to our monthly mass change simulations from ResDCAE. The 
cumulative mass changes from the IMBIE surface mass balance and from ResDCAE (ResDCAESm°°thed) starting 
from 1994 are shown in Fig. 4. Note that the IMBIE data is referred to the mean baseline between 2004.000–
2009.9999 to be consistent with the ResDCAE in the plot. The time series of original monthly ResDCAE mass 
change simulations as well as the estimated 1-σ uncertainties of the IMBIE are also presented in Fig. 4. Figure 4 
shows an almost excellent agreement between IMBIE and the ResDCAE simulations throughout the entire time 
span. The slight differences between ResDCAE and IMBIE cumulative mass change time series are all within 
the 1-σ envelope of the IMBIE. The standard deviation is computed as ± 90 Gt based on these differences. The 
results indicate that our simulations are not only accurate within the GRACE/-FO era in which the training of 
the DL model was performed, but also provide good predictions of mass anomaly for the pre-GRACE era; the 
trend error mitigation strategy seems to work reasonably well even if not perfect.

Validation with ENSO events.  The most active climate variability on the interannual timescale affecting 
long-term mass anomaly values is the El Niño–Southern Oscillation (ENSO), which results from large-scale 
ocean–atmosphere interactions over the equatorial Pacific60–63. Positive Sea Surface Temperature Anomalies 
(SSTA) in the eastern or central equatorial Pacific Ocean, as well as a weakening of equatorial trade, define 
the first phase of ENSO events, which occur every 2–7 years on average. El Niño events produce several severe 
droughts64,65 in the western Pacific and floods66,67 in the eastern Pacific, affecting climate globally. Besides that, 
the negative phase of ENSO is La Niña, which is a phenomenon in the tropical Pacific causing exceptional 
cooling of SSTs. The Southern Oscillation is the other part of ENSO, and it is a large-scale see-saw trend in the 
sea level pressure between the eastern and western tropical Pacific. El Niño results in low sea-level pressure in 
the eastern Pacific and higher pressure in the western Pacific, whereas La Niña has the reverse effect. Statistical 
models are frequently employed to determine ENSO evolution, with the SSTA index of Nino3.4 (120°W–170°W, 
5°N–5°S, as given in Supplementary Fig. S5). These anomalies are the deviation of monthly SSTs from their 
long-term mean. When the Nino3.4 index surpasses + 0.5 °C and −0.5 °C for at least five consecutive months, 
it is considered an El Niño and a La Niña event, respectively. The 2015/16 El Niño is the most powerful event in 
recorded El Niño history. It exceeded the previous two extreme occurrences in 1997/98 and 1982/8368,69.

Fig. 3  Spatial distributions of RMSE, NSE, and PCC computed over land areas (excluding Antarctica), with each 
measure represented in separate lines. Specifically, (a,e,i) correspond to Sol1, (b,f,j) to Li et al.7, (c,g,k) to Humphrey 
and Gudmundsson6, and (d,h,l) to Löcher and Kusche8. These calculations are based on 175 common months of 
mass anomaly solutions from all four studies. Additionally, the figure includes Empirical Cumulative Distribution 
Function (ECDF) plots for (m) RMSE, (n) NSE, and (o) PCC.
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The ENSO has been demonstrated to have a significant impact on precipitation and air temperature in a vari-
ety of regions70–72. Mass anomaly is highly dependent on the integrated water mass changes due to precipitation, 
evapotranspiration, and runoff. It is also heavily influenced by regional meteorological circumstances such as 
droughts, flooding, and extended periods of high temperatures. All these components, particularly precipita-
tion, are linked to ENSO. As a result, it is possible to conclude that ENSO and mass anomaly are related, as well. 
Several studies66,70,73–75 have demonstrated the impact of ENSO on mass anomaly in different basins of the Earth. 
For instance, Chen et al.66 explored the relationship between interannual mass anomaly variations and ENSO 
occurrences in the Amazon basin. Furthermore, Ni et al.75 analysed this phenomenon globally and discovered 
that ENSO occurrences have a significant impact on local Precipitation Anomalies (PPTA) and interannual 
TWS variations.

