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Abstract The drag coefficient, Stanton number and Dalton number are of particular importance for
estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization.
Although these bulk transfer coefficients have been extensively studied over the past several decades in

marine and large-lake environments, there are no studies analyzing their variability for smaller lakes. Here,

we evaluated these coefficients through directly measured surface fluxes using the eddy-covariance technigue
over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer
coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous
studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds
(<3 m s7"), which was found to be associated with the presence of gusts and capillary waves (except Dalton
number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting
the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values
of L6:1073, 1.4-107%, 1.0-107, respectively. We found that the variability of the transfer coefficients among the
lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended
to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave
roughness while Dalton number could be considered as constant at all wind speeds.

Plain Language Summary In our study, we investigate the bulk transfer coefficients, which are of
particular importance for estimation the turbulent fluxes of momentum, heat and water vapor in the atmospheric
surface layer, above lakes and reservoirs. The incormect representation of the surface fluxes above inland
walers can potentially lead to errors in weather and climate prediction models. For the first time we made this
synthesis using a compiled data set consisting of existing eddy-covariance flux measurements over 23 lakes
and & reservoirs. Our results revealed substantial increase of the transfer coefficients at low wind speeds, which
is often not taken into account in models. The observed increase in the drag coefficient (momentum transfer
coefficient) and Stanton number (heat transfer coefficient) could be associated with the presence of wind gusts
and capillary waves. In flux parameterizations at lake surface, it is recommended to consider them for accurate
flux representation. Although the bulk transfer coefficients were relatively constant at high wind speeds, we
found that the Stanton number systematically exceeds the Dalton number (water vapor transfer coefficient),
despite the fact they are typically considered to be equal. This difference may affect the Bowen ratio method
and result in biased estimates of lake evaporation.
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1. Introduction

The major process that governs the interaction between the atmosphere and surface waters is the turbulent
exchange of momentum, heat and gases at the air-water interface. Although lakes and reservoirs occupy only
about 3% of the land surface area (Downing et al., 2006), they are known to have an impact on local weather and
climate. For example, lakes affect the stability of the atmosphere above (Sun et al., 1997), leading to the formation
of clouds and precipitation on the shores (Changnon & Jones, 1972; Eerola et al., 2014; Kato & Takahashi, 1981;
Thiery et al., 2016). Furthermore, lakes and reservoirs are recognized as significant contributors to the global
carbon cycle by emitting significant amounts of carbon dioxide and methane (DelSontro et al., 2018; Rosentreter
etal., 2021).

The past three decades have seen a rapid development of lake models (Stepanenko et al., 2014) and their incor
poration into numerical weather and climate prediction models (Ljungemyr et al., 1996; Mironov et al., 2010;
Salgado & Le Mogne, 2010). Experiments on the coupling of lakes and the atmospheric model revealed their
beneficial impact on the weather prediction guality (Balsamo et al,, 2012). A number of case studies have
demonstrated the importance of lakes for extreme local weather phenomena, such as lake-effect snow over Great
American lakes (Fujisaki-Manome et al., 2020), deep hazardous convection over Great African lakes (Thiery
et al., 2016), wind speeds over Lake Superior (Desai et al., 2009), or stratiform cloudiness in winter over Lake
Ladoga (Eerola et al., 2014). Thus, an accurate representation of the exchange of momentum, heat and water
vapor at the air-water interface in water bodies is essential to understand those processes.

In state-of-the-art, momentum, sensible and latent heat fluxes ame usually determined based on gradient
approaches utilizing transfer coefficients (also known as bulk transfer coefficients) and easy to measure meteor
ological and limnological variables, that is, wind speed, air temperature, air humidity and water surface temper-
ature (Stull, 1988). The exchange at the airwater interface and therewith the bulk coefficients are controlled
by boundary-layer turbulence. The bulk exchange coefficient of momentum, known as the drag coefficient
(Cp., Cow) (Garratt, 1977), is of particular importance for all air-water fluxes. The coefficients of heat (Cy, Gyn)
and water vapor exchange (Ce. Cin) are also known as Stanton and Dalton numbers, respectively. Here, “N™
stands for “peutral” transfer coefficients, corresponding to the neutral thermal stability of the atmosphere. The
transfer coefficients depend on the measurement height of the mean wind speed, air temperature and humidity,
respectively, and for this reason, they are usually reported for the reference meteorological height of 10 m.

A considerable amount of studies has been published on the momentum flux and the drag coefficient starting
from the early 1950s when the fundamental work, presenting the theory later on named as Monin-Obukhov
similarity theory, was published (Monin & Obukhov, 1934; Obukhov, 1971). The theory aims at describing the
structure of turbulence in the atmospheric surface layer about several tens of meters thick with the assumption
of the fluxes being constant and independent of height. Similarity laws introduce functional relations to derive
the universal shapes for the vertical profiles of different guantities for atmospheric thermal stability other than
neutral. During the past decades, considerable effort has been devoted to define the exact form of these similarity
functions (Businger et al., 1971; Hogstrém, 1988; Paulson, 1970; Zilitinkevich & Calanca, 2010).

As the drag coefficient is one of the key parameters in atmospheric and lake models, the errors in its parameteri-
zation lead to errors in the bulk flux estimates. Therefore, numerous early studies focused on exploring different
parameterizations of the drag coefficient over the land and oceans in terms of wind speed, atmospheric stability,
and surface roughness, which are a function of the surface wavefield (for oceans) (Garratt, 1977; Kantha &
Clayson, 2000). Most of the extensive field measurement campaigns over the oceans have been conducted during
the last 30 years of the twentieth century (Fairall et al., 1996; Godfrey & Beljaars, 1991; Large & Pond, 1931;
Smith et al., 1996). Several of these studies agreed that the drag coefficient linearly increases with increasing
wind speed ignoring the state of the wavefield. Mome recent parameterizations of the drag coefficient (e.g., the
COARE algorithm by Fairall et al. (2003); Edson et al. (2013)), however, include a wave dependence. There is
still an ongoing scientific discussion concerning the importance of waves and how their impact could be included
in the models (Wu et al., 2019).

Along with the studies in the marine environment, the research started to focus on the drag coefficient estimated
from measurements over large and medium-sized lakes (e.g., Donelan, 1982; Graf et al., 1984; Hicks, 1972;
Simon, 1997). To date, in total, about two dozen studies focusing on lakes have been published since the begin-
ning of the 1970s. In reviewing these studies, we separated them by the wind speed regime they were interested in.
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It is usually assumed that surface wave development starts when the wind speed exceeds 3-4 m s~ (Ataktiirk &
Katsaros, 1999; Kantha & Clayson, 2000). This is also supported by wave measurements in several lakes (Guseva
etal., 2021; Simon, 1997). Themrfore, we intend to separate the two wind speed regimes using this threshold.

