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A  d e e p  hi er ar c hi c al  e c h o  st at e  n et w or k  ( D H E S N)  i s  d e si g n e d  f or  r e ctif yi n g  t h e  s h ort c o mi n g s  of  t h e  s h all o w 

c o u pl e d str u ct ur e wit h l e s s r e s er v oir d y n a mi c s. T hi s d e si g n i s wit h r ef er e n c e t o al g al bl o o m w hi c h i s a c o m pl e x 

e c ol o gi c al p h e n o m e n o n. A c c ur at e pr e di cti o n of al g al bl o o m c a n r e d u c e t h e e n vir o n m e nt al i m p a ct a n d e c o n o mi c 

l o s s. Si n c e t h e f or m ati o n of al g al bl o o m h a s c h a oti c c h ar a ct eri sti c s, t h e E S N h a s b e e n e m pl o y e d t o r e ali z e it s 

pr e di cti o n f u n cti o n. Fir st, t h e c a n di d at e v ari a bl e s wit h str o n g c a u s al r el ati o n s hi p h a v e b e e n s cr e e n e d b y tr a n sf er 

e ntr o p y, a n d t h e r e d u n d a nt v ari a bl e s i s eli mi n at e d. T h e n, a hi er ar c hi c al r e s er v oir str u ct ur e i s e st a bli s h e d t h at i s 

i n s pir e d b y t h e hi er ar c hi c al c h ar a ct eri sti c s fr o m t h e br ai n. T h e hi er ar c hi c al r e s er v oir h a s r e ali z e d t h e c o n n e cti o n 

b et w e e n t h e r e pr e s e nt ati v e n o d e s of e a c h s u br e s er v oir, a n d i m pr o v e d t h e i nf or m ati o n pr o c e s si n g a bilit y of t h e 

r e s er v oir. Fi n all y, t h e pr u ni n g a n d c o m pr e s si o n of t h e o ut p ut w ei g ht s h a v e b e e n r e ali z e d b y t h e el a sti c r e g u -

l ari z ati o n m et h o d, w hi c h i m pr o v e s t h e r o b u st n e s s of t h e pr e di cti o n m o d el. T h e si m ul ati o n r e s ult s d e m o n str at e 

t h at t h e D H E S N h a s a p pr e ci a bl e pr e di cti o n a c c ur a c y i n b ot h t h e c h a oti c a n d t h e p u bli c al g al bl o o m d at a s et s. T h e 

D H E S N c o nt ai n s ri c h er d y n a mi c c h ar a ct eri sti c s, a n d c a n r e ali z e t h e s elf- or g a ni z ati o n of t h e n et w or k str u ct ur e. It 

pr o vi d e s a n o v el i d e a t o r e ali z e t h e pr e di cti o n m o d el of al g al bl o o m wit h a hi g h a c c ur a c y a n d l o w c o m pl e xit y.   

1. I nt r o d u cti o n 

O wi n g  t o  t h e  e xt e n si v e  c o n s u m pti o n  of  e n vir o n m e nt al  r e s o ur c e s, 

i n d u stri al w a st e w at er fr o m pr o d u cti o n a cti viti e s a n d s e w a g e h a v e b e e n 

a c c u m ul at e d  i n  t h e l a k e  t hr o u g h  v ari o u s w a y s.  W h e n nitr o g e n,  p h o s -

p h or u s,  a n d  ot h er  n utri e nt s  i n  t h e  l a k e  a n d  r e s er v oir  i n cr e a s e,  e utr o -

p hi c ati o n of w at er b e c o m e s h a z ar d o u s ( S u n et al., 2 0 2 2; Vi n ç o n- L eit e & 

C a s e n a v e, 2 0 1 9; Li n et al., 2 0 2 1 ). I n t h e e utr o p hi c ati o n st at e of l a k e s a n d 

r e s er v oir s, t h e o v er- pr o p a g at e d al g a e i n t h e w at er r e s ult s i n al g al bl o o m 

(C ui  et  al.,  2 0 2 1 ). T h e  o ut br e a k  of  al g al  bl o o m  f urt h er  c o n s u m e s t h e 

di s s ol v e d o x y g e n i n t h e w at er b o d y, l e a di n g t o t h e d e at h of u n d erl yi n g 

a q u ati c or g a ni s m s i n a l ar g e ar e a, w hi c h f urt h er d et eri or at e s t h e w at er 

q u alit y, a n d s eri o u sl y d e gr a d e s t h e w at er e c o s y st e m ( B a e & S e o, 2 0 2 1 ). 

P arti c ul arl y, e utr o p hi c ati o n a n d al g al bl o o m ar e p o s si bl e t o o c c ur o wi n g 

t o p o or m o bilit y. W at er q u alit y c o n diti o n s ar e t h e b a si s f or al g al bl o o m, 

a n d t h e n utri e nt s s u c h a s nitr o g e n a n d p h o s p h or u s ar e c o n si d er e d a s t h e 

i m p ort a nt  f a ct or s  (B er ett a- Bl a n c o & C arr a s c o- L et eli er,  2 0 2 1 ).  Wit h 

r e s p e ct t o t h e al g al bl o o m o ut br e a k, t h e c urr e nt m a n a g e m e nt m e a s ur e s 

i n cl u d e t h e c o ntr olli n g of t h e n utri e nt s, p h y si c al m et h o d s, a n d c h e mi c al 

dr u g s ( H u a n g et al., 2 0 1 8 ). It i s i m p ort a nt t o m o nit or a n d pr e di ct al g al 

bl o o m  a c c ur at el y  f or  i m pr o vi n g  t h e  ef fi ci e n c y  of  t h e  l o n g-t er m  m a n -

a g e m e nt a n d e m er g e n c y tr e at m e nt of al g al bl o o m. T h er ef or e, it c o n sti -

t ut e s a n i m p ort a nt st e p f or t h e w at er q u alit y m a n a g e m e nt t o d e si g n a n 

eff e cti v e a n d r eli a bl e pr e di cti o n m o d el. 

A c c or di n g t o pr e vi o u s st u di e s ( Li u et al., 2 0 2 2 a; Y u et al., 2 0 2 1 ), t h e 

e v ol uti o n of al g al bl o o m h a s t h e t y pi c al n o nli n e ar a n d t e m p or al c h ar -

a ct eri sti c s,  a n d  t h e  e xt e n si v el y  e m pl o y e d  r e c urr e nt  n e ur al  n et w or k 

f or m s a n eff e cti v e t o ol i n d e ali n g wit h s u c h pr o bl e m s (W a n g et al., 2 0 2 0; 
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Kim et al., 2022). Recently, as a data-driven model with simple struc
ture, fast training speed, and high prediction accuracy, echo state 
network (ESN) has been applied in several fields (Chitsazan et al., 2019; 
Yao et al., 2019; Ribeiro et al., 2021). ESN can effectively model and 
predict nonlinear signals, especially for chaotic time series (Ferreira 
et al., 2013). Considering the above advantages of the ESN, previous 
studies have also attempted the prediction of algal bloom and obtained 
effective prediction performance (Zhang et al., 2021; Zhang et al., 
2022). Deep learning provides a richer perspective for the time series 
prediction tasks (Goodfellow et al., 2016). Owing to the complexity of 
algal bloom prediction, the structural design and training methods in 
deep learning provide further ideas for improvement of ESN. By the 
special processing of input data, such as introducing attention mecha
nism into the ESN, the prediction accuracy has further been improved 
(Liu et al., 2022b). Inspired by the above work, from the perspective of 
data-driven, the structure and training method of the ESN will be opti
mized to achieve satisfactory prediction requirements. 

Owing to the problem of predicting algal bloom with abundant water 
quality data and complex evolution mechanism, the single-layer reser
voir structure shows the shortcoming of the insufficient information 
processing ability, which indicates that the applicability of shallow ESN 
in complex application scenarios is limited. Compared with single-layer 
neural networks, deep neural networks can deal with the complex sys
tem modeling more effectively (Thakkar & Chaudhari, 2021). Therefore, 
it is necessary to consider the deep expansion of the reservoir structure. 
By stacking the reservoir layer, deep ESN can effectively improve its 
ability to extract the hidden features (Gallicchio et al., 2017). For the 
actual algal bloom prediction problem, the deep ESN can be employed 
for a better learning of the nonlinear relationship in water quality data, 
for realizing the effective prediction of algal bloom. In the process of 
constructing the network above, the design of its structure and the 
output weights solution are still the key factors for improving the per
formance (Kaviani & Sohn, 2021). 

The modular reservoir with multiple sub-reservoirs is an effective 
method for designing the ESN. Complete decoupling between the sub- 
reservoirs is an ideal structure. However, from the perspective of 
structural bionics, the topological structure of human brain is connected 
in a hierarchical and modular manner (Jarvis et al., 2010). The infor
mation processing ability of the fully decoupled sub-reservoirs has been 
weakened owing to the lack of transmission of time sequence informa
tion. Considering that the submodules of the brain network need to have 
certain information transmission, the brain network shows a complex 
hierarchical structure and information processing ability (Jarvis et al., 
2010). The hierarchical structure contains the modular function parti
tion, and realizes the information transfer between each module. Simi
larly, simulating this topology can improve the overall dynamics of the 
reservoir while the coupling between neurons will not be increased in 
excess. This improves the prediction performance and the stability. 

