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Solid polymer electrolytes (SPEs) have been regarded as a safer alternative for liquid electrolytes in rechargeable batteries,

yet they suffer from drawbacks such as low ionic conductivity. Designing SPEs with optimal performance is a challenging

task, since the properties of SPEs are influenced by parameters across multiple scales, which leads to a vast design space.

The integration of theory-based modeling methods and data-driven approaches can effectively link chemical and structure

features of SPEs to macroscopic properties. Machine learning (ML) algorithms are paramount to data-driven modeling. This

review aimed to highlight the ML algorithms used for SPE design, and how these algorithms can be employed synergistically

with theory-based modelling methods such as density functional theory (DFT), molecular dynamics (MD) and coarse graining

(CG). In addition, this work is concluded with our outlook in this young and promising field.

1 Introduction

The past few decades have witnessed the great success of
rechargeable batteries. The commercialization of lithium-ion
batteries since 1990s have shaped our life in multiple aspects:
from portable electronics to electric vehicles, from medical
devices to power grids.! With the continuous upsurge in
demand for energy storage, future batteries will have ever-
safety.2 As an
indispensable component in the battery, electrolytes play a key

improving energy density and product

role in conducting ions and insulating electrons. At present,
many battery systems on the market adopt liquid electrolytes
since they offer benefits of high ionic conductivity and excellent
wetting of electrode surfaces. Nevertheless, liquid electrolytes
suffer from inadequate electrochemical and thermal stabilities,
low ion selectivity, and poor safety.3 To circumvent the
drawback of liquid electrolytes, researchers have delved into
developing solid electrolytes that are generally considered
safer. There are three state-of-art solid electrolytes: inorganic,
polymer, and composite. Among them, solid polymer
electrolytes (SPEs) consist of a polymer matrix as a host and
alkali metal salts in a solvent-free environment. Compared to
the inorganic solid electrolytes, SPEs can endow the batteries
with high safety, good processibility, and enhanced mechanical
compliance with the electrodes.* However, one of the major
obstacles for SPEs is their low ionic conductivity, which is closely
related to the segmental motion of polymer chains. Most SPEs
have ionic conductivities of less than 10> S cm! under room
temperature and Li* transference numbers of around 0.2 —0.5.5
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In comparison, SPEs for lithium batteries should be above 10> S
cm1 to ensure practical operation.t Since it is non-trivial to
directly infer ionic conductivity given a polymer structure,
researchers have proposed some subordinate parameters to
consider. Two crucial parameters are the glass transition
temperature (Ty) and the ion-pair dissociation ability.” Lower T,
guarantees high chain mobility under room temperature, and
easier ion-pair dissociation enables fast Li* transport. In addition
to low ionic conductivity, there are several other properties that
require SPEs should also have good
electrochemical stability to minimize high voltage oxidation at

enhancement.

the cathode interface.8 The polymer redox window of SPEs are
expected to withstand at least 4V versus Li/Li* and preferably
4.5V, which enables Li* extraction from an oxide host cathode
without oxidation of the electrolyte in a 4 V cell during a
charge/discharge cycle.®10 The mechanical properties should
also be another key property to consider. SPEs with high
modulus have shown large resistance for dendrite growth at Li
anode in Li-metal batteries, which can be explained by Newman
and Monroe model.11-13

To date, researchers have investigated various kinds of SPE
materials, such as polyethylene oxide (PEO), polyacrylonitrile
(PAN), polymethyl methacrylate (PMMA) and polyvinyl alcohol
(PVA). However, it is difficult to propose an overall satisfying
performance using a homopolymer. For example, PEO suffers
from electrochemical instabilities at high voltages and low ionic
conductivity at room temperature.l* Researchers have made
new attempts such as incorporating plasticizers or nanofillers,
employing block copolymers,
structures.1>-19 As the material systems for SPE become more

and engineering polymer

sophisticated, finding an optimal SPE is essentially a task that
needs to be tackled from multiple aspects in a vast design space.
As displaced in Fig. 1, it requires searching and optimization of
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Fig. 1 The macroscopic properties of SPE are related to physicochemical parameters across different scales, which correspond to different

computational techniques highlighted in this article.
physicochemical parameters across multiple scales, such as
local interactions, chain dynamics and thermodynamics.20.21
There is no single index that is sufficient to describe the
performance of an SPE material for all the polymers.22

With the rapid growth of computational power, employing
computational and data-driven modelling methods to facilitate
the exploring and designing process has become an appealing
choice to greatly accelerate the trial-and-error cycle and
minimize experimental costs.22> Over the past few decades,
computational methods such as density functional theory (DFT)
have been used synergically with experimental methods to aid
battery development, particularly in material modelling and
screening. However, these methods can be intensive on
computational resources.2* With the exciting progress of data
science in the past decades, screening, prediction, optimization,
and design tasks among a large number of candidates have
become more tractable. Data-driven approaches are sometimes
referred to as the fourth paradigm in materials discovery.25
They can provide great flexibility by automatically discovering
patterns in datasets using algorithms, without the need for
extensive domain knowledge.2® There are two major routes to
establish databases: one is through the experimental paradigm,
i.e., collecting data from literature or performing experiments
to measure desired properties; another is through the
computational paradigm, i.e., using computational methods to
calculate material properties. Due to the complexity of the
design space and high cost, the coupling of computational
methods and data-driven approaches are becoming a popular
trend for addressing challenges in modelling SPEs.

Herein, we are hoping to provide insights for both
experimentalists and theorists in this area and foster more
collaboration between them to facilitate the development of
advanced SPEs. As such, our review primarily emphasizes the
methodologies of computational and data-driven techniques,
with examples on how they are employed in the SPE system.
First, we review some basic concepts about machine learning

2 | J. Name., 2012, 00, 1-3

(ML), including frequently used algorithms and how they are
applied to material modelling, with an emphasis on screening
and prediction. Subsequently, we review optimization
algorithms that are commonly used for materials design. We are
providing specific examples on how certain algorithms are
tailored to SPE research. Next, we discuss how data-driven
methods are incorporated into computational simulation tools,
such as density functional theory (DFT), molecular dynamics
(MD), and coarse graining (CG). Lastly, we provide a summary
and outlooks on using computational and data-driven approach
for modelling of SPEs.

2 ML fundamentals
2.1 Basic concepts of ML

Machine learning (ML) is a subfield of artificial intelligence that
refers to algorithms and programs that demonstrates
“intelligence” like humans, i.e., improves with training.2?
Compared to theory-driven modelling methods, ML algorithms
can extract useful relationships directly from a dataset without
being given explicit instructions of how to analyze or draw
conclusions from the data.?® Thus, ML-based modeling is often
used interchangeably with “surrogate modeling” in the realm of
engineering.?® Generally, there are three types of ML:
supervised learning, unsupervised learning, and reinforcement
learning.30 The goal in supervised learning is to make
predictions from labelled data. For supervised learning, there
are two common tasks for a problem according to the types of
output: classification and regression. The classification task
establishes a mapping function from input variables to discrete
output values, such as polymer chain configurations.3132 |n
comparison, the regression task maps input to continuous
output values or physical quantities such as glass transition
temperature, ionic conductivity, and potential energy surfaces
(PES). A special case of supervised learning is called transfer
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Fig.2 (a) The relationship between total error, variance, bias, and noise. (b) A graphic demonstration of bias-variance
tradeoff. (c) The typical architecture of a feed-forward network.

learning, where a model is pretrained on one task and
repurposed for another related task.33:3% The merits of transfer
learning lie in dealing with small training sets and saving training
time. Compared to supervised learning, unsupervised learning
addresses problems containing only input data with no
corresponding labels. The goal in unsupervised learning is to
uncover structure in the data themselves.28 Unsupervised
learning tends to be more subjective than supervised learning:
the conclusion to an unsupervised learning problem is not
rigorously determined and is intimately tied to the algorithm we
choose. Unsupervised learning can be applied in data
visualization, dimensionality reduction, clustering, exploratory
data analysis, and so on. For instance, clustering can be used to
group data to identify common features, and exploratory data
analysis can help to detect patterns and anomalies.3536
Reinforcement learning (RL) is concerned with building an
intelligent agent that can interact with the environment and has
been used in areas such as robotic control and music
generation.3738 For a reinforcement learning problem, we
define a reward (a scalar feedback signal) indicating how well
the agent is doing at every step. The goal of reinforcement
learning is to maximize the expected cumulative reward. At
every step, the agent executes an action, receives an

