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Abstract

Biofilms pose significant problems for engineers in diverse fields, such as marine
science, bioenergy, and biomedicine, where effective biofilm control is a long-term goal.
The adhesion and surface mechanics of biofilms play crucial roles in generating and re-
moving biofilm. Designing customized nano-surfaces with different surface topologies
can alter the adhesive properties to remove biofilms more easily and greatly improve
long-term biofilm control. To rapidly design such topologies, we employ individual-
based modeling and Bayesian optimization to automate the design process and gener-
ate different active surfaces for effective biofilm removal. Our framework successfully
generated optimized functional nano-surfaces for improved biofilm removal through ap-
plied shear and vibration. Densely distributed short pillar topography is the optimal
geometry to prevent biofilm formation. Under fluidic shearing, the optimal topography
is to sparsely distribute tall, slim, pillar-like structures. When subjected to either ver-
tical or lateral vibrations, thick trapezoidal cones are found to be optimal. Optimizing
the vibrational loading indicates a small vibration magnitude with relatively low fre-

quencies is more efficient in removing biofilm. Our results provide insights into various
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engineering fields that require surface-mediated biofilm control. Our framework can

also be applied to more general materials design and optimization.

Keywords: Biomaterials; Bayesian optimization; machine learning; biofilms; microstruc-

ture; individual-based modeling

1 Introduction

Biofilms and biofouling are significant threats to food and health systems as reported by the
U.S. Environmental Protection Agency.! Moreover, the formation and attachment of biofilms
pose serious problems for marine engineering?? and biomedical treatments,*® where long-
term biofilm control is desired. For example, biofilms adhering to medical implant devices
lead to infections.® Biofilms also potentially lead to medical treatment failures like ventilator-
associated pneumonia, eye infection, and urinary tract infections.” Furthermore, the World
Health Organization recently reported that antimicrobial resistance is becoming a grave
issue that requires immediate action,® indicating that the overuse of chemical treatments
may not be an ideal roadmap for long-term biofilm control. Hence, environmentally benign
and sustainable biofilm control strategies are urgently needed to prevent treatment failure
caused by biofilm resistance. From the perspective of biomechanics, the adhesion between
bacteria cells and attached surfaces plays a critical role in the formation and maturation of
the biofilms.!° Therefore, a promising method to attenuate adhesion is to tune the surface
properties and engineer antifouling materials that resist bacterial colonization. 2
Engineering surface properties for biofilm control has been of interest for decades. How-
ever, successful methods like tar paints and copper panel sidings tend to leach biocides, '
which leads us to the question: are there environmentally friendly approaches to tackle such
biofilm issues? Two approaches were proposed to diminish biofilm’s adhesive properties:
(1) tailoring chemical properties at the molecular level, with a specific focus on polymeric

design,' and (2) altering the topographies of the active surfaces to tune the nano- and



micro-mechanical properties.!’ From the chemical perspective, Zhang et al.!® tailored the
polar functionalities of PDMS to design polymeric antifouling surfaces. Xu et al.'® used
highly hydrophilic sulfoxide polymers to produce antifouling polymer brushes. Besides elas-
tomers and polymer brushes, block copolymers, hydrogels, and other materials can also be
utilized for antibiofilm designs.'* Nonetheless, tailoring polymeric properties requires pre-
cise chemical operations at the molecular level which are expensive and not scalable for bulk
manufacturing at the current stage. In contrast, due to advances in additive manufacturing,
altering surface nanotopographies are much cheaper, faster, and industrially scalable. Fried-
lander et al.!” optimized the nanotopography by introducing submicrometer crevices. Hizal
et al.'® showed that active surfaces reduce the adhesion of biofilms on such surfaces for ease
of removal. The reduced contact area with the active surface topology with the biofilms leads
to such reduced adhesion. Both Bhattacharjee et al.'® and Lohmann et al.?° showed that by
altering the topological parameters such as radii, height, and distances between the cones,
the active surfaces exhibit different effects on biofilm growth. For instance, Bhattacharjee et
al.’s work indicates that more densely distributed pillars with smaller radii can kill bacteria
more efficiently. These studies consequently pose an important question: can these active
surfaces be designed systematically to resist or promote biofilm formation under different
physical environments?