The hierarchical design of the reservoir can strengthen the internal 
information transmission. However, the random design of the reservoir 
will still generate redundant neurons, thus leading to the ill-posed 
problem of solving the output weights and limiting the prediction per
formance (Shen et al., 2018). Regularization is a kind of effective 
method to solve the output weight, which can alleviate the ill- 
conditioned solution problem (Yildirim & Ozkale, 2019). Currently, 
the widely employed regularization methods include the sparse regu
larization and ridge regression (Dutoit et al., 2009; Yang et al., 2019). 
Sparse regularization can realize the sparsity of output weights. Ridge 
regression can compress the output weights and improve the robustness 
of the ESN. To exploit the advantages of the two regularization methods, 
the elastic regularization method integrates the two methods, which can 
solve the problem that the large magnitude of the output weights, be
sides triming the output weights, thus realizing the self-organization of 
the network structure (Xu et al., 2018). 

With respect to the above analysis, this paper proposes a deep hier
archical ESN (DHESN) model and applies it for the algal bloom 

prediction. First, the transfer entropy has been employed for screening 
the appropriate input variables of DHESN and eliminate redundant 
candidate variables (Schreiber, 2000). Then, the DHESN model based on 
the hierarchical reservoir structure has been constructed. Compared 
with the traditional deep ESN model, the DHESN model adopts a hier
archical structure for each layer to improve the internal dynamic char
acteristics, and its output weights have been solved by the elastic 
regularization method. Therefore, the DHESN model is close to the real 
brain network with respect to the structure, and can realize the self- 
organization of the weight that can improve the prediction perfor
mance. We have employed two kinds of standard chaotic time series 
data and actual water quality data to verify the effectiveness of DHESN 
in the prediction task. 

The structure of this paper is given in the following. Section 2 in
troduces the basic structure and theoretical analysis of DHESN. Section 3 
shows the experimental results of the three datasets and verifies the 
prediction performance of DHESN. Section 4 discusses the theory and 
application advantages of DHESN. Finally, Section 5 draws the 
conclusions. 

2. Methodology 

2.1. Transfer entropy 

Transfer entropy is a method to describe the coupling degree be
tween variables. It measures the asymmetry between the variables to 
find the transfer relationship, so as to measure the causal relationship 
(Schreiber, 2000). Let xt yt

n
t 1 be a set of time series consisting of 

variables X and Y. Given the embedding dimension m and delay time , 
the state space reconstruction vectors at time t are xt xt xt

xt m 1 and yt yt yt yt m 1 , respectively. The transfer en
tropy TEX Y from X to Y is defined as Eq. (1): (Schreiber, 2000). 

(1)  

where H x represents the Shannon entropy of variable X. 
Therefore, this paper firstly utilizes transfer entropy to screen the 

variables with a strong causal relationship and delete the redundant 
variables, for simplifying the complexity of the proposed model. 
Further, the retained variables are input into the subsequent model for 
training and prediction. 

2.2. Echo sate network 

ESN is a recurrent neural network consisting of three layers, viz., 
input, reservoir, and output layers. The input, reservoir, and output 
layers have K, M, and L neurons, respectively. Without considering the 
feedback from the output layer to the reservoir, the calculation process 
of ESN is given as Eqs. (2)-(3) (Jaeger et al., 2007). 

(2)  

(3)  

where u t 1 K 1 is the input at time t 1, x t 1 M 1 is the 
state of the reservoir at time t 1, y t 1 L 1 is the output at time 
t 1, f is the activation function of the neurons in the reservoir, Win

M K is the input weight, Wres M M is the reservoir weight, and 
Wout L M is the output weight. In the original ESN, Win and Wres are 
fixed after the random initialization, and only Wout needs to be trained. 
In order to overcome the effect of the initial transient, it is assumed that 
the internal state matrix Xo x t 1 x t T is collected from 
time t 1, and its corresponding expected output matrix is Yt

yt t 1 yt t T , where yt is the expected output. Then the 
output weight matrix can be solved by the least square method, and its 
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o bj e cti v e f u n cti o n i s d e s cri b e d a s E q. ( 4): 

mi n E (ψ )  = mi n
W o ut

‖ X o W
o ut − T ‖

2
2 ( 4)  

T h e s ol uti o n f or t h e o ut p ut w ei g ht i s d e s cri b e d a s E q. ( 5) (G alli c c hi o & 

Mi c h eli, 2 0 1 1 ) 

W o ut = X †
o T =

(
X T

o X o

) − 1
X T

o Y ( 5)  

w h e r e X †
o r e p r e s e nt s  t h e  g e n er ali z e d  i n v er s e  of X o .  A c c o r di n g  t o  t h e 

tr ai ni n g m et h o d, t h e l e a st s q u ar e m et h o d n e e d s t h e c oll e ct e d i nt er n al 

st at e  m atri x  a n d  e x p e ct e d  o ut p ut  m atri x  w hil e s ol vi n g  f or  t h e  o ut p ut 

w ei g ht s. T h er ef or e, w h e n t h e tr ai ni n g d at a s et 
{ (

u (t), y t(t)
) ⃒

⃒t = tmi n + 1 ,

⋯ , tm a x

}
i s p r o vi d e d, t h e s p e ci fi c tr ai ni n g st e p s of t h e ori gi n al E S N ar e 

di s pl a y e d i n Al g o rit h m 1 . 

Al g orit h m  1 St e p  1: R a n d o ml y  g e n er at e  t h e  r e s er v oir  w ei g ht W r es 

a c c o r di n g t o t h e r e s er v oir si z e M , s p e ctr al r a di u s ρ a n d s p ar sit y D ; 

St e p 2: A c c or di n g t o t h e i n p ut si z e K a n d r e s er v oir si z e M , t h e i n p ut 

w ei g ht W i n i s  r a n d o ml y  i niti ali z e d,  a n d  t h e  r e s er v oir  st at e x (0 ) i s 

i niti ali z e d. 

St e p 3: I n p ut t h e d at a t o t h e E S N. A c c or di n g t o E q. ( 2), c oll e ct t h e 

r e s er v oir st at e at ti m e tmi n + 1 t o o bt ai n X o ; 

St e p 4: C al c ul at e t h e o ut p ut w ei g ht W o ut a c c o r di n g t o E q. ( 5); 

St e p 5: T e st t h e tr ai n e d E S N. 

2. 3.  Hi er ar c hi c al r es er v oir 

E a c h r e s er v oir l a y er of t h e D H E S N t h at i s pr o p o s e d i n t hi s p a p er i s a 

hi er ar c hi c al  r e s er v oir.  T h e  str u ct ur e  of  a  si n gl e-l a y er  hi er ar c hi c al 

r e s er v oir  h a s  b e e n  d e si g n e d  i n  t hi s  s e cti o n.  A c c or di n g  t o Fi g.  1 ,  t h e 

d e si g n of t h e hi er ar c hi c al r e s er v oir c o n si st s of t w o p art s, vi z., o n e i s t h e 

m o d ul ar s u br e s er v oir, a n d t h e ot h er p art i s t h e w ei g ht c o n n e cti o n b e -

t w e e n t h e r e pr e s e nt ati v e n o d e s i n e a c h s u br e s er v oir. 

H er e,  t h e  w ei g ht  of  t h e  s u br e s er v oir  h a s  b e e n  g e n er at e d  b y  S V D 

d e c o m p o siti o n  ( Qi a o  et  al.,  2 0 1 6 ).  T h at  i s,  t h e  f ull y  c o n n e ct e d  s u b -

r e s er v oir W s u br es
p ( 1 < p < N ) h a s b e e n r a n d o ml y g e n er at e d a c c or di n g t o 

t h e gi v e n si n g ul ar v al u e di stri b uti o n, a n d t h e si z e of e a c h s u br e s er v oir i s 

n s u b (Qi a o et al., 2 0 1 6 ). Aft er N s u br e s er v oir s wit h si z e n s u b h a v e b e e n 

r a n d o ml y g e n er at e d, t h e a p pr o pri at e r e pr e s e nt ati v e n e ur o n s n e e d t o b e 

s el e ct e d f or t h e c o n n e cti o n. W e h a v e s el e ct e d t h e n e ur o n wit h t h e l ar g e st 

c o n n e cti o n str e n gt h i n t h e s u br e s er v oir i s s el e ct e d a s t h e r e pr e s e nt ati v e 

n e ur o n s i s d e s cri b e d i n E q s.( 6)-( 7): 

jr e p = ar g  m a x
1 < jr e p < n s u b

{
s c 1 , s c 2 , ⋯ , s c n s u b

}
( 6)  

w h e r e 

s c j =
∑

z∈ φ i n
j

⃒
⃒s jz

⃒
⃒ +

∑

z∈ φ o ut
j

⃒
⃒s zj

⃒
⃒ ( 7)  

φ i n
j r e p r e s e nt s t h e i n p ut w ei g ht s et of t h e j t h n e ur o n, φ o ut

j r e p r e s e nt s t h e 

o ut p ut w ei g ht s et of t h e j t h n e ur o n, sj z r e p r e s e nt s t h e c o n n e cti o n w ei g ht 

fr o m j t h n e ur o n t o z t h n e ur o n, a n d szj r e p r e s e nt s t h e c o n n e cti o n w ei g ht 

fr o m z t h  n e ur o n  t o j t h  n e ur o n.  Aft er  t h e  r e pr e s e nt ati v e  n o d e s  ar e 

d et er mi n e d, t h e a cti v ati o n f u n cti o n of t h e r e pr e s e nt ati v e n o d e i n E q. ( 8) 

i s s et a s t h e w a v el et a cti v ati o n f u n cti o n ψ d jr e p ,tjr e p
( x ) (C ui et al., 2 0 1 4 ). 