As the first external validation of our reconstruction, ResDCAE, a thorough assessment focused on the 
relationship between interannual mass anomaly and ENSO was carried out. It was also compared to previous 
studies which utilized the TRIP database for major river basin boundaries44. The mass anomaly reconstruction 
models are validated both with GRACE/-FO mass anomaly data and through examining their relationship with 
precipitation anomalies from ERA5, the National Oceanic and Atmospheric Administration (NOAA) Climate 
Prediction Center (CPC)76 and the Global Precipitation Climatology Center (GPCC)77 global precipitation 
dataset. The three different precipitation data above is chosen in order to ensure fair comparison among sim-
ulated mass anomaly from different studies. This is because ERA5 precipitation is an input dataset in both our 
ResDCAE and Humphrey while Li used CPC as an input for reconstruction. Furthermore, GPCC was also 
chosen due to its independence, regardless of the relationship between the input and simulations. Before the 
dataset used in validation, both CPC and GPCC were resampled to monthly temporal and 1.0° × 1.0° spatial res-
olutions. First, the average signals of reconstructions and precipitation datasets over river basins are calculated 
considering TRIP basin boundary data, which are also illustrated in Supplementary Fig. S5. In order to ensure 
consistency between these time series, 5-month moving average filters are applied as in the study by Ni et al.75, 
and then these smoothed time series are temporally matched to obtain the same time coverage for all datasets. 
According to Ni et al.75, the Amazon basin exhibits the highest correlation between mass anomaly and ENSO 
events, according to their global analyses, and it takes 5 months for the influence to appear in the basin. The 
illustration of average basin signals for the Amazon basin is given in Fig. 5. In Fig. 5a,the Nino3.4 index (http://
www.cpc.ncep.noaa.gov/data/indices/) is employed as a measure of ENSO activity in a comparison to simulated 
mass anomaly in the Amazon basin. A similar comparison of simulated mass anomaly versus precipitation 
anomalies from three different precipitation data set is also given in Fig. 5b. Figure 5a,b show that interannual 
mass anomaly variations are strongly linked to ENSO and precipitation with several months of time lags over the 
Amazon basin, particularly during massive El Niño events in 1997/98 and 2015/16. Furthermore, when the time 
series of the models are compared to CSRM, it is found that the ResDCAE model distinguishes rapid changes 
more easily and matches well with the CSRM mass anomaly. The GRACE and pre-GRACE correlations between 
the time series of all investigated mass anomaly solutions and the SSTA time series are calculated separately. 
The calculated correlations are all maximal values with specific phase lags. The correlations for the comparison 
between ResDCAE and SSTA in the GRACE-period were −0.57 (6-month lags) and −0.85 (4-month lags) in 
the pre-GRACE period. Similarly, the correlations for the Li, Humphrey, Löcher, and CSRM time series were 
calculated as −0.65 (5), −0.73 (6), −0.60 (7), and −0.57 (5) for the GRACE period, whereas they (excluding 
CSRM) were calculated as −0.87 (6), −0.84 (7), and −0.63 (5), respectively for the pre-GRACE period. During 
the GRACE period, our ResDCAE solution has nearly the same correlation as the CSRM time series. This results 
in a significant convergence to the simulated CSRM data. On the other hand, our simulation is also consistent 
with other studies in both time periods.

Fig. 4  Cumulative mass change time series in Greenland from smoothed ResDCAE simulations (dashed blue) 
and from the IMBIE surface mass balance estimates (dashed black). Monthly mass anomaly from ResDCAE 
including seasonal mass change signal (solid red) is also shown. The shaded envelope represents the estimated 
1-σ uncertainties of the cumulative changes of IMBIE.
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The time series of all three precipitation anomaly data are in good agreement with the mass anomaly sim-
ulations. In order to quantify the Cross-Correlations (CCR) between these precipitation anomalies and mass 
anomaly simulations at all river basins in the TRIP database, the CCR coherence spectrum is calculated by 
determining and considering time lags between all signals separately. Totally 176 river basins are considered 
in this comparison. Each comparison, e.g., ResDCAE vs ERA5 PPTA for all basins, has its own defined time 
lag, which is determined by the maximum correlation computed between the compared time series. Thus, 
both cross-correlations and time lags are calculated for all compared time series pairs at each river basin. CCR 
metrics are given in Fig. 6a–l for the comparison between mass anomaly simulations and ERA5, CPC, and 
GPCC datasets. The lags between the time series of mass anomaly simulations and precipitation are also given 
in Supplementary Fig. S6. According to Fig. 6, almost similar CCR are calculated between all mass anomaly 
simulations and precipitation datasets, except for Löcher’s. The discrepancies between precipitation and mass 
anomaly simulations of Löcher is most likely due to the fact that, contrary to ResDCAE, Humprey and Li, no 
precipitation data was considered when Löcher’s spherical harmonic coefficient models are calculated. On the 
other hand, as expected, Humphrey’s simulations have slightly higher correlations with PPTA in all basins, 
because the precipitation data has been directly used as the dominant input in a linear water store model (see 
Eq. 1 of Humprey and Gudmundsson6). Nevertheless, all simulations have similar CCR in almost all river basins. 
As it can be seen in Fig. 6a–l, the Amazon River basin has the highest CCR (>0.75) in all comparisons.

