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Abstract

Biofilms pose significant problems for engineers in diverse fields, such as marine

science, bioenergy, and biomedicine, where effective biofilm control is a long-term goal.

The adhesion and surface mechanics of biofilms play crucial roles in generating and re-

moving biofilm. Designing customized nano-surfaces with different surface topologies

can alter the adhesive properties to remove biofilms more easily and greatly improve

long-term biofilm control. To rapidly design such topologies, we employ individual-

based modeling and Bayesian optimization to automate the design process and gener-

ate different active surfaces for effective biofilm removal. Our framework successfully

generated optimized functional nano-surfaces for improved biofilm removal through ap-

plied shear and vibration. Densely distributed short pillar topography is the optimal

geometry to prevent biofilm formation. Under fluidic shearing, the optimal topography

is to sparsely distribute tall, slim, pillar-like structures. When subjected to either ver-

tical or lateral vibrations, thick trapezoidal cones are found to be optimal. Optimizing

the vibrational loading indicates a small vibration magnitude with relatively low fre-

quencies is more efficient in removing biofilm. Our results provide insights into various
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engineering fields that require surface-mediated biofilm control. Our framework can

also be applied to more general materials design and optimization.

Keywords: Biomaterials; Bayesian optimization; machine learning; biofilms; microstruc-

ture; individual-based modeling

1 Introduction

Biofilms and biofouling are significant threats to food and health systems as reported by the

U.S. Environmental Protection Agency.1 Moreover, the formation and attachment of biofilms

pose serious problems for marine engineering2,3 and biomedical treatments,4,5 where long-

term biofilm control is desired. For example, biofilms adhering to medical implant devices

lead to infections.6 Biofilms also potentially lead to medical treatment failures like ventilator-

associated pneumonia, eye infection, and urinary tract infections.7 Furthermore, the World

Health Organization recently reported that antimicrobial resistance is becoming a grave

issue that requires immediate action,8 indicating that the overuse of chemical treatments

may not be an ideal roadmap for long-term biofilm control. Hence, environmentally benign

and sustainable biofilm control strategies are urgently needed to prevent treatment failure

caused by biofilm resistance. From the perspective of biomechanics, the adhesion between

bacteria cells and attached surfaces plays a critical role in the formation and maturation of

the biofilms.9,10 Therefore, a promising method to attenuate adhesion is to tune the surface

properties and engineer antifouling materials that resist bacterial colonization. 11,12

Engineering surface properties for biofilm control has been of interest for decades. How-

ever, successful methods like tar paints and copper panel sidings tend to leach biocides,13

which leads us to the question: are there environmentally friendly approaches to tackle such

biofilm issues? Two approaches were proposed to diminish biofilm’s adhesive properties:

(1) tailoring chemical properties at the molecular level, with a specific focus on polymeric

design,14 and (2) altering the topographies of the active surfaces to tune the nano- and
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micro-mechanical properties.11 From the chemical perspective, Zhang et al.15 tailored the

polar functionalities of PDMS to design polymeric antifouling surfaces. Xu et al.16 used

highly hydrophilic sulfoxide polymers to produce antifouling polymer brushes. Besides elas-

tomers and polymer brushes, block copolymers, hydrogels, and other materials can also be

utilized for antibiofilm designs.14 Nonetheless, tailoring polymeric properties requires pre-

cise chemical operations at the molecular level which are expensive and not scalable for bulk

manufacturing at the current stage. In contrast, due to advances in additive manufacturing,

altering surface nanotopographies are much cheaper, faster, and industrially scalable. Fried-

lander et al.17 optimized the nanotopography by introducing submicrometer crevices. Hizal

et al.18 showed that active surfaces reduce the adhesion of biofilms on such surfaces for ease

of removal. The reduced contact area with the active surface topology with the biofilms leads

to such reduced adhesion. Both Bhattacharjee et al.19 and Lohmann et al.20 showed that by

altering the topological parameters such as radii, height, and distances between the cones,

the active surfaces exhibit different effects on biofilm growth. For instance, Bhattacharjee et

al.’s work indicates that more densely distributed pillars with smaller radii can kill bacteria

more efficiently. These studies consequently pose an important question: can these active

surfaces be designed systematically to resist or promote biofilm formation under different

physical environments?