ψ d jr e p ,tjr e p
( x )  = 2 d jr e p / 2

(
2 d jr e p x − tjr e p

)
e −

(
2

d jr e p x − tjr e p

) 2

/ 2 ( 8)  

w h e r e d jr e p
= jr e p / N , tjr e p

= jr e p / N − 0 .5, 
(
jr e p = 1 , 2 , ⋯ , N

)
. I n t hi s w or k, 

t h e  c o n n e cti o n  b et w e e n  t h e  r e pr e s e nt ati v e  n o d e s  i s  r e ali z e d  b y  t h e 

c o n str u cti o n m e c h a ni s m of t h e i m pr o v e d s m all- w orl d n et w or k ( S o n g & 

F e n g,  2 0 1 0 ).  T h e  i m pr o v e d  s m all- w orl d  n et w or k  e m pl o y s  t h e  e d g e 

pr o b a bilit y p w a s t h e c o n n e cti o n w ei g ht b et w e e n e a c h n o d e s i s s h o w n i n 

E q. ( 9). 

p w = α e − β dist (u ,v ) ( 9)  

w h e r e α i s t h e d e n sit y s e n siti vit y c o ef fi ci e nt, β i s t h e di st a n c e s e n siti vit y 

c o ef fi ci e nt, a n d dist (u , v ) i s t h e E u cli d e a n di st a n c e b et w e e n n o d e s u a n d 

v . W h e n t h e di st a n c e b et w e e n n o d e s i s l ar g er, t h e c o n n e cti o n w ei g ht i s 

s m all er. P arti c ul arl y, t h e u nil at er al or bi dir e cti o n al c o n n e cti o n s c a n b e 

r e ali z e d b et w e e n t h e r e pr e s e nt ati v e n o d e s t o i m pr o v e t h e i nf or m ati o n 

tr a n sf er a bilit y of t h e r e s er v oir. T h e s p e ci fi c c o n str u cti o n pr o c e s s of t h e 

r e pr e s e nt ati v e n o d e c a n b e s e e n i n St e p 4 of Al g orit h m 2. 

T h er ef or e, t h e m o d el of H E S N i s d e s cri b e d i n E q s.( 1 0)-( 1 1). 

x (n + 1 )  = f
(
W i nu (n + 1 )  + W hr es x (n )

)
( 1 0)  

y (n + 1 )  = W o ut x (n + 1 ) ( 1 1)  

w h er e W hr es ∈ R (N × n s u b ) ×(N × n s u b ) i s  t h e  c o n n e cti o n  w ei g ht  of  t h e  hi er ar-

c hi c al r e s er v oir, a n d f =
[
f1 , f2 , ⋯ , fN × n s u b

]
i s t h e a cti v ati o n f u n cti o n of 

t h e hi er ar c hi c al r e s er v oir. P arti c ul arl y, if t h e n e ur o n i s n ot a r e pr e s e n -

t ati v e n o d e, t h e a cti v ati o n f u n cti o n of t h e n o d e i s t h e si g m oi d f u n cti o n. 

If t hi s n o d e i s a r e pr e s e nt ati v e n o d e, t h e a cti v ati o n f u n cti o n of t hi s n o d e 

i s t h e w a v el et f u n cti o n. 

2. 4.  D H E S N 

T h e D H E S N i s c o m p o s e d of t h e m ulti-l a y er hi er ar c hi c al r e s er v oir s, 

a n d  it s  n et w or k  str u ct ur e  i s  di s pl a y e d  i n Fi g.  2 .  A s s u mi n g  t h at  e a c h 

Fi g. 1. T h e t o p ol o g y of t h e hi er ar c hi c al r e s er v oir.  

B. H u et al.                                                                                                                                                                                                                                       
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hi er ar c hi c al r e s er v oir h a s t h e s a m e n u m b er a n d si z e of s u br e s er v oir s, 

vi z., N a n d n s u b , r e s p e cti v el y, t h e n t h e D H E S N c a n b e d e s cri b e d a s E q s. 

( 1 2)-( 1 3): 

x (l) ( n + 1 )  = f (l)
(
W

(l)
i n x

(l)
i n ( n + 1 )  + W

(l)
hr es x

(l) ( n )
)

⎧
⎨

⎩

x
(l)
i n ( n + 1 )  = u (n + 1 ), l = 1

x (l)
i n ( n + 1 )  = x (l− 1 ) ( n + 1 ), l > 1

( 1 2)  

y (n + 1 )  = W o ut X (n + 1 ) ( 1 3)  

w h e r e W o ut ∈ R 1 ×( N × n s u b × lm a x ) , X (n + 1 )  =
[
x (1 ) ( n + 1 ), x (2 ) ( n + 1 ), ⋯ ,

x (lm a x ) ( n + 1 )
]
. lm a x i s t h e m a xi m u m n u m b er of l a y er s. 

T h e i n p ut w ei g ht s a n d t h e r e s er v oir w ei g ht s r e m ai n u n c h a n g e d aft er 

i niti ali z ati o n,  si mil ar  t o  t h e  tr ai ni n g  pr o c e s s  of  t h e  ori gi n al  E S N,  a n d 

o nl y  t h e  o ut p ut  w ei g ht s  n e e d  t o  b e  tr ai n e d.  W e  h a v e  e m pl o y e d  t h e 

el a sti c r e g ul ari z ati o n wit h L 2 a n d L 1 / 2 t o s ol v e t h e o ut p ut w ei g ht s (Li a n g 

et  al.,  2 0 1 3 ).  El a sti c  r e g ul ari z ati o n  c a n  c o m pr e s s  a n d  r e d u c e  t h e 

c olli n e arit y of t h e o ut p ut w ei g ht s. M or e o v er, t h e o ut p ut w ei g ht s c a n b e 

tri m m e d a ut o m ati c all y, w hi c h r e d u c e s t h e c o m pl e xit y. T h e el a sti c r e g -

ul ari z ati o n o bj e cti v e f u n cti o n i s s h o w n a s E q. ( 1 4). 

E (W o ut )  = ‖Y − W o ut X ‖
2
2 + λ 2 ‖ W o ut ‖

2
2 + λ 1 / 2 ‖ W o ut ‖

1 / 2
1 / 2 ( 1 4)  

w h e r e X ∈ R (N × n s u b × lm a x ) ×T tr ai n i s  t h e  st at e  m atri x  of  t h e  r e s er v oir, Y ∈

R 1 × T tr ai n i s t h e o ut p ut m atri x, T tr ai n i s t h e l e n gt h of t h e tr ai ni n g s et, λ 2 i s 

t h e L 2 r e g ul a ri z ati o n c o ef fi ci e nt, a n d λ 1 / 2 i s t h e L 1 / 2 r e g ul a ri z ati o n c o -

ef fi ci e nt. C o n c o mit a ntl y, t h e st at e m atri x X a n d t h e t ar g et o ut p ut v e ct or 

Y h a v e b e e n s u p pl e m e nt e d t o o bt ai n t h e f oll o wi n g a u g m e nt e d o ut p ut 

m atri x X ∗ a n d t h e a u g m e nt e d t ar g et o ut p ut v e ct or Y ∗ a r e d e s c ri b e d i n 

E q. ( 1 5). 

X * =
1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
1 + λ 2

√

(
X̅̅̅ ̅̅
λ 2

√
I

)

, Y * =

(
Y
0

)

( 1 5) 

L et λ h = λ 1 / 2 /
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
1 + λ 2

√
, a n d W o ut * =

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
1 + λ 2

√
W o ut , t h e n t h e o bj e cti v e 

f u n cti o n c a n b e tr a n sf or m e d i nt o E q. ( 1 6). 

E (W o ut )  = ‖Y − W o ut X ‖
2
2 + λ 2 ‖ W o ut ‖

2
2 + λ 1 / 2 ‖ W o ut ‖

1 / 2
1 / 2

= ‖

(
Y

0

)

−
1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
1 + λ 2

√

(
X
̅̅ ̅̅̅
λ 2

√
I

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
1 + λ 2

√
W o ut ‖ 2

2

+
λ 1 / 2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
1 + λ 2

√ ‖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
1 + λ 2

√
W o ut ‖

1 / 2

1 / 2

= ‖ Y * − W o ut * X * ‖
2
2 + λ h ‖ W o ut * ‖

1 / 2
1 / 2

( 1 6) 

T h e  o ri gi n al  el a sti c  r e g ul ari z ati o n  pr o bl e m  h a s  b e e n  tr a n sf or m e d 

i nt o a g e n er ali z e d L 1 / 2 r e g ul a ri z ati o n pr o bl e m. W e h a v e u s e d t h e c o or -

di n at e d e s c e nt m et h o d i s u s e d t o s ol v e W o ut * i n E q. ( 1 6) (Li a n g et al., 

2 0 1 3 ). I n t h e c o or di n at e d e s c e nt m et h o d, o nl y o n e p ar a m et er, i. e., t h e 

o ut p ut w ei g ht c o m p o n e nt W o ut *
k , k = 1 , 2 , ⋯ , N × n s u b × lm a x , h a s b e e n 

u p d at e d d uri n g t h e s ol uti o n pr o c e s s, w h er e a s ot h er p ar a m et er s r e m ai n 

u n c h a n g e d. T h e n t h e o bj e cti v e f u n cti o n of t h e a b o v e g e n er ali z e d L 1 / 2 

r e g ul a ri z ati o n pr o bl e m h a s b e e n e x p a n d e d i n t er m s of c o m p o n e nt s a s 

E q. ( 1 7). 

