
  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 
Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

 

Computational and data-driven modelling of solid polymer 
electrolytes 
Kaiyang Wang,a Haoyuan Shi,b Tianjiao Li,b Liming Zhao,b Hanfeng Zhai,b Deepa Korania and Jingjie 
Yeo*ab 

Solid polymer electrolytes (SPEs) have been regarded as a safer alternative for liquid electrolytes in rechargeable batteries, 
yet they suffer from drawbacks such as low ionic conductivity. Designing SPEs with optimal performance is a challenging 
task, since the properties of SPEs are influenced by parameters across multiple scales, which leads to a vast design space. 
The integration of theory-based modeling methods and data-driven approaches can effectively link chemical and structure 
features of SPEs to macroscopic properties. Machine learning (ML) algorithms are paramount to data-driven modeling. This 
review aimed to highlight the ML algorithms used for SPE design, and how these algorithms can be employed synergistically 
with theory-based modelling methods such as density functional theory (DFT), molecular dynamics (MD) and coarse graining 
(CG). In addition, this work is concluded with our outlook in this young and promising field.

1 Introduction 
The past few decades have witnessed the great success of 
rechargeable batteries. The commercialization of lithium-ion 
batteries since 1990s have shaped our life in multiple aspects: 
from portable electronics to electric vehicles, from medical 
devices to power grids.1 With the continuous upsurge in 
demand for energy storage, future batteries will have ever-
improving energy density and product safety.2 As an 
indispensable component in the battery, electrolytes play a key 
role in conducting ions and insulating electrons. At present, 
many battery systems on the market adopt liquid electrolytes 
since they offer benefits of high ionic conductivity and excellent 
wetting of electrode surfaces. Nevertheless, liquid electrolytes 
suffer from inadequate electrochemical and thermal stabilities, 
low ion selectivity, and poor safety.3 To circumvent the 
drawback of liquid electrolytes, researchers have delved into 
developing solid electrolytes that are generally considered 
safer. There are three state-of-art solid electrolytes: inorganic, 
polymer, and composite. Among them, solid polymer 
electrolytes (SPEs) consist of a polymer matrix as a host and 
alkali metal salts in a solvent-free environment. Compared to 
the inorganic solid electrolytes, SPEs can endow the batteries 
with high safety, good processibility, and enhanced mechanical 
compliance with the electrodes.4 However, one of the major 
obstacles for SPEs is their low ionic conductivity, which is closely 
related to the segmental motion of polymer chains. Most SPEs 
have ionic conductivities of less than 10-5 S cm-1 under room 
temperature and Li+ transference numbers of around 0.2 – 0.5.5  

In comparison, SPEs for lithium batteries should be above 10-5 S 
cm-1 to ensure practical operation.6 Since it is non-trivial to 
directly infer ionic conductivity given a polymer structure, 
researchers have proposed some subordinate parameters to 
consider. Two crucial parameters are the glass transition 
temperature (Tg) and the ion-pair dissociation ability.7 Lower Tg 
guarantees high chain mobility under room temperature, and 
easier ion-pair dissociation enables fast Li+ transport. In addition 
to low ionic conductivity, there are several other properties that 
require enhancement. SPEs should also have good 
electrochemical stability to minimize high voltage oxidation at 
the cathode interface.8 The polymer redox window of SPEs are 
expected to withstand at least 4V versus Li/Li+ and preferably 
4.5V, which enables Li+ extraction from an oxide host cathode 
without oxidation of the electrolyte in a 4 V cell during a 
charge/discharge cycle.9,10 The mechanical properties should 
also be another key property to consider. SPEs with high 
modulus have shown large resistance for dendrite growth at Li 
anode in Li-metal batteries, which can be explained by Newman 
and Monroe model.11–13  

To date, researchers have investigated various kinds of SPE 
materials, such as polyethylene oxide (PEO), polyacrylonitrile 
(PAN), polymethyl methacrylate (PMMA) and polyvinyl alcohol 
(PVA). However, it is difficult to propose an overall satisfying 
performance using a homopolymer. For example, PEO suffers 
from electrochemical instabilities at high voltages and low ionic 
conductivity at room temperature.14 Researchers have made 
new attempts such as incorporating plasticizers or nanofillers, 
employing block copolymers, and engineering polymer 
structures.15–19 As the material systems for SPE become more 
sophisticated, finding an optimal SPE is essentially a task that 
needs to be tackled from multiple aspects in a vast design space. 
As displaced in Fig. 1, it requires searching and optimization of 
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physicochemical parameters across multiple scales, such as 
local interactions, chain dynamics and thermodynamics.20,21 
There is no single index that is sufficient to describe the 
performance of an SPE material for all the polymers.22  

With the rapid growth of computational power, employing 
computational and data-driven modelling methods to facilitate 
the exploring and designing process has become an appealing 
choice to greatly accelerate the trial-and-error cycle and 
minimize experimental costs.23 Over the past few decades, 
computational methods such as density functional theory (DFT) 
have been used synergically with experimental methods to aid 
battery development, particularly in material modelling and 
screening. However, these methods can be intensive on 
computational resources.24 With the exciting progress of data 
science in the past decades, screening, prediction, optimization, 
and design tasks among a large number of candidates have 
become more tractable. Data-driven approaches are sometimes 
referred to as the fourth paradigm in materials discovery.25 
They can provide great flexibility by automatically discovering 
patterns in datasets using algorithms, without the need for 
extensive domain knowledge.26 There are two major routes to 
establish databases: one is through the experimental paradigm, 
i.e., collecting data from literature or performing experiments 
to measure desired properties; another is through the 
computational paradigm, i.e., using computational methods to 
calculate material properties. Due to the complexity of the 
design space and high cost, the coupling of computational 
methods and data-driven approaches are becoming a popular 
trend for addressing challenges in modelling SPEs. 

Herein, we are hoping to provide insights for both 
experimentalists and theorists in this area and foster more 
collaboration between them to facilitate the development of 
advanced SPEs. As such, our review primarily emphasizes the 
methodologies of computational and data-driven techniques, 
with examples on how they are employed in the SPE system. 
First, we review some basic concepts about machine learning 

(ML), including frequently used algorithms and how they are 
applied to material modelling, with an emphasis on screening 
and prediction. Subsequently, we review optimization 
algorithms that are commonly used for materials design. We are 
providing specific examples on how certain algorithms are 
tailored to SPE research. Next, we discuss how data-driven 
methods are incorporated into computational simulation tools, 
such as density functional theory (DFT), molecular dynamics 
(MD), and coarse graining (CG). Lastly, we provide a summary 
and outlooks on using computational and data-driven approach 
for modelling of SPEs.  

2 ML fundamentals 
2.1 Basic concepts of ML 

Machine learning (ML) is a subfield of artificial intelligence that 
refers to algorithms and programs that demonstrates 
“intelligence” like humans, i.e., improves with training.27  
Compared to theory-driven modelling methods, ML algorithms 
can extract useful relationships directly from a dataset without 
being given explicit instructions of how to analyze or draw 
conclusions from the data.28 Thus, ML-based modeling is often 
used interchangeably with “surrogate modeling” in the realm of 
engineering.29 Generally, there are three types of ML: 
supervised learning, unsupervised learning, and reinforcement 
learning.30 The goal in supervised learning is to make 
predictions from labelled data. For supervised learning, there 
are two common tasks for a problem according to the types of 
output: classification and regression. The classification task 
establishes a mapping function from input variables to discrete 
output values, such as polymer chain configurations.31,32 In 
comparison, the regression task maps input to continuous 
output values or physical quantities such as glass transition 
temperature, ionic conductivity, and potential energy surfaces 
(PES). A special case of supervised learning is called transfer 

Fig. 1 The macroscopic properties of SPE are related to physicochemical parameters across different scales, which correspond to different 
computational techniques highlighted in this article.
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learning, where a model is pretrained on one task and 
repurposed for another related task.33,34 The merits of transfer 
learning lie in dealing with small training sets and saving training 
time. Compared to supervised learning, unsupervised learning 
addresses problems containing only input data with no 
corresponding labels. The goal in unsupervised learning is to 
uncover structure in the data themselves.28 Unsupervised 
learning tends to be more subjective than supervised learning: 
the conclusion to an unsupervised learning problem is not 
rigorously determined and is intimately tied to the algorithm we 
choose. Unsupervised learning can be applied in data 
visualization, dimensionality reduction, clustering, exploratory 
data analysis, and so on. For instance, clustering can be used to 
group data to identify common features, and exploratory data 
analysis can help to detect patterns and anomalies.35,36 
Reinforcement learning (RL) is concerned with building an 
intelligent agent that can interact with the environment and has 
been used in areas such as robotic control and music 
generation.37,38 For a reinforcement learning problem, we 
define a reward (a scalar feedback signal) indicating how well 
the agent is doing at every step. The goal of reinforcement 
learning is to maximize the expected cumulative reward. At 
every step, the agent executes an action, receives an 

observation, and receives a scalar reward; in comparison, the 
environment receives an action, emits an observation, and 
emits a scalar reward. When the environment is fully observable 
to the agent, this whole process is a Markov decision process. 
To build an RL agent, one may include one or more of the 
components: policy, which describes an agent’s behavior; value 
function, which describes how good each state or action is; and 
model, which describes the agent’s representation of the 
environment. For chemistry applications, reinforcement 
learning techniques are being increasingly used to search for 
molecules with desired properties in large chemical spaces.39,40  

Loss function, or sometimes called objective function or risk 
function, is a function that measures the performance of the ML 
model. The goal of ML is often to efficiently establish a model 
to minimize the loss function. Although there are some classic 
loss functions available such as squared loss, absolute loss, zero-
one loss, exponential loss, Hinge loss and Huber loss41,42, 
researchers have developed many task-dependent loss 
functions. For instance, Mardt et al. designed variational 
approach for Markov processes (VAMP) loss to measure the 
consistency between different time steps in molecular 
dynamics (MD) simulations.43 When evaluating an ML model, 
the total error can be decomposed into three principal terms: 

Fig.2 (a) The relationship between total error, variance, bias, and noise. (b) A graphic demonstration of bias-variance 
tradeoff. (c) The typical architecture of a feed-forward network. 
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variance, bias, and noise as indicated in Fig. 2a.27,40 Variance 
captures how “specialized” the model is to a particular training 
set. Bias describes the inherent error of the model even with 
infinite training data. Noise measures ambiguity due to data 
distribution and feature representation, and it comes as an 
intrinsic aspect of data. When optimizing the model, there often 
exists bias-variance tradeoff as indicated in Fig. 2b.40 If the 
model has high bias and low variance, the model is 
“underfitting” and not able to sufficiently capture data features. 
If the model has low bias and high variance, the model is 
“overfitting” and introduced unnecessary complexity. To 
diagnose whether the model is suffering from the above issues, 
we usually split our data into three sets: training set, validation 
set and test set. The training set is used for “learning” the 
model, whereas the validation set is to help validate if the loss 
obtained from the training is reliable. The test set simulates how 
the model interacts with the future unseen data. A good ML 
model should have both low bias and low variance, which is 
usually indicated via a low error in both training and validation 
sets.  