This journal is © The Royal Society of Chemistry 20xx

observation, and receives a scalar reward; in comparison, the
environment receives an action, emits an observation, and
emits a scalar reward. When the environment is fully observable
to the agent, this whole process is a Markov decision process.
To build an RL agent, one may include one or more of the
components: policy, which describes an agent’s behavior; value
function, which describes how good each state or action is; and
model, which describes the agent’s representation of the
environment. For chemistry applications, reinforcement
learning techniques are being increasingly used to search for
molecules with desired properties in large chemical spaces.39:40

Loss function, or sometimes called objective function or risk
function, is a function that measures the performance of the ML
model. The goal of ML is often to efficiently establish a model
to minimize the loss function. Although there are some classic
loss functions available such as squared loss, absolute loss, zero-
one loss, exponential loss, Hinge loss and Huber loss4142,
researchers have developed many task-dependent loss
functions. For instance, Mardt et al. designed variational
approach for Markov processes (VAMP) loss to measure the
consistency between different time steps in molecular
dynamics (MD) simulations.*> When evaluating an ML model,
the total error can be decomposed into three principal terms:
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variance, bias, and noise as indicated in Fig. 2a.27.40 Variance
captures how “specialized” the model is to a particular training
set. Bias describes the inherent error of the model even with
infinite training data. Noise measures ambiguity due to data
distribution and feature representation, and it comes as an
intrinsic aspect of data. When optimizing the model, there often
exists bias-variance tradeoff as indicated in Fig. 2b.40 If the
model has high bias and low variance, the model is
“underfitting” and not able to sufficiently capture data features.
If the model has low bias and high variance, the model is
“overfitting” and
diagnose whether the model is suffering from the above issues,

introduced unnecessary complexity. To

we usually split our data into three sets: training set, validation
set and test set. The training set is used for “learning” the
model, whereas the validation set is to help validate if the loss
obtained from the training is reliable. The test set simulates how
the model interacts with the future unseen data. A good ML
model should have both low bias and low variance, which is
usually indicated via a low error in both training and validation
sets.

Neural networks (NNs) are an important type of ML
algorithm inspired by the biological neural networks that
constitute animal brains.** Fig. 2c displayed the architecture of
a feed forward neural network, where the information flows in
only one direction. Each circle in the network is a datapoint
called a neuron. There are three layers in this network: input
layer, hidden layer, and output layer. For every layer, the data
is updated in the following way:

k) _ (k=1,k) (k-1)
A = g w5 (1)
J

is the jth updated value in layer k, Z}‘_l is the jthvalue
'(}c_l’k) is the weight that connects
,and g is a nonlinear function (often referred to as
function). Intuitively, gathers

information from the neurons that connect to it via a linear

®

L

from the layer k-1, and W
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i J

where z

activation each neuron
combination, then performs a non-linear transformation. For a
given neural network, the goal is to learn the weights among the
neurons such that the loss function is minimized. Some of the
common choices of activation functions can be sigmoid
function, hyperbolic tangent, and rectified linear unit (ReLU).
The power of NNs roots from the universal function theorem,
which guarantees that NNs with enough neurons and number
of layers can represent and approximate any complex function
given sufficient data and training time.4> In the next section, we
are going to discuss some frequently used NN algorithms.

2.2 Basic concepts of ML

2.2.1 Graph Neural Networks (GNN) Graph Neural Networks
(GNNs) are neural networks operated upon graphic data
structures. A graph can be utilized to encode information and
relationships among data points through its attributes: node
attributes, edge attributes, and global attributes. For example,
graphs can store information of molecules, where nodes can
represent individual atoms and edges can represent bonds.46
GNNs are optimizable transformations on all attributes of the
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graph with permutation invariances, i.e., the connectivity of
the graphs preserves during transformations.4” In a GNN, the
information can be embedded or processed on an edge level,
node level or a global level, which offers great flexibility to
data processing. To achieve message passing between
different parts of the graph or make predictions based on a
specific part of the graph, we normally apply a technique
called pooling. Fig. 3a exhibited an example of pooling, for
each node in the graph, one can gather information from all its
neighboring nodes and aggregate the information using an
aggregation function. Subsequently, the aggregated result is
passed through a transform function to complete one update
step of the current node. After the update, the node not only
possesses the information about itself, but also incorporates
the information from its first neighbors. We can infer that the
information is passed between nodes of the graph if such
operation is performed multiple times. Occasionally, to deal
with a large graph or account for the effects of distant nodes, a
“master node” that connects all the nodes in the graph can be
added to a GNN.

Due to its versatile functions, GNNs have been successfully
applied in both supervised and unsupervised learning
scenarios in material science, such as feature engineering of
molecules, discovery of hidden dynamics, visualization of
material databases, prediction of material properties, and
generation of force fields. Xie et al. developed a GNN to
visualize the similarities of crystals.8 They encoded the
elements as well as the lattice structure to graph data. Since
the information of the Kth-order neighbor can be described by
K operations of the GNN, they exploited the output vectors to
represent local environments of atoms. Plotting of the as-
learned vectors can then provide insights on certain patterns
from a material database. Coley et al. used GNNs to predict
major products of organic reactions based on the reactant,
reagent, and solvent species.*® They embedded the atomic
number, formal charge, bond order and other molecular
information of a reaction to a graph as an input to a GNN. For
a particular molecule, the GNN learned to calculate likelihood
scores for each bond change between each atom pair, which
was represented via the change of connectivity in a graph.
After using 410k, 30k and 40k reactions as training, validation
and testing data points, the model was compared to human
benchmark and the prediction accuracy was quite close.
Batzner et al. proposed a GNN for learning MD interatomic
potentials called E(3)-equivariant GNN.5C Since some
properties of an atomic system such as radial distribution
function and potential energies do not change under
translation or rotation transformation, this permutation
invariance naturally matches the property of an GNN. Via
subtly designed atomic embeddings and convolution layers,
their network architecture brings tremendous advantages in

This journal is © The Royal Society of Chemistry 20xx
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The min-max function reflects the adversarial relationship
2.2.2 Generative Adversarial Networks (GAN) Generative between the two networks: the goal of the discriminator is to
Adversarial Networks (GAN) consist of two networks playing maximize the prediction accuracy, whereas its “opponent” —
an adversarial game against each other. Different from a the generator, wants to confound the generated data with real
typical feed forward NN, GAN is a type of implicit generative data. The first term on the right side represents the log-
algorithm instead of a discriminative algorithm, which probability that the discriminator correctly predicts the real
generates new samples via estimating the underlying true data, and the second term represents the log-probability that
distribution from data. Concretely, GANs do not provide a discriminator correctly predicts the generated data. A
model function as the output, but rather produce “sample- successful training process should lead to the improvement of
like” data. Fig. 2b exhibits the architecture of a GAN; one both generator and discriminator, such that the generator will
network is called the “generator”, and the other network is eventually produce indistinguishable samples from the original
called “discriminator”. During the training process, the loss data set. The input of the generator network are vectors from
functions of GAN can be expressed as: 51 the latent space, which can be initialized via a Gaussian noise
This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5
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function. It should be noted that Fig. 3b is an unconditional
GAN architecture, where we don’t apply constraints for the
input space. If we want to generate samples with certain
requirements, a conditional GAN architecture can be adopted.