E k

(
W o ut *

k

)
=

∑T tr ai n

t= 1

(

y (t)  − W o ut *
k x k ( t)  −

∑N × n s u b × lm a x

i∕= k

W
o ut *

i x i( t)

) 2

+ λ h

(
⃒
⃒W o ut *

k

⃒
⃒

1
2 +

∑N × n s u b × lm a x

i∕= k

⃒
⃒W

o ut *

i

⃒
⃒

1
2

) ( 1 7)  

w h e r e W
o ut *

i r e p r e s e nt s t h e fi x e d o ut p ut w ei g ht c o m p o n e nt i n t h e pr e -

vi o u s st e p. Aft er s orti n g o ut E q. ( 1 7), w e o bt ai n 

E k

(
W o ut *

k

)
=

∑T tr ai n

t= 1

(
W o ut *

k x k ( t)
) 2

+
∑T tr ai n

t= 1

(

y (t)  −
∑N × n s u b × lm a x

i∕= k

W
o ut *

i x i( t)

) 2

− 2
∑T tr ai n

t= 1

(

y (t)  −
∑N × n s u b × lm a x

i∕= k

W
o ut *

i x i( t)

)

W o ut *
k x k ( t)

+ λ h

⃒
⃒W o ut *

k

⃒
⃒

1
2 + λ h

∑N × n s u b × lm a x

i∕= k

⃒
⃒W

o ut *

i

⃒
⃒

1
2

( 1 8) 

A s s u mi n g  t h at 
∑ T tr ai n

t= 1 x 2
k ( t)  ∕= 0,  t h e  mi ni mi z ati o n  of  t h e  o bj e cti v e 

f u n cti o n i n E q. ( 1 8) i s e q ui v al e nt t o t h e mi ni mi z ati o n i n E q. ( 1 9).  

Fi g. 2. T h e t o p ol o g y of D H E S N.  
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Let Ck
Ttrain
t 1 y t N nsub l

i k Wout*
i xi t xk t Ttrain

t 1 x2
k t , 

hk h
Ltrain
t 1 x2

k t , the Eq. (19) has been simplified as Eq. (20). 

* * * * (20) 

Taking the derivative of Eq. (19) with respect to Wout*
k , we obtain Eq. 

(21). 

* *
*

*
(21)  

where sign is the sign function. According to (Liang et al., 2013), we 

solve Ek Wout*
k 0 to obtain Eq. (22). 

* (22)  

where Ck hk Ck 3
3
2 8 , and Wout Wout* 1 2. 

Based on the above analysis, the detailed training algorithm of 
DHESN can be given as Algorithm 2.Algorithm 2 Step 1: Calculate the 
transfer entropy of the candidate variable to the predicted variable and 
set the screening threshold TE. The candidate variable is retained if the 
transfer entropy exceeds or is equal to the TE. If it is less than TE, the 
candidate variable is deleted. 

Step 2: Set the number of reservoir layers l and the input weight 
range of each layer. Each layer randomly generates the subreserveoirs 
through SVD method, and each subreservoir contains nsub neurons. 

Step 3: Select the representative nodes in each subreservoir ac
cording to Eq. (8), and set the wavelet activation function of each 
representative node according to Eq. (7). 

Step 4: Set a two-dimensional plane with both the ranges of x-axis 
and y-axis as 0 1 . Set Ns seed nodes randomly among the representative 
nodes, and set the coordinate of seed nodes as 

js
Nc 1 1 js

Nc 1 js 1 Nc . According to Eq. (8), make all seed nodes 

have at least a unidirectional connection. Then, a new representative 
node with random coordinates has been added each time. Further, the 
unidirectional or bidirectional connection with the existing represen
tative node in the plane is realized according to Eq. (8), where the 
connection distance of each representative node is set as the connection 
weights between each representative node. After all the weights are 
connected, the spectral radius of each hierarchical reservoir needs to be 
adjusted to ensure the echo state property. 

Step 5: Set the regularization parameters and initialize the output 
weight Wout*

o 0. Let Wout* Wout*
o , and iteratively calculate the 

component Wout*
k k 1 2 l N nsub of Wout* according to Eq. 

(21). If the maximum number of iterations is satisfied, then output 
Wout Wout* 1 2. Otherwise, let Wout*

o Wout* and continue the 
process until the condition is satisfied. 

Step 6: Test the trained DHESN. 

2.5. Theoretical analysis 

(1) Spectral radius 
To ensure the echo state property of the DHESN, the spectral radius 

of each hierarchical reservoir has been updated after the representative 
nodes are connected as Eq. (23). 

(23)  

where Whres l
0 is the hierarchical reservoir after the representative nodes 

are connected, and Whres l is the weight of the updated hierarchical 
reservoir at l th layer. Each reservoir layer of DHESN only needs to set 
the random range of the singular value without setting the spectral 
radius in advance (Qiao et al., 2016).(2) Sparsity 

After the representative nodes are connected, the sparsity of the hi
erarchical reservoir changes. The sparsity of the l th reservoir layer (fully 
decoupled subreservoir) before completing the representative node 
connection completed is described in Eq. (24). 

(24) 

Since the weight connection between representative nodes is realized 
according to the small-world network method, its connection is random. 
The sparsity of the hierarchical reservoir, after the node connection is 
divided into two boundary cases. When all representative nodes are 
connected at least, the sparsity of the hierarchical reservoir is the min
imum, and the minimum sparsity of the hierarchical reservoir at l th 
layer is shown in Eq. (25). 

(25) 

When all the representative nodes are bidirectional connected, the 
sparsity of the hierarchical reserve pool reaches the maximum, and the 
maximum sparsity of the l th hierarchical reservoir layer is shown in Eq. 
(26). 

(26) 

Therefore, the sparsity of the each hierarchical reservoir ranges from 
n l

sub
2

1

N l n l
sub

2
N l n l

sub
2

1

N l n l
sub

2 . Similar to the spectral radius, the sparsity of 

each reservoir layer of the DHESN does not need to be set in advance.(3) 
Average state entropy (ASE) 

From the information theory, the instantaneous state entropy of the 
reservoir output can be employed to measure the dynamic richness of 
the ESN effectively. For each reservoir layer l and each time t, its 
instantaneous state entropy H l t can be defined as Eq. (27): (Ozturk 
et al., 2007). 

* *

 
*

* * (19)   
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H (l) ( t)  =  − l o g

⎛

⎜
⎝

1
(
N (l) n

(l)
s u b

) 2

∑N (l) n
(l)
s u b

j= 1

⎛

⎝
∑N (l) n

(l)
s u b

i= 1

κ
(
x

(l)
j ( t)  − x

(l)
i ( t)

)
⎞

⎠

⎞

⎟
⎠ ( 2 7)  

w h er e x
(l)
j ( t) r e p r e s e nt s t h e st at e of t h e j t h n e ur o n i n l t h r e s er v oir l a y er 

at ti m e t, a n d κ (⋅) i s G a u s si a n k er n el f u n cti o n (O zt ur k et al., 2 0 0 7 ). T h e 

A S E i n t h e ti m e l e n gt h T i s d e fi n e d a s E q. ( 2 8). 

A S E (l) =
1

T

∑ T

t= 1

H (l) ( t) ( 2 8) 

A S E c a n q u a ntif y t h e d y n a mi c c h ar a ct eri sti c s of e a c h r e s er v oir l a y er. 

It c a n a n al y z e t h e i n fi u e n c e s of t h e r e s er v oir str u ct ur e o n t h e d y n a mi c s 

fr o m t h e p er s p e cti v e of si n gl e l a y er, a n d t h e d e e p r e s er v oir str u ct ur e o n 

t h e d y n a mi c s fr o m t h e p er s p e cti v e of t h e n u m b er of r e s er v oir l a y er s. 