At the “high” wind speed regime (wind speed exceeds 3 m 57!}, in the most simplified way, the surface waves are
assumed to be fully developed, and the surface roughness length is described as a function of wind stress, which
is commonly known as Chamock relationship (Charnock, 1955). However, this assumption might not hold for
lakes with limited wind fetch (Donelan, 1990; Geernaert, 1930). Thus, some research has been made to study the
drag coefficient as a function of the surface wave state, for example, taking into account wave characteristics such
as the wave age (Ataktiirk & Katsaros, 1999; Donelan, [982). Vickers and Mahrt (1997) reported that for a given
wind speed the drag coefficient tends to be larger for younger steeper waves representative of short wind fetches
than for longer fetches. Ataktiirk and Katsaros (1999) could significantly reduce the scatter in the estimated drag
coefficients by considering waves in the parameterization of the surface roughness length. However, these stud-
ies mainty examined large lakes and only a few were performed in lakes with short fetch and young wave states
(Babanin & Makin, 2008; Liiké et al., 2020). Given the fact that the surface wave measurements in lakes are often
not available, their effect still could be investigated via analyzing the relationship between the drag coefficient
and fetch length.

At the “low” wind speed regime, several studies found that the neutral drag coefficient in lakes and oceans tended
to increase by an approximate factor of two up to ten compared to the value of 1.3-107? {coresponding to a typical
value of open water surface roughness, Foken, 2008) (Woolway et al., 2017; Wilest & Lorke, 2003). Although the
wind speed dependence is obvious, many numerical and empirical studies employ a constant value for the drag
coefficient, which is often considered as a model tuning parameter (Stepanenko et al., 2014). Despite the fact that
there have been many attempts to address the reasons of such increase, there is still no consensus in the scientific
community. The low wind speed regime was first described as the aerodynamically smooth flow, when the surface
waves are buried within the viscous sublayer and the surface roughness is described as a function of the thickness
of this layer (Schlichting, 1968). On the contrary, Wu (1988) proposed that the flow is aerodynamically rough
and that capillary gravity waves play a key role at low wind speeds. Surface roughness length was described as a
function of the water surface tension. As an additional reason for the increase of the drag coefficient at low wind
speed, Godfrey and Beljaars (1991) and Grachev et al. (1998) considered the concept of gustiness, which assumes
that at “zero” wind speeds there are dry random convective motions—gusts—in the convective boundary layer
(CBL). Thus, the “traditional”™ formulation of the drag coefficient has been modified using the scalar-averaged
wind speed (not the vector-averaged wind speed) to account for gusts. All the possible mechanisms mentioned
above were addressed in the recent work by Wei et al. (2016). They concluded that none of them explained the
increase of the drag coefficient at low wind speeds. However, they found it can be explained by the increase in the
turbulent kinetic energy due to buoyant energy production. Similar to Grachev et al. (1998), Sahke et al. (2014)
and Liu et al. {2020) related the increase of the drag coefficient with nonlocal effects, such as the penetration
of large convective eddies into the surface layer from the atmosphere above. Liu et al. (2020) introduced the
factor describing this effect and estimated it from two-level measurements of wind speed (however, over the land
surface and only for neutral conditions). Another formulation of the drag coefficient at low wind speeds was done
by Zhu and Furst (2013) relating the drag coefficient to the turbulent kinetic energy budget. However, their fitting
coefficients for the drag coefficient formula were found to be site-specific (Liu et al., 2020).

Other studies on the bulk transfer coefficients in lakes branched off from the main direction—potential physical
mechanisms—with a focus on the possible correlation between the bulk transfer coefficients and some lake
characteristics. Among them are lake depth at the measurement location (Panin et al., 2006), lake surface area
(Read et al., 2012; Woolway et al., 2017), wind fetch at the measurement location (Liikd et al., 2020) and lake
biota, for example, submerged macrophytes (Xiao et al., 2013). All studies showed a strong dependence of the
transfer coefficients on these lake characteristics. The drag coefficient tends to decrease with increasing water
depth, lake area, fetch and in the presence of water plants at the water surface. It is important to note that although
Panin et al. (2006) and Woolway et al. (2017} revealed the correlation between the transfer coefficients and the
lake parameters, the estimation of the transfer coefficients was based either on bulk parameterization {Woolway
etal., 2017}, or was compared to other studies where there were no direct flux measurements (Panin et al., 2006).

Fewer studies have been published on the Stanton and Dalton numbers. Although the measurements in the oceans
showed their obvious increase at low wind speeds, both transfer coefficients were considered as fairly constant
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with a value of 1.1-10-? (review of these measurements in Kantha and Clayson (2000)). First measurements
conducted in lakes revealed this value being higher and equal to ~1.5-107% (Harbeck, 1962; Hicks, 1972) or
1.9-10-3 (Strub & Powell, 1987). Harbeck (1962) and Brutsaert and Yeh (1970) meported a dependence of the
Dalton number on the lake surface area. Heikinheimo et al. (1999) summarized that the Dalton number is gener
ally known to be less dependent on the wind speed. From the most recent studies (Dias & Vissotto, 2017; Li
etal., 20016; Wei et al., 2016; Xiao et al., 2013), there is evidence that both coefficients depend on the wind speed
and that the Stanton number is higher than the Dalton number by approximately a factor of 1.3. This indicates that
the earlier assumption of the equality of both coefficients may not be valid for lakes.

The eddy-covariance (EC) technigue is a micrometeorological method to directly measure momentum, heat,
water vapor and greenhouse gas fluxes (Foken, 2008). It is based on the cormrelation between turbulent fluc-
tuations of vertical wind speed and scalar air properties. Using this technique, one can obtain the spatial and
temporal average of turbulent fluxes originating from an area called footprint and a period of meteorological
stationarity (Burba & Anderson, 2010; Foken et al., 2012; Lenschow et al., 1994; Sun et al., 2006). Nowa-
days, the EC technigque is commonly used over lakes (Blanken et al., 2000; Golub et al., 2021; Lee et al., 2014;
Mammarella et al., 2013; Nordbo et al., 2011; Spank et al., 2020; Vesala et al., 2006). However, several studies
reported difficulties in measuring the wind stress at weak winds, which resulted in large uncertainties (Kantha &
Clayson, 2000). Low wind speed conditions are more relevant for lakes and specifically small lakes that are the
most abundant inland water bodies (Downing et al., 2006).

In this study, we evaluate the first multiple water body estimates of bulk transfer coefficients and their depend-
encies on wind speed and water body characteristics using EC data measured above lakes. The analysis aimed
at answering the following research guestions: (a) What are the typical values for the bulk transfer coefficients
and their variability among lakes and reservoirs? (b) How do the values compare with the reported transfer
coefficients for oceans and other lakes? (c) Can the mechanistic approaches mentioned above describe the trans-
fer coefficients at low wind speed regime? (d) Is there a consistent dependence of the transfer coefficients on
lake characteristics, such as water depth, lake area and wind fetch? In the sections below, we examine possible
answers.