Designing active surfaces using many cones of tunable radii and heights as the meth-

ods proposed by Bhattacharjee et al.'® and others,!?

involves an infinite design space
that is extremely challenging to explore comprehensively using either computational simu-
lations or physical experiments. Due to advances in machine learning algorithms, heuristic
optimization-based materials design methods may be a potential solution to tackle this tough
question by exploiting sparse data points.?1?? Specifically, due to the heuristic characteristics
and capacity for handling black-box functions, Bayesian optimization (BO) has been widely

used in materials design.?® Here, we employ BO as a toolkit to sample the large design space

for optimizing the nanotopography.



Another common barrier encountered in studies of biofilms is lengthy experimental pro-
cedures that can take weeks to culture mature biofilm.2* To bypass this barrier, digital twins,
specifically multiscale computational modeling, may help to speed up design optimizations.
Various methods have been proposed for modeling biofilm, spanning the molecular to the
continuum scale. In particular, individual-based (a.k.a agent-based) modeling (IBM) is a
rapidly maturing technique for simulating biofilm’s multiscale and multiphysics characteris-
tics. 2526

In this study, we aim to provide a fully digital, automated machine learning workflow for
designing antimicrobial active surfaces for biofilm control. The workflow is based on cou-
pled BO and the IBM platform from Newcastle University Frontier in Engineering Biology
(NUFEB)?" implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).?® We explore two typical scenarios of biofilm growth for nanotopology optimiza-
tion: (1) biofilm growth under static conditions for designing active surfaces that resist
biofilm growth, (2) biofilm subjected to constant shear flow for designing active surfaces
under fluidic flow, such as the environments typically encountered in marine applications*
and wastewater treatments.?® Inspired by recent work demonstrating that vibration may be
a viable approach for removing biofilm,3? we propose another two scenarios of (3) vertical
vibration and (4) lateral vibration of the active surface for biofilm detachment.

The paper is arranged as follows (Figure 1): In Section 2 we introduce the computational
methods of individual-based models and simulations (Sec. 2.1) and the method of BO (Sec.
2.2) using Gaussian process regression and an acquisition function in Sections 2.2.1 and
2.2.2, respectively. We then propose the basic simulation setup implemented in LAMMPS in
Section 2.3. The general optimization workflow is explained in Section 2.4. In Section 3 we
detail how we construct meta-models from the optimization (Sec. 3.1), extract the optimized
geometries (Sec. 3.2), and subsequent biomechanical analyses (Sec. 3.3). Eventually, some
interesting conclusions are drawn and potential research directions are pointed in Section 4,

including high thin-pillar shaped nanosurfaces are more efficient in removing biofilms under
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Figure 1: A representative schematic of this study. Biofilm and related issues plague many
aspects of engineering but tuning the adhesive properties of surfaces by changing the surface
topology can be a potential solution. To optimize these topologies, we use a machine-learned
materials design workflow driven by individual-based simulations and BO. We construct a
surrogate model via Gaussian process regression (GPR) and iterative data search via the
acquisition function (A) to eventually propose the optimized active surfaces.



shear flow, yet short thick cones are found to be more efficient for vibrational biofilm removal.

2 Methodology

2.1 Individual-based Simulations

In individual-based models based on the Newcastle University Frontiers in Engineering Bi-
ology (NUFEB) framework,?” each bacteria cell is modeled as a spherical particle. Biofilms
are formed by cell division and extrusion of extracellular polymeric substances (EPS). The

microbe growth and decay are described by the differential equation:

dmi
dt

= &my (1)

where m; is the biomass of the i*" bacteria cells and &; is the growth rate. Here, we employ the
Monod-based method?3! to model microbial growth, in which the growth rate is determined
by the Monod kinetic equation driven by the local concentration of nutrients. The substrate
is modelled as fully rigid particles.