Validation with independent degree-2 spherical harmonic coefficient estimates.  The long-wavelength com-
ponents of gravity change due to variations of mass redistribution on Earth can also be recovered from SLR 
tracking measurements or EOP, independently48,78. Thanks to advancements in satellite geodetic techniques, 
EOP- and SLR-derived low-degree spherical harmonic coefficients, i.e., ∆C20, ∆C21 and ∆S21, can be determined 
with higher accuracy than GRACE/-FO observations48. These degree-2 coefficients are related to the different 
geophysical dynamics of mass redistribution on Earth1,48. These relationships could be exemplified by the fact 
that while SLR-derived ∆C20 provides information about mass variations due to the oblateness of the Earth, 
∆C21 and ∆S21 are related to the variations of the Earth’s rotational axis79,80. Therefore, degree-2 spherical har-
monic coefficients recovered from GRACE/-FO could be validated independently using EOP- and SLR-derived 
counterparts.

In order to validate our simulations, global 1.0° × 1.0° gridded mass anomaly from ResDCAE were first con-
verted to spherical harmonic coefficients using Eq. 35 of Wahr et al.81. The maximum degree and order of the 
spherical harmonic expansion were chosen as 96. Note that these spherical harmonic coefficients represent the 

Fig. 5  Time series of Nino3.4’s SSTA index (derived from the region 120°W–170°W, 5°N–5°S) and mass 
anomaly time series from previous studies, CSRM, and our simulation (ResDCAE) for the Amazon River basin 
calculated by averaging all grids in TRIP basin boundaries. (a) Comparison of the Amazon mass anomaly signal 
of all compared models to precipitation time series from ERA5, CPC, and GPCC datasets (b).
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relative anomalies w.r.t the 2004.0–2009.9999 mean baseline, i.e., the coefficients are ∆Cnm and ∆Snm. Similarly, 
CSRM mass anomaly were also converted to spherical harmonic coefficients (CSRM spherical harmonic coef-
ficients). On the other hand, monthly C20 coefficients estimated from SLR were taken from https://grace.jpl.
nasa.gov/data/get-data/oblateness/ and the 2004.0–2009.9999 mean was removed from the entire time series to 
calculate the SLR ∆C20 series consistent with those of ResDCAE and CSRM. Note that the background models 
adopted within CSRM and CSR GRACE/-FO RL06 processing chain have also been used for the recovery of 
SLR-only gravity field models for comparison in this study78,79. Further, EOP-derived, ∆C21, ∆S21, and ∆C20 
coefficients were calculated from the mass term of the Earth Rotation excitations using Eq. 2 of Chen et al.82. 
Mass excitations are obtained by subtracting motion terms from observed excitations of polar motion com-
ponents (X, Y), and Length of Day (LOD), respectively. While the mass excitations are due to the mass load 
variations, the motion excitations arise from the angular momentum exchange between the Earth’s crust and the 
atmosphere, i.e., due to the frictions of atmospheric wind and ocean current fields on the Earth82,83.