2. Materials and Methods
2.1. Eddy-Covariance Data Set

For this analysis, most of the existing EC data measured by various researchers over lakes and reservoirs were
extracted from open access databases and repositories of published papers. The fluxes that are reported in the data-
sets were calculated using different software (e.g.. EddyPro, LI-COR, Inc, 2021; TK3, Mauder & Foken, 2015;
EddyUH, Mammarella et al., 2016). In total, we obtained data for 23 lakes and 8 reservoirs located in the arctic,
subarctic, temperate and subtropical zones (Figure 1, Table 51 in Supporting Information 51). The water bodies
are located in different landscapes, including mountains (e.g.. Lake Lunz, Austria or Lake Klontal, Switzerland),
forests (e.g., Lake Vanajavesi, Finland), and arctic landscapes. The EC mast at each lake or reservoir was installed
either on a floating or bottom-fixed platform, on shore, or on small islands. The measurement height ranged
between 1.3 and 16.1 m with 2 m being the most frequent height among all data sets. Elongated shapes of the
lakes or shorefisland locations were the subject of wind direction filtering to ensure that the measured surface
fluxes were originating from water. Approximately half of the water bodies in this study had a surface area (A,
[km?]) smaller than 10 km® with an average wind fetch (F,. [m]} ranging from 160 to 1,550 m. The fetch grid
was estimated from the map as the distance from the measurement location to the shore with the corresponding
wind direction. Then, the time series of the fetch was interpolated from this grid using the measured wind direc-
tions. The average fetch was calculated as the mean distance for the filtered wind directions. The rest of the lakes
and reservoirs were larger: the maximum surface area of 2.6-10* km” and the maximum mean fetch of 2.6-10* m
refer to one of the North-American Great Lakes—Lake Erie in the USA. The maximum depth (D__ [m]) varied
between 1.3 m (Lake Villasjon, Sweden) and 89 m (Rappbode Reservoir, Germany). Each EC data set contained
the estimated variables averaged over 30 min intervals.

The variables included wind speed (L7, [m 57']), wind direction (WD [°]), friction velocity (i [m s7']) as a quan-

tity characterizing the momentum flux (v = g [kg m™! 572, p~air density [kg m~>]), air temperature (T [°C]),
turbulent fluxes of sensible heat (H [W m™2]), and latent heat (L. E [W m2]), the latter referred to in this paper as
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water vapor heat flux as well. Water temperature was provided either as skin surface temperature (T, [°C]) or bulk
water temperature, measured at (—0.5 m water depth (T, [*C]). The skin temperature was observed with an infra-
red thermometer or calculated from outgoing longwave radiation, both corrected for the reflectance of incoming
longwave radiation. Some lakes or reservoirs had only momentum flux data, resulting in fewer estimates of heat
and water vapor transfer coefficients. Precipitation (parameter which was considered as a factor for filtering the
data) was not available for all data sets. The duration of the EC measurements ranged from 11 days (Lake Wohlen,
Switzerland) to 2,243 days (or ~6.1 years, Lake Dagow, Germany) with a median duration of 155 days.

2.2, Data Filtering and Averaging
The individual data sets used in the analysis were subject to filtering with the following different criteria.

filtering based on stationarity and integral turbulence test quality flags;

restriction of the wind directions to ensure >%0% of footprint was originated from water;

removing periods with ice cover;

removing periods with precipitation (if data on precipitation was available);

removing periods when the difference between water surface temperature (surface water specific humidity)
and air temperature (air specific humidity) is less than 0.2°C (1.5-10- kg kg ")

6. removing periods with floating vegetation on the water surface (only for Lake Suwa, Japan).

o k=

Quality screening of EC data is known to be site- and instrument-specific (Burba & Anderson, 2010). The data
were either available in filtered form, or they contained the quality flags provided by the software. Non-filtered
data sets included quality flags for each flux value (momentum, sensible and latent heat fluxes) to ensure the
stationarity of the time series (homogeneity of the flow) and developed turbulent conditions (Foken et al., 2004;
Foken & Wichura, 1996).

Removing wind directions was site-specific and we carefully studied each individual site. We only accepted
the data from periods when wind was blowing from the lake with sufficient fetch. We specified the accepted
wind directions for each site in Table 51 in Supporting Information S1. We focused on open-water conditions
and discarded ice-covered periods either using the water temperature time series or interval camera data. For
Lake Suwa we removed the approximate periods when floating vegetation appeared on the water surface using
interval camera data, however, for other sites this kind of data was not available. For some sites, all erroneous
data due to rain interference and site maintenance were filtered by data providers, or we removed periods with
precipitation (if data were available). Based on the standard accuracy of temperature and humidity sensors, we
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also applied a minimum threshold for temperature and specific humidity difference between water surface and air.
We describe the effect of these filters on the data in Text 31 in Supporting Information 51. Note, that in 58I and in
the sections below all transfer coefficients are shown as median values following suggestions from former studies
(DeCosmo et al., 1996; Fairall et al., 2003).

2.3. Transfer Coefficients

Turbulent fluxes of momentum (z), sensible heat (H) and latent heat (L _E) at the water surface are ex pressed as:

3 7 IfE
= p. [(u\’_w’) +(7w) ] = puil = p.Col2, (1a)
H = poc,w’'T" = —pucTatts = pace C Uno(T, — Tin). (1b)
L.E=p L wyg =—p.L.gits = p,L,CxUin(g. — guo), (lc)

wheme ', i, w' am the horizontal and vertical wind velocity fluctuations, respectively; wT [ms1K] wy
[ms!'kgkg™'] ar the covariances of vertical wind velocity and air temperature (T”) and specific humidity (g")
fluctuations. Un [m 7] is wind speed at 10 m height, T, and T [K] are the surface water temperature and the air
temperature at 10 m height, respectively, g, and g;q [kg kg~'] are the specific humidity at the air-water interface
(estimated from surface temperature) and at 10 m height, respectively. ¢, [J kg~! K-'] is the specific heat of air

at constant pressure, and L [J kg™'] is the latent heat of vapourization. T. = ‘f‘r and g = %‘iare temperature
and specific humidity scales, respectively. The standard sign convention is that the momentum flux is defined as
positive downward, while sensible and latent heat fluxes as positive upward (Kaimal & Finnigan, 1994). Equa-
tions la-Ic are not the only way to describe the transfer coefficients. The widely used COARE 3.0 bulk algorithm
(Fairall et al., 2003) includes scalar-averaged wind speed instead of U (vector-averaged wind speed) in Equa-
tions la—lc, which includes the gustiness (will be discussed below in Section 2.4.4).

Using measured flux data from the obtained EC datasets, the transfer coefficients can be derived from Equa-
tions la—1c as follows:

Co=— (2a)

w'T
Cit = ————, Th
T Un(h=Tw) (2b)

___wg
o= Lholgs — gua) 2c)

Wind speed, air temperature (T:) and specific humidity (g.) measured at a certain height z were converted to a
standard height of 10 m considering stability of the atmosphere following the equations:

== 2o 5)~w(3) (D]
T’“‘T__[l"(m) w(T)+
e 2fu(5) - (3)

L
where x is the von Kérman constant, L [m] is the Obukhov length, v, (r) the stability function which is the

(D))
()] =

integral of the empirical universal function for the momentum flux and i,ur( I )—ll'l: same for sensible and latent

heat (Businger et al., 1971). In the literature, z/ L is usually denoted as the non-dimensional stability parameter
£. To remove the effect of atmospheric stability on the magnitude of the transfer coefficients, Cp, Cy, Cg are
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converted to their neutral counterparts Cuw., Chin, Cien (i, for neutrally-stratified atmospheric conditions) (Large
& Pond. 1981):

-7 1 =&
GJN:EZ[IH(L—?)] =cﬂ[l+x-’ cgm(%)] , (4a)

G =G [. e cﬂ%m(g)]" [g_jﬂ—tcéw(g)]", (@
Cen = Cay [I+x"] céw,,(%)]_L [g—: +r“c§w(%)]_l, (4c)

whem z; is the surface roughness length. For our calculations, we used the Kansas-type stability functions
(Busingeret al., 1971} in the form of Hogstrim (1988), which is the most frequently applied form (Foken, 2008).
Cun, Cun. Ciw weme estimated for 31, 25, 23 water bodies under study, respectively, depending on the flux
data availability (see details about each lake or reservoir in Table S1 in Supporting Information 31 and in data
repository).