The emergence of GANs has sparked instantaneous
popularity in the computer vision (CV) and natural language
processing (NLP) community, where GANs demonstrated the
strong capability in image editing, 52 audio syntheses,>3 and
domain adaptation.>* Naturally, researchers have been actively
trying to incorporate GANs in material discovery, which is
typically an inverse design problem, i.e., search materials with
desired properties. Kim et al. used GANs to design zeolite
structures that have sufficient methane accessibility.>> They
encoded the lattice positions of silicon atoms, oxygen atoms
and methane potential energy into a tensor as the input for
GANs. After training the network with more than 30k zeolite
structures, the GAN were able to produce 121 candidates with
a user-desired range of 4 kJ/mol methane heat of adsorption.
Hiraide et al. applied GAN to investigate the relationship
between structure and Young’s modulus of block
copolymers.56 They collected 50 experimental images of block
copolymers and augmented the dataset via performing
operations like rotation, translation, and inversion. After
training, the GANs were able to generate promising copolymer
structures based on the target Young’s modulus, which
corresponded to a searching process in the latent space.
Besides providing insights for material design, GANs were also
able to facilitate computational modelling process. Yang et al.
applied conditional GANs to predict complex stress and strain
fields in composite materials.5” They established a database of
2k cases via finite element method (FEM). For each case, the
stress and strain field are calculated based on a 2D pattern
consisting of soft units and brittle units that have linear
plasticity and strain hardening. Subsequently, the 2D patterns
were fed to the generator network as constraints and the
strain and stress field were fed to the discriminator network.
Although the 2D patterns were a primitive representation of
composite materials, the proposed method exhibited excellent
predicting accuracy and computational efficiency.
Stieffenhofer et al. developed a GAN approach to reverse-map
coarse-grained (CG) structures to their atomistic resolution.>8
To prepare the database for training and testing, atomistic and
CG structures were obtained in MD simulations and this “fine-
to-coarse” mapping is regarded as the ground truth.
Polystyrene was employed as an example for evaluating the
performance of this back mapping approach. Giving the CG
snapshot as the conditional input for GAN, the as-trained
network successfully captured structural and energetic
properties of the polystyrene system. Remarkably, the GAN
was able to recover the equilibrated structure at different
temperatures giving the CG snapshots as the conditional
variable.
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2.2.3 Variational Autoencoders (VAE) Variational autoencoders
(VAE) are a generative model with continuous latent variables
and is a modification of an autoencoder network. VAEs consist
of two different parts: an encoder network and a decoder
network. As shown in Fig. 3¢, the encoder NN will convert
input data to a lower dimensional space, i.e., the latent space.
The decoder NN will further reconstruct or generate new data
from the latent space. Different from a plain autoencoder
network, VAEs require regularization in its latent space so that
the information is encoded into a meaningful and continuous
distribution with a mean of u and a variance of o2, which
endows VAEs with the ability to generate new data points via
sampling from this distribution. The objective for training a
VAE model is to maximize the variational lower bound (VLB):5°
LG,(p(x) = IE:z~qq,(z|x) [lnge(x|Z)]
— D1 (d,(z) [IPo(2)

Here, x is the observation, z is the hidden variable in the

latent space; pg(z) denotes the prior distribution for z,

(3)

q‘p(z|x) describes the variational posterior distribution,
Po(x|2) is the likelihood during the generative process. The
first term represents the expected reconstruction error, and it
reflects how well the model reconstructs an observation from
a sample from the variational posterior. The second term is the
Kullback-Leibler (KL) divergence between distribution q,,(z|x)
and distribution pg(2). It acts as a regularizer and pushes the
variational posterior towards the prior. During training, a
random noise variable, € is induced to the latent space to allow
backpropagation of the NN. This process is called the
reparameterization trick.60

Like GAN, VAE can be used for inverse design of materials.
In this case, a property estimation model can be incorporated
to the latent space of VAEs to allow for a direct search of
desired materials.®1 Attempts have been made for areas such
as generating biopolymer with desired affinities®2 and
polymers with certain band gap.63 Yao et al. built a material-
discovery platform empowered by a supramolecular VAE,
which allows the design of metal-organic frameworks (MOFs)
with desirable properties.®* MOFs are reticular frameworks
that are composed of organic ligands and metal ions. The
authors proposed a graph-based method to efficiently
represent the complex structures of MOFs: molecular
fragments, multi-connected metal or organic nodes, and
topologies are encoded in a tuple. To achieve property
prediction, the authors added a property component in the
decoder part using labelled data and the tuples were jointly
trained to organize the latent space around the properties of
interest. After training and optimization, the VAE was able to
predict MOF candidates from the latent space with superior
gas separation capability, which was confirmed via Monte
Carlo simulations. Beyond material searching and prediction,
VAE can also be applied to material modelling due to its ability
to learn compressed representations. Wang et al. constructed
a VAE framework that could bridge fully atomistic models to
coarse-grained models.®> The input of VAE were atomistic
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trajectories of individual gas-phase molecules, which were
compressed into the CG coordinates that can be treated as
latent variables. The output of VAE was reconstructed
atomistic coordinates from the latent space. To tune the
information learned in the latent space, the authors employed
a force regularizer (a regularization term derived from CG
force) during training. This regularization will help to obtain a
CG free-energy surface, which can be used to simulate systems
with a larger spatial and temporal scale.

2.2.4 Recurrent Neural Networks (RNN) Recurrent Neural
Networks (RNN), a class of artificial neural networks, was
developed to tailor data that is temporal in nature.% The
temporal data could naturally be treated in a recurrent
fashion; with individual data points, from the temporal
dataset, passed sequentially as the input to the recurrent cell.
The architecture gained traction in machine translation®” and
speech recognition tasks®8 in the field of natural language
processing (NLP).

In the domain of chemistry informatics, there are
numerous proposed RNN architectures for many applications
ranging from peptide design®’ and drug discovery®® due to the
sequential nature of interpreting peptides as sequences
and/or utilizing simplified molecular-input line-entry system
(SMILES) representations as sequences. Likewise, in the field of
polymer informatics, the 1-D SMILES representation of
polymers can be treated as sequential data. Fig. 3d exhibited
the architecture of an RNN, and it can be formalized as shown
in the equation below:

h, = s(WED R, | + whoyx,) (a)

Here, h: is the hidden state at time t, o is the nonlinearity
activation, x; is the input of SMILES token at time t, h:.; is the
hidden state output at the prior time step, W"" and Whx are
learnable weight matrix. The hidden state, h; is updated in a
recurrent fashion, till the end of the SMILES sequence. The
output of the hidden state could be passed on for the
supervised learning task, or the hidden state could be
formulated with a RNN decoder for unsupervised learning
tasks.

In prior work in polymer informatics, Antonina et al. used
RNN to predict the dielectric properties of polymers after
converting the SMILES representation into the binary
representation or American standard code for information
interchange (ASCII) representation.”® Ma. et al. developed the
PI11M dataset,”! currently the largest available benchmark
dataset of approximately 1 million polymers SMILES, by
utilizing an RNN architecture to generate syntactically valid
polymer-SMILES. The generative modelling task generated
new tokens by conditioning on previous subcomponents in the
SMILES sequence. Vandans et al. used RNN to identify the knot
types of polymer conformations.”’2 Other input
representations, apart from SMILES, for the NN architectures
have also been studied with data collected from MD
Simulations. Andrews et al. studied the performance of RNN
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and their variants on the behavior of energetic properties of a
liquid solution containing an aggregation of polymer-lipid
macromolecules in an organic solvent.”3 The NNs were trained
on potential energies time series of DSPE-PEG (1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-(polyethylene
glycol)namine) aggregates solvated in ethyl acetate developed
through MD simulations. Semine et al. used LSTM, a variant of
RNN, to predict the optical spectra using coarse-grained
models.”* The RNN input consisted of a vector of 29
intermonomer dihedral angles; and the output pair being the
excited energy relative to the preceding state (j - 1)th state i.e.
(Ej— Eja).

Although RNN is widely used in cheminformatics, the
potential usage of RNN and its respective variants, gated
recurrent unit (GRU) and long short-term memory (LSTM), are
lacking due to the limited data available in the domain of
polymer informatics. More recent work uses transformers to
learn meaningful contextual representations from the
polymer-SMILES.

2.2.5 Transformers Recurrent architectures of GRU, LSTM, and
RNN involve generating the current hidden state, hy, by
considering prior hidden states, h:1. This recursively occurs
until the end of the SMILES sequence. However, this
sequential approach results in memory constraints due to
sequential computation of each hidden state h;, with respect
to the current token.

To solve this problem, the transformer architecture was
proposed in 2017 by Vaswani et al.”> As shown in Fig. 2e, this
architecture introduced the attentional mechanism, which
helped the model to capture long-range dependencies
effectively, which can be challenging for RNNs and CNNs. The
transformers used multi-head attention to determine the
attention of each token in parallel, with respect to remaining
tokens in the SMILES representations. Furthermore, given the
challenges of collecting labeled data in cheminformatics and
polymer informatics, transformers offer the flexibility of
learning representation from large scale unlabeled SMILES
data.

Various transformer models such as bidirectional encoder
representations from transformers (BERT),”6 robustly
optimized BERT-pretraining approach (RoBERTa),’” and
bidirectional auto-regressive transformers (BART)’8 have been
developed as effective methods for pre-training on unlabeled
data and fine tuning on downstream task performance. In
cheminformatics, various transformer architectures have been
used for improvising the downstream task performance.
Chemformer”® utilized the BART model for sequence-to-
sequence and discriminative cheminformatics tasks. The BART
architecture utilized the transformer encoder and decoder.
The encoder is provided with the Masked SMILES token, and
the decoder is provided with the encoder SMILES sequences
that are right shifted. Thus, the output of the decoder
produces a distribution over the SMILES vocabulary.
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ChemBERTa utilized the RoBERTa transformer architecture for
masked language modeling (MLM).80 The authors evaluated
the effect of pre-training transformers by replacing SMILES
with self-referencing embedded strings (SELFIES)
representation. The authors also studied different tokenization
strategies of Byte-Pair Encoder and the customer SMILES
tokenizer as input to the RoBERTa architecture. The results
from the paper highlighted how increasing pre-training data
set size for the unsupervised learning task improved the
downstream task performance.