Designing active surfaces using many cones of tunable radii and heights as the meth-

ods proposed by Bhattacharjee et al.19 and others,17,20 involves an infinite design space

that is extremely challenging to explore comprehensively using either computational simu-

lations or physical experiments. Due to advances in machine learning algorithms, heuristic

optimization-based materials design methods may be a potential solution to tackle this tough

question by exploiting sparse data points.21,22 Specifically, due to the heuristic characteristics

and capacity for handling black-box functions, Bayesian optimization (BO) has been widely

used in materials design.23 Here, we employ BO as a toolkit to sample the large design space

for optimizing the nanotopography.
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Another common barrier encountered in studies of biofilms is lengthy experimental pro-

cedures that can take weeks to culture mature biofilm.24 To bypass this barrier, digital twins,

specifically multiscale computational modeling, may help to speed up design optimizations.

Various methods have been proposed for modeling biofilm, spanning the molecular to the

continuum scale. In particular, individual-based (a.k.a agent-based) modeling (IBM) is a

rapidly maturing technique for simulating biofilm’s multiscale and multiphysics characteris-

tics.25,26

In this study, we aim to provide a fully digital, automated machine learning workflow for

designing antimicrobial active surfaces for biofilm control. The workflow is based on cou-

pled BO and the IBM platform from Newcastle University Frontier in Engineering Biology

(NUFEB)27 implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS).28 We explore two typical scenarios of biofilm growth for nanotopology optimiza-

tion: (1) biofilm growth under static conditions for designing active surfaces that resist

biofilm growth, (2) biofilm subjected to constant shear flow for designing active surfaces

under fluidic flow, such as the environments typically encountered in marine applications14

and wastewater treatments.29 Inspired by recent work demonstrating that vibration may be

a viable approach for removing biofilm,30 we propose another two scenarios of (3) vertical

vibration and (4) lateral vibration of the active surface for biofilm detachment.

The paper is arranged as follows (Figure 1): In Section 2 we introduce the computational

methods of individual-based models and simulations (Sec. 2.1) and the method of BO (Sec.

2.2) using Gaussian process regression and an acquisition function in Sections 2.2.1 and

2.2.2, respectively. We then propose the basic simulation setup implemented in LAMMPS in

Section 2.3. The general optimization workflow is explained in Section 2.4. In Section 3 we

detail how we construct meta-models from the optimization (Sec. 3.1), extract the optimized

geometries (Sec. 3.2), and subsequent biomechanical analyses (Sec. 3.3). Eventually, some

interesting conclusions are drawn and potential research directions are pointed in Section 4,

including high thin-pillar shaped nanosurfaces are more efficient in removing biofilms under
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Figure 1: A representative schematic of this study. Biofilm and related issues plague many
aspects of engineering but tuning the adhesive properties of surfaces by changing the surface
topology can be a potential solution. To optimize these topologies, we use a machine-learned
materials design workflow driven by individual-based simulations and BO. We construct a
surrogate model via Gaussian process regression (GPR) and iterative data search via the
acquisition function (A) to eventually propose the optimized active surfaces.
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shear flow, yet short thick cones are found to be more efficient for vibrational biofilm removal.

2 Methodology

2.1 Individual-based Simulations

In individual-based models based on the Newcastle University Frontiers in Engineering Bi-

ology (NUFEB) framework,27 each bacteria cell is modeled as a spherical particle. Biofilms

are formed by cell division and extrusion of extracellular polymeric substances (EPS). The

microbe growth and decay are described by the differential equation:

dmi

dt
= ξimi (1)

wheremi is the biomass of the ith bacteria cells and ξi is the growth rate. Here, we employ the

Monod-based method31 to model microbial growth, in which the growth rate is determined

by the Monod kinetic equation driven by the local concentration of nutrients. The substrate

is modelled as fully rigid particles.

Since we are essentially interested in the adhesive property, we must model the mechanical

interactions of the particles. The particles are mechanically relaxed using the individual-

based approach, solved via Newton’s equation

mi
dvi

dt
= Fc,i + Fa,i + Fd,i (2)

where mi is the mass of a particle, and vi is the velocity. The contact force Fc,i is a pair-wise

force between particles to prevent overlapping based on Hooke’s law

Fc,i =

Ni∑
j=1

(KNδni,j −mi,jγNvi,j) (3)

where Ni is the total number of neighboring particles of i, KN is the elastic constant for
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normal contact, δnij is the overlap distance between the center of particle i and its neighbour