Daily Polar motion (X, Y) and LOD observations are taken from the International Earth Rotation and 
Reference Systems (IERS) EOP 14 C04 series84. In order to calculate mass terms, the daily observed and 
motion excitations were computed using interactive tools of the IERS (https://hpiers.obspm.fr/eop-pc/anal-
ysis/excitactive.html) with the Chandler period set at 433 days and quality factor at 100. The motion terms 
are also computed considering the angular momentum series, namely ECWMF and Max-Planck-Institute for 
Meteorology Ocean Model (MPIOM), that are provided by GFZ85 which also serve as a basis for atmosphere 
and ocean de-alising (AOD1B RL06) model in GRACE/-FO data processing83. Thus, the consistency between 
ResDCAE and EOP-derived also ensured using these models as angular momentum components of motion 
terms. The daily mass excitations are obtained by removing motion terms from observed excitations and these 
datasets comprise different periodic signals, such as the 5.8-yr oscillation in the observed LOD series, which 
is sourced from core-mantle interaction and is not related to gravity change86. Thus, first a zero phase-shift 
Butterworth high-pass filter with a cut-off frequency of 1/4 cpy is applied to remove this oscillation and other 
long-period signals from the LOD series. Besides, the linear trends were removed from all mass excitations 
using unweighted least squares trend estimation because the long-term variation was in good agreement with 
the EOP- or SLR-derived series at seasonal time scales. After that, the daily degree-2 coefficients were computed 
using these detrended mass excitations, and a low-pass filter with a cut-off frequency of 6 cpy was applied to 
remove from the every signal shorter than 2 months. Finally, the monthly ∆C21, ∆S21, and ∆C20 were computed 
by averaging the daily ones in each month. In order to make a fair comparison, the corresponding time series 
of ResDCAE, CSRM and SLR were also detrended using unweighted least squares. All the detrended series are 
presented in Fig. 7.

All degree-2 coefficient time series are in a good agreement of ± 2e-10 for both GRACE and GRACE FO 
period (Fig. 7). In contrast to ∆C21 and ∆S21, EOP-derived ∆C20 has a phase-shift of about 4-months that may 
be sourced from high-pass filtering applied to the remove the long-period signals from ∆LOD, and therefore 
not shown in Fig. 7a. On the other hand, the seasonal amplitude of ∆S21 series is higher than that of ∆C21. This is 
because ∆S21 is more sensitive to mass changes over land while ∆C21 is more sensitive to mass changes over the 
oceans. Similar to the results in e.g., Meyrath et al.86 and Chen et al.82, while GRACE/-FO-derived (ResDCAE 
and CSRM) ∆C20 coefficients are more consistent to those estimated from SLR ones, the ∆C21 and ∆S21 from 
ResDCAE and CSRM are both closer to each other and the EOP-derived estimates. Zero phase-lag correlations, 
after removing annual/semiannual variations and linear trends using unweighted least squares fit, between every 
pair of estimates of ∆C20, ΔC21 and ΔS21 shown in Fig. 7 are listed in Table 2. As expected, for all three coeffi-
cients, the highest correlations (0.94-0.96) are observed between ResDCAE and CSRM estimates when com-
pared to others within the GRACE/-FO era. The correlations between the ∆C20 from ResDCAE and from SLR 
within and pre-GRACE era are still as high as 0.80 and 0.70, respectively. The correlations for ∆C21 are slightly 
smaller than those for ∆S21 in all comparisons, which may be due to the lower signal-to-noise ratio of ∆C21 as it 

Fig. 6  Cross-correlations between precipitation anomalies, from (top to bottom) ERA5, CPC, GPCC and mass 
anomaly simulations from (left to right) ResDCAE (a,e, and i), Li (b,f, and j), Humphrey (c,g,and k) and Löcher 
(d,h and l) at 176 river basins defined in the TRIP database, respectively.
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is more relevant to the mass change signal over the oceans. The correlations given in Table 2 within GRACE/-FO 
era are all comparable to the results from earlier studies, e.g., Chen et al.83, Meyrath et al.86 although they used 
the coefficient estimates from GRACE/-FO Level-2 GSM data rather than mascon solutions. This, as well as 
the different time spans used to compute correlations explain the slight differences between their results and 
the results in this study. It is worth noting that the degree-2 coefficients from our ResDCAE model and from 
GRACE/-FO are converted from mascon type mass grids on Earth. The coefficients from ResDCAE model 
simulations also reveal reasonably high correlations (0.58 for ∆C21 and 0.65 for ∆S21) with EOP-derived ones 
before the GRACE era which shows the efficiency of the methodology (DL + backwards trend error mitigation 
strategy) used in this study.