3.  E x p e ri m e nt a n d r e s ult 

T w o  t y pi c al  c h a oti c  ti m e  s eri e s  d at a s et s  h a v e  b e e n  e m pl o y e d  f or 

si m ul ati o n e x p eri m e nt s, i n cl u di n g H e n o n m a p pi n g pr e di cti o n ( H é n o n, 

1 9 7 6 ) a n d M a c k e y- Gl a s s ti m e s eri e s pr e di cti o n ( J a e g er & H a a s, 2 0 0 4 ), 

f or v erif yi n g t h e pr e di cti o n p erf or m a n c e of t h e D H E S N, b y c o n si d eri n g 

t h e c h a oti c pr o p ert y of al g al bl o o m. T h e n, t h e w at er q u alit y d at a s et of 

L a k e  M e n d ot a  i n  Wi s c o n si n,  U S A,  h a s  b e e n  e m pl o y e d  t o  v erif y  t h e 

eff e cti v e n e s s of D H E S N i n t h e a ct u al al g al bl o o m pr e di cti o n ( L e a d et al., 

2 0 2 0 ). T h e c o m p ar e d n e ur al n et w or k m o d el s i n cl u d e e xtr e m e l e ar ni n g 

m a c hi n e ( E L M) ( Li a n g et al., 2 0 0 6 ), ori gi n al E S N ( O E S N) ( J a e g er et al., 

2 0 0 7 ),  G E S N  (Qi a o  et  al.,  2 0 1 6 ),  R E S N  (D ut oit  et  al.,  2 0 0 9 ),  D B N 

(Hi nt o n et al., 2 0 0 6 ), L 2 r e g ul a ri z e d d e e p E S N ( D e e p E S N- L 2 ) (G alli c c hi o 

et al., 2 0 1 7 ), a n d L 1 / 2 r e g ul a ri z e d d e e p E S N ( D e e p E S N- L 1 / 2 ). I n all t h e 

e x p eri m e nt s, wit h α = 0 .5 a n d β = 4 0, t h e n u m b er of s u br e s er v oir at 

e a c h  l a y er  i s  2 0,  a n d  e a c h  s u br e s er v oir  c o nt ai n s  fi v e  f ull y  c o n n e ct e d 

n e ur o n s. F urt h er, t h e i n p ut w ei g ht r a n g e of e a c h l a y er i s [  −1 ,1 ], a n d t h e 

n u m b er of s e e d n o d e s at e a c h hi er ar c hi c al r e s er v oir l a y er i s N c = 0 .1 N . 

T h e g ri d s e ar c h m et h o d h a s b e e n e m pl o y e d t o d et er mi n e t h e o pti m al 

p ar a m et er s  f or  t h e  n u m b er  of  l a y er s  a n d  t h e  t w o  r e g ul ari z ati o n 

p ar a m et er s. T h e m a xi m u m n u m b er of l a y er s v ar y fr o m t w o t o fi v e, a n d 

t h e  s el e cti o n  r a n g e  of  t h e  t w o  r e g ul ari z ati o n  p ar a m et er s  i s 
(
1 0 − 1 , 1 0 − 2 , ⋯ , 1 0 − 1 0

)
. E a c h e x p e ri m e nt h a s b e e n t e st e d 5 0 ti m e s, a n d 

t h e e x p eri m e nt al r e s ult s w er e t a k e n a s t h e a v er a g e of 5 0 e x p eri m e nt s. 

T o t e st t h e pr e di cti o n p erf or m a n c e of D H E S N, n or m ali z e d r o ot m e a n 

s q u ar e err or ( N R M S E) h a s b e e n s el e ct e d a s E q. ( 2 9). 

N R M S E =

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
∑L t est

n = 1

( d (n )  − y (n ) )

L t estσ 2
d

√
√
√
√
√

( 2 9)  

w h er e L t est i s t h e si z e of t h e t e sti n g s et, d (n ) i s t h e a ct u al v al u e, y (n ) i s t h e 

pr e di ct e d v al u e (t h e n et w or k o ut p ut), a n d σ 2
d i s t h e v a ri a n c e of t h e a ct u al 

v al u e. A s m all er N R M S E yi el d s a b ett er t h e pr e di cti o n p erf or m a n c e of 

t h e n et w or k. 

3. 1.  H e n o n m a p pr e di cti o n 

H e n o n  m a p  i s  a  cl a s si c al  c h a oti c  di s cr et e-ti m e  d y n a mi c  s y st e m, 

w hi c h  i s  e xt e n si v el y  e m pl o y e d  a s  a  b e n c h m ar k  f u n cti o n  f or  t h e  ti m e 

s eri e s pr e di cti o n pr o bl e m s t o v erif y t h e eff e cti v e n e s s of t h e m o d el. T h e 

f or m ul a f or t h e H e n o n m a p pi n g s y st e m i s d e s cri b e d a s E q. ( 3 0).: 

{
u 1 (t + 1 )  = u 2 (t)  − a u 2

1 ( t)  + 1

u 2 (t + 1 )  = b u 1 (t)
( 3 0)  

w h e r e a = 1 .4, b = 0 .3, t h e i niti al v al u e u 1 (1 )  = u 2 (1 )  = 0, a n d u 2 i s t h e 

p r e di ct e d  v al u e.  T h e  l e n gt h  of  t h e  d at a s et  i s  1 0 0 0,  a m o n g  w hi c h  t h e 

tr ai ni n g  l e n gt h  i s  7 0 0  a n d  t h e  t e sti n g  l e n gt h  i s  3 0.  F urt h er m or e,  t h e 

r e s er v oir st at e i s c oll e ct e d f oll o wi n g a s et of 5 0 tr ai ni n g d at a t o o v er -

c o m e t h e i m p a ct of t h e i niti al tr a n si e nt. I n t hi s e x p eri m e nt, t h e n u m b er 

of r e s er v oir l a y er i s 4, wit h 1 0 0 n e ur o n s i n e a c h l a y er. T h e L 1 / 2 r e g u -

l a ri z ati o n p ar a m et er i s 1 e- 5, a n d t h e L 2 r e g ul a ri z ati o n p ar a m et er i s 1 e- 4. 

Fi g. 3 s h o w s t h e t o p ol o g y of t h e c o n n e cti o n s b et w e e n t h e r e pr e s e n -

t ati v e n o d e s, w hi c h e x hi bit s t h e t y pi c al cl u st eri n g c h ar a ct eri sti c s of a 

s m all- w orl d n et w or k. A n d e a c h r e pr e s e nt ati v e n o d e c a n al s o r e ali z e t h e 

bi dir e cti o n al  c o n n e cti o n  a n d  s elf-f e e d b a c k  c o n n e cti o n  t o  r e n d er  a  hi -

er ar c hi c al str u ct ur e f or t h e i m pr o v e d r e s er v oir. 

Fi g. 4 a n d Fi g. 5 s h o w t h e pr e di cti o n r e s ult s a n d err or of D H E S N i n 

H e n o n m a p pr e di cti o n. D H E S N s h o w s a g o o d pr e di cti o n eff e ct, a n d it s 

err or v al u e s f all i n t h e r a n g e [  −0 .0 2 ,0 .0 2 ]. T a bl e 1 s p e ci fi c all y s h o w s t h e 

c o m p ari s o n of t h e pr e di cti o n a c c ur a c y b et w e e n diff er e nt m et h o d s. T h e 

Fi g.  3. T h e  t o p ol o g y  of  t h e  r e pr e s e nt ati v e  n o d e  c o n n e cti o n s  i n  H e n o n 

m a p pr e di cti o n. 

Fi g. 4. Pr e di cti o n r e s ult s of D H E S N i n H e n o n m a p pr e di cti o n.  

Fi g. 5. Pr e di cti o n err or of D H E S N i n H e n o n m a p pr e di cti o n.  

T a bl e 1 

C o m p ari s o n  r e s ult s  of  H e n o n  m a p  pr e di cti o n  p erf or m a n c e  b a s e d  o n  diff er e nt 

m et h o d s.  

M et h o d Str u ct ur e N R M S E 

A v e. St d. 

E L M 4 0 0  0. 0 5 9 1  0. 0 0 0 9 

O E S N 4 0 0  0. 0 2 6 8  0. 0 1 2 3 

G E S N 4 0 0  0. 0 1 2 1  0. 0 0 0 6 

R E S N 4 0 0  0. 0 0 7 8  0. 0 0 0 4 

D B N 5 0 – 5 0 – 5 0 – 5 0  0. 0 0 7 4  0. 0 0 1 1 

D e e p E S N- L 2 1 0 0 – 1 0 0 – 1 0 0 – 1 0 0  0. 0 0 6 4  0. 0 0 0 5 

D e e p E S N- L 1 / 2 1 0 0 – 1 0 0 – 1 0 0 – 1 0 0  0. 0 0 8 0  0. 0 0 1 6 

D H E S N 1 0 0 – 1 0 0 – 1 0 0 – 1 0 0  0. 0 0 5 7  0. 0 0 0 5  
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pr e di cti o n a c c ur a c y of D H E S N i s si g ni fi c a ntl y b ett er t h a n t h e s h all o w 

E S N, a n d sli g htl y b ett er t h a n D e e p E S N. T h e pr e di cti o n a c c ur a c y wit h 

el a sti c  r e g ul ari z ati o n  e x c e e d s  t h at  of  D e e p E S N- L 2 a n d  D e e p E S N- L 1 / 2 . 

Alt h o u g h t h e st a n d ar d d e vi ati o n of D H E S N e x c e e d s t h at of R E S N, t h e 

m e a n N R M S E of D H E S N i s t h e mi ni m u m of all m o d el s. It s h o w s g o o d 

pr e di cti o n p erf or m a n c e a n d st a bilit y. 