particle j. γN is the viscoelastic damping constant for normal contact, and vi,j is the relative

velocity of the two particles. The EPS adhesive force Fa,i is a pair-wise interaction modelled

as a van der Waals force

Fa,i =

Ni∑
j=1

Hari,j
12h2

min,i,j

ni,j (4)

where Ha is the Hamaker coefficient, ri,j is the effective outer-radius of the ith and jth

particles. hmin,i,j is the minimum separation distance of the two particles, and ni,j is the

unit vector from particle i to j. The drag force Fd,i due to fluid-particle interactions in fluid

flow is determined from

Fd,i =
Vp,i

ϵf,iϵs,i
βi(up,i −Uf,i) (5)

where ϵs,i is the particle volume fraction, ϵf,i = 1− ϵs,i is the fluid volume fraction, Vp,i and

up,i are volume and velocity of the ith particle, respectively. Uf,i is the fluid velocity imposed

on particle i and βi is the drag correction coefficient.

Mechanical equilibrium is achieved when the average pressure of the microbial community

reaches a plateau. The average pressure of the system is

P =
1

3V

(
N∑
i=1

mivi · vi +
N∑
i=1

N∑
j>i

ri,j · Fi,j

)
(6)

where V is the sum of the volumes of particles. The first term in the bracket is the contri-

bution from the kinetic energy of each particle. The second term is the interaction energy,

where ri,j and Fi,j are the distance and force between two interacting particles i and j,

respectively.

In the simulations, shear flow is applied for biofilm removal. The hydrodynamics is

incorporated in NUFEB via the two-way coupled CFD-DEM approach.27,32 The governing
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equations for the fluid phase are33

∇ · (ϵsUs + ϵfUf ) = 0 (7)

and

∂(ϵfUf )

∂t
+∇ · (ϵfUfUf ) =

1

ρf
(−∇P + ϵf∇ · R+ ϵfρfg + Ff ) (8)

where ϵs, Us and Ff are the solid volume fraction, velocity, and fluid-particle interaction

forces of the bacteria, respectively.

By coupling the bacteria growth dynamics with contact, adhesive, and drag forces, me-

chanical relaxation to equilibrium, and fluid dynamics, we are able to simulate the biofilm

behavior on different surface topologies. Based on this IBM, the simulation details are further

explained in Section 2.3.

2.2 Bayesian Optimization

The overall goal of the optimization process is to minimize or maximize an objective function,

which in our case is the total bacteria cells after fluidic shear is applied to remove the biofilm.

Using y = f(x,p) to denote a multivariate function relation, variables x and parameters p

relates to the output y through the function(al) form of f , where x = [Rbottom, Rtop, ...] are

the overall design parameters in the numerical simulation. The optimization process can be

simplified as

min y = NBC = f(x,p),

subject to xLB ≤ x ≤ xUB, 0 ≤ Rtop ≤ Rbottom ≤ Lx

n

x = [Rbottom, Rtop, h, n, (M,T )] , p = [α, ξ,L, T ,B]

(9)

Here, y = NBC is the residual bacteria cell numbers (biomass) after the simulation, as

our goal is to design surfaces that optimally remove the biofilm under fluid flow and hence

reduce bacteria cell numbers. The design variables x are subjected to a range of lower and
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upper bounds given in Section 2.3. The design variables x = [Rbottom, Rtop, h, n, (M,T )] are

the lower and upper radius of the cones, the height of the cones, and the number of cones on

each side of the simulation box; and (M,T ) are the magnitude and time per vibration cycle,

respectively. The magnitude and time are demarcated with brackets as they are not design

variables in the growth and shear optimizations. The lower radius of each cone is larger than

the upper radius, Rbottom ≥ Rtop, but both are non-zero and smaller than the maximum

length per cone as a geometric constraint. The simulation parameters p = [α, ξ,L, T ,B] are

the shear rate, growth rate, geometric parameters, simulation iterations, and bacteria related

coefficients, respectively. L = [Lx, Ly, Lz, LS , LB, ...] is the set of all parameters needed to set

up the geometry of the active surfaces, and T and B control bacterial growth and removal at

specific simulation steps with user-specified biological coefficients. Further details are given

in Section 2.3.

BO consists of surrogate models built with Gaussian process regression for evaluating the

space using Bayes statistics and an acquisition function. The acquisition function is used

to construct a utility function from the model posterior that enables the next point to be

evaluated.34 The two components are introduced and explained in Sections 2.2.1 and 2.2.2.