Neural networks (NNs) are an important type of ML 
algorithm inspired by the biological neural networks that 
constitute animal brains.44 Fig. 2c displayed the architecture of 
a feed forward neural network, where the information flows in 
only one direction. Each circle in the network is a datapoint 
called a neuron. There are three layers in this network: input 
layer, hidden layer, and output layer. For every layer, the data 
is updated in the following way: 

𝑧!
(#) = 𝑔(%𝑊!,&

(#'(,#)𝑧&
(#'()

&

) (1) 

where 𝑧!
(#) is the ith updated value in layer k, 𝑧&#'( is the jth value 

from the layer k-1, and  𝑊!,&
(#'(,#) is the weight that connects 

𝑧!
(#) to 𝑧&

(#'(), and g is a nonlinear function (often referred to as 
activation function). Intuitively, each neuron gathers 
information from the neurons that connect to it via a linear 
combination, then performs a non-linear transformation. For a 
given neural network, the goal is to learn the weights among the 
neurons such that the loss function is minimized. Some of the 
common choices of activation functions can be sigmoid 
function, hyperbolic tangent, and rectified linear unit (ReLU). 
The power of NNs roots from the universal function theorem, 
which guarantees that NNs with enough neurons and number 
of layers can represent and approximate any complex function 
given sufficient data and training time.45 In the next section, we 
are going to discuss some frequently used NN algorithms. 
 
2.2 Basic concepts of ML 

 
2.2.1 Graph Neural Networks (GNN) Graph Neural Networks 
(GNNs) are neural networks operated upon graphic data 
structures. A graph can be utilized to encode information and 
relationships among data points through its attributes: node 
attributes, edge attributes, and global attributes. For example, 
graphs can store information of molecules, where nodes can 
represent individual atoms and edges can represent bonds.46 
GNNs are optimizable transformations on all attributes of the 

graph with permutation invariances, i.e., the connectivity of 
the graphs preserves during transformations.47 In a GNN, the 
information can be embedded or processed on an edge level, 
node level or a global level, which offers great flexibility to 
data processing. To achieve message passing between 
different parts of the graph or make predictions based on a 
specific part of the graph, we normally apply a technique 
called pooling. Fig. 3a exhibited an example of pooling, for 
each node in the graph, one can gather information from all its 
neighboring nodes and aggregate the information using an 
aggregation function. Subsequently, the aggregated result is 
passed through a transform function to complete one update 
step of the current node. After the update, the node not only 
possesses the information about itself, but also incorporates 
the information from its first neighbors. We can infer that the 
information is passed between nodes of the graph if such 
operation is performed multiple times. Occasionally, to deal 
with a large graph or account for the effects of distant nodes, a 
“master node” that connects all the nodes in the graph can be 
added to a GNN.  

Due to its versatile functions, GNNs have been successfully 
applied in both supervised and unsupervised learning 
scenarios in material science, such as feature engineering of 
molecules, discovery of hidden dynamics, visualization of 
material databases, prediction of material properties, and 
generation of force fields. Xie et al. developed a GNN to 
visualize the similarities of crystals.48 They encoded the 
elements as well as the lattice structure to graph data. Since 
the information of the Kth-order neighbor can be described by 
K operations of the GNN, they exploited the output vectors to 
represent local environments of atoms. Plotting of the as-
learned vectors can then provide insights on certain patterns 
from a material database. Coley et al. used GNNs to predict 
major products of organic reactions based on the reactant, 
reagent, and solvent species.49 They embedded the atomic 
number, formal charge, bond order and other molecular 
information of a reaction to a graph as an input to a GNN. For 
a particular molecule, the GNN learned to calculate likelihood 
scores for each bond change between each atom pair, which 
was represented via the change of connectivity in a graph. 
After using 410k, 30k and 40k reactions as training, validation 
and testing data points, the model was compared to human 
benchmark and the prediction accuracy was quite close. 
Batzner et al. proposed a GNN for learning MD interatomic 
potentials called E(3)-equivariant GNN.50 Since some 
properties of an atomic system such as radial distribution 
function and potential energies do not change under 
translation or rotation transformation, this permutation 
invariance naturally matches the property of an GNN. Via 
subtly designed atomic embeddings and convolution layers, 
their network architecture brings tremendous advantages in 
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data efficiency, requiring up to 1000 times less training data 
than its precedents.  
 
2.2.2 Generative Adversarial Networks (GAN) Generative 
Adversarial Networks (GAN) consist of two networks playing 
an adversarial game against each other. Different from a 
typical feed forward NN, GAN is a type of implicit generative 
algorithm instead of a discriminative algorithm, which 
generates new samples via estimating the underlying true 
distribution from data. Concretely, GANs do not provide a 
model function as the output, but rather produce “sample-
like” data. Fig. 2b exhibits the architecture of a GAN; one 
network is called the “generator”, and the other network is 
called “discriminator”. During the training process, the loss 
functions of GAN can be expressed as: 51 

min
)
max
*

𝑉(𝐷, 𝐺) = 𝔼+~-!"#"(+)	[log𝐷(𝑥)]
+	 𝔼.~-$(.)	[log(1 −𝐷(𝐺(𝑧))]	 

(2) 

The min-max function reflects the adversarial relationship 
between the two networks: the goal of the discriminator is to 
maximize the prediction accuracy, whereas its “opponent” – 
the generator, wants to confound the generated data with real 
data.  The first term on the right side represents the log-
probability that the discriminator correctly predicts the real 
data, and the second term represents the log-probability that 
discriminator correctly predicts the generated data. A 
successful training process should lead to the improvement of 
both generator and discriminator, such that the generator will 
eventually produce indistinguishable samples from the original 
data set. The input of the generator network are vectors from 
the latent space, which can be initialized via a Gaussian noise 
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function. It should be noted that Fig. 3b is an unconditional 
GAN architecture, where we don’t apply constraints for the 
input space. If we want to generate samples with certain 
requirements, a conditional GAN architecture can be adopted. 

The emergence of GANs has sparked instantaneous 
popularity in the computer vision (CV) and natural language 
processing (NLP) community, where GANs demonstrated the 
strong capability in image editing, 52 audio syntheses,53 and 
domain adaptation.54 Naturally, researchers have been actively 
trying to incorporate GANs in material discovery, which is 
typically an inverse design problem, i.e., search materials with 
desired properties. Kim et al. used GANs to design zeolite 
structures that have sufficient methane accessibility.55 They 
encoded the lattice positions of silicon atoms, oxygen atoms 
and methane potential energy into a tensor as the input for 
GANs. After training the network with more than 30k zeolite 
structures, the GAN were able to produce 121 candidates with 
a user-desired range of 4 kJ/mol methane heat of adsorption. 
Hiraide et al. applied GAN to investigate the relationship 
between structure and Young’s modulus of block 
copolymers.56 They collected 50 experimental images of block 
copolymers and augmented the dataset via performing 
operations like rotation, translation, and inversion. After 
training, the GANs were able to generate promising copolymer 
structures based on the target Young’s modulus, which 
corresponded to a searching process in the latent space. 
Besides providing insights for material design, GANs were also 
able to facilitate computational modelling process. Yang et al. 
applied conditional GANs to predict complex stress and strain 
fields in composite materials.57 They established a database of 
2k cases via finite element method (FEM). For each case, the 
stress and strain field are calculated based on a 2D pattern 
consisting of soft units and brittle units that have linear 
plasticity and strain hardening. Subsequently, the 2D patterns 
were fed to the generator network as constraints and the 
strain and stress field were fed to the discriminator network. 
Although the 2D patterns were a primitive representation of 
composite materials, the proposed method exhibited excellent 
predicting accuracy and computational efficiency. 
Stieffenhofer et al. developed a GAN approach to reverse-map 
coarse-grained (CG) structures to their atomistic resolution.58 
To prepare the database for training and testing, atomistic and 
CG structures were obtained in MD simulations and this “fine-
to-coarse” mapping is regarded as the ground truth. 
Polystyrene was employed as an example for evaluating the 
performance of this back mapping approach. Giving the CG 
snapshot as the conditional input for GAN, the as-trained 
network successfully captured structural and energetic 
properties of the polystyrene system. Remarkably, the GAN 
was able to recover the equilibrated structure at different 
temperatures giving the CG snapshots as the conditional 
variable. 
 