Validation with global barystatic mean sea level change data.  Barystatic mean sea level change data is another 
independent data source used to validate GRACE/-FO temporal gravity solutions48 on global scale. Satellite 
altimetry has been a well-established space geodetic technique for accurately measuring global sea level change 
for about three decades. Thus, we compared our simulation results over the oceans with the altimeter-observed 
Global Mean Sea Level (GMSL) change time series after appropriate preprocessing steps were applied. To this 
end, the time series of GMSL anomalies (from altimetry) and associated steric components are calculated and 
compared to mean ocean mass change retrieved from ResDCAE simulations and CSRM. GMSL records consist 
of both ocean mass and steric components and can be expressed with the sea level-budget equation as GMSLalt

imetry = GMSLsteric + GMSLoceanmass. While GMSLsteric represents the contributions of oceans’ thermal expansion 
and salinity to sea-level variations, GMSLoceanmass represents the change in ocean mass87,88. Before comparing the 
time series of GMSL to ocean mass anomalies from ResDCAE and CSRM, GMSLsteric must be removed from the 
GMSLaltimetry anomalies to obtain GMSLoceanmass in order to make physically consistent comparison.

The GMSLaltimetry dataset is provided by Copernicus Marine Environment Monitoring Service (CMEMS) and 
the Copernicus Climate Change Service (C3S) and derived from ECWMF database89,90, which includes the grid-
ded (with daily and 0.25° × 0.25° spatial resolutions) merged satellite altimetry sea level anomaly data products 
combining different satellite altimetry observations and covering the time span from January 1993 to present. 
We downloaded the gridded GMSLaltimetry dataset from ECWMF from January 1994 to December 2017. We 
confined our comparison between this time span as there is no reliable data available for computation of steric 
contribution beyond December 201791. Some pre-processing steps such as upsampling and some corrections, 
were applied before the calculating GMSLaltimetry time series from gridded dataset. First, GMSL dataset were 
upsampled to monthly 1.0° × 1.0° grids by averaging from its own native resolutions to ensure consistency with 
our simulations. After that, the so-called TOPEX-A instrumental drift corrections, which is sourced from the 
instrumental problems of satellite and spanning the period from January 1993 to December 199887, were added 

Fig. 7  Comparison of ResDCAE-, CSRM-, EOP- and SLR-derived low-degree spherical harmonic coefficients, 
(a) ∆C20, (b) ∆C21 and (c) ∆S21.
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to each grid using provided correction values along with the dataset. On the other hand, GMSLsteric compo-
nent was calculated from gridded steric-height anomalies that are retrieved from Camargo et al.92, which is the 
ensemble mean derived from the 10 different temperature and salinity data sets and has monthly sampling with 
1.0° × 1.0° spatial resolution covering oceans between 66° N–66° S latitudes from January 1993 to December 
2017.

GMSLaltimetry and GMSLsteric anomalies are calculated considering the mean baseline between 2004.0 and 
2009.9999 to ensure consistency with ocean mass change from our simulations as well as from CSRM. Then the 
time series are obtained by averaging grids over the oceans, excluding a 300-km buffer zone along the coasts 
to avoid any signal leakage from land hydrology. The average monthly sampling of time series was obtained 
from the weighted ocean mass change grids. The weights were determined considering the surface area of 
each grid cell over the oceans within 65° N–65° S latitudes. In addition, GIA correction was applied to GMSL 
time series by adding a constant value of −0.23 mm/year derived from the ICE-6G_D VM5a model39, which 
also was used as GIA correction CSRM. GMSLoceanmass time series was then calculated by removing GMSLsteric 
from GMSLaltimetry time series to compare with ocean mass change from ResDCAE simulations and CSRM. The 
same averaging procedure was also applied to the time series of ResDCAE simulations (from January 1994 to 
December 2017) and CSRM (from April 2002 to December 2017). The GIA and GAD corrections are readily 
included in our simulation as it uses the corrected version of CSRM as output data for training the DL model. 
Finally, the seasonal (annual/semi-annual) signals were removed using unweighted least-squares from all time 
series and a moving average filter with a window length of 400 days was applied to each of the time series before 
comparison.

