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ARTICLEINFO ABSTRACT

Keywords: A deep hierarchical echo state network (DHESM) is designed for rectifying the shortcomings of the shallow
Algal bloom prediction coupled structure with less reservoir dynamics. This design iz with reference to algal bloom which is a complex
D"’P"d‘"mm erological phenomenon. Accurate prediction of algal bloom can reduce the environmental impact and economic
wd@ Ioss. Sinee the formation of algal bloom has chaotic characteristics, the ESN has been employed to realize itz

prediction functon. First, the candidate variables with strong causzal relationship have been screened by tranzfer
entropy, and the redundant variables iz eliminated. Then, a hierarchical rezervoir soucture iz established that iz
inzpired by the hierarchical characteristics from the brain. The hierarchical rezervoir has realized the connection
between the reprezentative nodes of each subreservoir, and improved the information proceszzing ability of the
rezervoir. Finally, the pruning and comprezzsion of the output weightz have been realized by the elastic regu-
that the DHESN haz appreciable prediction accuracy in both the chaotic and the public algal Boom datasetz. The
DHEEN contains richer dynamic characteristics, and can realize the self-organization of the network stmocture. It
providez a novel idea to realize the prediction model of algal bloom with a high accuracy and low complexity.

1. Introduction to poor mobility. Water quality conditions are the baziz for algal bloom,

and the nutrients such as mitrogen and phosphorus are considered as the

Owing to the extensive consumption of environmental resources,
industrial wastewater from production activities and sewage have been
accumulated in the lake through various ways. When nitrogen, phos-
phorus, and other nutrients in the lake amd reservoir inerease, eutro-
phication of water becomes hazardous (Sun =t al | 2022; Vingon-Leite &
Casenave, 2019; Lin et al |, 2021). In the eutrophication state of lakes and
reservoirs, the over-propagated algae in the water results in algal bloom
(Cui et al., 2021). The outbreak of algal bloom further consumes the
dizzolved oxygen in the water body, leading to the death of underlying
aquatic organizme in a large area, which further deteriorates the water
quality, and seriously degrades the water ecosyetem (Bac & Seo, 2021
Particularly, eutrophication and algal bloom are poszible to oceur owing

* Correzponding authors.

important factors (Beretta-Blanco & Carrasco-Letelier, 2021). With
respect to the algal bloom outbrealk, the current management measures
include the controlling of the nutrients, physical methods, and chemical
druge (Huang =t al., 201 2). It iz important to momtor and predict algal
bloom accurately for improving the efficiency of the long-term man-
agement and emergsency treatment of alzal bloom. Therefore, it consti-
tutes an important step for the water quality management to design an
effective and reliable prediction model

According to previous studies (Liu ot al |, 2022a; Yu et al., 2021), the
evolution of algal bloom has the typical nonlinear and temporal char-
acteristice, and the extensively emploved recurrent neural network
forme an effective tool in dealing with such problems (Wang et al |, 2020;
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Kim et al., 2022). Recently, as a data-driven model with simple struc-
ture, fast training speed, and high prediction accuracy, echo state
network (ESN) has been applied in several fields (Chitsazan et al., 2019;
Yao et al., 2019; Ribeiro et al., 2021). ESN can effectively model and
predict nonlinear signals, especially for chaotic time series (Ferreira
et al., 2013). Considering the above advantages of the ESN, previous
studies have also attempted the prediction of algal bloom and obtained
effective prediction performance (Zhang et al., 2021; Zhang et al.,
2022). Deep learning provides a richer perspective for the time series
prediction tasks (Goodfellow et al., 2016). Owing to the complexity of
algal bloom prediction, the structural design and training methods in
deep learning provide further ideas for improvement of ESN. By the
special processing of input data, such as introducing attention mecha-
nism into the ESN, the prediction accuracy has further been improved
(Liu et al., 2022b). Inspired by the above work, from the perspective of
data-driven, the structure and training method of the ESN will be opti-
mized to achieve satisfactory prediction requirements.

Owing to the problem of predicting algal bloom with abundant water
quality data and complex evolution mechanism, the single-layer reser-
voir structure shows the shortcoming of the insufficient information
processing ability, which indicates that the applicability of shallow ESN
in complex application scenarios is limited. Compared with single-layer
neural networks, deep neural networks can deal with the complex sys-
tem modeling more effectively (Thakkar & Chaudhari, 2021). Therefore,
it is necessary to consider the deep expansion of the reservoir structure.
By stacking the reservoir layer, deep ESN can effectively improve its
ability to extract the hidden features (Gallicchio et al., 2017). For the
actual algal bloom prediction problem, the deep ESN can be employed
for a better learning of the nonlinear relationship in water quality data,
for realizing the effective prediction of algal bloom. In the process of
constructing the network above, the design of its structure and the
output weights solution are still the key factors for improving the per-
formance (Kaviani & Sohn, 2021).