2.2.3 Variational Autoencoders (VAE) Variational autoencoders 
(VAE) are a generative model with continuous latent variables 
and is a modification of an autoencoder network. VAEs consist 
of two different parts: an encoder network and a decoder 
network. As shown in Fig. 3c, the encoder NN will convert 
input data to a lower dimensional space, i.e., the latent space. 
The decoder NN will further reconstruct or generate new data 
from the latent space. Different from a plain autoencoder 
network, VAEs require regularization in its latent space so that 
the information is encoded into a meaningful and continuous 
distribution with a mean of µ and a variance of σ2, which 
endows VAEs with the ability to generate new data points via 
sampling from this distribution. The objective for training a 
VAE model is to maximize the variational lower bound (VLB):59  

𝓛𝜽,𝝋(𝒙) = 𝔼𝒛~𝒒𝝋(𝒛|𝒙)	[𝐥𝐨𝐠 𝒑𝜽(𝒙|𝒛)]
− 	𝑫𝑲𝑳	(𝒒𝝋(𝒛|𝒙) ||𝒑𝜽(𝒛))	 

(3) 

Here, x is the observation, z is the hidden variable in the 
latent space; 𝒑𝜽(𝒛) denotes the prior distribution for z, 
𝒒𝝋(𝒛|𝒙) describes the variational posterior distribution, 
𝒑𝜽(𝒙|𝒛) is the likelihood during the generative process. The 
first term represents the expected reconstruction error, and it 
reflects how well the model reconstructs an observation from 
a sample from the variational posterior. The second term is the 
Kullback–Leibler (KL) divergence between distribution 𝒒𝝋(𝒛|𝒙) 
and distribution 𝒑𝜽(𝒛). It acts as a regularizer and pushes the 
variational posterior towards the prior.  During training, a 
random noise variable, ε is induced to the latent space to allow 
backpropagation of the NN. This process is called the 
reparameterization trick.60  

Like GAN, VAE can be used for inverse design of materials. 
In this case, a property estimation model can be incorporated 
to the latent space of VAEs to allow for a direct search of 
desired materials.61 Attempts have been made for areas such 
as generating biopolymer with desired affinities62 and 
polymers with certain band gap.63 Yao et al. built a material-
discovery platform empowered by a supramolecular VAE, 
which allows the design of metal-organic frameworks (MOFs) 
with desirable properties.64 MOFs are reticular frameworks 
that are composed of organic ligands and metal ions. The 
authors proposed a graph-based method to efficiently 
represent the complex structures of MOFs: molecular 
fragments, multi-connected metal or organic nodes, and 
topologies are encoded in a tuple. To achieve property 
prediction, the authors added a property component in the 
decoder part using labelled data and the tuples were jointly 
trained to organize the latent space around the properties of 
interest. After training and optimization, the VAE was able to 
predict MOF candidates from the latent space with superior 
gas separation capability, which was confirmed via Monte 
Carlo simulations. Beyond material searching and prediction, 
VAE can also be applied to material modelling due to its ability 
to learn compressed representations. Wang et al. constructed 
a VAE framework that could bridge fully atomistic models to 
coarse-grained models.65 The input of VAE were atomistic 
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trajectories of individual gas-phase molecules, which were 
compressed into the CG coordinates that can be treated as 
latent variables. The output of VAE was reconstructed 
atomistic coordinates from the latent space. To tune the 
information learned in the latent space, the authors employed 
a force regularizer (a regularization term derived from CG 
force) during training. This regularization will help to obtain a 
CG free-energy surface, which can be used to simulate systems 
with a larger spatial and temporal scale.   
 
2.2.4 Recurrent Neural Networks (RNN) Recurrent Neural 
Networks (RNN), a class of artificial neural networks, was 
developed to tailor data that is temporal in nature.66 The 
temporal data could naturally be treated in a recurrent 
fashion; with individual data points, from the temporal 
dataset, passed sequentially as the input to the recurrent cell. 
The architecture gained traction in machine translation67 and 
speech recognition tasks68 in the field of natural language 
processing (NLP). 

In the domain of chemistry informatics, there are 
numerous proposed RNN architectures for many applications 
ranging from peptide design67 and drug discovery69 due to the 
sequential nature of interpreting peptides as sequences 
and/or utilizing simplified molecular-input line-entry system 
(SMILES) representations as sequences. Likewise, in the field of 
polymer informatics, the 1-D SMILES representation of 
polymers can be treated as sequential data. Fig. 3d exhibited 
the architecture of an RNN, and it can be formalized as shown 
in the equation below: 

𝒉𝒕 = 𝝈(𝑾(𝒉𝒉)𝒉𝒕'𝟏 +𝑾(𝒉𝒙)𝒙𝒕) (4) 
Here, ht is the hidden state at time t, σ is the nonlinearity 

activation, xt is the input of SMILES token at time t, ht-1 is the 
hidden state output at the prior time step, Whh and Whx are 
learnable weight matrix. The hidden state, ht is updated in a 
recurrent fashion, till the end of the SMILES sequence. The 
output of the hidden state could be passed on for the 
supervised learning task, or the hidden state could be 
formulated with a RNN decoder for unsupervised learning 
tasks. 

In prior work in polymer informatics, Antonina et al. used 
RNN to predict the dielectric properties of polymers after 
converting the SMILES representation into the binary 
representation or American standard code for information 
interchange (ASCII) representation.70 Ma. et al. developed the 
PI1M dataset,71 currently the largest available benchmark 
dataset of approximately 1 million polymers SMILES, by 
utilizing an RNN architecture to generate syntactically valid 
polymer-SMILES. The generative modelling task generated 
new tokens by conditioning on previous subcomponents in the 
SMILES sequence. Vandans et al. used RNN to identify the knot 
types of polymer conformations.72 Other input 
representations, apart from SMILES, for the NN architectures 
have also been studied with data collected from MD 
Simulations. Andrews et al. studied the performance of RNN 

and their variants on the behavior of energetic properties of a 
liquid solution containing an aggregation of polymer-lipid 
macromolecules in an organic solvent.73 The NNs were trained 
on potential energies time series of DSPE-PEG  (1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-(polyethylene 
glycol)namine) aggregates solvated in ethyl acetate developed 
through MD simulations. Semine et al. used LSTM, a variant of 
RNN, to predict the optical spectra using coarse-grained 
models.74 The RNN input consisted of a vector of 29 
intermonomer dihedral angles; and the output pair being the 
excited energy relative to the preceding state (j - 1)th state i.e. 
(Ej – Ej-1). 

Although RNN is widely used in cheminformatics, the 
potential usage of RNN and its respective variants, gated 
recurrent unit (GRU) and long short-term memory (LSTM), are 
lacking due to the limited data available in the domain of 
polymer informatics. More recent work uses transformers to 
learn meaningful contextual representations from the 
polymer-SMILES. 

 
2.2.5 Transformers Recurrent architectures of GRU, LSTM, and 
RNN involve generating the current hidden state, ht, by 
considering prior hidden states, ht-1. This recursively occurs 
until the end of the SMILES sequence. However, this 
sequential approach results in memory constraints due to 
sequential computation of each hidden state ht, with respect 
to the current token. 

To solve this problem, the transformer architecture was 
proposed in 2017 by Vaswani et al.75 As shown in Fig. 2e, this 
architecture introduced the attentional mechanism, which 
helped the model to capture long-range dependencies 
effectively, which can be challenging for RNNs and CNNs. The 
transformers used multi-head attention to determine the 
attention of each token in parallel, with respect to remaining 
tokens in the SMILES representations. Furthermore, given the 
challenges of collecting labeled data in cheminformatics and 
polymer informatics, transformers offer the flexibility of 
learning representation from large scale unlabeled SMILES 
data. 

Various transformer models such as bidirectional encoder 
representations from transformers (BERT),76 robustly 
optimized BERT-pretraining approach (RoBERTa),77 and 
bidirectional auto-regressive transformers (BART)78 have been 
developed as effective methods for pre-training on unlabeled 
data and fine tuning on downstream task performance. In 
cheminformatics, various transformer architectures have been 
used for improvising the downstream task performance. 
Chemformer79 utilized the BART model for sequence-to-
sequence and discriminative cheminformatics tasks. The BART 
architecture utilized the transformer encoder and decoder. 
The encoder is provided with the Masked SMILES token, and 
the decoder is provided with the encoder SMILES sequences 
that are right shifted. Thus, the output of the decoder 
produces a distribution over the SMILES vocabulary. 
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ChemBERTa utilized the RoBERTa transformer architecture for 
masked language modeling (MLM).80 The authors evaluated 
the effect of pre-training transformers by replacing SMILES 
with self-referencing embedded strings (SELFIES) 
representation. The authors also studied different tokenization 
strategies of Byte-Pair Encoder and the customer SMILES 
tokenizer as input to the RoBERTa architecture. The results 
from the paper highlighted how increasing pre-training data 
set size for the unsupervised learning task improved the 
downstream task performance. 

Whilst recent trends have seen transformers being utilized 
in cheminformatics, not until very recently were transformers 
applied in the domain of polymer informatics. TransPolymer 
pretrained the PI1M database on the RoBERTa transformer 
architecture for MLM.81 The inference or downstream task 
resulted in the ability to predict various polymer properties, 
including polymer conductivity, band gap, dielectric constant, 
refractive index, and power efficiency. PolyBERT used 13,000 
synthesized polymers and the breaking retrosynthetically 
interesting chemical substructures (BRICS) composition to 
generate 100 million hypothetical polymers.82 These polymers-
SMILES were then trained on the BERT architecture and the 
resulting embeddings from the self-attention bidirectional 
transformer encoder were fed to the downstream task 
performance. The inference tasks were based on polymer 
thermal, thermodynamic, electronic, optical, mechanical, and 
permeability properties. 
 