Ocean mass change time series both from our ResDCAE simulation and CSRM as well as the altimetry 
derived GMSLoceanmass are given in Fig. 8. While trend values are calculated for GRACE period as 2.11, 2.15, 
and 2.21 mm/yr, they are calculated for pre-GRACE period only for ResDCAE and GMSLoceanmass as 0.13 and 
0.77 mm/yr shown in Fig. 8. The long-term linear trends estimated from ResDCAE, CSRM, GMSLaltimetry, 
GMSLsteric and GMSLoceanmass time series are 1.47, 2.15, 2.82, 1.47 and 1.34 mm/yr, respectively. The deseasoned 
time series of ocean mass change are consistent to each other especially after 2004. This improvement can be 
attributed to the accurate Argo-based steric height models developed in early 200587,93,94. Dieng et al.87 has shown 
that the ensemble members of steric heights used in various studies show significant differences between 1993 
and 2004. However, Argo data from January 2005 to end of 2015 significantly reduce the uncertainties of the 
steric sea level change data products87,94. We re-estimated the linear trends from all time series but for the time 
period from January 2005 to December 2017 and obtained 2.26, 2.26, 3.58, 0.88 and 2.70 mm/yr, respectively 
for ResDCAE, CSRM, GMSLaltimetry, GMSLsteric and GMSLoceanmass. The GRACE-based (ResDCAE simulations 
and CSRM) ocean mass change time series and altimetry-steric (GMSLoceanmass) are all in excellent agreement 
throughout the Argo data time-span. We also computed the correlations of the original (non-detrended/
non-deseasoned) ResDCAE simulations as well as of the CSRM with the Altimetry-Steric (barystatic) sea level 
change time series. Within the GRACE era (April 2002 – December 2017) a correlation coefficient of 0.86 is 
obtained both with ResDCAE and CSRM. The correlation coefficient computed between ResDCAE and the 
Altimeter-derived barystatic sea level for the pre-GRACE era (January 1994 – March 2002) is still as high as 0.79, 
indicating reasonably well simulation performance and the effectiveness of the trend error mitigation strategy 
(c.f. section Methods) adopted in this study.

Validation with in situ ocean bottom pressure data.  The simulated mass changes over oceans can be compared 
to in situ ocean bottom pressure (OBP) observations for qualitative validation. The detection of spatiotemporal 
mass variations over oceans from GRACE/-FO is more challenging than those of the continental hydrology 
signal since the detectable variations of gravity signal over the ocean are weaker95. Moreover, the comparison 
of these variations to independent point-wise OBP variations is much more challenging due to the differences  

Fig. 8  Deseasoned global mean ocean mass change time series (in mm equivalent water height) from our 
ResDCAE simulation (solid red), from steric corrected altimetry (solid green) and from original CSRM 
computed over the ocean grids between 65° N and 65° S latitudes. The altimetry derived GMSL time series 
(dashed blue) is from Horwath et al.94 and the steric component (dashed yellow) is from Camargo et al.92 both 
are presented for completeness.
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between spatial and temporal resolutions, the irregular distribution of OBP stations over the globe, or the neces-
sity of isolating signals that are related to ocean circulation and sea level changes96. Considering these aspects, in 
situ OBP observations that are publicly available in the Permanent Service for Mean Sea Level (PSMSL) database 
(https://www.psmsl.org/data/bottom_pressure/) were used to compare to the gridded mass change time series 
from our simulation and CSRM. To this end, we chose two stations from PSMSL database considering the tem-
poral coverage of data records (stations with data records available for longer time) and taking into account the 
proximity and distance from the land to test any possible leakage effect from the land. Thus, the stations Dark 
Passage South – DPS (60.9° S–54.7° W) and NDBC 51406 – Central South Pacific (8.5° S–125.0° W) were chosen 
the start and end deployments of which are November 1992 – June 2011 and September 2001 – February 2013, 
respectively.