Whilst recent trends have seen transformers being utilized
in cheminformatics, not until very recently were transformers
applied in the domain of polymer informatics. TransPolymer
pretrained the PI1M database on the RoBERTa transformer
architecture for MLM.81 The inference or downstream task
resulted in the ability to predict various polymer properties,
including polymer conductivity, band gap, dielectric constant,
refractive index, and power efficiency. PolyBERT used 13,000
synthesized polymers and the breaking retrosynthetically
interesting chemical substructures (BRICS) composition to
generate 100 million hypothetical polymers.82 These polymers-
SMILES were then trained on the BERT architecture and the
resulting embeddings from the self-attention bidirectional
transformer encoder were fed to the downstream task
performance. The inference tasks were based on polymer
thermal, thermodynamic, electronic, optical, mechanical, and
permeability properties.

2.2.6 Gaussian Processes Gaussian processes (GPs) are a
machine learning method and can be applied to solve
regression, classification, and clustering problems.83 A GP is a
collection of random variables, such that any finite number of
the variables have a joint Gaussian distribution.84 It can be
denoted as follow:
f(x) ~ GP(m(x),k(x,x)) (5)

where f(x) is a real process, m(x) is the mean function and k (x,
x') is called the covariance function or kernel function. GPs
perform very well for regression problems with small training
data sizes. For a regression task, the joint Gaussian distribution
is modeled via computing the covariance matrix. The goal is to
model the prediction at test points, which is essentially the
joint distribution conditioned on the training data and testing
input. Therefore, the selection of a proper kernel, k, and the
tuning of kernel parameters are vital for a GP. There are
multiple kernel functions available, such as radial function
basis (RBF) kernel, exponential kernel, sigmoid kernel, periodic
kernel, and linear kernel. A good kernel and corresponding
parameters should lead to low error in the validation dataset.
Fig. 3f depicts how a predicted function is generated from GP
based on the training data points. As indicated in the shaded
area, the GP also provides additional information about the
uncertainty for the predicted function.

GPs are predominantly used for regression tasks in a
supervised manner for material predicting and screening
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tasks.85-87 Chen et al. employed GPs with an RBF kernel to
construct frequency-dependent dielectric models for polymer
materials.88 They utilized a database containing 1210 dielectric
constant values measured at different frequencies for 738
polymers. A hierarchical feature fingerprint is used to capture
the polymer structure. Following by a feature engineering
process, each polymer is converted to a unique 412-
dimensional feature vector. The authors then trained a GP
regression model that can predict the dielectric constants at
different frequencies for unseen polymers. Lopez et al. utilized
GP regression to calibrate computational results to
experimental data.?? Since traditional models perform poorly
in predicting the performance of non-fullerene acceptor
devices, there is a need to predict the molecular orbital
energies more accurately. The authors used a training dataset
that is composed of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)
energies of 94 molecules. With Morgan fingerprints as
molecular representation,?® GP regression with a squared
exponential kernel was employed to correct the HOMO and
LUMO energies from theoretical calculation. The regression
model was further used to help select candidates from 51,000
molecules. Ma et al. employed GP regression in a transfer
learning scenario to study polymer dynamics.?! They used GP
regression to learn the memory function of a CG model, which
played a critical role in reproducing the entire dynamics for the
CG modeling. The GP regression established the relationship
between the time domain, the parameter space, and the
memory function. The CG model developed using the as-
trained memory function was able to transfer across a range of
parameters and reproduce the dynamic properties of the
underlying atomistic systems.

2.2.7 Support Vector Machines (SVM) Support Vector Machine
(SVM) is a classifier that finds the maximum margin separating
hyperplane among data points.?2 As shown in Fig. 3g, the data
belong to two different classes. SVM algorithm establishes a
plane that separates the data with the largest margin, which is
achieved by minimizing the loss function. This hyperplane
maximizes the SVM'’s ability to predict correct labels for
unseen examples. Without loss of generality, the mathematical
form of SVM can be written as:

BERN r
m‘;n;; max[1—y;(w'x;),0] + Ar(w) (6)

where the first term is called the hinge-loss that is related to
the distance of each data point to the plane, and the second
term is a regularization term. Beyond serving as a linear
classifier, SVM can also separate data that are not linearly
separable via introducing kernel functions. Here, a kernel
function helps to project low-dimensional data to a high
dimensional space, where it is possible to use a high
dimensional hyperplane to separate data points. The kernel
functions enable SVM to create complex decision boundaries.
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Although SVM is initially designed for classifying tasks, it can
also perform regression.?3 In this case, the hyperplane
becomes the fitting results of data points.

Due to its simple architecture and relatively low
computational cost, SVM has been applied as one of the most
common ML algorithms. Moreover, SVM is frequently used to
benchmark NNs.?425 Higuchi et al. employed SVM to predict
the glass transition temperatures of polymers.%¢ They prepared
a database consisting of 389 T, values and used in silico design
and data analysis (ISIDA) descriptors to represent polymer
fragments. SVM regression was performed to construct
models for linear homo/heteropolymers and crosslinked
polymers. Ziaee et al. adopted a modified SVM algorithm (least
square SVM) to predict the solubility of CO, under different
temperatures and pressures in various polymers.%7 They
compared the performance of several algorithms, such as NN,

This journal is © The Royal Society of Chemistry 20xx

using the same data set. The SVM model based on an RBF
kernel showed the highest predictive accuracy.

2.3 Choice of optimization method

2.3.1 Bayesian Optimization (BO) Bayesian optimization (BO) is
an approach to optimize expensive objective functions, which
commonly builds a surrogate for the objective and quantifies
the uncertainty in that surrogate using a GP regression, then
adopts an acquisition function defined from this surrogate to
decide the next possible sample.?8 Note that the surrogate
model does not necessarily have to be GP regression: most ML
regression models, e.g., NNs, and kernels can also replace the
GP regression for the design space evaluation. The core idea of
BO is to explore the design spaces by reconstructing a
surrogate model with Bayesian statistics. In a general materials
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design case, suppose there is a mapping from the
representation of the materials to their targeted properties:
X — y, where X € R", i.e., the design variables lie in an n-
dimensional space, and y € R says the output is projected as a
constant(s) representing the materials' properties, e.g.,
thermal conductivity, toughness, strength. We suppose the
general mapping can be represented as y = f(X). In GP
regression, one can create a surrogate model for such a map.
The model is updated by finding the new observation from
f(X)’s condition distribution using Bayes’ rule. More
superficially, the new observation is determined from a prior-
induced posterior, namely the acquisition function: A - R™,
determines the point in X to be evaluated through the proxy
optimization:®?

Xpest = arg max A(X) (7)

In most materials design scenarios, the acquisition function
is of less importance, where most studies employed the
expected improvement and/or upper (lower) confidence
bound.100-103 However, the evaluation of the objective, i.e. the
mapping X — y, is of key interest in most cases applying BO
for materials design. Fig. 4a showed the workflow of BO
performing closed-loop optimization with alternating inference
and planning stages via different surrogate models.104

BO is widely applied in materials design and optimization
for two reasons: (1) both experiments and the digital twin-
based simulation can all be considered as black-box function
representations. (2) Both numerical simulations and real-world
experiments are either time-consuming or expensive, hence
tailoring ad hoc structures or chemical components is
inefficient for designing materials with novel applications. By
actively searching and exploiting posterior points based on
Bayesian statistics, surrogate models can be constructed for
exploring the properties of the targeted material. For example,
by starting from sparse datasets of polymer measurements,
Kim et al. discovered polymers possessing high glass transition
temperatures with such active-learning strategies.1%> By
exploiting in silico data of covalent organic frameworks
(COF),106 Deshwal et al. demonstrated that designing
nanoporous materials using the BO framework can greatly
reduce computational resources,7 and was more efficient
than evolutionary and one-shot supervised machine learning
approaches. Moreover, Diwale et al. presented an augmented
BO method to overcome the noise issues in either experiments
or simulations.10?

Besides applications in soft nanomaterials, BO has also
been extensively applied in energy storage materials,100
microstructures of nanomechanical resonators,198 and alloy
design using multi-fidelity approaches.199.110 From the
optimization process perspective, Nakayama et al. surveyed
the use of acquisition functions and initial values in the BO
materials synthesis as a simplified 1D case.111 Bellamy et al.
used batch BO to explore a large database for use in drug
design.112 Specifically for the design of polymers, Li et al.
constructed ML surrogates for experiments and applied BO to
propose short fiber polymer designs.113 Gao et al. also used an
ML-based surrogate for the objective evaluation of BO for the
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design of polymeric membranes.114 The ML model was trained
on a map between the molecular fingerprint to targeted
properties. Importantly, Wang et al. employed CGMD
simulations assisted ML for objective screening with BO for the
design of solid polymer electrolytes of high lithium
conductivity.115 In summary, BO has been extensively applied
in inverse materials and structural design with targeted
properties, mostly employing simulation and using BO to
resolve and explore the large design space for more efficient
design processing.