2.2.6 Gaussian Processes Gaussian processes (GPs) are a 
machine learning method and can be applied to solve 
regression, classification, and clustering problems.83 A GP is a 
collection of random variables, such that any finite number of 
the variables have a joint Gaussian distribution.84 It can be 
denoted as follow:  

𝒇(𝒙)	~	𝓖𝓟(𝒎(𝒙), 𝒌(𝒙, 𝒙′)) (5) 
where f(x) is a real process, m(x) is the mean function and k (x, 
x') is called the covariance function or kernel function. GPs 
perform very well for regression problems with small training 
data sizes. For a regression task, the joint Gaussian distribution 
is modeled via computing the covariance matrix. The goal is to 
model the prediction at test points, which is essentially the 
joint distribution conditioned on the training data and testing 
input. Therefore, the selection of a proper kernel, k, and the 
tuning of kernel parameters are vital for a GP. There are 
multiple kernel functions available, such as radial function 
basis (RBF) kernel, exponential kernel, sigmoid kernel, periodic 
kernel, and linear kernel. A good kernel and corresponding 
parameters should lead to low error in the validation dataset. 
Fig. 3f depicts how a predicted function is generated from GP 
based on the training data points. As indicated in the shaded 
area, the GP also provides additional information about the 
uncertainty for the predicted function.   

GPs are predominantly used for regression tasks in a 
supervised manner for material predicting and screening 

tasks.85–87 Chen et al. employed GPs with an RBF kernel to 
construct frequency-dependent dielectric models for polymer 
materials.88 They utilized a database containing 1210 dielectric 
constant values measured at different frequencies for 738 
polymers. A hierarchical feature fingerprint is used to capture 
the polymer structure. Following by a feature engineering 
process, each polymer is converted to a unique 412-
dimensional feature vector. The authors then trained a GP 
regression model that can predict the dielectric constants at 
different frequencies for unseen polymers. Lopez et al. utilized 
GP regression to calibrate computational results to 
experimental data.89 Since traditional models perform poorly 
in predicting the performance of non-fullerene acceptor 
devices, there is a need to predict the molecular orbital 
energies more accurately. The authors used a training dataset 
that is composed of the highest occupied molecular orbital 
(HOMO) and the lowest unoccupied molecular orbital (LUMO) 
energies of 94 molecules. With Morgan fingerprints as 
molecular representation,90 GP regression with a squared 
exponential kernel was employed to correct the HOMO and 
LUMO energies from theoretical calculation. The regression 
model was further used to help select candidates from 51,000 
molecules. Ma et al. employed GP regression in a transfer 
learning scenario to study polymer dynamics.91 They used GP 
regression to learn the memory function of a CG model, which 
played a critical role in reproducing the entire dynamics for the 
CG modeling. The GP regression established the relationship 
between the time domain, the parameter space, and the 
memory function. The CG model developed using the as-
trained memory function was able to transfer across a range of 
parameters and reproduce the dynamic properties of the 
underlying atomistic systems. 
 
2.2.7 Support Vector Machines (SVM) Support Vector Machine 
(SVM) is a classifier that finds the maximum margin separating 
hyperplane among data points.92 As shown in Fig. 3g, the data 
belong to two different classes. SVM algorithm establishes a 
plane that separates the data with the largest margin, which is 
achieved by minimizing the loss function. This hyperplane 
maximizes the SVM’s ability to predict correct labels for 
unseen examples. Without loss of generality, the mathematical 
form of SVM can be written as: 

𝐦𝐢𝐧
𝒘

𝟏
𝒏%𝒎𝒂𝒙[𝟏 − 𝒚𝒊(𝒘𝑻𝒙𝒊), 𝟎] 	+ 	𝝀𝒓(𝝎)

𝒏

𝒊>𝟏

 (6) 

where the first term is called the hinge-loss that is related to 
the distance of each data point to the plane, and the second 
term is a regularization term. Beyond serving as a linear 
classifier, SVM can also separate data that are not linearly 
separable via introducing kernel functions. Here, a kernel 
function helps to project low-dimensional data to a high 
dimensional space, where it is possible to use a high 
dimensional hyperplane to separate data points. The kernel 
functions enable SVM to create complex decision boundaries. 
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Although SVM is initially designed for classifying tasks, it can 
also perform regression.93 In this case, the hyperplane 
becomes the fitting results of data points.   

Due to its simple architecture and relatively low 
computational cost, SVM has been applied as one of the most 
common ML algorithms. Moreover, SVM is frequently used to 
benchmark NNs.94,95 Higuchi et al. employed SVM to predict 
the glass transition temperatures of polymers.96 They prepared 
a database consisting of 389 Tg values and used in silico design 
and data analysis (ISIDA) descriptors to represent polymer 
fragments. SVM regression was performed to construct 
models for linear homo/heteropolymers and crosslinked 
polymers. Ziaee et al. adopted a modified SVM algorithm (least 
square SVM) to predict the solubility of CO2 under different 
temperatures and pressures in various polymers.97 They 
compared the performance of several algorithms, such as NN, 

using the same data set. The SVM model based on an RBF 
kernel showed the highest predictive accuracy. 
 
 
2.3 Choice of optimization method 

 
2.3.1 Bayesian Optimization (BO) Bayesian optimization (BO) is 
an approach to optimize expensive objective functions, which 
commonly builds a surrogate for the objective and quantifies 
the uncertainty in that surrogate using a GP regression, then 
adopts an acquisition function defined from this surrogate to 
decide the next possible sample.98 Note that the surrogate 
model does not necessarily have to be GP regression: most ML 
regression models, e.g., NNs, and kernels can also replace the 
GP regression for the design space evaluation. The core idea of 
BO is to explore the design spaces by reconstructing a 
surrogate model with Bayesian statistics. In a general materials 

Fig. 4 (a) The flow diagram represents the Bayesian optimization for obtaining the optimal via constructing the 
surrogate model. Image was adapted with permission from ref. 104. (b) A schematic process breakdown of designing 
polymers with genetic algorithm. Different polymeric compositions are illustrated in different colors of 
chromosomes. Image was adapted with permission from ref. 128. (c) A cartoon schematic of exploring the design 
space to approximate the optimum using PSO. Image was adapted with permission from ref. 138. 
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design case, suppose there is a mapping from the 
representation of the materials to their targeted properties: 
𝑿 → 𝒚, where 𝑿 ∈ ℝ𝒏, i.e., the design variables lie in an n-
dimensional space, and 𝒚 ∈ ℝ says the output is projected as a 
constant(s) representing the materials' properties, e.g., 
thermal conductivity, toughness, strength. We suppose the 
general mapping can be represented as y = f(X). In GP 
regression, one can create a surrogate model for such a map. 
The model is updated by finding the new observation from 
f(X)’s condition distribution using Bayes’ rule. More 
superficially, the new observation is determined from a prior-
induced posterior, namely the acquisition function: 𝑨 → ℝ?, 
determines the point in X to be evaluated through the proxy 
optimization:99 

𝑿𝒃𝒆𝒔𝒕 = 	𝒂𝒓𝒈	 𝐦𝐚𝐱
𝑿	∈	ℝ𝒏

𝑨(𝑿) (7) 
In most materials design scenarios, the acquisition function 

is of less importance, where most studies employed the 
expected improvement and/or upper (lower) confidence 
bound.100–103 However, the evaluation of the objective, i.e. the 
mapping 𝑋 → 𝑦, is of key interest in most cases applying BO 
for materials design. Fig. 4a showed the workflow of BO 
performing closed-loop optimization with alternating inference 
and planning stages via different surrogate models.104 

BO is widely applied in materials design and optimization 
for two reasons: (1) both experiments and the digital twin-
based simulation can all be considered as black-box function 
representations. (2) Both numerical simulations and real-world 
experiments are either time-consuming or expensive, hence 
tailoring ad hoc structures or chemical components is 
inefficient for designing materials with novel applications. By 
actively searching and exploiting posterior points based on 
Bayesian statistics, surrogate models can be constructed for 
exploring the properties of the targeted material. For example, 
by starting from sparse datasets of polymer measurements, 
Kim et al. discovered polymers possessing high glass transition 
temperatures with such active-learning strategies.105 By 
exploiting in silico data of covalent organic frameworks 
(COF),106 Deshwal et al. demonstrated that designing 
nanoporous materials using the BO framework can greatly 
reduce computational resources,107 and was more efficient 
than evolutionary and one-shot supervised machine learning 
approaches. Moreover, Diwale et al. presented an augmented 
BO method to overcome the noise issues in either experiments 
or simulations.102 

Besides applications in soft nanomaterials, BO has also 
been extensively applied in energy storage materials,100 
microstructures of nanomechanical resonators,108 and alloy 
design using multi-fidelity approaches.109,110 From the 
optimization process perspective, Nakayama et al. surveyed 
the use of acquisition functions and initial values in the BO 
materials synthesis as a simplified 1D case.111 Bellamy et al. 
used batch BO to explore a large database for use in drug 
design.112 Specifically for the design of polymers, Li et al. 
constructed ML surrogates for experiments and applied BO to 
propose short fiber polymer designs.113 Gao et al. also used an 
ML-based surrogate for the objective evaluation of BO for the 

design of polymeric membranes.114 The ML model was trained 
on a map between the molecular fingerprint to targeted 
properties. Importantly, Wang et al. employed CGMD 
simulations assisted ML for objective screening with BO for the 
design of solid polymer electrolytes of high lithium 
conductivity.115 In summary, BO has been extensively applied 
in inverse materials and structural design with targeted 
properties, mostly employing simulation and using BO to 
resolve and explore the large design space for more efficient 
design processing.   
 