In the scientific community, there has been an ongoing discussion on the form of the transfer coefficients to be
presented. For example, some studies focused only on neutral values of the drag coefficient (Li et al., 2016) or
some considered the drag coefficient non-adjusted to their neutral counterpart (Cp). Other studies addressed
the so-called “effective” drag coefficient, which was derived as the slope coefficient for the linear relationship
between wi and L7, (Xiao et al., 2013). We examine the difference between Co, Cu . Ce and Cun, Cun, Cien in
Section 3.1.

2.4. Parametrizations of the Drag Coefficient at Low and High Wind Speeds

2.4.1. Smooth Flow

Previous studies focused on the parameterizations of surface roughness length zq (see Equation 4a) to assess
wind speed dependence of the drag coefficient (e.g., Ataktirk & Katsaros, 1999). In our study, we compared Cian
estimated from measured momentum fluxes with the existing approaches. One of the approaches is based on the
smooth flow regime at low wind speed (<3 m s7!), where the thickness of the viscous sublayer (4,) determines the
aerodynamic roughness of the interface (Schlichting, 1968), and not the physical roughness of the water surface:

5= 20=a, )

where @ = 0.11[-]and v = 1.6 % 107" [m? 57'] is kinematic viscosity of air. z; can be derived from Equation 4a as:

zqzzup(— 2] ) (6)
Vv L]

2.4.2. Capillary Waves

As an alternative method to parameterize Cpy at low wind speeds, we considered the approach proposed by
Wu (1994). He suggested that the wind shear stress in the absence of large gravity waves is related to the ripples
(capillary waves). For the capillary waves, the roughness length is related to surface tension (=) as:

[
In = dwy=—7,

Pully m
where ey, = 0.18 [-] is an empirical constant and pe [kg m~] is water density. Surface tension at a temperature
of 0 Cise=T7.28 - 107N m™.

2.43. Charnock Relationship

With increasing wind speed, the thickness of the viscous sublayer becomes smaller, and the aerodynamic rough-
ness of the water surface (zo) becomes minimal, before surface gravity waves evolve. At wind speeds exceeding
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3 m s~!, waves protrude from the viscous sublayer and surface roughness length increases with increasing wind
speed, indicating the transition from a smooth to a rough flow regime. Charnock (1955) proposed the following
equation for surface roughness length over fully developed surface waves, which account for typical oceanic
conditions:

n=y—, (8)

m | 5.

where y ranges from 0.011 to 0.0185 [-] (Garratt, 1994), g [m 5~7] is the gravitational acceleration.
2.44. The Concept of Gustiness

Under strong convective conditions, the wind stress at the water surface is governed by random convective
motions—sgusts—in the convective boundary layer (CBL), whereas the mean wind speed vector can even become
zero (Godfrey & Beljaars, 1991). These large comvective eddies embrace the entire CBL and affect the turbulence
regime in the atmospheric surface layer. Grachev et al. (1998) formulated an approach to estimate the drag coef-
ficient using this concept. In their study, the gustiness could explain the apparent increase of the drag coefficient
estimated using the traditional equation (Equations 2a, 4a) at low wind speeds. The estimated drag coefficient
accounting for gusts was a factor of 1.5-6 smaller at wind speeds below 2 m 57! in comparison to the drag
coefficient calculated from Equations 2a, 4a. The gustiness concept is widely accepted and used in the COARE
algorithm to estimate air-sea fluxes (Fairall et al., 2003).

The gustiness factor, G corresponds to the ratio of the scalar-averaged (U, for the definition see (Grachev
etal., [998) to vector-averaged wind speed:

Cwing
Uin

e
Taking into account that 0% = UL + U], where U, = o} + o7 is a gustiness velocity (s,, o, are standard devia-
tions of the wind speed components), the gustiness factor can be estimated as

2 2 2 2
U +up Ufu+{au+a,,]_

{aj +aj]
Gl = 1+ ==

2 ] 2
II"Irll:] II"Irl.l:] II"Irll:]

(10}

Since the scalar-averaged wind speed is not a standard output parameter in the EC-software, the estimation
of 7 from velocity standard deviations allowed calculation of the transfer coefficients for more lake data sets.
Alternatively, ¢ can be parameterized in terms of the convective velocity scale w. (Fairall et al., 2003; Grachev
etal., 1998). We denote the gustiness factors derived from measured wind speed and from CBL scaling as (7 yna

and Goonv, T spectively:

2 gy (P
G"“"'_I+(Um)’ an

wheme f = 1.2 [-] is an empirical constant (Beljaars, 1995) and w. is expressed as:

wr "
w. = (gzcm.T" . (12)

5

wheme, T, [K] is the virtual temperature, zqg;. [m] is the CBL height, defined as the height of the lowest inversion.
Previous studies used the fixed height of the CBL equal to 600 m (Fairall et al., 2003) or 1,000 m (Beljaars, 1995).
The neutral gustiness drag coefficient Cpyg and its gustiness counterpart Cyg is:

PG4 (1O
o = [ G+ 'w( )| (13)
and other gustiness transfer coefficients, Cyng and Ceng, can be derived as:

Chpg = [C‘;LFG+ r‘lm(L—ﬂ)]_L[ U?C.,_‘é +x"]w(|L—ﬂ)]_L, (13b)
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Curs = [C;LFG+ r‘]m(lll—u)]_t[q_lﬁcgé +r']w(|L—u)]_L, (13c)

where Cog = (;—n) and @, is the scalar-averaged friction velocity. The majority of the available EC datasets
from lakes did not contain the scalar-averaged friction velocity. Akylas et al. (2003) investigated the combinations
with different averaging procedures and suggested that vector-averaged friction velocity u, is more appropriate
to use with scalaraveraged wind speed for all wind speed classes. Thus, we used the vector-averaged friction

velocity and therefore Cos = Cu, Cug = Cur, G = Ce.

In a first step, we applied the gustiness approach for the drag coefficient with the cases cormesponding to unsta-
ble atmospheric condition (£ < 0). We estimated two types of the gustiness drag coefficient, using as (wina and
7 ooy and we considered the former one as a reference. These calculations were possible only for a subset of the
data sets (11 lakes) for which both scalaraveraged wind speed (or the standard deviations of the wind speed
components) and virtual sensible heat flux (u/ T, ) were available. Then we fitted the coefficient f in Equation 11
in order to get best agreement between the parametrized Cpng and the referenced one. As the second step, we
applied the parametrization of gustiness with the fitted # (Equation 11) to larger subset of the data (26 lakes)
for which the virtual sensible heat flux was available. Thus, we estimated all gustiness transfer coefficients
(Equations 13a—13c).