2.3.2 Genetic Algorithm (GA) Genetic algorithms (GA) are
evolution-inspired computational models that use selection
and recombination operators to generate new sample points
in a search space for optimizing functions.116 GA approaches
the optimization process by constructing a set of
chromosomes to mimic genetic representation. Here, the
chromosomes can be represented as:

C = [Cq,C,,...,C] (8)
where C; can be interpreted as the data representation of
different materials. The group of chromosome sets is then
identified as population. These components of the
chromosomes within the population can then switch values,
which is identified as mutation. The mutated population can
reproduce the next population generation through switching
chromosomal components, known as crossover. Emulating
nature, the “quality” of the genes can be represented via their
fitness, which are calculated from the crossover chromosomes.
Based on the new fitness, GA selects the new population to
continue the prementioned processes iteratively for a pre-
defined number of generations. Depending on the specific
problems, the fitness calculation can vary between different
data representations. For any general materials design
problems, we may denote the input space as R™, and the
projected output lies in R. The GA-identified fitness resides in
the R space, which we may denote as F. During the selection
process, assuming a positive fitness function, the probability of
selecting a specific chromosome Cp,, can be written as:117
FCm) | 9)

PCn) = |5, 7 (c

Fig. 4b demonstrated the steps involved in GA for polymer
design. Taking designing soft polyelectrolytes for high electrical
conductivity as a thought experiment: the input could be word
embedding polymer representations from SMILES,118
molecular simulation atomic coordinates, or images
representing the molecules. The output could be the electrical
conductivity as a constant. The simulation can then be
represented as a map M: R™ — R. Under this scenario, the
GA tries to maximize the constant in output space and take the
input space as chromosomes. Through constructing
populations, i.e., running many simulations to generate a set
of M; crossover and mutate the chromosome; calculate the
corresponding F; and selecting new population for the new
loops, the optimal polyelectrolyte can then be selected. Similar
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strategies have been widely applied in polymer design.
Meenakshisundaram et al. designed copolymer compatibilizers
from MD simulations and GA.11° Kim et al. adopted GP
regression to build up surrogate models that map the polymer
fingerprints to targeted properties.120 They used such
surrogates for faster evaluation of fitness. Coupling GP
regression and GA, they filter polymers with high glass
transition temperatures and high bandgaps through a multi-
objective approach. Similarly, the same research group used
GA with five different ML surrogate models for targeted
properties to design polymers for energy storage.121

The same group developed a series of GA-enabled
polymeric design frameworks. Early GA studies in disordered
materials can be traced back to the 90s,'22 where GA was used
in minimizing the energy in MD simulations. GA were used
more broadly in materials science in the 2000s. Kim et al.
applied GA to search for alloy semiconductors with target
band structure properties.123 Similarly, Dudiy and Zunger used
GA to search for random structures of semiconductor alloys.124
At the same time, contributions to applying GA for polymer
design emerged. Roy et al. leveraged NNs to create surrogate
models that map polymer material representations to their
properties.12> They then encode such NNs as fitness functions
for GA for optimal polymer design coupled with Markov state
modeling techniques. Similar strategies were widely adopted
to design monomers.117 Manos et al. use GA coupled with
simplified multi-objective fitness functions to design single-
mode polymer optical fibers.126 Similar strategies have also
been applied for polymer filtration design optimization.127
Ramprasad and coworkers contributed much to the recent
development of GA for polymer informatics. The group
adopted the strategy of evolutionary algorithms to predict
polymeric crystal structures back in 2014,103 then proposed an
ab initio polymeric properties database and applied GA as a
prototype study for polymer design in 2016.128 Thenceforth,
the group developed a series of works combining ML and GA
for polymer design.

2.3.3 Particle Swarm Optimization (PSO) Particle swarm
optimization (PSO) is a population-based optimization method
inspired by the group behavior of animals that is also initiated
with random solutions to search for optimum by updating
generations like other evolutionary algorithms.122 Similar to
GA, the algorithm is initialized by a set of populations, as
particles, striving to approach the global optimal. Suppose
there are p initial particles, and the position of particle i is
denoted as X(t) = [X4 (), X5(t), ..., X5(t)], where tis the
iterations (or steps); and n is the dimensions of the design
space. The velocity of each particle can be written as Vi(t) =
[Vg(t), V5 (D), ...,V;'l(t)]. We can hence write the update of
the particles' positions and velocities:

Xi(t+1) =X +Vi(t+1) (10.1)
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Vi(t+1) = wVi(t) + c,R,(pbest’ — Xi(t))
+ c;R,(gbestt — Xi(t))
where c1 and c¢; are parameters given in the PSO algorithm.

(10.2)

pbestt is the position that gives the best value ever explored
by particle i, gbest! is the best value that explored by all the
particles in the swarm.130.131 The algorithm explores the design
space via the updated motion of the particles for the
optimization goal. Fig. 4c provides a visual presentation of how
the particles search in the design space for block copolymers.
Recall the previous materials design example: different
particles Xican here be interpreted as different combinations
of polymeric chains; the design space can be viewed as the
mapping from different polymers to their corresponding
targeted properties, and PSO uses particles to explore this
design space through updating from their previous locations
and velocities. One expects these particles to be clustered
around the global optimal, e.g., the maximal electrical
conductivity.

Early attempts to apply PSO in materials design occurs
around the 2010s: Shokooh-Saremi and Magnusson use PSO
for the design of optical diffraction gratings and benchmarked
with GA.132 Interestingly, PSO can be employed for the
structural prediction of crystals and layered materials.133.134
More generally, with very similar approaches, PSO has been
adopted to design functionally graded materials,13> gear
train,36 truss-structures,37 etc.

More recently, PSO was applied to design polymers with
the help of different polymeric modeling techniques. Khadilkar
et al. utilized self-consistent field (SCF) theory as a forward
prediction engine and coupled SCF with PSO to identify and
design block copolymers and copolymer alloys that self-
assemble into a targeted structure.138 Kumar et al. employed
gradient boosting with decision trees for the forward modeling
of poly(2-oxazoline) and applied PSO for inverse modeling as
the workflow for efficient polymer predictive design.13° Both
Francisco et al. and Soepangkat et al. used PSO for carbon
fiber reinforced polymer design,140.141 in which Francisco et al.
used finite element methods for fitness calculations in PSO and
Soepangkat et al. trained a NN with experimental data as a
surrogate for the physical responses in fitness evaluations. For
the easier application of PSO in the design of novel functional
soft materials, e.g., block copolymers, Case et al. created an
open-source platform with PSO and existed open-source SCF
theory software for the inverse design of block copolymers.142
Using the strategy of coupling PSO and SCF, Tsai and
Fredrickson presented a case study of designing globally stable
and low-lying metastable mesophases of block copolymers.143

2.4 Case study

In the preceding sections, we have mentioned a series of ML
algorithms and optimization methods and how they can be
applied to broad topics for materials design and polymer
informatics. These topics demonstrate the effectiveness of
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of employing CG and BO for design of PEO-based SPEs. Image was adapted with permission from ref. 115.
data-driven approach. In this section, we delve into specific and carbon nanotubes mixtures under different temperatures.
case studies, focusing on the practical application of these During training, the chemical compositions and temperatures
algorithms to SPE systems with experimental data. were used as inputs and ionic conductivities as outputs. The

Back in 2011, feed forward NN was applied to fit the ionic simple NN was able to predict the ionic conductivity of such a

conductivity data obtained via experiments.'#* Ibrahim et al. system well, as the predicted value can be further validated
measured the conductivity of PEO, LiPFs, ethylene carbonate with new experiments.
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Hatakeyama-Sato et al. employed ML methods to explore

superionic glass-type SPEs with aromatic structures. They
constructed a database including 10* entries about ionic
conductivity. First, GNN was utilized to truncate molecular
descriptors and extract useful features.34 The NN is pretrained
on a database of randomly generated de novo polymers and
monomeric compounds. The goal of this pretraining is to predict
2000 molecular descriptors from these compounds using only
32-dimensional vectors. This vector was then used to represent
the feature of each compound for further ML processes.
Subsequently, GP was used for establishing the relationship
between chemical features and ionic conductivity. GP was able
to output conductivity values along with confidence intervals.
Combining GNN and GP, the authors successfully yielded glass-
type polymer complexes with high conductivity that was later
validated via experiments.
Bradford et al. built a chemistry-informed ML model that could
predict SPE ionic conductivity based on the electrolyte and
composition.'#> They gathered data set of SPE ionic conductivity
values from 217 experimental publications. They adopted a
message passing NN, which is a special type of GNN, to learn
optimal representations of the molecular components. The
input of the NN took vectorized SPE features including polymer
structure, salt structure, polymer molecular weight, salt
concentration and temperature. The authors encoded the
Arrhenius equation, which describes temperature dependence
of ionic conductivity, into the readout layer of the NN and found
that this chemically informed layer would increase prediction
accuracy of the NN. After training the NN, they used the model
to screen over 20,000 potential SPEs composed of commonly
used lithium salts with synthetically accessible polymers and
identified promising candidates. The predicted ionic
conductivity exhibited good agreement with two types of in-
house synthesized polymers. Furthermore, they extended their
predictions to encompass various anions within PEO and
poly(trimethylene carbonate), showcasing the model's
effectiveness in identifying descriptors for solid polymer
electrolyte (SPE) ionic conductivity.