The modular reservoir with multiple sub-reservoirs is an effective
method for designing the ESN. Complete decoupling between the sub-
reservoirs is an ideal structure. However, from the perspective of
structural bionics, the topological structure of human brain is connected
in a hierarchical and modular manner (Jarvis et al., 2010). The infor-
mation processing ability of the fully decoupled sub-reservoirs has been
weakened owing to the lack of transmission of time sequence informa-
tion. Considering that the submodules of the brain network need to have
certain information transmission, the brain network shows a complex
hierarchical structure and information processing ability (Jarvis et al.,
2010). The hierarchical structure contains the modular function parti-
tion, and realizes the information transfer between each module. Simi-
larly, simulating this topology can improve the overall dynamics of the
reservoir while the coupling between neurons will not be increased in
excess. This improves the prediction performance and the stability.

The hierarchical design of the reservoir can strengthen the internal
information transmission. However, the random design of the reservoir
will still generate redundant neurons, thus leading to the ill-posed
problem of solving the output weights and limiting the prediction per-
formance (Shen et al., 2018). Regularization is a kind of effective
method to solve the output weight, which can alleviate the ill-
conditioned solution problem (Yildirim & Ozkale, 2019). Currently,
the widely employed regularization methods include the sparse regu-
larization and ridge regression (Dutoit et al., 2009; Yang et al., 2019).
Sparse regularization can realize the sparsity of output weights. Ridge
regression can compress the output weights and improve the robustness
of the ESN. To exploit the advantages of the two regularization methods,
the elastic regularization method integrates the two methods, which can
solve the problem that the large magnitude of the output weights, be-
sides triming the output weights, thus realizing the self-organization of
the network structure (Xu et al., 2018).

With respect to the above analysis, this paper proposes a deep hier-
archical ESN (DHESN) model and applies it for the algal bloom
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prediction. First, the transfer entropy has been employed for screening
the appropriate input variables of DHESN and eliminate redundant
candidate variables (Schreiber, 2000). Then, the DHESN model based on
the hierarchical reservoir structure has been constructed. Compared
with the traditional deep ESN model, the DHESN model adopts a hier-
archical structure for each layer to improve the internal dynamic char-
acteristics, and its output weights have been solved by the elastic
regularization method. Therefore, the DHESN model is close to the real
brain network with respect to the structure, and can realize the self-
organization of the weight that can improve the prediction perfor-
mance. We have employed two kinds of standard chaotic time series
data and actual water quality data to verify the effectiveness of DHESN
in the prediction task.

The structure of this paper is given in the following. Section 2 in-
troduces the basic structure and theoretical analysis of DHESN. Section 3
shows the experimental results of the three datasets and verifies the
prediction performance of DHESN. Section 4 discusses the theory and
application advantages of DHESN. Finally, Section 5 draws the
conclusions.

2. Methodology
2.1. Transfer entropy

Transfer entropy is a method to describe the coupling degree be-
tween variables. It measures the asymmetry between the variables to
find the transfer relationship, so as to measure the causal relationship
(Schreiber, 2000). Let x; y; Z‘ ; be a set of time series consisting of
variables X and Y. Given the embedding dimension m and delay time ,
the state space reconstruction vectors at time t are x,  X; X;

Xt m1 andy, Ve Vi Yt m 1 , respectively. The transfer en-
tropy TEx y from X to Y is defined as Eq. (1): (Schreiber, 2000).

€5)

where H x represents the Shannon entropy of variable X.

Therefore, this paper firstly utilizes transfer entropy to screen the
variables with a strong causal relationship and delete the redundant
variables, for simplifying the complexity of the proposed model.
Further, the retained variables are input into the subsequent model for
training and prediction.

2.2. Echo sate network

ESN is a recurrent neural network consisting of three layers, viz.,
input, reservoir, and output layers. The input, reservoir, and output
layers have K, M, and L neurons, respectively. Without considering the
feedback from the output layer to the reservoir, the calculation process
of ESN is given as Egs. (2)-(3) (Jaeger et al., 2007).