2.2.1 Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian statistical approach to approximate and

model function(s). Considering our optimization problem, if the function is denoted as

y = f(x,p), where f is evaluated at a collection of different sets of points: x1,x2, ...,xk ∈ Rd,

we can obtain the vector [f(x1), ..., f(xk)] to construct a surrogate model for the design

parameters with the correlated objectives. The vector is randomly drawn from a prior

probability distribution, where GPR takes this prior distribution to be a multivariate normal

with a particular mean vector and covariance matrix. Here, the mean vector and covariance

matrix are constructed by evaluating the mean function µ0 and the covariance function Σ0

at each pair of points xi, xj. The resulting prior distribution on the vector [f(x1), ..., f(xk)]
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is represented in the form of a normal distribution to construct the surrogate model 35

f(x1:k) ∼ N (µ0(x1:k),Σ0(x1:k,x1:k))) (10)

where N (·) denotes the normal distribution. The collection of input points is represented in

compact notation: 1 : k represents the range of 1, 2, ..., k. The surrogate model f(x) on 1 : k

is represented as a probability distribution given in Equation (10). To update the model

with new observations, such as after inferring the value of f(x) at a new point x, we let

k = l + 1 and xk = x. The conditional distribution of f(x) given observations x1:l using

Bayes’ rule is

f(x)|f(x1:l) ∼ N (µl(x), σ
2
l (x))

µl(x) = Σ0(x,x1:l)Σ0(x1:l,x1:l)
−1 (f(x1:l)− µ0(x1:l) + µ0(x))

σ2
l = Σ0(x,x)− Σ0(x,x1:l)Σ0(x1:l,x1:l)

−1Σ0(x1:l,x)

(11)

where the posterior mean µl(x) is a weighted average between the prior µ0(x) and the

estimation from f(x1:l), where the weight applied depends on the kernel used.

Here, we use the Gaussian kernel, hence the prior covariance is36

Σ0(xi,xj) = σ2R(xi,xj),

R(xi,xj) = exp

(
1

2

d∑
m=1

(xi,m − xj,m)
2

θ2m

)

θm = (θ1, θ2, ..., θd)

(12)

where σ2 is the overall variance parameter and θm is the correlation length scale parameter

in dimension m of the dth dimension of x, which are all hyperparameters of GPR. R(xi,xj)

is the spatial correlation function. Our goal is to estimate the parameters σ and θm that

create the surrogate model given the training data [yk = NBC(k), xk] at iteration k.
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2.2.2 Acquisition Function

Given the training data [yk, xk], Equation (10) gives us the prior distribution yl ∼ N (µ0,Σ0)

as the surrogate. This prior and the given dataset induce a posterior: the acquisition func-

tion, denoted as A : X −→ R+, determines the point in X to be evaluated through the proxy

optimization xbest = argmaxx A(x). The acquisition function depends on the previous ob-

servations, which can be represented as A = A(x; (xl, yl), θ). Taking our previous notation,

the new observation is probed through the acquisition37

xk = xl+1 = argmax
x∈ X

Xl

A (x; (xl, yl), θm) (13)

where the input space contains the evaluation of design variables at n points: Xl := (x1,x2, ...,xl).

In our case, X is acquired through running n numbers of NUFEB simulations. We pick the

GP Upper Confidence Bound (GP-UCB)38 as the acquisition function, exploiting the lower

confidence bounds (in the case of minimizing the objective function) to construct the acqui-

sition and minimize the regret. GP-UCB takes the form34

A (x; (xl, yl), θm) := µl (x; (xl, yl), θm) + κσ (x; (xl, yl), θm) (14)

where κ is a tunable parameter balancing exploitation and exploration when constructing the

surrogate model. We take κ = 2.5 as a default value in the model. Combining GPR and the

acquisition function, the surrogate model can be constructed to approximate the minimum

value in the design space. In our case, such BO methods are applied to obtain active surface

typologies with minimal residual bacterial cells. The design space is a 4-dimensional space

for topology optimization and a 6-dimensional space for combined vibration optimization.