3 ML aided polymer computation

3.1 Density Functional Theory (DFT)

Density Functional Theory (DFT) is an ab initio quantum
mechanical (QM) method widely used to elucidate material
properties, such as electronic band structures, vibrational
frequencies, and magnetic configuration, to name a few,
through various codes or algorithms. Instead of solving the
many-body Schrédinger equation, the reformulated Kohn-Sham
equationl4® in DFT gives self-consistent solutions by recasting
the multi-electron interactions as a single electron system with
the approximate exchange-correlation functional, as shown in
the following:

h
|- 50272 + Vere @) + Vi@ + Ve @) | i)
= €Y (r)

(11)
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where —%Vz is the kinetic energy operator for electron
kinetic energies, V,,:(r) is the Coulomb potential for electron-
nuclei interactions, V,(r) is the Hartree potential describing
the Coulomb potential from the electron charge density, and
Vyc(r) is the exchange-correlation functional with all QM
effects. Commonly used functionals include VWN,147 PW91,148
MO06-class,14° wB97-series, >0 B3LYP,151.152 etc., belonging to
different  families—linear-density = approximation  (LDA),
generalized gradient approximations (GGA), meta-GGA, and
hyper-GGA, etc., with their strengths and weakness. Many DFT
textbooks and articles have provided valuable insights on
selecting functionals and basis sets with examples of
applications.153-155

In solid polymer electrolytes, DFT can estimate, for example,
energy-related changes and local ion-polymer interactions in
polymeric matrices for electrochemical stability window and
ion migration,156.157 as well as band gap and molecular orbital
for electronic charge transport properties.158159 Researchers
can take advantage of accuracy and are also eligible for
computing various materials in DFT calculations since no
external potential or force fields are required as input. Despite
this, the time and length scales of the systems for DFT
calculations, in general, are small. In contrast, the systems of
polymer electrolytes are always large and complex with
macromolecular solvents, leading to high computational costs.
An efficient way to avoid this side effect is to combine data-
driven ML methods discussed in previous sections. ML-aided
DFT frameworks were reviewed by Mannodi-Kanakkithodi et al.
and Schleder et al.160.161 Specifically, fully exploiting the
development of the extensive DFT datasets for training ML
models shows great potential to enable the design and
discovery of novel electrolyte systems containing polymer and
lithium or other alkali metal compounds with wide
electrochemical stability window, high ionic conductivity, and
good thermal and mechanical stability in a fraction of the
time.27,160,162,163 For example, Li et al. developed a ML workflow
embedded with DFT and GNN to discover promising ionic liquids
as additives for SPEs. DFT was employed to calculate the
training data of electrochemical stability window based on
HOMO/LUMO theory. The authors further verified a subset of
selected candidates and measured the performance using
experiments.164 Besides, high-throughput DFT databases for
small molecules or compounds have increased considerably in
recent years. Examples are the Materials Projectl6>
https://materialsproject.org/ containing DFT
structures and electronic properties for more than 140,000
materials; AFLOWLIB6¢ aflowlib.org/ comprising phase
diagrams, electronic structure, and magnetic properties of
150,000 alloys and 13,000 inorganic compounds; the Open
Quantum Materials Database (OQMD)7 https://ogmd.org/
consisting of nearly 300,000 DFT total energy calculations of
inorganic crystal structure; and the Organic Materials Database
(OMDB)€8 https://omdb.mathub.io/ with thousands of Kohn-
Sham electronic band structures. Many other such databases
were reviewed recently.161169 |n addition to the existing
databases, ML models can be built upon freshly generated data.
The size of the dataset depends on the complexity of ML models

calculated
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and algorithms, the number of features and input diversity, the
expected prediction error, and others, but in general, the more,
the better. Different sizes of the generated datasets have been
used in various DFT+ML studies, ranging from 102 to 10°
samples,1% but are commonly relatively small due to the high
computational costs, which can dominate most of the time in a
project.

To take advantage of the accuracy of DFT calculations but
circumvent the limitations of simulation scales, ML potentials
(MLPs) are used to bridge the gap between QM and classical
force fields. Fig. 5a manifested that ML models can map from a
three-dimensional configuration of atoms to energies and
forces using fingerprints such as atom centered symmetry
functions.170 This will enable large-scale atomic simulations with
dynamic properties and fill in the blanks whenever there are no
empirical force fields available, which is beneficial for solid
polymer electrolyte systems. Compared to ab initio MD (AIMD)
or Born—Oppenheimer MD that extract potential energy directly
from DFT or other QM methods at every step,17! MLPs
interpolate ab initio calculations by training the ab initio or DFT
dataset and thus extend the system size and time scale in MD
simulations. For example, Musaelian et al. recently introduced
a deep NN interatomic potential architecture to achieve
simultaneously accurate and computationally efficient
parameterization of PES. In one of their testing cases, the
authors simulated the Li-ion migration in a LisPO4 electrolyte.
Compared to AIMD, a mean absolute error in energies of 1.7
meV/atom was obtained for the proposed MLP. The authors
further demonstrated the superior scaling ability of this method
by running a system containing 421,824 atoms on multiple
GPUs.172 Fu et al. benchmarked a collection of state-of-the-art
MLPs under different practical scenarios. Apart from force and
energy prediction errors, the authors suggested other metrics
to evaluate MLPs such as radial distribution function (RDF) and
diffusivity coefficient for LiPS dataset.173 A more comprehensive
review of recent advances in MLPs was given elsewhere.174-176
Generally, MLPs require an input of descriptors transformed
from the atomic coordinates and output the potential energy
mapped from an ML model. A descriptor needs to be invariant
under translation, rotation, or the permutation of atoms, and
independent of the system size.177.178 One of the most widely
used structural descriptors is a set of symmetry functions of
each atom initially developed by Behler and Parrinello, which
contains radial and angular parts to capture the pair and triplet
properties.177.179 Those symmetry functions reflect the atomic
environment that provides a unique description of the atomic
positions.17¢ Many subsequent models revolved around the
improvements to symmetry functions. For example, the
ANAKIN-ME (ANI) model180.181 dijvide the atomic environment
based on atom types to accelerate the sampling of MLP surface;
the Charge Equilibration Neural Network Technique (CENT)82-
184 redistribute charge density in the system to environment-
dependent atomic electronegativities for considering long-
range interaction; and the weighted symmetry functions
(WACSF) introduce element-dependent weighting functions to
simplify the system with a large number of different chemical
elements.18> Besides symmetry functions, many other input
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descriptors, including the bispectrum of the neighbor
density,186 Smooth Overlap of Atomic Positions (SOAP),187 and
the Coulomb matrix,188 are designed in various models, which
are detailed in Behler’s review.18%.190 |n fact, all the descriptors
try to keep the invariances or preserve the “symmetries” in a
system while including more physical properties.