2.3.2 Genetic Algorithm (GA) Genetic algorithms (GA) are 
evolution-inspired computational models that use selection 
and recombination operators to generate new sample points 
in a search space for optimizing functions.116 GA approaches 
the optimization process by constructing a set of 
chromosomes to mimic genetic representation. Here, the 
chromosomes can be represented as: 

𝑪	 = 	 [𝑪𝟏, 𝑪𝟐, . . . , 𝑪𝒏] (8) 
where Ci can be interpreted as the data representation of 
different materials. The group of chromosome sets is then 
identified as population. These components of the 
chromosomes within the population can then switch values, 
which is identified as mutation. The mutated population can 
reproduce the next population generation through switching 
chromosomal components, known as crossover. Emulating 
nature, the “quality” of the genes can be represented via their 
fitness, which are calculated from the crossover chromosomes. 
Based on the new fitness, GA selects the new population to 
continue the prementioned processes iteratively for a pre-
defined number of generations. Depending on the specific 
problems, the fitness calculation can vary between different 
data representations. For any general materials design 
problems, we may denote the input space as ℝ𝒏, and the 
projected output lies in ℝ. The GA-identified fitness resides in 
the ℝ space, which we may denote as 𝓕. During the selection 
process, assuming a positive fitness function, the probability of 
selecting a specific chromosome Cm can be written as:117 

𝑷(𝑪𝒎) = j
𝓕(𝑪𝒎)

∑ 𝓕(𝑪𝒊)𝒏
𝒊>𝟏

j (9) 

 
Fig. 4b demonstrated the steps involved in GA for polymer 

design. Taking designing soft polyelectrolytes for high electrical 
conductivity as a thought experiment: the input could be word 
embedding polymer representations from SMILES,118 
molecular simulation atomic coordinates, or images 
representing the molecules. The output could be the electrical 
conductivity as a constant. The simulation can then be 
represented as a map 𝓜:	ℝ𝒏 → ℝ. Under this scenario, the 
GA tries to maximize the constant in output space and take the 
input space as chromosomes. Through constructing 
populations, i.e., running many simulations to generate a set 
of 𝓜; crossover and mutate the chromosome; calculate the 
corresponding 𝓕; and selecting new population for the new 
loops, the optimal polyelectrolyte can then be selected. Similar 
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strategies have been widely applied in polymer design. 
Meenakshisundaram et al. designed copolymer compatibilizers 
from MD simulations and GA.119 Kim et al. adopted GP 
regression to build up surrogate models that map the polymer 
fingerprints to targeted properties.120 They used such 
surrogates for faster evaluation of fitness. Coupling GP 
regression and GA, they filter polymers with high glass 
transition temperatures and high bandgaps through a multi-
objective approach. Similarly, the same research group used 
GA with five different ML surrogate models for targeted 
properties to design polymers for energy storage.121  

The same group developed a series of GA-enabled 
polymeric design frameworks. Early GA studies in disordered 
materials can be traced back to the 90s,122 where GA was used 
in minimizing the energy in MD simulations. GA were used 
more broadly in materials science in the 2000s. Kim et al. 
applied GA to search for alloy semiconductors with target 
band structure properties.123 Similarly, Dudiy and Zunger used 
GA to search for random structures of semiconductor alloys.124 
At the same time, contributions to applying GA for polymer 
design emerged. Roy et al. leveraged NNs to create surrogate 
models that map polymer material representations to their 
properties.125 They then encode such NNs as fitness functions 
for GA for optimal polymer design coupled with Markov state 
modeling techniques. Similar strategies were widely adopted 
to design monomers.117 Manos et al. use GA coupled with 
simplified multi-objective fitness functions to design single-
mode polymer optical fibers.126 Similar strategies have also 
been applied for polymer filtration design optimization.127 
Ramprasad and coworkers contributed much to the recent 
development of GA for polymer informatics. The group 
adopted the strategy of evolutionary algorithms to predict 
polymeric crystal structures back in 2014,103 then proposed an 
ab initio polymeric properties database and applied GA as a 
prototype study for polymer design in 2016.128 Thenceforth, 
the group developed a series of works combining ML and GA 
for polymer design. 
 
2.3.3 Particle Swarm Optimization (PSO) Particle swarm 
optimization (PSO) is a population-based optimization method 
inspired by the group behavior of animals that is also initiated 
with random solutions to search for optimum by updating 
generations like other evolutionary algorithms.129 Similar to 
GA, the algorithm is initialized by a set of populations, as 
particles, striving to approach the global optimal. Suppose 
there are p initial particles, and the position of particle i is 
denoted as 𝑿𝒊(𝒕) = o𝑿𝟏𝒊 (𝒕), 𝑿𝟐𝒊 (𝒕), . . . , 𝑿𝒏𝒊 (𝒕)p, where t is the 
iterations (or steps); and n is the dimensions of the design 
space. The velocity of each particle can be written as 𝑽𝒊(𝒕) =
o𝑽𝟏𝒊 (𝒕), 𝑽𝟐𝒊 (𝒕), . . . , 𝑽𝒏𝒊 (𝒕)p. We can hence write the update of 
the particles' positions and velocities: 

𝑿𝒊(𝒕 + 𝟏) = 𝑿𝒊(𝒕) + 𝑽𝒊(𝒕 + 𝟏)		 (10.1) 
  

𝑽𝒊(𝒕 + 𝟏) 	= 	𝝎𝑽𝒊(𝒕) + 𝒄𝟏𝓡𝟏(𝒑𝒃𝒆𝒔𝒕𝒊 	− 	𝑿𝒊(𝒕))
+ 𝒄𝟐𝓡𝟐(𝒈𝒃𝒆𝒔𝒕𝒊 	− 	𝑿𝒊(𝒕)) 

(10.2) 

where c1 and c2 are parameters given in the PSO algorithm. 
𝒑𝒃𝒆𝒔𝒕𝒊 is the position that gives the best value ever explored 
by particle i, 𝒈𝒃𝒆𝒔𝒕𝒊 is the best value that explored by all the 
particles in the swarm.130,131 The algorithm explores the design 
space via the updated motion of the particles for the 
optimization goal. Fig. 4c provides a visual presentation of how 
the particles search in the design space for block copolymers.  
Recall the previous materials design example: different 
particles 𝑿𝒊can here be interpreted as different combinations 
of polymeric chains; the design space can be viewed as the 
mapping from different polymers to their corresponding 
targeted properties, and PSO uses particles to explore this 
design space through updating from their previous locations 
and velocities. One expects these particles to be clustered 
around the global optimal, e.g., the maximal electrical 
conductivity. 

Early attempts to apply PSO in materials design occurs 
around the 2010s: Shokooh-Saremi and Magnusson use PSO 
for the design of optical diffraction gratings and benchmarked 
with GA.132 Interestingly, PSO can be employed for the 
structural prediction of crystals and layered materials.133,134 
More generally, with very similar approaches, PSO has been 
adopted to design functionally graded materials,135 gear 
train,136 truss-structures,137 etc.  

More recently, PSO was applied to design polymers with 
the help of different polymeric modeling techniques. Khadilkar 
et al. utilized self-consistent field (SCF) theory as a forward 
prediction engine and coupled SCF with PSO to identify and 
design block copolymers and copolymer alloys that self-
assemble into a targeted structure.138 Kumar et al. employed 
gradient boosting with decision trees for the forward modeling 
of poly(2-oxazoline) and applied PSO for inverse modeling as 
the workflow for efficient polymer predictive design.139 Both 
Francisco et al. and Soepangkat et al. used PSO for carbon 
fiber reinforced polymer design,140,141 in which Francisco et al. 
used finite element methods for fitness calculations in PSO and 
Soepangkat et al. trained a NN with experimental data as a 
surrogate for the physical responses in fitness evaluations. For 
the easier application of PSO in the design of novel functional 
soft materials, e.g., block copolymers, Case et al. created an 
open-source platform with PSO and existed open-source SCF 
theory software for the inverse design of block copolymers.142 
Using the strategy of coupling PSO and SCF, Tsai and 
Fredrickson presented a case study of designing globally stable 
and low-lying metastable mesophases of block copolymers.143 
 
2.4 Case study 

In the preceding sections, we have mentioned a series of ML 
algorithms and optimization methods and how they can be 
applied to broad topics for materials design and polymer 
informatics. These topics demonstrate the effectiveness of 
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data-driven approach.  In this section, we delve into specific 
case studies, focusing on the practical application of these 
algorithms to SPE systems with experimental data. 
 Back in 2011, feed forward NN was applied to fit the ionic 
conductivity data obtained via experiments.144 Ibrahim et al. 
measured the conductivity of PEO, LiPF6, ethylene carbonate 

and carbon nanotubes mixtures under different temperatures. 
During training, the chemical compositions and temperatures 
were used as inputs and ionic conductivities as outputs. The 
simple NN was able to predict the ionic conductivity of such a 
system well, as the predicted value can be further validated 
with new experiments.      