We compared the gustiness transfer coefficients with the standard formulations (Equations 4a—4c) and with the
results from the COARE 3.0 bulk algorithm (Fairall et al., 2003), which includes the parameterization of gust-
iness (Equations 11 and 12). In addition, the COARE algorithm considers the effect of changing water surface
roughness by using parameterizations of z; that combines the smooth flow approach (Equation 5) and Charnock’s
relationship (Equation 8).

3. Resulis
3.1. Transfer Coefficients Over Lakes

Bulk transfer coefficients for neutral atmospheric stability Con, Cun and Cex (Equations 4a-4¢) were estimated
using data from 23 lakes and 8 reservoirs (see data availability details in Table in the data repository). The transfer
coefficients varied between the water bodies and differed on average by a factor of 2-3 for wind speeds exceeding
3 m s~'. However, we identified three water bodies for which the estimated drag coefficients (Cpx) were excep-
tionally large at all wind speeds (up to a factor of five, Lake Quinghai, China, Nam Theun 2 Reservoir, Laos),
or exceptionally low (factor of four, Bol'shoi Vilyui Lake, Russia), when compared to other water bodies with
similar surface area. These three water bodies contributed largely to the variability among systems (Figure 55a
in Supporting Information 51 shows the estimates for individual water bodies). We did not find possible sources
of errors and considered these data as outliers. In the overall estimates and in the range of variability shown in
Figure 2a, we included the complete data set.

All transfer coefficients showed a similar wind speed dependence (Figures 2a-2c). At high wind speeds
(=3 ms71), Cyw, Cyn, Cew had relatively constant values of 1.8-1073, 1.4-107%, 10-10~3, respectively. All transfer
coefficients increased towards the lowest wind speeds. The strongest increase was found for Cus, which was one
order of magnitude higher (1.1-10-%) at the lowest wind speed (0.5 m 5™, the first bin) compared to values at
higher wind speeds. A similar, but less pronounced increase was observed for Cyy and Cgy: their values at the
lowest wind speed were 3.1-10~ and 2.2-107, respectively.

Unstable atmospheric conditions (' < 0) prevailed over all water bodies, particular during the evening and at night
time, when >80% of all data were obtained under unstable conditions (Figure 2d). Stable atmospheric conditions
occurred most frequent during the day (12—19 hr). In addition, we estimated the percentage of time when the
wind speed was less than 3 m 57! (Figure 2e). Low wind speed conditions prevailed slightly during the evening
and at night, when the atmosphere was mostly unstable. This means that the significant increase of the transfer
coefficients at low wind speeds frequently coincides with unstable atmospheric conditions, when the water is still
warm and the atmosphere starts cooling at the end of the day.

To analyze the effect of atmospheric stability on the transfer coefficients, we compared the transfer coefficients
(Co; Cu, Cg, Equations 2a-2c) with their neutral counterparts {Cun; Cun, Cenv, Equations 4a-4c, Figure 56 in
Supporting Information 51). We found that atmospheric stability did not significantly affect the values of Cp, Cu
and Cg at wind speeds exceeding 3 m s~!: their values were in close agreement with Gy, Cyy and Ggy. However,
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Fignme 2. Meutral () drag coefficient (Cow), (b) Stanton number (heat transfer coefficient, Ciaw), (c) Dalton nomber (water vapor transfier cosfficient, Cen) versus
wind speed at 10 m height. The shaded gray area indicates the variability among water bodies by marking the range from the 5Sth to the 95th percentiles of the median
wvalues estimated for each wind speed bin (0.5 m 5="). The black line with circles, marked as L&R denoting “lakes and reservoirs,” represents the median values for

all lakes and reservoirs. The small inset in (a) shows the data beyond the scale. Vertical and horizontal black dashed lines mark a constant wind speed of 3 m s—! and
typical values of Gy, Cyw = Cgn 1.3-107%, 11-10-2, respectively. Colored lines show the results from previous studies: LK, brown line—Lake Kasumigaura, Japan
(eddy covariance, Wei et al., 2016); LN, red line—Lake Neuchéiel, Switrerland (dissipation method, Simon, 1997); LG, pink line—nearshome site at Lake Geneva,
Switzerland (wind profile method, Graf et al., 1984); RG, light orange color—Reservoir Gorkiy, Russia (wind profile method, Kuznetsova et al., 2016); 00, dark green
color—aopen ocean (eddy covariance, Large & Pond, 1981); 00, light green color—open ocean (eddy covariance, Fairall et al., 3003); CO, dark yellow color—coastal
ooean at limited fetch conditions (eddy covariance, Lin et al., 3002). (d) Mean diel pattern of the percentage of time periods with unstable atmospheric conditions
(stability parameter £ < 0). () Mean dicl pattern of the percentage of time with low wind speed (<3 ms~'). The red and black lines in (d) and () show the mean value
and the shaded ara shows + standard deviation of all data.

it is evident that at low wind speeds {(0-2 m s~!) these transfer coefficients under in-situ conditions were system-
atically higher (up to a factor of 2-3) than their neutral counterparts Cow, G and Gy,

Estimation of Cy and Cg (Equations 2b, 2c and Equations 4b, 4c) involves water surface temperature, for which
the skin temperature is the most appropriate measure. However, these measurements were not available for some
sites. Instead, we used water temperature measured at some depth (often varying between 0 and 0.5 m between
datasets). We compared three types of calculations of Cy using two subsets which use: (a) only skin temperature
(b) only water temperature and (c) the combined lake data set which includes either skin or water temperature
(Figure 37 in Supporting Information 51). Gy estimated with water temperature tends to be slightly lower than
the estimates using skin temperature (the mean percentage difference is approximately 15%). As a result, we
presented Oy and C (Figures 2b and 2c) calculated using all available data, independent of how water surface
temperature was measured. When both the skin and water temperatures were available for one site, the skin
temperature was used.

3.2, Parametrizations of the Drag Coefficient

As described in Section 2.4.4, we estimated drag coefficients accounting for gustiness (Cpng) using gustiness
factors derived from measured scalar-averaged wind speed ((Fwina), and from the parametrization of convective
velocities ((Foaw). To test the applicability of the parametrization, we compared Comg estimated using both
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Fignme 3. Meutral gustiness transfer coefficients (a) Cowg, (b) Cuns and () Cens (calcolated using Foom , see Section 2.4.4) versus U (red line ) estimated for 26, 23
and 23 lakes, respectively. The red shaded area marks the range between the Sth and 95th percentiles. The black line with sy mbols shows estimates of Cry, Gy and
Cgy from Figure 2. The dark yellow line in all plots shows the function Uy = by [1 + B ﬁp{bgbfm}] proposed by Lin et al. (2020) with fitted coefficients (Table 1).
The green and blue lines show transfer coefficients as they are wsed in the COARE 3.0 algorithm for bulk parameterizations. The green line shows the original COARE

parameterization, which combines the effects of thesmooth flow approach (Equation 5) and Charnock relationship (Equation 8). The blue line shows a modified
parameterization, which includescapillary wave roughness (Equation 7 with gy, = 0.8) and Charmnock relationship.