ML methods leverage purely mathematical structures, and
the most popular algorithms for constructing MLPs are NN- and
kernel-based methods. In NN-based MLPs, the output of the NN
is the total energies of the system by summing each atom’s
energy predicted by each fully connected NN through
minimizing the loss function containing the energy error1so.184
or, in addition, force errorl8L19L192 or even additional stress
error193,194 gnd charge errorl®> between AIMD and MLP
simulations. Kernel-based methods, e.g., using GP, provide the
best energy estimates by weighted summing of the energies
over the reference configurations through kernels. Uncertainty
quantification?® and active learning!®’ can be employed to
construct the training dataset with the required size and
accuracy by enabling automated model correction and
prediction ability improvement.174 Here, we briefly introduce
some latest packages and platforms for MLPs. For example, ANI
model180.181 js an NN-based MLP, applying the Behler-Parrinello
method!’7 to construct NN for organic molecules but with
modified symmetry functions to build single-atom atomic
environment vectors as a molecular representation. The latest
ANI-2x has been trained to seven elements (H, C, N, O, F, Cl, S),
making up 90% of drug-like molecules. The open-source
implementation of ANI is available in PyTorch.19819
https://github.com/aigm/torchani  with  the
dataset.200 Deep Potential Molecular Dynamics (DPMD) method
is another NN-based MLP that can be implemented using the
DeePMD-kit package
https://github.com/deepmodeling/deepmd-kit.194.201 |[n DPMD,
the input descriptors are the local Cartesian coordinate frame
for each atom, thus overcoming the limitations associated with
auxiliary quantities in symmetry functions.1%4 Other NN-based

accessible

MLPs include the TensorMol model11
https://github.com/jparkhill/TensorMol that captures long-
range electrostatics and the AlIMNet mode|202

https://github.com/aigm/aimnet that uses atomic feature
vectors to record the interactions of neighboring atoms and
updates by passing messages through the NN. Besides NN-
based MLPs, Gaussian Approximation Potentials (GAP)186 apply
the GP approach to construct MLPs for high-dimensional
systems, and SOAP kernell87 is widely used to train the
potential. The code is implemented in the QUIP package203
https://github.com/libAtoms/QUIP with a brief tutorial
introduction.24 Furthermore, the RuNNer Neural Network
Energy Representation177,205
https://theochemgoettingen.gitlab.io/RuNNer/1.3/ is a
Fortran-based framework implementing the latest version of
Behler-Parrinello-type high-dimensional NN potentials with the
4G datasets?06
https://archive.materialscloud.org/record/2020.137, and Open
Knowledgebase of Interatomic Models (OpenKIM)207
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https://openkim.org is a repository of interatomic potentials
containing various pre-trained MLPs.

Although MLPs have been used to successfully simulate a
more extensive system accompanied by continuing
developments in algorithms and computing hardware and
software, it is still difficult to apply MLPs to systems with many
degrees of freedom due to the complexities associated with
interpolations. In other words, if a system travels to a new
configuration outside the PES constructed by the training
dataset, the MLPs may give us inaccurate energy states, which
require a broader training dataset that can cover enough points
on the PES and needs more computational resources.

3.2 Molecular Dynamics (MD) Simulations

The Born-Oppenheimer approximation aggregates the effects
from electrons surrounding the atomic nuclei and simplifies
the QM laws governing the interactions between atoms using
the laws of Newtonian mechanics.17¢ This approximation
reduces the amount of computation needed for a simulation
by orders of magnitudes. We have discussed how ML can help
to extract classical PES from QM calculations to enable fast
and accurate MD simulations. Indeed, MD makes it possible to
simulate material systems with atomistic-level details at
micrometers in length scale and microseconds in time scale.
Therefore, with MD, it is not hard to obtain atomistic
trajectories spanning relatively longer time scale compared to
QM computations. ML has been applied to analyze such
trajectories to extract knowledge about both the energetic and
kinetic aspects of the atomistic system.208 Recently, there also
has been efforts to apply ML to learn the mapping between
the configuration and the mechanical properties of polymer
composites.20?

ML to construct free energy surfaces As the compositions and
structures of SPEs become increasingly sophisticated, the
investigation of ion transport kinetics within SPEs and across
SPE-electrode interface are growing in importance.210-212
While PES describes the potential energy landscape of a
system and can be primarily used for structural optimizations
of molecules (e.g., the rearrangements between isomers), the
free energy surface (FES) includes information of both
potential energy and entropy contributions and can be used
for assessing kinetics and thermodynamics of bulk molecular
systems (e.g., protein folding) at a given temperature.213.214
Currently, there’s ample research opportunities for
constructing FES of SPE systems.

An accurate description of the free energy is key to
understanding complex systems that have many intrinsic
degrees of freedom.215.216 The relevant configurations of such
systems and the transition between them can be captured by
reducing the high-dimensional PES to a low-dimensional FES.
Concretely, for a large system that contains N atoms, it
requires roughly 3N degrees of freedom to describe the PES.
Yet, we aim to employ collective coordinates with significantly
fewer dimensions than 3N to encode information.2%% This is
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particularly helpful for description of the chemical processes
and the validation of computational models.215.217

Accurate generation of free energies from simulation is an
outstanding challenge.?18.219 |n practice, free energy is usually
computed as discrete data points by probing individual
molecular configurations, rather than as a continuous analytic
function.216 Suppose for a molecule with atom positions x in
the Cartesian coordinates, a set of collective variables is used
to represent the relevant degrees of freedom. In practice, the
collective variables are chosen based on chemical or physical
intuition such that they encode some important structural
information in a molecule such as the length of some critical
chemical bond or the backbone dihedral angles of an organic
compound.218,220

Given an MD trajectory labeled with free energy estimation
or the gradient of the free energy, an ML model learns a
function defined on the collective variable space to reconstruct
the FES using either the free energy loss or the free energy
gradient loss.2%8 Kernel methods such as GP regression221,222
and deep NNs have been used to this end.216.218,222 The |earned
model can provide in-depth knowledge of the system such as
differences of free energy between different states or even the
ensemble averages of certain physical observables.218
ML to construct kinetic models From the kinetic aspect, ML
also helps to construct Markov state models (MSM) from MD
trajectories to understand the dynamical processes that
govern the performance of functional materials for better
material design.

ML-based approaches are based on several mathematical
achievements. One of the most fundamental results that
facilitates the ML practice in this area of study is the Koopman
theory. This theory states that there exists a function y that
maps the local configuration of atoms x in MD to a feature
space x(x) in which the dynamics can be approximated using a
linear transition matrix:31

X(xeie) = KM x (%) (12)
where K is the Koopman operator. In recent years, the VAMP
theory provides a powerful tool to measure the consistency
between learned singular functions of K and the underlying
true ones, which is used constructively when defining the loss
function for training purposes.*3.223 Moreover, the atomistic
structures of materials, either organic or inorganic, can be
understood in a graph theoretic way, because they are mostly
defined by particles (nodes) and interactions (edges).224-227
Therefore, the graph convolutional networks (GCN) have
become a natural class of tools to learn the MSM from the MD
trajectories. GCN is a direct generalization of convolutional
neural networks (CNN) to graph-structured data.228.229

In a pioneering work,31 researchers study the dynamics of
lithium ions in solid polymer electrolytes using MSM built by
graph convolutional NNs. As shown in Fig. 5b, a four-state
MSM identifies three relaxation processes, and the slowest
relaxation is shown to involve the transport of a Li-ion into and
out of a polyethylene oxide coordinated environment. The
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authors remark that despite that the relaxation processes of
the solid polymer electrolytes have been extensively studied,
the machine-learned MSM is still insightful because it provides
the exact atomic-scale dynamics related to these relaxations,
which can be further related to ionic conductivity.

ML to aid simulation-driven design ML can also be aggregated
with MD simulations to understand the relation between the
chemical configuration and the mechanical properties of
polymeric composites. The material structure-property
mapping can be sampled using a relatively small amount of MD
simulations. After sampling, ML can be applied to learn such
maps and predict the properties of unseen structures.

For example, optimizing the functionalization of carbon
nanotubes (CNT) in the polymer matrix is a possible route to
improve the interfacial shear strength in such composites.230
This is because the functionalization improves the load transfer
between the CNT and the matrix, while it also disrupts the
pristine CNT lattice structure that is responsible for the superior
properties of the CNT.231 Therefore, there could be some
functionalization state that maximizes the interfacial shearing
strength. A recent work uses ML to aid the MD-driven design of
carbon nanotube (CNT)-polymer composite.20® The design
variable is the covalent functionalization of the CNT atoms by
creating covalent bonds between the polymer and the CNT in
the simulations. Pullout tests are performed to sample the
mapping between the material design and the critical pullout
force. This work uses the Radial Distribution Function (RDF)
along with several structural descriptors as the feature
representation of the CNT. A CNN trained on the feature space
and the observed critical pullout force is shown to have
satisfactory accuracy. Such models can be even more powerful
if integrated into optimization frameworks to maximize the
desired mechanical properties. Another recent work via Xie et
al. developed a multitask GNN to accelerate MD simulation of
LiTFSI/SPE systems.232 The NN is trained on a large number of
short, unconverged MD simulations and a small number of long,
converged MD simulations. The trained NN is able to reduce
errors and make predictions based on short MD simulations.
The developed ML model is employed to perform an extensive
screening of potential polymer electrolytes. An open dataset
from the model was generated for the design of SPEs.