Fi g.  6 di s pl a y s  t h e  i n fi u e n c e  of  diff er e nt  n u m b er s  of  t h e  r e s er v oir 

l a y er s  o n  t h e  pr e di cti o n  p erf or m a n c e.  O wi n g  t o  t h e  i n cr e a s e  of  t h e 

n u m b er of  r e s er v oir l a y er s, t h e  N R M S E of D H E S N d e cr e a s e s fir st a n d 

t h e n i n cr e a s e s, s h o wi n g t h e b e st pr e di cti o n eff e ct w h e n t h e n u m b er of 

l a y er s i s f o ur. T h e pr e di cti o n p erf or m a n c e m a y n ot b e b ett er f or a hi g h er 

n u m b er  of  r e s er v oir  l a y er s.  W e  d et er mi n e  t h e  a p pr o pri at e  n u m b er  of 

r e s er v oir l a y er s a c c or di n g t o s p e ci fi c pr o bl e m s. 

T o f urt h er a n al y z e t h e r e a s o n s f or t h e g o o d pr e di cti o n p erf or m a n c e 

of D H E S N, Fi g. 7 di s pl a y s t h e i n fi u e n c e of diff er e nt n et w or k str u ct ur e s 

o n A S E i n H e n o n m a p pr e di cti o n. A c c or di n gl y, o wi n g t o t h e i n cr e a s e of 

l a y er s, t h e A S E i n cr e a s e s si g ni fi c a ntl y i n t h e s e c o n d l a y er irr e s p e cti v e of 

t h e ki n d of r e s er v oir str u ct ur e, a n d i s b a si c all y st a bl e i n t h e l at er l a y er s. 

T hi s  i n di c at e s  t h at  t h e  n u m b er  of  r e s er v oir  l a y er s  c a n  e nri c h  t h e  d y -

n a mi c  c h ar a ct eri sti c s  of  t h e  r e s er v oir  st at e.  H o w e v er,  t h e  A S E  of 

diff er e nt r e s er v oir str u ct ur e s i s diff er e nt. A m o n g t h e m, t h e A S E of t h e 

ori gi n al  r e s er v oir  str u ct ur e  i s  l o w,  a n d  w h e n  t h e  f ull y  d e c o u pl e d 

m o d ul ar r e s er v oir i s a d o pt e d, it s d y n a mi c s i s e n h a n c e d m o d e stl y, o wi n g 

t o t h e f ull y d e c o u pl e d s u b-r e s er v oir h a vi n g diff er e nt d y n a mi c s, w hi c h 

c a n i m pr o v e t h e i nf or m ati o n of t h e r e s er v oir st at e. T h e A S E of t h e hi -

er ar c hi c al  r e s er v oir  e x c e e d s  t h at  of  t h e  ot h er  t w o  str u ct ur e s  i n  e a c h 

l a y er. B y c o n n e cti n g t h e r e pr e s e nt ati v e n o d e s wit h t h e w a v el et a cti v a-

ti o n f u n cti o n, t h e A S E of t h e hi er ar c hi c al r e s er v oir c a n eff e cti v el y e nri c h 

t h e i nf or m ati o n of t h e r e s er v oir. T h e d e e p f e at ur e s c a n b e a p pr e ci a bl y 

e xtr a ct e d, s o t h at D H E S N c a n h a v e a b ett er pr e di cti o n p erf or m a n c e. 

F urt h er m or e,  el a sti c  r e g ul ari z ati o n  i s  al s o  a n  i m p ort a nt  w a y  t o 

i m pr o v e  t h e  pr e di cti o n  a c c ur a c y  of  D H E S N.  A c c or di n g  t o Fi g.  8 ,  t h e 

o ut p ut w ei g ht a m plit u d e of D H E S N e x c e e d s t h at of O E S N wit h o ut r e g -

ul ari z ati o n, a n d it s o ut p ut w ei g ht a m plit u d e i s c o m pr e s s e d t o [  −2 .3 0 3 7 ,

1 .1 8 9 2 ],  w hi c h  i s  al s o  sli g htl y  b ett er  t h a n  ot h er  m o d el s  b a s e d  o n L 2 

r e g ul a ri z ati o n m et h o d. C o n c o mit a ntl y, L 1 / 2 r e g ul a ri z ati o n al s o pr u n e s 

t h e o ut p ut w ei g ht c o m p o n e nt s of D H E S N. A m o n g t h e 4 0 0 n e ur o n s i n 

l a y er  f o ur,  7 6  o ut p ut  w ei g ht s  h a v e  b e e n  pr u n e d.  T h er ef or e,  el a sti c 

r e g ul ari z ati o n c a n eff e cti v el y s ol v e t h e a p pr o xi m at e c olli n e arit y pr o b -

l e m  a n d  w ei g ht  r e d u n d a n c y  pr o bl e m  of  D H E S N,  t h u s  i m pr o vi n g  t h e 

pr e di cti o n eff e ct of D H E S N. 

3. 2.  M a c k e y- Gl ass s yst e m pr e di cti o n 

T h e  M a c k e y- Gl a s s  s y st e m  i s  al s o  a  st a n d ar d  m o d el  f or  v erif yi n g 

n et w or k p erf or m a n c e, w hi c h i s s h o w n i n E q. ( 3 1). 

d x (t)

dt
=

a x (t − τ )

1 + x n (t − τ )
+ b x (t) ( 3 1)  

w h er e n = 1 0, a = 0 .2, b =  − 0 .1, τ = 1 7. T h e f o urt h- or d er R u n g e- K utt a 

m et h o d h a s b e e n e m pl o y e d t o g e n er at e 2 0 0 0 s et s of d at a, a n d o n e- st e p 

pr e di cti o n h a s b e e n p erf or m e d o n t h e m, i n cl u di n g 1 0 0 0 tr ai ni n g s et a n d 

1 0 0 0 t e sti n g s et. T h e r e s er v oir st at e h a s b e e n c oll e ct e d aft er 1 0 0 s et s of 

d at a i n p ut. I n t hi s e x p eri m e nt, t h e n u m b er of l a y er s i n t h e r e s er v oir i s 

t hr e e, wit h 1 0 0 n e ur o n s i n e a c h l a y er. T h e L 1 / 2 r e g ul a ri z ati o n p ar a m et er 

i s 1 e- 6, a n d t h e L 2 r e g ul a ri z ati o n p ar a m et er i s 1 e- 5. 

Fi g. 9 a n d Fi g. 1 0 r e s p e cti v el y s h o w t h e pr e di cti o n r e s ult s a n d err or 

of  D H E S N,  r e s p e cti v el y,  i n  M a c k e y- Gl a s s  s y st e m  pr e di cti o n,  a n d  t h e 

pr e di cti o n err or r a n g e of D H E S N i s b et w e e n [  −0 .0 1 , 0 .0 1 ]. T a bl e 2 li st s 

t h e c o m p ari s o n b et w e e n t h e pr e di cti o n a c c ur a c y of diff er e nt m et h o d s. 

Aft er  5 0  e x p eri m e nt s,  t h e  m e a n  N R M S E  of  D H E S N  i s  b ett er  t h a n  t h e 

pr e di cti o n a c c ur a c y of s h all o w E S N a n d d e e p E S N m o d el s. 

Fi g. 1 1 di s pl a y s t h e i n fl u e n c e of diff er e nt r e s er v oir l a y er s o n n et w or k 

p erf or m a n c e i n M a c k e y- Gl a s s s y st e m pr e di cti o n. O wi n g t o t h e i n cr e a s e 

i n t h e n u m b er of l a y er s, D H E S N s h o w s a b ett er pr e di cti o n p erf or m a n c e 

f or t hr e e l a y er s. 

Fi g. 1 2 f urt h er s h o w s t h e i m p a ct of diff er e nt r e s er v oir str u ct ur e s o n 

A S E i n  M a c k e y- Gl a s s  s y st e m  pr e di cti o n. O wi n g t o t h e  i n cr e a s e i n  t h e 

n u m b er of r e s er v oir l a y er s, t h e A S E i n cr e a s e s si g ni fi c a ntl y i n t h e s e c o n d 

l a y er, a n d i s b a si c all y st a bl e i n t h e l at er l a y er s. Fr o m t h e p er s p e cti v e of 

Fi g.  6. I n fl u e n c e  of  diff er e nt  n u m b er  of  r e s er v oir  l a y er s  o n  t h e  pr e di cti o n 

p erf or m a n c e of H e n o n m a p pr e di cti o n. 

Fi g. 7. I n fl u e n c e of diff er e nt r e s er v oir str u ct ur e o n t h e i nf or m ati o n c o nt e nt i n 

H e n o n m a p pr e di cti o n. 

Fi g.  8. I n fl u e n c e  of  diff er e nt  r e g ul ari z ati o n  m et h o d s  o n  o ut p ut  w ei g ht s  i n 

H e n o n m a p pr e di cti o n. 