Table 1

approaches during unstable atmospheric conditions for a subset containing 11 lake data sets with all required
data (Figure S8 in Supporting Information 51). The estimated Cong based on (Fooe was slightly higher than the
one based on (7, 5. We obtained a coefficient § = 1.4 (compared to a value of 1.2 suggested by Beljaars (1995))
for the best agreement between both drag coefficients (minimum of the mean absolute value of their difference).
Note, that for this subset of lake data set the gustiness drag coefficient was on a factor of two lower than Con
(Figure 58 in Supporting Information S1).

Using the fitted parameterization, we calculated Cuews, Chir and Cin based on Gone for a larger subset of the
data—26 and 23 lakes (Figure 3). Cong and Ceng decreased approximately by a factor of two at wind speeds less
than 1.5 m 57! in comparison to the standard formulation Oy and Cpy. Cpg Was almost constant with a value of
1.0-10-3 throughout all ranges of wind speed. Gy decreases only slightly (~ 10%) in comparison with Cuy at low
wind speeds. For wind speeds exceeding 3 m 57!, all gustiness transfer coefficients almost coincided with their
standard formulation, only Cpug was slightly smaller: ~1.6-10-3.

We examined the possible mechanisms (Equations 5 and 7, Section 2.4) that could explain the increase of the drag
coefficient at low wind speed and the Charnock relationship (Equation &), which describes its wind speed depend-
ence at high wind speed. We applied the COARE 3.0 algorithm to the same subset of the data (26 and 23 lakes)
and compared the results with our estimates of the gustiness transfer coefficients. It was evident that the smooth
flow approach (together with Charnock relationship) could not explain the increase of Cowng at low wind speeds.
However, replacing this model with the approach which considers capillary
waves (Equation 7 with @we = 0.8) led to reasonable agreement between the
bulk parameterization and Coeg estimated from measured fluxes. In contrast,

Coefficients for the Empirical Function C = b [1 + bz exp(bsUso)] (Liu Cing calculated using this approach overestimated values of the EC-derived

e al., 2020), Describing the Wind Speed Dependence of the Bulk Transfer
Coefficients of Momentum (Cpy ), Heat (Cyy ), and Water Vapor (Cyy)

Curwi. There, the smooth flow was a more appropriate parameterization.

B, b, by When analyzing the standard formulation of the drag coefficient, we found
Coss 17-10-* 1 _yy that the function describing the wind speed dependence of Gy proposed
Com 1.3.10-7 15 08 by Liu et al. (2020) based on EC measurements over terrestrial surfaces
. (Cux = b [1 + bz exp(bsl/1a)|), can also be applied to observations over all
Cen L1107 : ~!  lakes (Figure 3a). In a similar way, we applied this empirically derived func-
Note. The coefficients were obtained from least-square fits of the Functionto  tion to Cyy and Cpy estimates (Figure 57). The fitted coefficients for our
the bin-averaged data shown in Figures 3a—3c. data are provided in Table 1.
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The gustiness approach, together with increasing surface roughness due to
capillary waves allowed to explain the increase of the transfer coefficients
at low wind speeds, suggesting that these formulations of the transfer coef-
ficients can provide most accurate flux parame erizations at lake surfaces.

The mean ratio of Cypg 10 Cepg is 1.3 and has its maximum value of 2 at low
wind speeds (Figure 4). For wind speeds ranging from 2 to 9 m s~! the ratio
remained at relatively constant value of 1.2

33. Dependence of the Bulk Transfer Coefficients on the Lake
Characteristics

We examined the dependencies of the bulk transfer coefficients accounting

ol e 1 for gustiness on lake characteristics, including the maximum and average
01234567 8910111213 water depth, water depth at the measurement site, maximum and average

Wind speed U, [ms™] wind fetch, and water surface area. As the transfer coefficients at high wind

speeds were relatively constant, we first analyzed effects of lake characteris-

Fignme 4. Ratio of Cina to Cena estimated for each individual data set (21 tics on the median values of the transfer coefficients for wind speeds exceed-

water bodies, shown by gray lines). Black line with circles shows the median ing 3m 51 gstimated for each individual water body.
values for all data sets. The horizontal dashed black line shows a ratio of 1:1 L.
and the horizontal dashed red line indicates the overall mean value of the ratio e found that Cong and Cyng decreased significantly (Pearson correla-

(1.3).

tion coefficient r = —0.5, p-value <0.035) with increasing lake surface area

(Figures 5a and 5d). These relationships could be expressed as power law

dependencies (y = x* exp(B In 10), where A and B are the slope and intercept
of the linear regression log,; ¥ = Alog,; x + B) with exponent of —0.06. Most variability in Cowng was found to
be explained by the lake surface area (for log-transformed data the coefficient of determination was R® = 0.3).
The correlation between Cusas, Chs and Ceres and mean or maximum fetch was low (r ~ —0.2, —0.3, Figures 5b,
5e and 5h, Figures 89a, 59d, 59g in Supporting Information 51). A principal component analysis revealed that
lake surface area has a largest predictive power (Figure 510 in Supporting Information S1). We did not find a
significant correlation (r ~ —0.3, p-value >0.05) between Cyre; and surface area, however, a similar trend as for
Ciswg and Chmg could be observed.

Using the principal component analysis, we identified that there was no significant correlation of the transfer
coefficients at high wind speeds with maximum, average or local water depth (Figures 5c, 5f and 3i, Figures 59
and 510 in Supporting Information 51). We used the exponential dependence from Panin et al. (2006) to compare
with our results. However, we did not have sufficient sites with larger depth to confirm the depth dependence
reported in their study.

At low wind speeds (<3 m s™!), the transfer coefficients were strongly wind speed dependent (Figures 2a—2c) and
their relationships with lake characteristics are examined separately for each different wind speed interval. Here
we found that Cpyg significantly increased with increasing water surface area for wind speeds between 0.5 m s~!
and 2 m s7'. At higher wind speeds these correlations become negative, as in the analysis for wind speed >3 m s~!
presented above. As an example, we show the transfer coefficients for a wind speed of 1 m 57! in Figure 511 in
Supporting Information 51. At the same time, we found significant correlation of Cues with measurement height
at low wind speeds, which was not present at high wind speeds (Figure 511d in Supporting Information 51). No
correlation with measurement height was found for Cypg and Gang.-

Additionally, we looked for a possible relationship between the averaged wind speed (estimated over entire time
series for each individual water body) and surface area. We found a significant correlation between them in a
double- logarithmic domain (r =0.5, p-value <0.05, Figure 512 in Supporting Information 51), resulting in increas-
ing mean wind speed with increasing lake size following a power-law dependence Ui = A™ exp(0.5 In 10).