Since we are essentially interested in the adhesive property, we must model the mechanical
interactions of the particles. The particles are mechanically relaxed using the individual-

based approach, solved via Newton’s equation
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where m; is the mass of a particle, and v; is the velocity. The contact force F.; is a pair-wise

force between particles to prevent overlapping based on Hooke’s law

N
Foi =Y (Knong; —mimvij) (3)
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N

where N; is the total number of neighboring particles of 7, Ky is the elastic constant for



normal contact, dn;; is the overlap distance between the center of particle ¢ and its neighbour
particle 7. 7y is the viscoelastic damping constant for normal contact, and v; ; is the relative
velocity of the two particles. The EPS adhesive force F, ; is a pair-wise interaction modelled

as a van der Waals force
N;

HaT@j
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where H, is the Hamaker coefficient, r;; is the effective outer-radius of the i"* and ;"
particles. App; is the minimum separation distance of the two particles, and n; ; is the

unit vector from particle 7 to j. The drag force F; due to fluid-particle interactions in fluid

flow is determined from

Vi
Fo; = —"-Bi(u,; — Uy,) (5)

€ri€si
where €, ; is the particle volume fraction, €;; = 1 — €, is the fluid volume fraction, V,,; and
u,,; are volume and velocity of the i particle, respectively. Uy is the fluid velocity imposed
on particle ¢ and f; is the drag correction coefficient.
Mechanical equilibrium is achieved when the average pressure of the microbial community

reaches a plateau. The average pressure of the system is

1 N N N
P = W (Zzl m;v; - V; + Z Z ri,j . Fi,j) (6)
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where V' is the sum of the volumes of particles. The first term in the bracket is the contri-
bution from the kinetic energy of each particle. The second term is the interaction energy,
where r; ; and F;; are the distance and force between two interacting particles ¢ and j,
respectively.

In the simulations, shear flow is applied for biofilm removal. The hydrodynamics is

incorporated in NUFEB via the two-way coupled CFD-DEM approach.?”32 The governing



equations for the fluid phase are33
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where €;, Uy and F; are the solid volume fraction, velocity, and fluid-particle interaction
forces of the bacteria, respectively.

By coupling the bacteria growth dynamics with contact, adhesive, and drag forces, me-
chanical relaxation to equilibrium, and fluid dynamics, we are able to simulate the biofilm
behavior on different surface topologies. Based on this IBM, the simulation details are further

explained in Section 2.3.

2.2 Bayesian Optimization

The overall goal of the optimization process is to minimize or maximize an objective function,
which in our case is the total bacteria cells after fluidic shear is applied to remove the biofilm.
Using y = f(x,p) to denote a multivariate function relation, variables x and parameters p
relates to the output y through the function(al) form of f, where x = [Rhottom, Rtop; ---] are
the overall design parameters in the numerical simulation. The optimization process can be
simplified as

miny = Npc = f(x,p),

L
SU-bjeCt to X1B S X S XUB, 0 S Rtop S Rbottom S = (9>
n

X = [Rbottorm Rtop7 h7 n, (Ma T)] , P= [Ck, 57 La T? B]

Here, y = Npc is the residual bacteria cell numbers (biomass) after the simulation, as
our goal is to design surfaces that optimally remove the biofilm under fluid flow and hence

reduce bacteria cell numbers. The design variables x are subjected to a range of lower and



upper bounds given in Section 2.3. The design variables X = [Rpottom, Rtops 1t 7, (M, T)] are
the lower and upper radius of the cones, the height of the cones, and the number of cones on
each side of the simulation box; and (M, T') are the magnitude and time per vibration cycle,
respectively. The magnitude and time are demarcated with brackets as they are not design
variables in the growth and shear optimizations. The lower radius of each cone is larger than
the upper radius, Rpottom = [tiop, but both are non-zero and smaller than the maximum
length per cone as a geometric constraint. The simulation parameters p = [a, &, L, T, B] are
the shear rate, growth rate, geometric parameters, simulation iterations, and bacteria related
coefficients, respectively. L = [L,, L,, L., Ls, L, ...] is the set of all parameters needed to set
up the geometry of the active surfaces, and 7 and B control bacterial growth and removal at
specific simulation steps with user-specified biological coefficients. Further details are given
in Section 2.3.

BO consists of surrogate models built with Gaussian process regression for evaluating the
space using Bayes statistics and an acquisition function. The acquisition function is used

to construct a utility function from the model posterior that enables the next point to be

evaluated.®! The two components are introduced and explained in Sections 2.2.1 and 2.2.2.