We randomly explore the design space for 10 steps for the initial surrogate modeling and

then iterate for 90 steps based on Bayesian statistics to construct the full surrogate with 100

data points.
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2.3 Simulation Setup

Our model (Figure 2) uses a cubic simulation box of lengths 4 × 10−5 m with a substrate

of height LS = 4 × 10−6 m. Above the substrate, we place cones with height h as a design

variable, which ranges between [2×10−6 m, 4×10−6 m]. The initial bacteria cells are placed

above these cones for simulating biofilm growth, with a height of LB = 2 × 10−6 m. n

is the total number of cones per cubic side. Since the simulation box is cubic, the total

number of cones should be n× n. n is an integer constrained in the range [5, 10]. For each

n, the maximum value of the cone radii is Lx/n. The tunable range of the two radii are

set as [0.1, 0.9]× Lx

2n
, corresponding to the “geometric constraint” mentioned in Section 2.4

herein. Since the geometric constraint, Rbottom ≥ Rtop is assumed, the radii will be swapped

if a larger Rtop is proposed by the optimization algorithm. We also apply vibrations to the

substrate with magnitudes in the range [4 × 10−7 m, 2 × 10−6 m] and time periods in the

range [10−5 s, 1 s].

Three different types of particles are involved in the simulation (Figure 2): the het-

erotrophs (HET), which can be interpreted as the bacteria cells; the extracellular polymeric

substances (EPS); and the substrate, modeled as rigid particles. Note that for different

loading, the simulation setup is mildly varied to tune the simulation. For instance, there are

no vibration magnitude and time involved for pure growth and shear flow removal. Further

details are to be explained in the following points.

To find the ideal surface topologies for effective biofilm removal, we optimize (1) the

geometry of the nanosurface subjected to shear flow, or (2) both the geometric and vibration

parameters. These two scenarios are modelled as follows:

• Biofilm growth and applied shear flow. The substrate is rigidly fixed and bacteria

cells are introduced right above the cones. Each side of the simulation box has fixed

boundary conditions (FBC) such that the bacteria cells are removed if they exit the

simulation box. To apply shear flow, from the equation of velocity of applied forces27
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Figure 2: The numerical setup of the simulation box, implemented in LAMMPS. A cubic
simulation box with sizes of Lx = Ly = Lz = 4 × 10−5 m. The geometry of the surface
is controlled by four design parameters, Rbottom, Rtop, h, and n, denoting the bottom and
upper radii, the height of the cones, and the number of cones per box length, respectively.

we can deduce the equation controlling the shear rate as

Ff,i = 6πµrivr

α= dvr
dt−−−−→ α =

dt

6πµdri

dFf,i

dt
(15)

where µ is the dynamic viscosity, taken as µ = 0.001 kg · m−1 · s−1 in our approach

to model the flow of water,39 vr is the local velocity of the particle, Ff,i is the shear

force, and α is the applied shear rate, which is the time derivative of velocity. We

assign ξHET = 0.00028 s−1 as the growth rate for heterotrophs27 and α = 0.3 m · s−2

as the shear rate. From Equation (1) one can interpret ξ as the change of bacterial

mass, taking the form mi = ρi
4
3
πr3i for the ith particle. The density of EPS is ρEPS =

30 kg · m−3.27,40 The density for the substrate is ρsubstrate = 4410 kg · m−3, using Ti-

6Al-4V41 as our reference material considering the potential applications in additive

manufacturing. The density for HET is ρHET = 150 kg · m−3 based on previous

experiments.42 50 bacteria cells are randomly distributed above the cones initially and

their growth is simulated for 200,000 s in real time, governed by Equations (1-6).

After the growth, shear flow is applied in the box for another 50,000 s as governed by

Equations (15).
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• Vibration induced biofilm detachment. To allow for vertical vibrations of the

substrate, we locate the substrate at an initial height LI = M while maintaining FBC.

For lateral vibrations, periodic boundary conditions (PBC) are set in the Y-direction.

According to the implementation in LAMMPS,28 the displacement of any bacteria cells

X takes the form

X(t) = X0 +M sin

(
2π

T
δ

)
(16)

where X = [X, Y, Z] is the position vectors of each particle, X0 is the initial position

vectors, with vibration magnitude M and time T following Equation (9). δ is the

elapsed time. For both vertical and lateral vibrations, 500 bacteria cells are randomly

distributed above the cones and allowed to grow for 20,000 s in real-time. Vibrations

are then applied for another 10,000 s in real-time.