Fig.5 (a) Some fingerprints, ML models and target properties for constructing MLPs. Image was adapted with permission from ref. 170. (b) An example 
of using GNN to conduct unsupervised learning on MD trajectories of Li+ in a SPE. Image was adapted with permission from ref. 31. (c) The framework 
of employing CG and BO for design of PEO-based SPEs. Image was adapted with permission from ref. 115. 
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 Hatakeyama-Sato et al. employed ML methods to explore 
superionic glass-type SPEs with aromatic structures. They 
constructed a database including 104 entries about ionic 
conductivity. First, GNN was utilized to truncate molecular 
descriptors and extract useful features.34 The NN is pretrained 
on a database of randomly generated de novo polymers and 
monomeric compounds. The goal of this pretraining is to predict 
2000 molecular descriptors from these compounds using only 
32-dimensional vectors. This vector was then used to represent 
the feature of each compound for further ML processes. 
Subsequently, GP was used for establishing the relationship 
between chemical features and ionic conductivity. GP was able 
to output conductivity values along with confidence intervals. 
Combining GNN and GP, the authors successfully yielded glass-
type polymer complexes with high conductivity that was later 
validated via experiments.   
Bradford et al. built a chemistry-informed ML model that could 
predict SPE ionic conductivity based on the electrolyte and 
composition.145 They gathered data set of SPE ionic conductivity 
values from 217 experimental publications. They adopted a 
message passing NN, which is a special type of GNN, to learn 
optimal representations of the molecular components. The 
input of the NN took vectorized SPE features including polymer 
structure, salt structure, polymer molecular weight, salt 
concentration and temperature. The authors encoded the 
Arrhenius equation, which describes temperature dependence 
of ionic conductivity, into the readout layer of the NN and found 
that this chemically informed layer would increase prediction 
accuracy of the NN. After training the NN, they used the model 
to screen over 20,000 potential SPEs composed of commonly 
used lithium salts with synthetically accessible polymers and 
identified promising candidates. The predicted ionic 
conductivity exhibited good agreement with two types of in-
house synthesized polymers. Furthermore, they extended their 
predictions to encompass various anions within PEO and 
poly(trimethylene carbonate), showcasing the model's 
effectiveness in identifying descriptors for solid polymer 
electrolyte (SPE) ionic conductivity. 

3 ML aided polymer computation 
 

3.1  Density Functional Theory (DFT) 

Density Functional Theory (DFT) is an ab initio quantum 
mechanical (QM) method widely used to elucidate material 
properties, such as electronic band structures, vibrational 
frequencies, and magnetic configuration, to name a few, 
through various codes or algorithms. Instead of solving the 
many-body Schrödinger equation, the reformulated Kohn-Sham 
equation146 in DFT gives self-consistent solutions by recasting 
the multi-electron interactions as a single electron system with 
the approximate exchange-correlation functional, as shown in 
the following: 

w−
ℏ
𝟐𝒎𝛁𝟐 + 𝑽𝒆𝒙𝒕(𝒓) + 𝑽𝑯(𝒓) + 𝑽𝑿𝑪(𝒓){𝝍𝒊(𝒓)

= 𝝐𝒊𝝍𝒊(𝒓) 
(11) 

where − ℏ
LM
∇L  is the kinetic energy operator for electron 

kinetic energies, 𝑉N+O(𝒓) is the Coulomb potential for electron-
nuclei interactions, 𝑉P(𝒓)  is the Hartree potential describing 
the Coulomb potential from the electron charge density, and 
𝑉QR(𝒓)  is the exchange-correlation functional with all QM 
effects. Commonly used functionals include VWN,147 PW91,148 
M06-class,149 ωB97-series,150 B3LYP,151,152 etc., belonging to 
different families—linear-density approximation (LDA), 
generalized gradient approximations (GGA), meta-GGA, and 
hyper-GGA, etc., with their strengths and weakness. Many DFT 
textbooks and articles have provided valuable insights on 
selecting functionals and basis sets with examples of 
applications.153–155 

In solid polymer electrolytes, DFT can estimate, for example, 
energy-related changes and local ion-polymer interactions in 
polymeric matrices for electrochemical stability window  and 
ion migration,156,157 as well as band gap and molecular orbital 
for electronic charge transport properties.158,159 Researchers 
can take advantage of accuracy and are also eligible for 
computing various materials in DFT calculations since no 
external potential or force fields are required as input. Despite 
this, the time and length scales of the systems for DFT 
calculations, in general, are small. In contrast, the systems of 
polymer electrolytes are always large and complex with 
macromolecular solvents, leading to high computational costs. 
An efficient way to avoid this side effect is to combine data-
driven ML methods discussed in previous sections. ML-aided 
DFT frameworks were reviewed by Mannodi-Kanakkithodi et al. 
and Schleder et al.160,161 Specifically, fully exploiting the 
development of the extensive DFT datasets for training ML 
models shows great potential to enable the design and 
discovery of novel electrolyte systems containing polymer and 
lithium or other alkali metal compounds with wide 
electrochemical stability window, high ionic conductivity, and 
good thermal and mechanical stability in a fraction of the 
time.27,160,162,163 For example, Li et al. developed a ML workflow 
embedded with DFT and GNN to discover promising ionic liquids 
as additives for SPEs. DFT was employed to calculate the 
training data of electrochemical stability window based on 
HOMO/LUMO theory. The authors further verified a subset of 
selected candidates and measured the performance using 
experiments.164 Besides, high-throughput DFT databases for 
small molecules or compounds have increased considerably in 
recent years. Examples are the Materials Project165 
https://materialsproject.org/ containing DFT calculated 
structures and electronic properties for more than 140,000 
materials; AFLOWLIB166 aflowlib.org/ comprising phase 
diagrams, electronic structure, and magnetic properties of 
150,000 alloys and 13,000 inorganic compounds; the Open 
Quantum Materials Database (OQMD)167 https://oqmd.org/ 
consisting of nearly 300,000 DFT total energy calculations of 
inorganic crystal structure; and the Organic Materials Database 
(OMDB)168 https://omdb.mathub.io/ with thousands of Kohn-
Sham electronic band structures. Many other such databases 
were reviewed recently.161,169 In addition to the existing 
databases, ML models can be built upon freshly generated data. 
The size of the dataset depends on the complexity of ML models 

https://materialsproject.org/
http://aflowlib.org/
https://oqmd.org/
https://omdb.mathub.io/
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and algorithms, the number of features and input diversity, the 
expected prediction error, and others, but in general, the more, 
the better. Different sizes of the generated datasets have been 
used in various DFT+ML studies, ranging from 102 to 105 
samples,160 but are commonly relatively small due to the high 
computational costs, which can dominate most of the time in a 
project. 

To take advantage of the accuracy of DFT calculations but 
circumvent the limitations of simulation scales, ML potentials 
(MLPs) are used to bridge the gap between QM and classical 
force fields. Fig. 5a manifested that ML models can map from a 
three-dimensional configuration of atoms to energies and 
forces using fingerprints such as atom centered symmetry 
functions.170 This will enable large-scale atomic simulations with 
dynamic properties and fill in the blanks whenever there are no 
empirical force fields available, which is beneficial for solid 
polymer electrolyte systems. Compared to ab initio MD (AIMD) 
or Born–Oppenheimer MD that extract potential energy directly 
from DFT or other QM methods at every step,171 MLPs 
interpolate ab initio calculations by training the ab initio or DFT 
dataset and thus extend the system size and time scale in MD 
simulations. For example, Musaelian et al. recently introduced 
a deep NN interatomic potential architecture to achieve 
simultaneously accurate and computationally efficient 
parameterization of PES. In one of their testing cases, the 
authors simulated the Li-ion migration in a Li3PO4 electrolyte. 
Compared to AIMD, a mean absolute error in energies of 1.7 
meV/atom was obtained for the proposed MLP. The authors 
further demonstrated the superior scaling ability of this method 
by running a system containing 421,824 atoms on multiple 
GPUs.172 Fu et al. benchmarked a collection of state-of-the-art 
MLPs under different practical scenarios. Apart from force and 
energy prediction errors, the authors suggested other metrics 
to evaluate MLPs such as radial distribution function (RDF) and 
diffusivity coefficient for LiPS dataset.173 A more comprehensive 
review of recent advances in MLPs was given elsewhere.174–176 
Generally, MLPs require an input of descriptors transformed 
from the atomic coordinates and output the potential energy 
mapped from an ML model. A descriptor needs to be invariant 
under translation, rotation, or the permutation of atoms, and 
independent of the system size.177,178 One of the most widely 
used structural descriptors is a set of symmetry functions of 
each atom initially developed by Behler and Parrinello, which 
contains radial and angular parts to capture the pair and triplet 
properties.177,179 Those symmetry functions reflect the atomic 
environment that provides a unique description of the atomic 
positions.178 Many subsequent models revolved around the 
improvements to symmetry functions. For example, the 
ANAKIN-ME (ANI) model180,181 divide the atomic environment 
based on atom types to accelerate the sampling of MLP surface; 
the Charge Equilibration Neural Network Technique (CENT)182–
184 redistribute charge density in the system to environment-
dependent atomic electronegativities for considering long-
range interaction; and the weighted symmetry functions 
(wACSF) introduce element-dependent weighting functions to 
simplify the system with a large number of different chemical 
elements.185 Besides symmetry functions, many other input 

descriptors, including the bispectrum of the neighbor 
density,186 Smooth Overlap of Atomic Positions (SOAP),187 and 
the Coulomb matrix,188 are designed in various models, which 
are detailed in Behler’s review.189,190 In fact, all the descriptors 
try to keep the invariances or preserve the “symmetries” in a 
system while including more physical properties. 