2.2.1 Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian statistical approach to approximate and
model function(s). Considering our optimization problem, if the function is denoted as
y = f(x,p), where f is evaluated at a collection of different sets of points: x1, Xa, ..., X3 € R%,
we can obtain the vector [f(x1),..., f(Xg)] to construct a surrogate model for the design
parameters with the correlated objectives. The vector is randomly drawn from a prior
probability distribution, where GPR takes this prior distribution to be a multivariate normal
with a particular mean vector and covariance matrix. Here, the mean vector and covariance
matrix are constructed by evaluating the mean function g and the covariance function >

at each pair of points z;, x;. The resulting prior distribution on the vector [f(z1), ..., f(z)]



is represented in the form of a normal distribution to construct the surrogate model®>

f(x1k) ~ N (po(X1:x), Zo(Xaks X1:x))) (10)

where N () denotes the normal distribution. The collection of input points is represented in
compact notation: 1 : k represents the range of 1,2, ..., k. The surrogate model f(x)on 1 : k
is represented as a probability distribution given in Equation (10). To update the model
with new observations, such as after inferring the value of f(x) at a new point x, we let
k =141 and x;, = x. The conditional distribution of f(x) given observations x;,; using

Bayes’ rule is

FEOIf (x12) ~ N (u(x), 07 (x))
pu(x) = So(x, X1.) S0 (X1, X14) ™" (f (1) — po(X12) + po(x)) (11)

012 = Yo(x,x) — Xo(x, Xl:l)ZO(chlaXl:l)_lzo(xlclax)

where the posterior mean p;(x) is a weighted average between the prior pg(x) and the
estimation from f(xy,), where the weight applied depends on the kernel used.

Here, we use the Gaussian kernel, hence the prior covariance is®%

So(xi,x;) = 0°R(x;,%;),

d

R(x;,x;) = exp (% 3 <Xmg—2xm>) (12)

m=1 m

O = (01,02, ...,04)

where o2 is the overall variance parameter and 6,, is the correlation length scale parameter
in dimension m of the d* dimension of x, which are all hyperparameters of GPR. R(x;,x;)
is the spatial correlation function. Our goal is to estimate the parameters o and 6, that

create the surrogate model given the training data [y, = Npow), Xi] at iteration k.
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2.2.2 Acquisition Function

Given the training data [yx, xx], Equation (10) gives us the prior distribution y; ~ N (p0, Xo)
as the surrogate. This prior and the given dataset induce a posterior: the acquisition func-
tion, denoted as A : X — R, determines the point in X to be evaluated through the proxy
optimization Xpesy = arg max, A(x). The acquisition function depends on the previous ob-
servations, which can be represented as A = A(x; (x;,y;),0). Taking our previous notation,

the new observation is probed through the acquisition3”

Xp = X1 = argmax. A (x; (X, ¥1), Om) (13)
T€ 5
where the input space contains the evaluation of design variables at n points: A} := (x1, X2, ..., X;).
In our case, X is acquired through running n numbers of NUFEB simulations. We pick the
GP Upper Confidence Bound (GP-UCB)?® as the acquisition function, exploiting the lower
confidence bounds (in the case of minimizing the objective function) to construct the acqui-

sition and minimize the regret. GP-UCB takes the form3*

A (X5 (%3, 01), 0m) =t (x5 (X0, 1), Om) + 50 (%5 (X3, 01), Om) (14)

where k is a tunable parameter balancing exploitation and exploration when constructing the
surrogate model. We take k = 2.5 as a default value in the model. Combining GPR and the
acquisition function, the surrogate model can be constructed to approximate the minimum
value in the design space. In our case, such BO methods are applied to obtain active surface
typologies with minimal residual bacterial cells. The design space is a 4-dimensional space
for topology optimization and a 6-dimensional space for combined vibration optimization.
We randomly explore the design space for 10 steps for the initial surrogate modeling and
then iterate for 90 steps based on Bayesian statistics to construct the full surrogate with 100

data points.
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2.3 Simulation Setup

Our model (Figure 2) uses a cubic simulation box of lengths 4 x 107° m with a substrate
of height Ls = 4 x 107% m. Above the substrate, we place cones with height h as a design
variable, which ranges between [2 x 107 m, 4 x 107% m]. The initial bacteria cells are placed
above these cones for simulating biofilm growth, with a height of Ly = 2 x 107® m. n
is the total number of cones per cubic side. Since the simulation box is cubic, the total
number of cones should be n x n. n is an integer constrained in the range [5,10]. For each
n, the maximum value of the cone radii is L,/n. The tunable range of the two radii are
set as [0.1, 0.9] x %, corresponding to the “geometric constraint” mentioned in Section 2.4
herein. Since the geometric constraint, Rpottom > Riop 18 assumed, the radii will be swapped
if a larger R is proposed by the optimization algorithm. We also apply vibrations to the
substrate with magnitudes in the range [4 x 1077 m, 2 x 107% m] and time periods in the
range [107° s, 1 .