3.3 Coarse-grain (CG) modelling

Various CG models have been employed to construct SPEs. The
most well-developed model is Kremer-Grest (K-G) model, which is
suitable for studying dynamic,233 and mechanical properties of
polymer melts.234235 K-G model describes a polymer chain as a
string of hard-sphere beads connected via springs. The length and
the strength of the springs are related to the Kuhn length and the
stiffness of the polymers. The bonded interactions are usually
described by the finitely extensible nonlinear elastic (FENE)
potential:
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The non-bonded interactions are usually described by the12-6
Lennard-Jones (LJ) potential:
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The K-G model has been employed to investigate the self-

(13)

(14)

assembly,23> correlation between microstructure and ionic
mobility,23¢ electric field effects on the polymer aggregation,237 etc.
A variant of K-G bead-spring model was developed by Kumar et
al.238 They modeled poly(ethylene oxide) (PEO) and embedded
Stockmayer dipoles in each bead that could better capture the local
electrostatic interactions between Li-ions and PEO.

An alternative well-known CG model is dissipative particles
dynamics (DPD). In the late 1990s, Groot et al. developed DPD
simulation that provided a new approach to perform large scale MD
simulation.23 Different from the relatively simple L) non-bonded
interaction, the DPD defines three non-bonded interaction terms
for each pair-wise particles within a cut-off distance r.:

fi =Z(F5.+F3.+F§.

(15.1)
j=i
Fjj = STl g =1 (15.2)
Y 0 (ry > 1)
Fg' = —ywP (ry) (7 - viTy (15.3)
Fﬁ- = ‘TWR(Tij)eijf‘ij (15.4)

As shown in the above equations, the total non-bonded
force acting on the ith particle equals to the sum of the
conservative force Fg, the dissipative force Fg, and the random
force Fi’]?-. The Fﬁ is a soft repulsion force where aj represents
the maximum repulsive interaction between the ith and jth
particle. The value of a; was benchmarked by the
compressibility of water,?3° and the aj; for other molecules were
mapped onto Flory-Huggins parameters, which can be then
derived by the solubility or mixing energy.240.241 The dissipation
constant y and the noise amplitude o are correlated by g =

2ykpT. The wP (r;;) and wR(r;;) are functions solely depend
on the distance rj. In the random force equation, J;;is a random
variable obeying Gaussian distribution. Coupling with the
smeared charge approximation, DPD model have succeeded in
study the electrostatic interaction242 and the ion conductivity243
of the polyelectrolyte systems.

It should be noted that both K-G model and DPD model are
considered top-down CG approaches, the explicitly
proposed simple potentials are tuned to match macroscopic
thermodynamic properties.2** In contrast, bottom-up CG

ie.,

approaches employ more complex potentials that are
parameterized with information from atomically detailed
simulations. Therefore, bottom-up CG can be better at

capturing local interactions, such as polarized effect in SPEs, and
preserving chemical specificity.2*> There are some recent
reviews that have discussed bottom-up CG approaches in more
detail.246.247
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The CG model broadens the temporal and spatial scales of
the simulation, but also introduces uncertain CG parameters
that are flexibly tunable within a reasonably range. Therefore,
Grossman et al. exploited the CG parameter space with the help
of BO to design a PEO-based SPEs having higher Li-ion
conductivity.115 Fig. 5c illustrates the workflow of incorporating
BO with CG for such design process. In their CG model, a Class2
force field and the LJ 12-6 potential were adopted to describe
bonding and non-bonding interactions, respectively.
Specifically, they designated all CG parameters into three
categories: anion-related parameters (anion size, salt
concentration, etc), parameters related to the polymer chain
(monomer size, etc), parameters related to the secondary
structure (molecular size, etc). Clearly, the CG parameter space
is a complex high-dimensional space. Bayesian optimization
constructed a continuous function mapping the CG parameter
space to a one-dimensional space (Li-ion conductivity). They
chose Gaussian process prior to describe the function. Posterior
was evaluated based on the prior and the current CG simulation
data. The next trial point was determined by an acquisition
function, i.e., lower confidence bound modified by the local
penalization method. Compared with random search, BO-
assisted CG found a design plan to vyield higher Li-ion
conductivity within shorter iterations.

ML was conventionally employed to predict the CG force
field, as the example mentioned above, while a novel idea was
proposed to directly predict the dynamics of CG systems.248 |t
overcame two challenges: learning-based force field becomes
unstable after a long timescale simulation; learning-based force
field limits to specific systems. They first learned atom
embedding information at the fully atomistic level using an
embedding GNN. Subsequently, they coarse grained the system
using graph clustering. Finally, the dynamics, i.e., time-
integrated acceleration was learned at the CG scale by a
dynamics GNN. Using this scheme, just a set of short MD
trajectories are needed, which greatly reduces the
computational cost. They validated the scheme on two realistic
scenarios, polymers in implicit solvent and Li-ion SPEs.

4 Conclusions and Outlook

The macroscopic properties of SPEs originate from the intricate
interplays among various physical parameters across multiple
scales. ML can provide an alternative shortcut to circumvent the
challenge of fully understanding those complex mechanisms
and establish a surrogate model from input features to output
properties. In the above sections, we have reviewed different
ML algorithms and their applications to SPE research, ranging
from screening, discovery, and optimization of novel SPEs to
generating force field. We highlighted how ML algorithms could
be incorporated with theory-based modelling techniques and
the new framework would improve computation efficiency and
scalability. As this area is growing rapidly, there are several
emerging challenges that require to be addressed. (i) The open-
source databases with extensive and detailed polymer data
entries are in pressing demand. Data-driven approaches rely
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highly on data of good-quality to avoid the so called “garbage
in, garbage out” scenario. Although some databases have
contributed substantially to building ML models for SPEs, it is
yet difficult to directly find properties such as ionic
conductivities or electrochemical stability window for a vast
majority of polymers. Moreover, it would be ideal for databases
to include more information about copolymers, branched
polymers, crosslinked polymers, and polymer composites since
these polymer systems are regarded as crucial strategies for
optimizing ionic conductivities and mechanical properties. One
way to achieve such goals is to create live databases that are
friendly for users to access and edit. Efforts have been made to
promote data sharing for both experimentalists and theorists in
public repository.163249.250  With such repositories,
experimentalists are expected to document accurate
experimental data about SPEs such as ionic conductivity,
mechanical properties, and morphological information.
Meanwhile, computational chemists are expected to modify
existing descriptors or design new descriptors that are
compatible for more complicated polymer systems that can be
beneficial for establishing a more comprehensive database. (ii)
Studies about evaluating and comparing the performance of
different ML algorithms on certain tasks such as training MLPs
are still limited. On the one hand, ML community has developed
plenty of algorithms that can be used interchangeably for the
same problem with pros and cons, and the evolution of ML
algorithms is still at a swift pace. On the other hand, some ML
architectures have lots of hyperparameters and can be very
flexible. We are hoping that more studies can investigate
benchmarks for various ML algorithms across different use
cases and report nuances during hyperparameter tuning, which
can guide future researchers to build their own ML pipelines.
Apparently, having standardized and wildly acknowledged
databases will greatly facilitate benchmarking process.
Moreover, it is essential for computational chemists to open
access to their code for public use, thereby reducing the barriers
to implementing ML models. (iii) The ambition towards
achieving fully automated SPE development involves the
integration of theory-based modeling, machine learning
algorithms, and high-throughput experimentation. High-
throughput experimentation has been employed in areas such
as drug discovery and polymer syntheses.251.252 Especially for
generative models, high-throughput experimentation can
quickly validate the accuracy and effectiveness of the results
output by the theoretical computation plus ML framework,
since the generative models may often come up with samples
that are never seen before. Furthermore, high-throughput
experimentation can bestow a data-driven approach with
improved error tolerance. With high-throughput
experimentation, the researchers can not only test the optimal
selected by the model, but also test a subset of the candidates
that have close scores to the optimal. Once more, a robust
partnership between experimentalists and computational
chemists remains essential in crafting such workflows.
Computational chemists can assist experimentalists in designing
experiments and ensure that experiments are efficient, cover a
wide parameter space, and provide meaningful data.
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Concurrently, experimentalists can help computational
chemists gain a deep understanding of SPEs to adjust and
improve their models. In a nutshell, though still in the early
stage, the success of ML in solving a variety of challenges in SPEs
indicates the promising potential of this computational and
data-driven technique for better SPEs in the future.
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