ML methods leverage purely mathematical structures, and 
the most popular algorithms for constructing MLPs are NN- and 
kernel-based methods. In NN-based MLPs, the output of the NN 
is the total energies of the system by summing each atom’s 
energy predicted by each fully connected NN through 
minimizing the loss function containing the energy error180,184 
or, in addition, force error181,191,192 or even additional stress 
error193,194 and charge error195 between AIMD and MLP 
simulations. Kernel-based methods, e.g., using GP, provide the 
best energy estimates by weighted summing of the energies 
over the reference configurations through kernels. Uncertainty 
quantification196 and active learning197 can be employed to 
construct the training dataset with the required size and 
accuracy by enabling automated model correction and 
prediction ability improvement.174 Here, we briefly introduce 
some latest packages and platforms for MLPs. For example, ANI 
model180,181 is an NN-based MLP, applying the Behler-Parrinello 
method177 to construct NN for organic molecules but with 
modified symmetry functions to build single-atom atomic 
environment vectors as a molecular representation. The latest 
ANI-2x has been trained to seven elements (H, C, N, O, F, Cl, S), 
making up 90% of drug-like molecules. The open-source 
implementation of ANI is available in PyTorch.198,199 
https://github.com/aiqm/torchani with the accessible 
dataset.200 Deep Potential Molecular Dynamics (DPMD) method 
is another NN-based MLP that can be implemented using the 
DeePMD-kit package 
https://github.com/deepmodeling/deepmd-kit.194,201 In DPMD, 
the input descriptors are the local Cartesian coordinate frame 
for each atom, thus overcoming the limitations associated with 
auxiliary quantities in symmetry functions.194 Other NN-based 
MLPs include the TensorMol model191 
https://github.com/jparkhill/TensorMol that captures long-
range electrostatics and the AIMNet model202 
https://github.com/aiqm/aimnet that uses atomic feature 
vectors to record the interactions of neighboring atoms and 
updates by passing messages through the NN. Besides NN-
based MLPs, Gaussian Approximation Potentials (GAP)186 apply 
the GP approach to construct MLPs for high-dimensional 
systems, and SOAP kernel187 is widely used to train the 
potential. The code is implemented in the QUIP package203 
https://github.com/libAtoms/QUIP with a brief tutorial 
introduction.204 Furthermore, the RuNNer Neural Network 
Energy Representation177,205 
https://theochemgoettingen.gitlab.io/RuNNer/1.3/ is a 
Fortran-based framework implementing the latest version of 
Behler-Parrinello-type high-dimensional NN potentials with the 
4G datasets206 
https://archive.materialscloud.org/record/2020.137, and Open 
Knowledgebase of Interatomic Models (OpenKIM)207 

https://github.com/aiqm/torchani
https://github.com/deepmodeling/deepmd-kit
https://github.com/jparkhill/TensorMol
https://github.com/aiqm/aimnet
https://github.com/libAtoms/QUIP
https://theochemgoettingen.gitlab.io/RuNNer/1.3/
https://archive.materialscloud.org/record/2020.137
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https://openkim.org is a repository of interatomic potentials 
containing various pre-trained MLPs.  

Although MLPs have been used to successfully simulate a 
more extensive system accompanied by continuing 
developments in algorithms and computing hardware and 
software, it is still difficult to apply MLPs to systems with many 
degrees of freedom due to the complexities associated with 
interpolations. In other words, if a system travels to a new 
configuration outside the PES constructed by the training 
dataset, the MLPs may give us inaccurate energy states, which 
require a broader training dataset that can cover enough points 
on the PES and needs more computational resources. 
 
3.2  Molecular Dynamics (MD) Simulations 

The Born-Oppenheimer approximation aggregates the effects 
from electrons surrounding the atomic nuclei and simplifies 
the QM laws governing the interactions between atoms using 
the laws of Newtonian mechanics.176 This approximation 
reduces the amount of computation needed for a simulation 
by orders of magnitudes. We have discussed how ML can help 
to extract classical PES from QM calculations to enable fast 
and accurate MD simulations. Indeed, MD makes it possible to 
simulate material systems with atomistic-level details at 
micrometers in length scale and microseconds in time scale. 
Therefore, with MD, it is not hard to obtain atomistic 
trajectories spanning relatively longer time scale compared to 
QM computations. ML has been applied to analyze such 
trajectories to extract knowledge about both the energetic and 
kinetic aspects of the atomistic system.208 Recently, there also 
has been efforts to apply ML to learn the mapping between 
the configuration and the mechanical properties of polymer 
composites.209 
ML to construct free energy surfaces As the compositions and 
structures of SPEs become increasingly sophisticated, the 
investigation of ion transport kinetics within SPEs and across 
SPE-electrode interface are growing in importance.210–212 
While PES describes the potential energy landscape of a 
system and can be primarily used for structural optimizations 
of molecules (e.g., the rearrangements between isomers), the 
free energy surface (FES) includes information of both 
potential energy and entropy contributions and can be used 
for assessing kinetics and thermodynamics of bulk molecular 
systems (e.g., protein folding) at a given temperature.213,214 
Currently, there’s ample research opportunities for 
constructing FES of SPE systems.   

An accurate description of the free energy is key to 
understanding complex systems that have many intrinsic 
degrees of freedom.215,216 The relevant configurations of such 
systems and the transition between them can be captured by 
reducing the high-dimensional PES to a low-dimensional FES. 
Concretely, for a large system that contains N atoms, it 
requires roughly 3N degrees of freedom to describe the PES. 
Yet, we aim to employ collective coordinates with significantly 
fewer dimensions than 3N to encode information.208  This is 

particularly helpful for description of the chemical processes 
and the validation of computational models.215,217   

Accurate generation of free energies from simulation is an 
outstanding challenge.218,219 In practice, free energy is usually 
computed as discrete data points by probing individual 
molecular configurations, rather than as a continuous analytic 
function.216 Suppose for a molecule with atom positions x in 
the Cartesian coordinates, a set of collective variables is used 
to represent the relevant degrees of freedom. In practice, the 
collective variables are chosen based on chemical or physical 
intuition such that they encode some important structural 
information in a molecule such as the length of some critical 
chemical bond or the backbone dihedral angles of an organic 
compound.218,220 

Given an MD trajectory labeled with free energy estimation 
or the gradient of the free energy, an ML model learns a 
function defined on the collective variable space to reconstruct 
the FES using either the free energy loss or the free energy 
gradient loss.208 Kernel methods such as GP regression221,222 
and deep NNs have been used to this end.216,218,222 The learned 
model can provide in-depth knowledge of the system such as 
differences of free energy between different states or even the 
ensemble averages of certain physical observables.218 
ML to construct kinetic models From the kinetic aspect, ML 
also helps to construct Markov state models (MSM) from MD 
trajectories to understand the dynamical processes that 
govern the performance of functional materials for better 
material design. 

ML-based approaches are based on several mathematical 
achievements. One of the most fundamental results that 
facilitates the ML practice in this area of study is the Koopman 
theory. This theory states that there exists a function χ that 
maps the local configuration of atoms x in MD to a feature 
space χ(x) in which the dynamics can be approximated using a 
linear transition matrix:31 

𝝌(𝒙𝒕?𝝉) = 𝑲𝑻𝝌(𝒙𝒕) (12) 
where K is the Koopman operator. In recent years, the VAMP 
theory provides a powerful tool to measure the consistency 
between learned singular functions of K and the underlying 
true ones, which is used constructively when defining the loss 
function for training purposes.43,223 Moreover, the atomistic 
structures of materials, either organic or inorganic, can be 
understood in a graph theoretic way, because they are mostly 
defined by particles (nodes) and interactions (edges).224–227 
Therefore, the graph convolutional networks (GCN) have 
become a natural class of tools to learn the MSM from the MD 
trajectories. GCN is a direct generalization of convolutional 
neural networks (CNN) to graph-structured data.228,229 

In a pioneering work,31 researchers study the dynamics of 
lithium ions in solid polymer electrolytes using MSM built by 
graph convolutional NNs. As shown in Fig. 5b, a four-state 
MSM identifies three relaxation processes, and the slowest 
relaxation is shown to involve the transport of a Li-ion into and 
out of a polyethylene oxide coordinated environment. The 

https://openkim.org/
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authors remark that despite that the relaxation processes of 
the solid polymer electrolytes have been extensively studied, 
the machine-learned MSM is still insightful because it provides 
the exact atomic-scale dynamics related to these relaxations, 
which can be further related to ionic conductivity.     
ML to aid simulation-driven design ML can also be aggregated 
with MD simulations to understand the relation between the 
chemical configuration and the mechanical properties of 
polymeric composites. The material structure-property 
mapping can be sampled using a relatively small amount of MD 
simulations. After sampling, ML can be applied to learn such 
maps and predict the properties of unseen structures. 

For example, optimizing the functionalization of carbon 
nanotubes (CNT) in the polymer matrix is a possible route to 
improve the interfacial shear strength in such composites.230 
This is because the functionalization improves the load transfer 
between the CNT and the matrix, while it also disrupts the 
pristine CNT lattice structure that is responsible for the superior 
properties of the CNT.231 Therefore, there could be some 
functionalization state that maximizes the interfacial shearing 
strength. A recent work uses ML to aid the MD-driven design of 
carbon nanotube (CNT)-polymer composite.209 The design 
variable is the covalent functionalization of the CNT atoms by 
creating covalent bonds between the polymer and the CNT in 
the simulations. Pullout tests are performed to sample the 
mapping between the material design and the critical pullout 
force. This work uses the Radial Distribution Function (RDF) 
along with several structural descriptors as the feature 
representation of the CNT. A CNN trained on the feature space 
and the observed critical pullout force is shown to have 
satisfactory accuracy. Such models can be even more powerful 
if integrated into optimization frameworks to maximize the 
desired mechanical properties. Another recent work via Xie et 
al. developed a multitask GNN to accelerate MD simulation of 
LiTFSI/SPE systems.232 The NN is trained on a large number of 
short, unconverged MD simulations and a small number of long, 
converged MD simulations. The trained NN is able to reduce 
errors and make predictions based on short MD simulations. 
The developed ML model is employed to perform an extensive 
screening of potential polymer electrolytes. An open dataset 
from the model was generated for the design of SPEs.    
 