Three different types of particles are involved in the simulation (Figure 2): the het-
erotrophs (HET), which can be interpreted as the bacteria cells; the extracellular polymeric
substances (EPS); and the substrate, modeled as rigid particles. Note that for different
loading, the simulation setup is mildly varied to tune the simulation. For instance, there are
no vibration magnitude and time involved for pure growth and shear flow removal. Further
details are to be explained in the following points.

To find the ideal surface topologies for effective biofilm removal, we optimize (1) the
geometry of the nanosurface subjected to shear flow, or (2) both the geometric and vibration

parameters. These two scenarios are modelled as follows:

¢ Biofilm growth and applied shear flow. The substrate is rigidly fixed and bacteria
cells are introduced right above the cones. Each side of the simulation box has fixed
boundary conditions (FBC) such that the bacteria cells are removed if they exit the

simulation box. To apply shear flow, from the equation of velocity of applied forces?’

12
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Figure 2: The numerical setup of the simulation box, implemented in LAMMPS. A cubic
simulation box with sizes of L, = L, = L, = 4 x 107 m. The geometry of the surface
is controlled by four design parameters, Ryottom; Riop, £, and n, denoting the bottom and
upper radii, the height of the cones, and the number of cones per box length, respectively.

we can deduce the equation controlling the shear rate as

a=4dvr dt dFy;
F;,=6 Vi @ > = fi
7 THE “ 6rpdr; dt

(15)

1'in our approach

where p is the dynamic viscosity, taken as p = 0.001 kg - m™! - s~
to model the flow of water,* v, is the local velocity of the particle, Fy; is the shear
force, and « is the applied shear rate, which is the time derivative of velocity. We
assign Egpr = 0.00028 s as the growth rate for heterotrophs?” and a = 0.3 m - s72
as the shear rate. From Equation (1) one can interpret ¢ as the change of bacterial
mass, taking the form m; = p;zmrf for the i particle. The density of EPS is ppps =
30 kg - m~3.2740 The density for the substrate is psupstrate = 4410 kg - m~3, using Ti-
6Al-4V* as our reference material considering the potential applications in additive
manufacturing. The density for HET is pypr = 150 kg - m™ based on previous
experiments.*? 50 bacteria cells are randomly distributed above the cones initially and
their growth is simulated for 200,000 s in real time, governed by Equations (1-6).
After the growth, shear flow is applied in the box for another 50,000 s as governed by

Equations (15).
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e Vibration induced biofilm detachment. To allow for vertical vibrations of the
substrate, we locate the substrate at an initial height Lz = M while maintaining FBC.
For lateral vibrations, periodic boundary conditions (PBC) are set in the Y-direction.
According to the implementation in LAMMPS,?® the displacement of any bacteria cells
X takes the form

X(#) = Xo + Msin (2%5) (16)

where X = [X,Y, Z] is the position vectors of each particle, X is the initial position
vectors, with vibration magnitude M and time T following Equation (9). ¢ is the
elapsed time. For both vertical and lateral vibrations, 500 bacteria cells are randomly
distributed above the cones and allowed to grow for 20,000 s in real-time. Vibrations

are then applied for another 10,000 s in real-time.