4. Discussion

4.1. Bulk Transfer Coefficients Estimated for Lakes and Reservoirs

We examined the bulk transfer coefficients describing the transport of momentum, heat and water vapor at
the water surface estimated based on EC data collected at 23 lakes and 8 reservoirs of different size, depth,
and location. At first, we used their standard formulations commonly used in literature (Equations 4a-4c). All
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Fignme 5. Meutral transfer coefficients accounting for gustiness (a, b, ©) Cowg; (d, e, f) Gasg; (g, h, 1) Cens versus surface area of the water body, mean fetch length,
and water depth at the measurement site. Pancls show the median values of the transger cocfficients for wind speeds exceeding 3 m s~ for cach individual water body.
The red lines show the linear regressions of log-transformed transfer coefficients. The cormesponding power laws as well as the Pearson cormelation coefficient (r) and
p-value are provided in the upper left comer of each panel. Significant correlation is marked by bold labels. The single red symbol in (a) marks the data from Nam
Theun 2 Reservoir, which was not considered in the linear mgression analysis and in the Pearson cormelation as an obwious outlier. Blue, green and dark yellow lines
show results from previous studies by Woolway et al. (2017), Panin et al. (2006), Harbeck (1962), mspectively.

transfer coefficients tended to increase toward low wind speeds and remained relatively constant at wind speeds
exceeding 3 m s~!. This increase was reported in previous studies for lakes (see, e.g., Wei et al., 2016; Xiao
etal., 2013) and for the land surface (Grachev et al., 201 1; Liu et al., 2020) and has been extensively investigated,
yet remained unexplained up to now. Authors of Grachev et al. (2011) referred to lakes as an “intermediate™
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case between over-sea and over-land locations in terms of turbulent transfer. The lower bound for Cis, Car, Cun
among the water bodies at high wind speeds were within the range reported by previous studies, including for
large lakes (>200 km? (Kuznetsova et al., 2016; Wei et al., 2016), classical open ocean measurements (Fairall
et al., 2003; Large & Pond, 1981) and coastal sites under fetch-limited conditions (Lin et al., 2002). Indeed, we
also considered large lakes (Figure 1b) that were expected to have the smallest drag coefficient as they had the
largest fetch (e g., Lake Erie, Lake Taihu, Lake Balaton). The mean Cpy for winds exceeding 3 m s~! was equal
to 1.8-10-? and this value corresponded to an upper bound for the water surface roughness (0,001 m) reported
by Foken (2008), but was a factor of two higher than the values reported for oceans and large lakes or reservoirs
(Fairall et al., 2003; Large & Pond, 1981).

WValues of Cuw varied considerably depending on the type of measurements used for its estimation. For example,
in Simon (1997), Gy was calculated from the dissipation rate of turbulent kinetic energy measured at the water
side of the air-water interface in the relatively large Lake MNeuchétel (218 km?, Switzerland). Cpy was signifi-
cantly lower than our estimates (factor of ten) and the estimates from lakes or marine measurements (factor of
five). However, these estimates also confirmed the increase of Gy at low wind speeds. Cpy, at high wind speeds
calculated from the wind profile method at the nearshore site in Lake Geneva (Graf et al., 1984) was in close
agreement with our estimates. The strong increase of Cos, Cun, Cin at low wind speeds was similar to the one
observed for a large lake using surface fluxes measured by EC method (Wei et al., 2016), but it was not supported
by measurements in the marine environment.

4.2, Bulk Transfer Coefficients at Low Wind Speed

Low wind speeds are typical conditions for lakes (Woolway et al., 2018), especially for smaller ones (Figure
510 in Supporting Information 51), which are most abundant by number (Downing et al., 2006). The most
pronounced increase in bulk transfer coefficients at low wind speed was observed for Con, which was up to
one order of magnitude higher at low wind speeds compared to its value at high wind speeds. We found less
pronounced increases of Cuw and Cen, yet their values at low wind speed can be larger compared to the constant
values at high wind speed by up to factor of three and two, respectively. Periods with low wind speeds mostly
corresponded to periods with unstable atmospheric conditions or enhanced convective transport, which is the
most prevailing condition at all studied lakes during the ice-free period. It confirms former findings of Read
et al. (2012) and Woolway et al. (2017).

While Wei et al. (2016) suggested that the contribution of gusts (different formulation of the Gy ) was not signifi-
cant in their measurements obtained over a large lake, we found that the strong increase can partially be attributed
to missing consideration of gustiness in the definition of Con. Cormrection involving the gustiness factor (Feom)
could reduce the values of Gy and Ciy by up to a factor of two at wind speeds around 0.5 m s~ Thus, the gust-
iness approach is recommended to be applied in bulk parametrizations of both fluxes in lakes.

It is important to note, that the CBL scaling requires knowledge about the height of the unstable boundary
layer, for which we used a fixed value of 600 m, as in other studies, including the COARE algorithm for
bulk parametrization of air-sea fluxes (Fairall et al., 2003). Over lakes, convective motions can be associated
with lake-land breeze circulation (Crosman & Horel, 2012), which additionally depends on lake size and on
the atmospheric conditions in the surrounding landscape. Nevertheless, we found that the gustiness param-
eterization based on the convective velocity scale ((Fun ) agreed reasonably well with observed gustiness in
wind speed fluctuations ((F,:,9). Best agreement was obtained by using a slightly higher value of the empirical
constant § (Equation 11), for which we estimated a value of 1.4 (compared § = 1.2 used in the COARE algo-
rithm. The close agreement between parameterized and measured guestiness suggests that the parameterization
can improve bulk parametrizations also under more complex CBL dynamics in lakes in comparison to the open
ocean.

Comparison of our measurements with the bulk parametrizations in the commonly used COARE 3.0 algorithm,
which includes the gustiness correction (Fairall et al., 2003), showed a remaining underestimation of the param-
eterized Cusw at low wind speed. Obviously, the remaining increase in the gustiness-corrected drag coefficient
at low wind could not be described by the smooth flow parametrization (Equation 3), which is applied in the
COARE 3.0. Instead, we applied the capillary wave approach for parametrizing the surface roughness at low wind
speed (Equation 7) and found reasonable agreement between observed and parameterized gustiness drag coeffi-
cients. For Cexg the smooth flow model performed better, as it became a nearly constant value after applying the
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gustiness approach. The effect of gustiness was not significant for Cur and similar to Cuess the capillary wave
parametrization performed better than smooth flow approach.

The wind speed dependence of the bulk transfer coefficients in their standard formulation (especially at low
winds), could be well described by an empirical function that was originally proposed for the land surface (Lin
et al.,, 2020). This suggests that this function can be used to describe the transfer coefficients without considera-
tion of gustiness.

Unexpectedly, we found that the gustiness drag coefficient significantly increase with increasing lake surface
areaat wind speeds less than 2 m s~!. This result is counterintuitive, because at low winds we did not expect a
dependence on lake surface area or fetch, as it should only be important for the development of surface waves,
which appears only at wind speeds exceeding 3 m 5™ (Guseva et al., 2021; Simon, 1997). At the same time, we
found a significant positive cormelation between Cppyg and the measurement height, which was also unexpected.
This finding could be the result of measurement limitations and require a separate detailed investigation.

4.3. Bulk Transfer Coefficients at High Wind Speed

The estimated Cpy and Cpyg agreed closely at high wind speeds, thus, can be considered identically. In compar-
ison to the results from the COARE 3.0 algorithm, Cye; at wind speeds larger than 3 m s~! was higher than
predicted by Charnock relationship (Equation 8). This result was expected as Charnock relationship is based on
the assumption that the water surface roughness is controlled by fully developed surface gravity waves. When
comparing with the results from the modified COARE 3.0 algorithm (capillary wave instead of smooth flow
approach), we found that the consideration of Charnock relationship had a weak influence only, so that it could
probably be omitted without large changes in bulk parameterizations.