Fi g. 9. Pr e di cti o n r e s ult s of D H E S N i n M a c k e y- Gl a s s s y st e m pr e di cti o n.  
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t h e  r e s er v e  p o ol  str u ct ur e,  t h e  i nf or m ati o n  c o nt e nt  of  t h e  m o d ul ar 

r e s er v oir sli g htl y i n cr e a s e s, w h er e a s t h e A S E of t h e hi er ar c hi c al r e s er -

v oir e x c e e d s t h at of t h e ot h er t w o str u ct ur e s i n e a c h l a y er, w hi c h h a s 

ri c h er d y n a mi c c h ar a ct eri sti c s of t h e r e s er v oir st at e. 

Fi g. 1 3 s h o w s t h e i n fi u e n c e of diff er e nt r e g ul ari z ati o n m et h o d s o n 

t h e o ut p ut w ei g ht s i n t h e M a c k e y- Gl a s s s y st e m pr e di cti o n. T h e o ut p ut 

w ei g ht a m plit u d e of D H E S N i s si g ni fi c a ntl y s m all er t h a n t h at of t h e E S N 

m o d el wit h o ut L 2 r e g ul a ri z ati o n, a n d it s o ut p ut w ei g ht a m plit u d e h a s 

b e e n c o m pr e s s e d t o [  −1 .5 4 5 9 , 1 .6 7 3 1 ]. T h e pr u ni n g eff e ct of D H E S N i s 

b ett er t h a n t h at of L 1 / 2 r e g ul a ri z e d d e e p E S N. 3 6 w ei g ht s of D H E S N h a v e 

b e e n pr u n e d, w h er e a s 2 3 o ut p ut w ei g ht c o m p o n e nt s of L 1 / 2 r e g ul a ri z e d 

E S N ar e z er o. 

3. 3.  Al g al bl o o m pr e di cti o n 

T h e pr e di cti o n of al g al bl o o m is pri m aril y b as e d o n t h e c o n c e ntr ati o n 

of  c hl or o p h yll- a  as  t h e  c h ar a ct eristi c  v ari a bl e.  I n  t his  e x p eri m e nt,  t h e 

w at er  q u alit y  a n d  m et e or ol o gi c al  d at a  c oll e ct e d  i n  L a k e  M e n d ot a,  Wis -

c o nsi n,  U S A  h as  b e e n  us e d  t o  v erif y  t h e  eff e cti v e n ess  of  D H E S N.  L a k e 

M e n d ot a h as g e n er at e d 1 4 8 9 s ets of d at a fr o m J ul y 2 0 1 6 t o S e pt e m b er 1, 

2 0 1 6. T h e d at a s a m pli n g i nt er v al h as b e e n f or o n e h o ur. T h e n a m e, u nits, 

a n d st atisti c al i n di c at ors of all v ari a bl es i n t h e d at as et ar e list e d i n T a bl e 3 . 

T h e l e n gt h of t h e d at a s et i s 1 4 8 9, of w hi c h t h e l e n gt h of t h e tr ai ni n g 

s et  i s 1 0 3 6  a n d  t h e l e n gt h  of t h e  t e sti n g s et  i s  4 5 3. F urt h er m or e,  t h e 

e x p eri m e nt i niti all y c oll e ct s t h e r e s er v oir st at e aft er 1 0 0 ti m e s. O wi n g t o 

t h e l ar g e n u m b er of v ari a bl e s i n t h e d at a s et, t h er e m a y b e r e d u n d a nt 

o n e s. T h er ef or e, t hi s e x p eri m e nt q u a nti fi e s t h e c a u s al r el ati o n s hi p b e -

t w e e n t h e c a n di d at e v ari a bl e s a n d c hl or o p h yll- a b y tr a n sf erri n g e ntr o p y. 

Fi g. 1 0. Pr e di cti o n err or of D H E S N i n M a c k e y- Gl a s s s y st e m pr e di cti o n.  

T a bl e 2 

C o m p ari s o n r e s ult s of pr e di cti o n p erf or m a n c e i n M a c k e y- Gl a s s s y st e m.  

M et h o d Str u ct ur e N R M S E 

A v e. St d. 

E L M 3 0 0  0. 0 4 4 4  0. 0 0 1 3 

O E S N 3 0 0  0. 0 3 3 8  0. 0 1 2 0 

G E S N 3 0 0  0. 0 2 2 6  0. 0 0 0 2 

R E S N 3 0 0  0. 0 2 2 4  0. 0 0 0 1 

D B N 5 0 – 5 0 – 5 0  0. 0 2 3 8  0. 0 0 3 8 

D e e p E S N- L 2 1 0 0 – 1 0 0 – 1 0 0  0. 0 1 2 6  0. 0 0 0 3 

D e e p E S N- L 1 / 2 1 0 0 – 1 0 0 – 1 0 0  0. 0 1 7 8  0. 0 0 2 2 

D H E S N 1 0 0 – 1 0 0 – 1 0 0  0. 0 0 9 8  0. 0 0 3 3  

Fi g. 1 1. I n fi u e n c e of diff er e nt r e s er v oir l a y er s o n t h e pr e di cti o n p erf or m a n c e of 

M a c k e y- Gl a s s s y st e m. 

Fi g. 1 2. I n fi u e n c e of diff er e nt r e s er v oir str u ct ur e o n t h e i nf or m ati o n c o nt e nt i n 

M a c k e y- Gl a s s s y st e m pr e di cti o n. 

Fi g.  1 3. I n fi u e n c e  of  diff er e nt  r e g ul ari z ati o n  m et h o d s  o n  o ut p ut  w ei g ht s  i n 

M a c k e y- Gl a s s s y st e m pr e di cti o n. 

T a bl e 3 

D et ail i nf or m ati o n of d at a s et v ari a bl e s i n L a k e M e n d ot a.  

V ari a bl e U nit  M a x.  Mi n.  A v e.  St d. 

Air t e m p er at ur e ℃  3 2. 3 9  1 4. 9 2   2 3. 2 9 5   2. 9 6 6 8 

R el ati v e h u mi dit y  %   9 9. 9  4 3. 7 9   7 6. 0 0 8 6   1 2. 0 8 7 9 

Wi n d s p e e d m / s   1 0. 6 5  0. 0 3   3. 6 5 8 5   1. 8 6 6 5 

Wi n d dir e cti o n ◦ 3 4 5. 3 9  2 0. 5 9   2 0 4. 7 8 2 3   8 2. 5 8 0 4 

P h y c o c y a ni n m g / L   1 3 2 9. 5  4 3 4. 8 1   6 5 4. 1 1 2 6   9 8. 8 4 1 8 

P h ot o s y nt h eti c all y- 

a cti v e r a di ati o n 

μ m ol / 

( m2 s)  

1 9 9 6. 7  0   4 8 7. 6 6 3   6 0 2. 7 2 6 5 

S u b s urf a c e 

p h ot o s y nt h eti c all y- 

a cti v e r a di ati o n 

μ m ol / 

( m2 s)  

2 1 6. 8 6  0   2 0. 0 3 5   3 3. 3 4 0 8 

W at er t e m p er at ur e ℃  2 9. 3 5  2 3. 5 2   2 5. 3 4 8   1. 0 5 0 3 

O x y g e n s at ur ati o n  %   2 1 3. 0 2  1 9. 1 9   9 9. 8 3 8 4   2 0. 4 2 9 6 

Di s s ol v e d o x y g e n  m g / L   1 7. 1 8  1. 5 3   8. 1 9 6 4   1. 6 6 6 4 

P arti al pr e s s ur e of 

c ar b o n di o xi d e 

p p m   4 1 0. 1 2  1 9 8. 8 7   2 7 1. 6 2 9 1   3 4. 6 8 0 9 

C hl or o p h yll- a m g / L   3 3 9 6. 2  8 5 3. 9 5   1 6 0 5. 8   3 4 8. 1 4 4 7  
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According to Fig. 14, the screening threshold has been set in this 
experiment, hence all the variables except photosynthetically-active 
radiation and subsurface photosynthetically-active radiation have 
been used as the input of DHESN for the chlorophyll-a prediction. 
Furthermore, the number of layers in this experiment is four, with 100 
neurons in each layer. The L1/2 regularization parameter is 1e-2, and the 
L2 regularization parameter is 1e-5. 

Fig. 15, Fig. 16 and Fig. 17 show the prediction results, prediction 
errors, and regression plots of DHESN, respectively, in this experiment. 
Compared with the alternate ESN models, the prediction results of 
DHESN are proximate to the actual value, and the prediction error range 
is in the interval 400 300 . Table 4 shows the comparison between the 
different methods. The mean NRMSE and standard deviation NRMSE of 
DHESN are better than other variant ESN, which realizes the effective 
prediction of actual algal bloom. 

Fig. 18 displays the influence of different reservoir layers on the 
network performance in chlorophyll-a concentration prediction. DHESN 
shows better prediction performance for four layers. Fig. 19 shows the 
effect of different reservoir structures on ASE. ASE increases signifi
cantly in the second layer, but the number of later layers does not change 

significantly. The ASE of the hierarchical reservoir exceeds that of the 
other two structures in each layer, which verifies that the hierarchical 
reservoir has richer information and improves the ability of feature 
extraction with the increase in the number of layers. 