2.4 Automated Optimization Workflow

Coupling the optimization process given in Equations 10-14, and the simulation processes
given in Equations 1-8 via Equation (9), we develop a general automated BO workflow en-
abled by LAMMPS-Python interface®® (Figure 3). The full optimization begins with generated
design parameters implemented in Python. The design parameters are then translated into
particle-represented geometries through NUFEB?7 implemented in LAMMPS. NUFEB simula-
tions are then performed with the initial bacteria distribution, growth, and physical removal
methods as described in Section 2.3. After performing the simulations, the residual bacteria
cells for both HET and EPS are counted and passed to the optimization algorithm.
Initially, 10 sets of data representing the geometry are randomly generated for building
the raw surrogate model. The 11*" to 100" geometries are then probed through the lower
bound acquisition function using the same workflow for building the eventual surrogate,
which we term as the metamodel. With this final metamodel, we can extract the optimized

geometry for further simulations to verify and biomechanically rationalize why such surfaces

14
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Figure 3: The schematic for the BO workflow for designing antimicrobial surfaces based on
LAMMPS and Python. The optimization begins with randomly initiated geometries represented
via the design parameters. The bacteria cells are initiated on top of the nanosurface and
grown and removed via different physical loading. The remaining bacteria cells are the
objective for the optimization. The optimized geometries are then verified through numerical
simulations.
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are optimal for antimicrobial materials design.

3 Results and Discussion

3.1 Metamodels for Optimization
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Figure 4: The design parametric matrices and the corresponding values of the objective
function during the optimization process. Note that for better visualization the parametric
matrices are normalized. Four subfigures indicate the optimization of the simulations based
on four different physical methods to remove biofilm. The objective with lower biomass
is marked in blue triangle dots for geometry extraction. The bottom figures stand for the
optimized structures

Figure 4 shows metamodels generated from the optimization based on the four scenarios.
The upper eight subfigures show four combinations of the evolution of design objectives with
respect to the iterations (dotted lines on top) and their corresponding design parameters

(colored matrices on the bottom). The design parameter matrices are normalized for better
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visualizations. The horizontal axis for both the subfigures are iterations of BO. The vertical
axis for the design parameter matrices is the symbol for different design variables we defined
in Section 2.3. From Figure 4, we observe that the lower objective values are distributed
more uniformly throughout the iterations for the growth and shear flow cases, whereas for
the vibration cases, the lower objectives seem to only exist under certain “connected” steps
where the corresponding design parameters exhibit similar values. The lower value objectives
marked in blue in Figure 4 are extracted as these corresponding geometries seem to resist

biofilm formation very well.

3.2 Geometry Representation

Based on the mean values of the radii and heights corresponding to the most frequent cone
numbers, the extracted optimized geometries for the four different scenarios are shown in
subfigures E1, E2, E3, E4, respectively and the corresponding parameters are tabulated
in Table 1 in SI units. The four optimized geometries display exceedingly different char-
acteristics: to purely minimize biofilm formation, the optimal geometry is 10 x 10 cones
with relatively small radii and low height (subfigure E1). To efficiently remove biofilm un-
der shear flow, the optimal geometry is taller cones with small radii and a larger distance
between cones with cone numbers of 7 x 7 (subfigure E2). For both cases of applied ver-
tical and lateral vibration (subfigure E3 and E4), the optimized geometries have similar
characteristics: total cones of 6 x 6 with short and thick cones.

Table 1: The final optimized geometric and loading design parameters corresponding to
Equation (9).

Pure Growth Shear Flow Vertical Vibration Lateral Vibration
Rbottom | 392 x 107 [m] 4.05 x 107 [m]  2.96 x 10° [m]  2.94 x 10~° [m]
Rip |236x1077 [m] 334x1077 [m] 225x107% [m]  2.92 x 10~% [m]
ho 1202x107% [m] 323x107%[m] 219x 1076 [m]  2.12 x 10~ [m]

n 10 7 6 6
M N/A N/A 47754 x 1077 [m]  4.9692 x 1077 [m]
T N/A N/A 0.1204 [s] 0.1592 [s]
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Observing both subfigures E1 and E2, there are common characteristics of having small
radii. As proposed by Hizal et al.,'® reduced adhesion is crucial for biofilm removal. Hence,
we propose that geometric features such as thin “pillar-like” shapes reduce the contact
area between the biofilm and the substrate, as the reduced adhesion seems to both resist
biofilm growth and promote shear flow removal. For both vibration scenarios, the resultant
geometries are thick and short cylinders of large radii with fewer cones. A larger contact
area is needed to transmit the vibration energy for biofilm removal. To elucidate these
mechanisms in detail, we perform further IBM simulations and analyses of these optimal

surface geometries.