We found a significant correlation between Cppg, Cypag and lake surface area. For large lakes, the transfer coef-
ficients at high wind speed tended to be lower. At these higher wind speeds, the surface gravity waves could
potentially reach the fully developed state in large water bodies. For Cing, the correlation with lake surface area
was not significant, but a similar trend could be observed. The values of Cgpyg in our analysis were approxi-
mately a factor of two lower than in previous studies (Brutsaert & Yeh, 1970; Harbeck, 1962). Our results could
not confirm a bilinear decrease of Coxg with increasing lake size with a weaker dependence for large lakes, as
suggested by Woolway et al. (2017) (Figure 5a). This can potentially be attributed to the parameterization of
the transfer coefficients used in Woolway et al. (2017) in lack of flux measurements. In contrast to the results
reported in (Panin et al., 2006), we did not find evidence for the existence of an influence of water depth on the
bulk transfer coefficients.

4.4. Study Limitations

The estimated bulk transfer coefficients show large scatter, even after filtering the data. The scatter is particularly
high at light winds, that is, in the first three to four wind speed intervals (0.5-2 m 571 Tt could be associated with
limitations of the EC measurements, namely, the validity of the underlying assumptions, including the homo-
geneity and stationarity of the flow, as well as by increasing random errors. These effects may not have been
removed completely by data filtering. Moreover, our estimates of Cosg differ from former results obtained using
different types of measurements, such as water-side energy dissipation rates (Figures 3a, e g., Simon, 1997).
Thus, the combination of water- and air side measurements could be beneficial for further investigation of the
bulk transfer coefficients.

The parameterization of gustiness used in the COARE 3.0 algorithm assumes the CBL height as a constant value
of 600 m, however, this model has been used mostly for open ocean conditions, not for lakes. Considering the fact,
that the thermal internal boundary layer can develop above lakes due to temperature difference between land and
water (Glazunov & Stepanenko, 20115), the exact layer structure of the atmosphere (corresponding to the cases of
the high drag coefficients—Ilow wind speed and convection) should be studied.

In our analysis we considered 30-min intervals for averaging, however, the results will likely depend on it. For
example, selection of longer time interval leads to larger gustiness velocity. But since the 30-min time interval
is the standard averaging interval for the EC data processing, we did not have an opportunity to test the effect of
averaging time scale.
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Hwang (2004) suggested that the standard height of 100 m at which the transfer coefficients are reported is inap-
propriate for analyzing Ciw and its dependence on surface roughness under wave conditions. They argue that the
only relevant parameter that could serve as a reference height is the wavelength that describes the decay rate of the
waves with the distance from the water surface. The adjustment of the transfer coefficients to 10 m height may not
be very relevant for lakes and reservoirs and the flux measurements at two different heights should be considered
in future measurements. These measurements would additionally provide confirmation for the existence of a
constant flux layer, which is another important assumption underlying EC measurements.

4.5. Broader Implications

Bulk transfer coefficients are usually applied in numerical models for the atmospheric boundary layer, as well
as in hydrodynamic models of lakes and reservoirs. Currently, the global modeling studies focusing on the lake
mixing and phytoplankton blooms for climate change predictions use constant values for Gy (Grant et al., 2021;
Jéhnk et al., 2008; Read et al., 2014; Woolway & Merchant, 2019), or consider Cpy as a tuning parameter of the
maodels (Stepanenko et al., 2014). Inadequate values of Cux result in biased estimates of the current velocities
in lake models (Chen et al., 2020). The increase of the transfer coefficients at low wind speeds observed in our
analysis can therefore lead to significant errors, as these conditions are the most prevailing conditions for lakes.
We found that instead of the standard formulation of the transfer coefficients, their gustiness counterparts Comg.
Cyrg,» @and Crpg can improve flux parameterizations in lake models.

In the absence of data for the gustiness approach, the empirical parameterizations of the wind-speed dependence
of the bulk transfer coefficients provided in Table | can potentially be applied in modeling lake-atmosphere inter-
actions. The observed dependence on the lake surface area is more complicated to implement, as we observed
contrary dependencies at low and high wind speeds.

While the Stanton and Dalton numbers are commonly assumed to be equal, we found that Cypyg was on average
by a factor of 1.3 higher than Gy (averaged over all wind speeds and all water bodies under study ). The finding
of Cung being higher than Cyung confirmed the results reported by, for example, (Dias & Vissotto, 2017; Wei
et al., 2016). The mean value of Cypy; for high wind speeds (1.0-107%) was found to be the same as in (Kantha &
Clayson, 2000), but Gyw was larger (1.4-1077) as in (Harbeck, 1962; Hicks, 1972). The fact that Cyy > Crx may
have significant implications, because it results in biased estimates of lake evaporation based on the energy-budget
(Bowen ratio method). In particular, it would result in larger (smaller) sensible heat (latent heat) fluxes than those
predicted under that assumption. Both the physical mechanisms underlying their difference and the extent of the
differences in the predicted sensible and latent heat fluxes require further investigation.

In state-of-the-art weather and earth system models, lakes are included as separate tiles in the model cells, where
the surface fluxes over the tiles are computed via Monin-Obukhov similarity scaling. The models provide constant
meteorological variables for each grid cell, which is a so-called blending height concept (von Salzen et al., 1996).
To use the bulk transfer coefficients derived in this study to compute fluxes, specific values of wind, temperature
and humidity over lakes should be used, which can be obtained in generalization of the tile approach, involving
the parameterization of internal boundary layers over contrasting surfaces (Arola, 1999; de Vrese et al., 2016;
Molod et al., 2003). MacKay (2019) presents a specific example of such an approach developed for lakes and

wind speed only.

5. Condusions

We were the first to analyze the bulk transfer coefficients of momentum, sensible and latent heat from directly
measured surface fluxes above various lakes and reservoirs. We observed a pronounced increase of the trans-
fer coefficients at low wind speeds (<3 m s~!) and relatively constant values at high wind speeds (>3 m s7').
The strong increase in the transfer coefficients at low wind speed was found to be associated with the exist-
ence of gusts. It is recommended to use the gustiness approach in calculation of the transfer coefficients. The
reduced, yet still increasing values of the gustiness drag coefficient and Stanton number at low wind speeds can
be explained by capillary wave roughness. The gustiness Dalton number, however, remains constant at all wind
speeds and is better described by the smooth flow roughness. The Stanton number was systematically higher than
the Dalton number by a factor of 1.3, which has implications for the Bowen ratio method. At high wind speed,
the drag coefficient and the Stanton number decreased with increasing surface area of the water body and with
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increasing fetch length, whereas the opposite was found at low wind speed. No significant correlation was found
between the transfer coefficients and lake depth. In a simplified approach, the bulk transfer coefficients can be
calculated without consideration of gustiness by using empirical function that has been proposed for the land
surface and that we fitted to data measured over lake and reservoir surfaces. The COARE algorithm adequately
describes the gustiness drag coefficient and Stanton number if capillary wave roughness is considered instead of
that for smooth flow. We underline the need for simultaneous measurements of waterside and airside turbulent
fluxes in future investigations, as well as experimental confirmation of the validity of the assumptions underlying
eddy-covariance flux measurements at low wind speed.
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