The daily sampled mean OBP data constructed from hourly observations at each deployment are readily 
available after removal of diurnal and shorter period tides by averaging 24 hourly values and sensor drift cor-
rections. The long-term trends as well as the remaining drifts were first removed with a quadratic fit from daily 
OBP time series at each deployment as suggested by Poropat et al.96 in situ. In order to generate monthly sampled 
OBP time series, first the low-pass Butterworth filter was applied with 12 cpy cut-off frequency to remove any 
remaining signal with sub-monthly periods from the daily time series. The monthly time series were then com-
puted by averaging these filtered daily samples. On the other hand, the monthly mass change time series from 
ResDCAE and CSRM at the two 1.0° × 1.0° grids which contain the selected OBP stations were first detrended. 
The monthly time series of in situ OBP and mass change usually need to be compared for long-wavelength 
signal content due to the complexity between observed mass change by GRACE and OBP induced by their dif-
ferences in spatial and/or temporal resolutions. Therefore, six-months moving average filter was further applied 
to monthly sampled ResDCAE and CSRM time series. The resulting time series are given with a dual axis plot 
in Fig. 9.

The agreement between in situ OBP and mass change time series is better at NDBC station than at DPS 
station as shown in Fig. 9a,b. This is most likely due to the signal leakage from land and sea ice at northern 
Antarctica to the mass change signal at DPS station. The NDBC station, on the other hand, is in the open 
ocean and thus almost no signal leakage from land hydrology exists. The comparison of GRACE-based mass 
change solutions to in situ OBP observations is highly dependent on both oceanographic priors and applied 
post-processing as well as the basin size adopted for averaging while generating the mass change time series96,97. 
Despite the fact that the general signal preprocessing tools such as filtering and smoothing were applied to 
obtain time series of ResDCAE, CSRM, and OBP observations, the agreements with in situ OBP records at these 
two different locations over the oceans are comparable with those in previous studies98,99.

Summary and Future Perspectives.  In this study we employed a hybrid deep learning architecture called 
resDCAE to simulate mass anomalies at a spatial resolution of 1.0 degree by 1.0 degree and a monthly temporal 
resolution from January 1994 to January 2021. We proposed and successfully performed a strategy to reduce 

Fig. 9  Time series comparisons of in situ OBP measurements (green) with mass anomaly data from ResDCAE 
(red) and CSRM (blue) at two selected stations: (a) Dark Passage South – DPS (60.9° S – 54.7° W) and (b) 
NDBC 51406 – Central South Pacific (8.5° S – 125.0° W). The mass anomaly plots represent the monthly values 
at the 1° × 1° grid which contains the location of the corresponding OBP station.
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the error of the trend component in the simulations during the pre-GRACE period (1994 to 2002). The primary 
objective was to achieve a better understanding and characterization of various climate-induced geophysical phe-
nomena, including the terrestrial water cycle, ice sheet and glacier mass balance, sea level changes, and variations 
in ocean bottom pressure by providing longer time series of global water storage changes both over continents 
and oceans. The research demonstrated that the use of a combination of ERA5 and SLR datasets, along with 
time channel information, provided better, if not the best, solution for simulations. This study contributes to the 
monitoring and comprehension of long-term global gravity field changes, offering valuable insights into climate 
change and other significant geophysical events. Such research is advancing our understanding of climate changes 
and their impacts on Earth’s water cycle. With the new data sets as well as advanced satellite gravity missions 
and developments in deep learning era and algorithms, improved simulations of the water mass change with 
enhanced resolutions will be possible in the future.

Usage Notes
The simulated data is available with no gaps from January 1994 to end of December 2020 both in the form of 
monthly 1.0° × 1.0° mass anomaly grids and spherical harmonic coefficients similar to official GSM data prod-
ucts but with a much higher resolution up to degree and order 200. The user should note that the data set may 
not include seismic signal and thus is not proper for e.g. earthquake signal detection. For conversion of mass 
anomaly grids to spherical harmonic coefficients, Equations 6–8, and load Love numbers in Table 1 of Wahr 
et al.81 were used with ρave = 5517 kg/m3 as the average density of the solid Earth. Both data sets represent the 
anomalies relative to 2004.0–2009.9999 mean baseline similar to CSR mascon solutions. When using spherical 
harmonic coefficients data, no further destriping or smoothing filter is required.

Code availability
There is no customized code in generation or processing of datasets. For setting up and training the Deep 
Learning Models, the publicly available codes in Python language from TensorFlow9 and Keras10 libraries 
were used. The trend error mitigation and all the figure plots in the paper were implemented using the existing 
routines/functions in MATLAB software.
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