3.3 Optimization Verification and the Biomechanics

To analyze the mechanisms of action for the optimized geometries, numerical simulations
are compared for the four scenarios. The optimized active surfaces are compared with flat
surfaces for just the biofilm growth and the shear flow removal shown in Figure 5.

Figure 5 shows that the optimized active surface for purely resisting biofilm growth does
not exhibit evident improvement compared with a perfectly flat surface, as from both the plot
and visualization the optimized one does not greatly reduce the total bacteria cells. We can
conclude that altering the surface topologies alone is insufficient for reducing the growth and
formation of biofilm, especially since no other chemical effects are present, such as surface
charges. However, when subjected to shear flow, there is obvious biofilm reduction on the
optimized surface compared with the flat one. We can hence contend that the optimization
works well on surfaces designed for shear flow-induced biofilm removal as a secondary mode
of action is needed to exploit the reduced adhesion of the biofilm.

The biofilm removal efficiency can be quantified by calculating the ratio of removed

bacteria cells to the original bacteria cells before the biofilm growth:

_ Npe(ta) — Npe(tr)
Naelta)
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Figure 5: The performance of the optimized geometries is compared with a perfectly flat
surface for resisting biofilm growth and shear flow removal. The top row sub-figures are
simulation snapshots of the biofilm growth and removal corresponding to real-time. The
bottom row is the plot of the changes in the bacteria numbers with respect to time during
the simulation, thus highlighting the difference in biofilm removal efficiencies between the
flat and optimized surfaces. The inset figure in the left-bottom sub-figure is the double
logarithmic plot during the growing process, showing that the optimized active surface does
not strongly alter the biofilm growing process in the simulations. The inset figure in the right-
bottom sub-figure is the double logarithmic plot during the “shear-off” process, showing that
the optimized surface evidently improves the biofilm shearing removal.
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where Npc(tr) is the bacteria cell number at the end of the simulation and Npc(tg) is the
bacteria cell number right after the end of the initial growth period of the biofilm. For the
case of pure growth, we found that the optimized surface reduces bacteria by 6.82% compared
to the flat surface. Under shear flow, the biofilm removal efficiencies for the optimized and
flat surfaces are 99.77% and 88.5%, respectively, suggesting an improvement of 11.27% on

biofilm removal efficiency.

— Active Surface

=== Flat Surface

Bacteria Growth Dynamics

Initial Distribution

Active Surface Flat Surface Bacteria Numbers [#}

Figure 6: Schematic illustration for visualization of bacteria count with regards to height
for visualizing the adhesion effects. The right diagram illustrates how the bacteria number
distributes along the Z axis, where the blue and red lines stand for the flat and active surfaces,
respectively. Note that the dashed red line denotes a “cutoff” to indicate that the above
area does not contain much bacteria, whereas the non-smooth bacteria number decrease is
caused by the relatively low fidelity sampling.

Figure 6 shows how the bacteria number distribution along the 7 axis to illustrate our
proposed explanation of reduced adhesion of active surfaces leads to more efficient biofilm
removals. In the right sub-figure, It can be observed that for the active surface, the biofilm
clustered at a much higher location above Z = 10um (blue) compared with the flat surface
below Z = 10um (red). Moving closer to the substrate surface (Z = 5um), the bacteria de-
creases drastically for the active surface yet compared to the flat surface. This phenomenon
verifies and visualizes our proposition that the active surface topology can reduce the adhe-

sion between the biofilms and their attaching surfaces.
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Figure 7: The numerical verification compares the optimized geometry with the optimized
frequency properties and the benchmark coefficients, with the flat surface for vibrational
biofilm removal. The upper figures show the snapshots of the simulation for removing biofilm
using different vibration loadings, comparing the optimized geometry and loadings with
alternating the geometry (flat surface) and vibration properties.
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Since both the geometries and vibration properties are optimized under different vibration-
induced biofilm removal, the optimized scenarios are compared with two benchmark numeri-
cal experiments: (1) fixing the optimized vibration loading and replacing the geometry with
a flat surface; (2) fixing the optimized active surface and alter the vibration loading. The
comparison numerical simulations are shown in Figure 7, where “Flat” indicates we hold
the vibration loading and alter the geometry to the flat surface and “Vibration” indicate we
hold the geometry yet alter the vibration loading.