2.4 Automated Optimization Workflow

Coupling the optimization process given in Equations 10-14, and the simulation processes

given in Equations 1-8 via Equation (9), we develop a general automated BO workflow en-

abled by LAMMPS-Python interface28 (Figure 3). The full optimization begins with generated

design parameters implemented in Python. The design parameters are then translated into

particle-represented geometries through NUFEB27 implemented in LAMMPS. NUFEB simula-

tions are then performed with the initial bacteria distribution, growth, and physical removal

methods as described in Section 2.3. After performing the simulations, the residual bacteria

cells for both HET and EPS are counted and passed to the optimization algorithm.

Initially, 10 sets of data representing the geometry are randomly generated for building

the raw surrogate model. The 11th to 100th geometries are then probed through the lower

bound acquisition function using the same workflow for building the eventual surrogate,

which we term as the metamodel. With this final metamodel, we can extract the optimized

geometry for further simulations to verify and biomechanically rationalize why such surfaces
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Figure 3: The schematic for the BO workflow for designing antimicrobial surfaces based on
LAMMPS and Python. The optimization begins with randomly initiated geometries represented
via the design parameters. The bacteria cells are initiated on top of the nanosurface and
grown and removed via different physical loading. The remaining bacteria cells are the
objective for the optimization. The optimized geometries are then verified through numerical
simulations.

15



are optimal for antimicrobial materials design.

3 Results and Discussion

3.1 Metamodels for Optimization

Figure 4: The design parametric matrices and the corresponding values of the objective
function during the optimization process. Note that for better visualization the parametric
matrices are normalized. Four subfigures indicate the optimization of the simulations based
on four different physical methods to remove biofilm. The objective with lower biomass
is marked in blue triangle dots for geometry extraction. The bottom figures stand for the
optimized structures

Figure 4 shows metamodels generated from the optimization based on the four scenarios.

The upper eight subfigures show four combinations of the evolution of design objectives with

respect to the iterations (dotted lines on top) and their corresponding design parameters

(colored matrices on the bottom). The design parameter matrices are normalized for better
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visualizations. The horizontal axis for both the subfigures are iterations of BO. The vertical

axis for the design parameter matrices is the symbol for different design variables we defined

in Section 2.3. From Figure 4, we observe that the lower objective values are distributed

more uniformly throughout the iterations for the growth and shear flow cases, whereas for

the vibration cases, the lower objectives seem to only exist under certain “connected” steps

where the corresponding design parameters exhibit similar values. The lower value objectives

marked in blue in Figure 4 are extracted as these corresponding geometries seem to resist

biofilm formation very well.

3.2 Geometry Representation

Based on the mean values of the radii and heights corresponding to the most frequent cone

numbers, the extracted optimized geometries for the four different scenarios are shown in

subfigures E1, E2, E3, E4, respectively and the corresponding parameters are tabulated

in Table 1 in SI units. The four optimized geometries display exceedingly different char-

acteristics: to purely minimize biofilm formation, the optimal geometry is 10 × 10 cones

with relatively small radii and low height (subfigure E1). To efficiently remove biofilm un-

der shear flow, the optimal geometry is taller cones with small radii and a larger distance

between cones with cone numbers of 7 × 7 (subfigure E2). For both cases of applied ver-

tical and lateral vibration (subfigure E3 and E4), the optimized geometries have similar

characteristics: total cones of 6 × 6 with short and thick cones.

Table 1: The final optimized geometric and loading design parameters corresponding to
Equation (9).

Pure Growth Shear Flow Vertical Vibration Lateral Vibration
Rbottom 3.92× 10−7 [m] 4.05× 10−7 [m] 2.96× 10−6 [m] 2.94× 10−6 [m]
Rtop 2.36× 10−7 [m] 3.34× 10−7 [m] 2.25× 10−6 [m] 2.92× 10−6 [m]
h 2.02× 10−6 [m] 3.23× 10−6 [m] 2.19× 10−6 [m] 2.12× 10−6 [m]
n 10 7 6 6
M N/A N/A 4.7754× 10−7 [m] 4.9692× 10−7 [m]
T N/A N/A 0.1204 [s] 0.1592 [s]
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Observing both subfigures E1 and E2, there are common characteristics of having small

radii. As proposed by Hizal et al.,18 reduced adhesion is crucial for biofilm removal. Hence,

we propose that geometric features such as thin “pillar-like” shapes reduce the contact

area between the biofilm and the substrate, as the reduced adhesion seems to both resist

biofilm growth and promote shear flow removal. For both vibration scenarios, the resultant

geometries are thick and short cylinders of large radii with fewer cones. A larger contact

area is needed to transmit the vibration energy for biofilm removal. To elucidate these

mechanisms in detail, we perform further IBM simulations and analyses of these optimal

surface geometries.