3.3 Coarse-grain (CG) modelling 

Various CG models have been employed to construct SPEs. The 
most well-developed model is Kremer-Grest (K-G) model, which is 
suitable for studying dynamic,233 and mechanical properties of 
polymer melts.234,235 K-G model describes a polymer chain as a 
string of hard-sphere beads connected via springs. The length and 
the strength of the springs are related to the Kuhn length and the 
stiffness of the polymers. The bonded interactions are usually 
described by the finitely extensible nonlinear elastic (FENE) 
potential: 

𝑼𝑭𝑬𝑵𝑬 = −
𝟏
𝟐𝑲𝑹𝟎

𝟐𝐥𝐧 É𝟏 − Ñ
𝒓𝒊𝒋
𝑹𝟎
Ö
𝟐
Ü + 𝟒𝜺𝒊𝒋

+ âÉ
𝝈𝒊𝒋
𝒓𝒊𝒋
Ü
𝟏𝟐

− É
𝝈𝒊𝒋
𝒓𝒊𝒋
Ü
𝟔

ä + 𝜺𝒊𝒋 
(13) 

The non-bonded interactions are usually described by the12-6 
Lennard-Jones (LJ) potential: 
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The K-G model has been employed to investigate the self-
assembly,235 correlation between microstructure and ionic 
mobility,236 electric field effects on the polymer aggregation,237 etc. 
A variant of K-G bead-spring model was developed by Kumar et 
al.238 They modeled poly(ethylene oxide) (PEO) and embedded 
Stockmayer dipoles in each bead that could better capture the local 
electrostatic interactions between Li-ions and PEO. 

An alternative well-known CG model is dissipative particles 
dynamics (DPD). In the late 1990s, Groot et al. developed DPD 
simulation that provided a new approach to perform large scale MD 
simulation.239 Different from the relatively simple LJ non-bonded 
interaction, the DPD defines three non-bonded interaction terms 
for each pair-wise particles within a cut-off distance rc: 

𝒇𝒊 =%(𝑭𝒊𝒋𝑪 + 𝑭𝒊𝒋𝑫 + 𝑭𝒊𝒋𝑹)
𝒋]𝒊

 (15.1) 

𝑭𝒊𝒋𝑪 = é
𝒂𝒊𝒋(𝟏 − 𝒓𝒊𝒋)𝒓è𝒊𝒋						(𝒓𝒊𝒋 	≤ 	 𝒓𝒄)
𝟎																													(𝒓𝒊𝒋 	> 	 𝒓𝒄)

 (15.2) 

𝑭𝒊𝒋𝑫 = −𝜸𝒘𝑫(𝒓𝒊𝒋)(𝒓è𝒊𝒋 ∙ 𝒗𝒊𝒋)𝒓è𝒊𝒋 (15.3) 
𝑭𝒊𝒋𝑹 = 𝝈𝒘𝑹(𝒓𝒊𝒋)𝜽𝒊𝒋𝒓è𝒊𝒋 (15.4) 

 
As shown in the above equations, the total non-bonded 

force acting on the ith particle equals to the sum of the 
conservative force 𝐹!&R , the dissipative force 𝐹!&*, and the random 
force 𝐹!&_. The 𝐹!&R  is a soft repulsion force where aij represents 
the maximum repulsive interaction between the ith and jth 
particle. The value of aij was benchmarked by the 
compressibility of water,239 and the aij for other molecules were 
mapped onto Flory-Huggins parameters, which can be then 
derived by the solubility or mixing energy.240,241 The dissipation 
constant γ and the noise amplitude σ are correlated by 𝜎 =
ò2𝛾𝑘`𝑇. The 𝑤*(𝑟!&) and 𝑤_(𝑟!&) are functions solely depend 
on the distance rij. In the random force equation, θij is a random 
variable obeying Gaussian distribution. Coupling with the 
smeared charge approximation, DPD model have succeeded in 
study the electrostatic interaction242 and the ion conductivity243 
of the polyelectrolyte systems. 

It should be noted that both K-G model and DPD model are 
considered top-down CG approaches, i.e., the explicitly 
proposed simple potentials are tuned to match macroscopic 
thermodynamic properties.244 In contrast, bottom-up CG 
approaches employ more complex potentials that are 
parameterized with information from atomically detailed 
simulations. Therefore, bottom-up CG can be better at 
capturing local interactions, such as polarized effect in SPEs, and 
preserving chemical specificity.245 There are some recent 
reviews that have discussed bottom-up CG approaches in more 
detail.246,247  
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The CG model broadens the temporal and spatial scales of 
the simulation, but also introduces uncertain CG parameters 
that are flexibly tunable within a reasonably range. Therefore, 
Grossman et al. exploited the CG parameter space with the help 
of BO to design a PEO-based SPEs having higher Li-ion 
conductivity.115 Fig. 5c illustrates the workflow of incorporating 
BO with CG for such design process. In their CG model, a Class2 
force field and the LJ 12-6 potential were adopted to describe 
bonding and non-bonding interactions, respectively. 
Specifically, they designated all CG parameters into three 
categories: anion-related parameters (anion size, salt 
concentration, etc), parameters related to the polymer chain 
(monomer size, etc), parameters related to the secondary 
structure (molecular size, etc). Clearly, the CG parameter space 
is a complex high-dimensional space. Bayesian optimization 
constructed a continuous function mapping the CG parameter 
space to a one-dimensional space (Li-ion conductivity). They 
chose Gaussian process prior to describe the function. Posterior 
was evaluated based on the prior and the current CG simulation 
data. The next trial point was determined by an acquisition 
function, i.e., lower confidence bound modified by the local 
penalization method. Compared with random search, BO-
assisted CG found a design plan to yield higher Li-ion 
conductivity within shorter iterations. 

ML was conventionally employed to predict the CG force 
field, as the example mentioned above, while a novel idea was 
proposed to directly predict the dynamics of CG systems.248 It 
overcame two challenges: learning-based force field becomes 
unstable after a long timescale simulation; learning-based force 
field limits to specific systems. They first learned atom 
embedding information at the fully atomistic level using an 
embedding GNN. Subsequently, they coarse grained the system 
using graph clustering. Finally, the dynamics, i.e., time-
integrated acceleration was learned at the CG scale by a 
dynamics GNN. Using this scheme, just a set of short MD 
trajectories are needed, which greatly reduces the 
computational cost. They validated the scheme on two realistic 
scenarios, polymers in implicit solvent and Li-ion SPEs. 

4 Conclusions and Outlook 
 
The macroscopic properties of SPEs originate from the intricate 
interplays among various physical parameters across multiple 
scales. ML can provide an alternative shortcut to circumvent the 
challenge of fully understanding those complex mechanisms 
and establish a surrogate model from input features to output 
properties. In the above sections, we have reviewed different 
ML algorithms and their applications to SPE research, ranging 
from screening, discovery, and optimization of novel SPEs to 
generating force field. We highlighted how ML algorithms could 
be incorporated with theory-based modelling techniques and 
the new framework would improve computation efficiency and 
scalability. As this area is growing rapidly, there are several 
emerging challenges that require to be addressed. (i) The open-
source databases with extensive and detailed polymer data 
entries are in pressing demand. Data-driven approaches rely 

highly on data of good-quality to avoid the so called “garbage 
in, garbage out” scenario. Although some databases have 
contributed substantially to building ML models for SPEs, it is 
yet difficult to directly find properties such as ionic 
conductivities or electrochemical stability window for a vast 
majority of polymers. Moreover, it would be ideal for databases 
to include more information about copolymers, branched 
polymers, crosslinked polymers, and polymer composites since 
these polymer systems are regarded as crucial strategies for 
optimizing ionic conductivities and mechanical properties. One 
way to achieve such goals is to create live databases that are 
friendly for users to access and edit. Efforts have been made to 
promote data sharing for both experimentalists and theorists in 
public repository.163,249,250 With such repositories, 
experimentalists are expected to document accurate 
experimental data about SPEs such as ionic conductivity, 
mechanical properties, and morphological information. 
Meanwhile, computational chemists are expected to modify 
existing descriptors or design new descriptors that are 
compatible for more complicated polymer systems that can be 
beneficial for establishing a more comprehensive database. (ii) 
Studies about evaluating and comparing the performance of 
different ML algorithms on certain tasks such as training MLPs 
are still limited. On the one hand, ML community has developed 
plenty of algorithms that can be used interchangeably for the 
same problem with pros and cons, and the evolution of ML 
algorithms is still at a swift pace. On the other hand, some ML 
architectures have lots of hyperparameters and can be very 
flexible. We are hoping that more studies can investigate 
benchmarks for various ML algorithms across different use 
cases and report nuances during hyperparameter tuning, which 
can guide future researchers to build their own ML pipelines. 
Apparently, having standardized and wildly acknowledged 
databases will greatly facilitate benchmarking process. 
Moreover, it is essential for computational chemists to open 
access to their code for public use, thereby reducing the barriers 
to implementing ML models. (iii) The ambition towards 
achieving fully automated SPE development involves the 
integration of theory-based modeling, machine learning 
algorithms, and high-throughput experimentation. High-
throughput experimentation has been employed in areas such 
as drug discovery and polymer syntheses.251,252 Especially for 
generative models, high-throughput experimentation can 
quickly validate the accuracy and effectiveness of the results 
output by the theoretical computation plus ML framework, 
since the generative models may often come up with samples 
that are never seen before. Furthermore, high-throughput 
experimentation can bestow a data-driven approach with 
improved error tolerance. With high-throughput 
experimentation, the researchers can not only test the optimal 
selected by the model, but also test a subset of the candidates 
that have close scores to the optimal. Once more, a robust 
partnership between experimentalists and computational 
chemists remains essential in crafting such workflows. 
Computational chemists can assist experimentalists in designing 
experiments and ensure that experiments are efficient, cover a 
wide parameter space, and provide meaningful data. 
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Concurrently, experimentalists can help computational 
chemists gain a deep understanding of SPEs to adjust and 
improve their models.  In a nutshell, though still in the early 
stage, the success of ML in solving a variety of challenges in SPEs 
indicates the promising potential of this computational and 
data-driven technique for better SPEs in the future.  
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