When subjected to vibration, Figure 7 verifies our hypothesis that a flat surface will
exhibit better biofilm removal effects as a larger contact area increases the transmission of
vibrational energy from the substrate to the biofilm. However, the optimized vibration load-
ing in Table 1 seems to be counter-intuitive: one may expect a robust vibration, i.e., larger
magnitude and higher frequency, to be more efficient in removing biofilm. Yet, the optimal
conditions call for a smaller magnitude with larger time periods than the lower bound of
107 seconds. We thence apply the smallest time period with the largest vibration magni-
tude for comparison experiments, indicated as “Vibration” in Figure 7. The lower subfigure
also suggests that this “extreme” condition does not exhibit a better biofilm removal effect,
comparing the green and red lines. Applying Equation (17) we obtain the biofilm removal
efficiency in the vertical vibration case in 10,000 seconds for flat surface, altered vibration
loading, and optimized scenario are 50.14%, 39.26%, and 43.65%, respectively. The biofilm
removal efficiency in the lateral vibration case in 10,000 seconds for flat surface, altered vi-
bration loading, and optimized scenario are 45.96%, 40.21%, and 42.89%, respectively. We
can further contend that for vertical vibration case, the optimized scenario reduces 6.49%
compared with flat surface yet increase 4.39% compared with altering the vibration loading,
on biofilm removal efficiency; for lateral vibration case, the optimized scenario reduces 3.07%
compared with flat surface yet increase 2.68% compared with altering the vibration loading,
on biofilm removal efficiency. In fine, one may conclude that in the optimization for the

vibration cases the algorithm proposes geometries that are similar or mimic flat surfaces,
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under the specific time period and magnitude loading. Interestingly, the counter-intuitive

results of the optimized vibration loading may inspire future biofilm control strategies.

4 Conclusion and Outlook

In this study, we couple BO with individual-based models and simulations to propose an
automated machine-learned topological design workflow for designing antimicrobial active
surfaces from sparse data points. The metamodels are constructed by collecting data from
100 simulations. The optimized workflow is applied to multiple case studies of purely re-
sisting biofilm formation, removal of biofilm by applying shear flow, and detaching biofilm
using vertical and lateral vibrations. We optimized the corresponding active surfaces under
these different physical environments. The algorithms proposed four different geometries
with corresponding vibration loading parameters. For purely resisting biofilm growth, the
optimized active surface reduces biofilm formation by 6.82%. Under shear flow, 88.50% of the
biofilm is removed from a perfectly flat surface, compared to the 99.77% removal rate from
the optimized active surface, thus signifying improved efficiency of 11.27%. When subjected
to vertical vibration, the optimized scenario reduces 6.49% compared with a flat surface yet
increases 4.39% compared with altering the vibration loading, on biofilm removal efficiency.
For the lateral vibration case, the optimized scenario reduces 3.07% compared with a flat
surface yet increases 2.68% compared with altering the vibration loading, on biofilm removal
efficiency.

We further found that under pure growth or applied shear flow, the optimal designs
with lower objective values are more uniformly distributed during the iterative process.
However, the optimal designs for both cases of vertical and lateral vibrations are more
densely clustered in certain iterations. The optimized geometries are extracted from all the
selected optimal design parameters by first selecting the target cone numbers and averaging

the radii and heights. For purely resisting biofilm growth, the optimal geometry consisted
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of large numbers of thin and short cones. Under applied shear flow, the optimized geometry
exhibited sparse cones with thin and tall pillar-like cones. For both vibration cases, the
optimized geometries all display short and thick cylinder-shaped cones with fewer cones in
the simulation cell, which can be interpreted as approximating a flat surface. Interestingly,
the optimized vibration loading shows low vibration magnitudes with vibration time periods
on the order of 0.15s, which is counter-intuitive.

In brief, our study proposes methods to rapidly design antimicrobial topographies based
on physical environments using simulations and optimization algorithms, enabling the machine-
learned design of engineered antifouling surfaces. Our study is intended to inspire further
investigations on (1) biofilm control strategies, both experimental and numerical, consider-
ing shear flow, vibration, and other possible methods; and (2) simulation-enabled machine-

learned biomaterials design.
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Geometric extraction (Figures S1 to S4), illustration for biofilm adhesion (Figure S5), techni-
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