3.3 Optimization Verification and the Biomechanics

To analyze the mechanisms of action for the optimized geometries, numerical simulations

are compared for the four scenarios. The optimized active surfaces are compared with flat

surfaces for just the biofilm growth and the shear flow removal shown in Figure 5.

Figure 5 shows that the optimized active surface for purely resisting biofilm growth does

not exhibit evident improvement compared with a perfectly flat surface, as from both the plot

and visualization the optimized one does not greatly reduce the total bacteria cells. We can

conclude that altering the surface topologies alone is insufficient for reducing the growth and

formation of biofilm, especially since no other chemical effects are present, such as surface

charges. However, when subjected to shear flow, there is obvious biofilm reduction on the

optimized surface compared with the flat one. We can hence contend that the optimization

works well on surfaces designed for shear flow-induced biofilm removal as a secondary mode

of action is needed to exploit the reduced adhesion of the biofilm.

The biofilm removal efficiency can be quantified by calculating the ratio of removed

bacteria cells to the original bacteria cells before the biofilm growth:

η =
NBC(tG)−NBC(tR)

NBC(tG)
(17)
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Figure 5: The performance of the optimized geometries is compared with a perfectly flat
surface for resisting biofilm growth and shear flow removal. The top row sub-figures are
simulation snapshots of the biofilm growth and removal corresponding to real-time. The
bottom row is the plot of the changes in the bacteria numbers with respect to time during
the simulation, thus highlighting the difference in biofilm removal efficiencies between the
flat and optimized surfaces. The inset figure in the left-bottom sub-figure is the double
logarithmic plot during the growing process, showing that the optimized active surface does
not strongly alter the biofilm growing process in the simulations. The inset figure in the right-
bottom sub-figure is the double logarithmic plot during the “shear-off” process, showing that
the optimized surface evidently improves the biofilm shearing removal.
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where NBC(tR) is the bacteria cell number at the end of the simulation and NBC(tG) is the

bacteria cell number right after the end of the initial growth period of the biofilm. For the

case of pure growth, we found that the optimized surface reduces bacteria by 6.82% compared

to the flat surface. Under shear flow, the biofilm removal efficiencies for the optimized and

flat surfaces are 99.77% and 88.5%, respectively, suggesting an improvement of 11.27% on

biofilm removal efficiency.
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Figure 6: Schematic illustration for visualization of bacteria count with regards to height
for visualizing the adhesion effects. The right diagram illustrates how the bacteria number
distributes along the Z axis, where the blue and red lines stand for the flat and active surfaces,
respectively. Note that the dashed red line denotes a “cutoff” to indicate that the above
area does not contain much bacteria, whereas the non-smooth bacteria number decrease is
caused by the relatively low fidelity sampling.

Figure 6 shows how the bacteria number distribution along the Z axis to illustrate our

proposed explanation of reduced adhesion of active surfaces leads to more efficient biofilm

removals. In the right sub-figure, It can be observed that for the active surface, the biofilm

clustered at a much higher location above Z = 10µm (blue) compared with the flat surface

below Z = 10µm (red). Moving closer to the substrate surface (Z = 5µm), the bacteria de-

creases drastically for the active surface yet compared to the flat surface. This phenomenon

verifies and visualizes our proposition that the active surface topology can reduce the adhe-

sion between the biofilms and their attaching surfaces.
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Figure 7: The numerical verification compares the optimized geometry with the optimized
frequency properties and the benchmark coefficients, with the flat surface for vibrational
biofilm removal. The upper figures show the snapshots of the simulation for removing biofilm
using different vibration loadings, comparing the optimized geometry and loadings with
alternating the geometry (flat surface) and vibration properties.
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Since both the geometries and vibration properties are optimized under different vibration-

induced biofilm removal, the optimized scenarios are compared with two benchmark numeri-

cal experiments: (1) fixing the optimized vibration loading and replacing the geometry with

a flat surface; (2) fixing the optimized active surface and alter the vibration loading. The

comparison numerical simulations are shown in Figure 7, where “Flat” indicates we hold

the vibration loading and alter the geometry to the flat surface and “Vibration” indicate we

hold the geometry yet alter the vibration loading.