Fig. 20 depicts the influence of different regularization methods on 
the output weights in the experiment of chlorophyll-a concentration 
prediction. The output weight amplitude of DHESN is smaller than that 
of other types of regularized ESN models, and compressed to 1 4518
0 6296 , which has better robustness. The pruning effect of DHESN is 
also better than that of L1/2 regularized deep ESN in which 306 weights 
of DHESN are pruned, whereas 142 output weight components of L1/2 
regularized deep ESN are zero. DHESN can better reduce the complexity 
of the prediction model. By the mechanism design of hierarchical 
reservoir, the feature extraction of deep reservoirs, and the integration 
of regularization methods, the effective feature extraction and the self- 
organization of the structure have been achieved. Therefore, it can be 
applied to the actual lake and reservoirs for an effective prediction of 
algal bloom. 

Fig. 14. The transfer entropy of candidate variables to chlorophyll-a.  

Fig. 15. Comparison of prediction results of chlorophyll-a concentration.  
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4. Discussion 

According to the previous references and the water quality data from 
Lake Mendota, the evolution of chlorophyll-a concentration is a mixture 
of nonlinearity and periodicity. Combined with Table 4, the shallow ESN 
model can achieve good prediction accuracy, whereas the deep reservoir 
model can improve the prediction performance. Combined with the 
above three experiments, the proposed model exploits the advantages of 
deep neural network structure, and finds application in algal bloom 
prediction. 

DHESN adopts a hierarchical structure and mixed activation function 
for each reservoir layer. These highlights improve the information 
processing ability of deep ESN. According to Fig. 7, Fig. 12 and Fig. 19, 
the information content of the reservoir neurons is gradually increased 
with the further modularization and hierarchical design of the neuron- 
coupled reservoir, which helps in the improvement of the prediction 

Fig. 16. Comparison of prediction errors of chlorophyll-a concentration with different methods.  

Fig. 17. Regression plots of predicted and actual values of chlorophyll-a concentration with different methods.  

Table 4 
Comparison results of prediction performance of chlorophyll-a concentration 
based on different methods.  

Method Structure NRMSE 
Ave. Std. 

ELM 400  0.5906  0.0096 
OESN 400  0.5976  0.0269 
GESN 400  0.5826  0.0891 
RESN 400  0.5712  0.0188 
DBN 50 50 50 50  0.4321  0.0105 
DeepESN-L2 100 100 100 100  0.4042  0.0226 
DeepESN-L1/2 100 100 100 100  0.4071  0.0283 
DHESN 100 100 100 100  0.3758  0.0085  

B. Hu et al.                                                                                                                                                                                                                                       



E x p ert S yst e ms Wit h A p pli c ati o ns 2 3 9 ( 2 0 2 4 ) 1 2 2 3 2 9

1 1

a c c ur a c y. T h e str u ct ur al i m pr o v e m e nt of t h e r e s er v oir i s c o n si st e nt wit h 

t h e  a ct u al  pr e di cti o n  r e s ult s,  w hi c h  r e fi e ct s  t h e  eff e cti v e n e s s  of  t h e 

r e s er v oir i m pr o v e m e nt. 

A c c or di n g t o t h e a b o v e e x p eri m e nt al r e s ult s, d e e p n e ur al n et w or k 

ar c hit e ct ur e  i s  a n  eff e cti v e  w a y  t o  i m pr o v e  t h e  p erf or m a n c e  w h e n 

c o m p ar e d  wit h  s h all o w  ar c hit e ct ur e.  T h e  i n cr e a s e  of  t h e  n u m b er  of 

l a y er s  d o e s  n ot  si g ni fi c a ntl y  i n cr e a s e  t h e  c o m pl e xit y  of  t h e  o ut p ut 

w ei g ht s,  w hi c h  i s  al s o  t h e  tr ai ni n g  a d v a nt a g e  of  t h e  E S N  m o d el, 

p arti c ul arl y f or t h e E S N m o d el, w h e n c o m p ar e d wit h t h e g e n er al m ulti- 

l a y er  p er c e ptr o n  m o d el.  C o m bi n e d  wit h  t h e  el a sti c  r e g ul ari z ati o n 

m et h o d,  t h e  r o b u st n e s s  of  D H E S N  h a s  b e e n  e n h a n c e d  a n d  t h e 

c o m pl e xit y  r e d u c e d,  w hi c h  t h e or eti c all y  e n s ur e s  t h e  r eli a bilit y  a n d 

c o m p a ct n e s s of D H E S N. 

T h e t h e or eti c al a n al y si s d e m o n str at e s t h e i n v ari a n c e of t h e h y p er -

p ar a m et er s etti n g s c o m pl e xit y b ef or e a n d aft er t h e i m pr o v e m e nt of t h e 

r e s er v oir str u ct ur e, i. e., t w o i m p ort a nt h y p er p ar a m et er s, vi z., s p e ctr al 

r a di u s  a n d  s p ar sit y,  d o  n ot  n e e d  t o  b e  pr e- s et.  H o w e v er,  t h e  s u b- 

r e s er v oir  si z e,  t h e  n u m b er  of  s u b-r e s er v oir s,  t h e  n u m b er  of  r e s er v oir 

l a y er s,  a n d  t h e  r e g ul ari z ati o n  p ar a m et er s  al s o  n e e d  t o  b e  c o n si d er e d. 

A n y f urt h er i m pr o v e m e nt i n t h e ef fi ci e n c y of h y p er p ar a m et er o pti mi -

z ati o n i s t o b e c o n si d er e d i n t h e s u b s e q u e nt r e s e ar c h. 

5.  C o n cl u si o n 

T h e e v ol uti o n pr o c e s s of al g al bl o o m s i s c h ar a ct eri z e d b y n o nli n e ar 

a n d ti m e- v ar yi n g c h ar a ct eri sti c s. T o o v er c o m e t h e l a c k of t h e a bilit y of 

s h all o w n e ur al n et w or k s t o d e al wit h n o nli n e ar pr o bl e m s, a D H E S N i n 

t hi s p a p er i s pr o p o s e d t o pr e di ct t h e c o n c e ntr ati o n of c hl or o p h yll- a, t h e 

c h ar a ct eri sti c v ari a bl e of al g al bl o o m. C o m bi n e d wit h t h e e x p eri m e nt 

r e s ult s of h e n o n m a p pi n g pr e di cti o n, m a c k e y – gl a s s pr e di cti o n a n d al g al 

bl o o m pr e di cti o n, t h e a p pli c ati o n a d v a nt a g e s of D H E S N ar e gi v e n: 

1).  C o m p ar e d  wit h  v ari a nt  E S N s  a n d  ot h er  t y pi c al  n et w or k s,  it  i s 

f o u n d  t h at  D H E S N  h a s  l o w er  a v er a g e  N R M S E  a n d  hi g h er  pr e di cti o n 

a c c ur a c y.  I n  t h e  a ct u al  al g al  bl o o m  d at a s et,  t h e  N R M S E  of  D H E S N 

d e cr e a s e d b y at l e a st 3 4. 2 1 % c o m p ar e d t o s h all o w n et w or k, a n d 7. 0 3 % 

c o m p ar e d t o d e e p r e s er v oir n et w or k. 

2).  C o m p ar e d  wit h  ot h er  r e s er v oir  str u ct ur e s,  D H E S N  h a s  hi g h er 

A S E, w hi c h c a n b e u s e d a s a n eff e cti v e r e s er v oir str u ct ur e f or f urt h er 

o pti mi z ati o n. 

3).  C o m p ar e d  wit h  ot h er  r e g ul ari z e d  E S N  m o d el,  D H E S N  h a v e  a 

pr u n a bl e a n d c o m pr e s si bl e o ut p ut w ei g ht tr ai ni n g pr o c e s s t o o bt ai n a 

c o m p a ct  str u ct ur e.  I n  t h e  a ct u al  al g al  bl o o m  d at a s et,  c o m p ar e d  wit h 

ot h er pr u ni n g r e g ul ari z ati o n m et h o d s, t h e o ut p ut w ei g ht c a n b e r e d u c e d 

b y m or e t h a n o n e ti m e s. 

T h er ef or e, D H E S N c a n a c hi e v e hi g h pr e ci si o n, w hi c h al s o i n di c at e s 

t h at t hi s d at a- dri v e n m o d el i s s uit a bl e f or a ct u al al g al bl o o m pr e di cti o n 

i n l a k e a n d r e s er v oir. I n f ut ur e r e s e ar c h, w e e x p e ct t o o pti mi z e t h e t o-

p ol o gi c al  str u ct ur e  b et w e e n  diff er e nt  r e s er v oir  l a y er s  a n d  f urt h er 

e x pl or e t h e f u si o n of ti m e s eri e s f e at ur e s i n t h e r e s er v oir n et w or k. It i s 

e x p e ct e d  t h at  t h e s e m o di fi c ati o n s  will f urt h er  i m pr o v e  t h e  pr e di cti o n 

p erf or m a n c e of t h e r e s er v oir m et h o d i n t h e a p pli c ati o n of al g al bl o o m i n 

l a k e r e s er v oir. 

D e cl a r ati o n of i nt e r e st s 

T h e a ut h or s d e cl ar e t h at t h e y h a v e n o k n o w n c o m p eti n g fi n a n ci al 

i nt er e st s or p er s o n al r el ati o n s hi p s t h at c o ul d h a v e a p p e ar e d t o i n fi u e n c e 

t h e w or k r e p ort e d i n t hi s p a p er. 
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