When subjected to vibration, Figure 7 verifies our hypothesis that a flat surface will

exhibit better biofilm removal effects as a larger contact area increases the transmission of

vibrational energy from the substrate to the biofilm. However, the optimized vibration load-

ing in Table 1 seems to be counter-intuitive: one may expect a robust vibration, i.e., larger

magnitude and higher frequency, to be more efficient in removing biofilm. Yet, the optimal

conditions call for a smaller magnitude with larger time periods than the lower bound of

10−5 seconds. We thence apply the smallest time period with the largest vibration magni-

tude for comparison experiments, indicated as “Vibration” in Figure 7. The lower subfigure

also suggests that this “extreme” condition does not exhibit a better biofilm removal effect,

comparing the green and red lines. Applying Equation (17) we obtain the biofilm removal

efficiency in the vertical vibration case in 10,000 seconds for flat surface, altered vibration

loading, and optimized scenario are 50.14%, 39.26%, and 43.65%, respectively. The biofilm

removal efficiency in the lateral vibration case in 10,000 seconds for flat surface, altered vi-

bration loading, and optimized scenario are 45.96%, 40.21%, and 42.89%, respectively. We

can further contend that for vertical vibration case, the optimized scenario reduces 6.49%

compared with flat surface yet increase 4.39% compared with altering the vibration loading,

on biofilm removal efficiency; for lateral vibration case, the optimized scenario reduces 3.07%

compared with flat surface yet increase 2.68% compared with altering the vibration loading,

on biofilm removal efficiency. In fine, one may conclude that in the optimization for the

vibration cases the algorithm proposes geometries that are similar or mimic flat surfaces,
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under the specific time period and magnitude loading. Interestingly, the counter-intuitive

results of the optimized vibration loading may inspire future biofilm control strategies.

4 Conclusion and Outlook

In this study, we couple BO with individual-based models and simulations to propose an

automated machine-learned topological design workflow for designing antimicrobial active

surfaces from sparse data points. The metamodels are constructed by collecting data from

100 simulations. The optimized workflow is applied to multiple case studies of purely re-

sisting biofilm formation, removal of biofilm by applying shear flow, and detaching biofilm

using vertical and lateral vibrations. We optimized the corresponding active surfaces under

these different physical environments. The algorithms proposed four different geometries

with corresponding vibration loading parameters. For purely resisting biofilm growth, the

optimized active surface reduces biofilm formation by 6.82%. Under shear flow, 88.50% of the

biofilm is removed from a perfectly flat surface, compared to the 99.77% removal rate from

the optimized active surface, thus signifying improved efficiency of 11.27%. When subjected

to vertical vibration, the optimized scenario reduces 6.49% compared with a flat surface yet

increases 4.39% compared with altering the vibration loading, on biofilm removal efficiency.

For the lateral vibration case, the optimized scenario reduces 3.07% compared with a flat

surface yet increases 2.68% compared with altering the vibration loading, on biofilm removal

efficiency.

We further found that under pure growth or applied shear flow, the optimal designs

with lower objective values are more uniformly distributed during the iterative process.

However, the optimal designs for both cases of vertical and lateral vibrations are more

densely clustered in certain iterations. The optimized geometries are extracted from all the

selected optimal design parameters by first selecting the target cone numbers and averaging

the radii and heights. For purely resisting biofilm growth, the optimal geometry consisted
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of large numbers of thin and short cones. Under applied shear flow, the optimized geometry

exhibited sparse cones with thin and tall pillar-like cones. For both vibration cases, the

optimized geometries all display short and thick cylinder-shaped cones with fewer cones in

the simulation cell, which can be interpreted as approximating a flat surface. Interestingly,

the optimized vibration loading shows low vibration magnitudes with vibration time periods

on the order of 0.15s, which is counter-intuitive.

In brief, our study proposes methods to rapidly design antimicrobial topographies based

on physical environments using simulations and optimization algorithms, enabling the machine-

learned design of engineered antifouling surfaces. Our study is intended to inspire further

investigations on (1) biofilm control strategies, both experimental and numerical, consider-

ing shear flow, vibration, and other possible methods; and (2) simulation-enabled machine-

learned biomaterials design.

Supporting Information

Geometric extraction (Figures S1 to S4), illustration for biofilm adhesion (Figure S5), techni-
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