(2)

3

K'1is the input at timet 1,xt 1 M1 s the

Lyt 1 L 1 s the output at time

is the activation function of the neurons in the reservoir, W
MM

whereut 1
state of the reservoir at time t
t 1,f
M K is the input weight, W' is the reservoir weight, and
weur L Mg the output weight. In the original ESN, W™ and W™ are
fixed after the random initialization, and only W°* needs to be trained.
In order to overcome the effect of the initial transient, it is assumed that
the internal state matrix X, xt 1 xt T is collected from
time t 1, and its corresponding expected output matrix is Y,
Ye t 1 yet T, where y, is the expected output. Then the
output weight matrix can be solved by the least square method, and its



B. Hu et ol

Input layer

Expert Systems With Applications 239 (2024) 122379

-

Reservoir

2 Wavelet neuron

O Sigmoid neuron

Fig. 1. The topology of the hierarchical reservoir.

objective function iz desenibed as Bq. (4]:

< I o2
mink{y) = min|X, W — T, 4

The solution for the output weight is deseribed as Bq. (5) (Gallicchio &
Micheli, 2011)

W= = XIT = (XTx,)'X7Y (5)

whﬂcﬂmmm&:gmﬂaﬁz:dhmdxg.ﬂmdingmﬂu
training method, the least square method needs the collected internal
state matrix and expected output matrix while solving for the output
weights. Therefore, when the training dataset {(u(z), ¥e(t) ) |t = tun + 1,
---,rmn}ispmuvidad,th:ap:dﬁrhainjngxb:psufﬂmudgiualESNarc
dizplayed in Algorithm 1.

Algonthm 15tep 1: Randomly generate the reservoir weight W
according to the reservoir size M, epectral radius p and sparsity Iy

Step 2: According to the input size K and reservoir size M, the input
weight W™ iz randomly initialized, and the reservoir state x(0) is

Step 2: Input the data to the ESN. According to Eq. (2), collect the
reservolr state at time £, +1 to obtain X, ;

Step 4: Calculate the output weight W** according to Eq. (5;

Step 5: Test the trained ESN.

2.2. Hierarchical rezervoir

Each reservoir layer of the DHESN that 1= proposed in this paperiz a
hierarchical reservoir. The structure of a single-layer hierarchical
reservoir has been designed in this section. According to Fig. 1, the
desizn of the hierarchical reservoir consiste of two parts, viz., one 1= the
modular subreservoir, and the other part 1= the weight connection be-
tween the representative nodes in each subreservoir.

Here, the weight of the subreservoir has been generated by SVD
decomposition (Diac =t al, 2016). That i1s, the fully connected sub-
r:smﬁrﬂ?"'"(l{p{ﬂ}hﬂb:mmnﬂnml}rgmﬂa&dmrdingm
the given singular value distribution, and the size of each subreservoir is
Ngg (Miao et al, 2016). After N subreservoirs with size ngg have been
randomly generated, the appropriate representative neurons need to be
selected for the connection. We have selected the neuron with the largest
connection strength in the subreservoir iz selected as the representative
neurcns ie deseribed in BEqe (6)-(7):

Jrp = a1, rf.’,i’f...{”‘ (B, -, 50, | (6)

where

5y = E}Ek} + ;}sd} (7)

=

@f‘mpcrtun.tsﬂuinputwcigﬂ;ts:tnfﬂlcjﬂ:n:m @™ represents the
output weight set of the j th neuron, s represents the connection weight
from j th neuron to £ th neuron, and z;; represents the connection weight
from £ th neuron to j th neuron. After the representative nodes are
determined, the activation function of the representative node in Eq. (2]
iz et as the wavelet achivation function 'de--i.prtx} (Cui et al., 2014).

L. [x) = w2 (f""x - {._)e' {1""' ‘-'t-...}:f! (&)

where i, = jup/N, by = jrep/N—0.5, (jrp = 1,2, -, N). In this work,
the connection between the representative nodes iz realized by the
construction mechanizm of the improved small-world network (Sonz &
Feng, 2010). The improved small-world network emplovs the adge
probability p, as the connection weight between each nodes iz shown in
Eq. (9).

P = ae (9)

where i is the density sensitivity coefficient, § i= the distance sensitivity
coefficient, and dist{w, ¥) iz the Euchidean distance between nodes u and
v. When the distance between nodes is larger, the connection weight 1z
smaller. Particularly, the unilateral or bidirectional connections can be
realized between the representative nodes to Improve the information
transfer ability of the reservoir. The specific construction process of the
representative node can be seen in Step 4 of Algorithm 2.
Therefore, the model of HESN iz deseribed in Eqe.(10)-(11).

z(n+ 1) =F(W=u(n+ 1) + Wx(n)) (10)

¥in+ 1) = Wz(n + 1) 1l

where W ¢ RN=nas}=(Nnes) 3o the connection weight of the hierar-
chieal reserveir, and f = [fhfz, ,_fm.m‘] is the activation function of
the hierarchical reservoir. Parbicularly, if the neuron is not a represen-
tative node, the activation function of the node iz the sigmeoid function
If thiz node iz a representative node, the actvation function of this node
1e the wavelet funchon.

2.4. DHESN

The DHESN iz composed of the multi-layer hierarchical reservoirs,
and ite network structure 1z displayed in Fig 2. Assuming that each
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Fig. 2. The topology of DHESN.

hierarchical reservoir has the same number and size of subreservoirs,
viz., N and ngg, respectively, then the DHESN can be described as Eqgs.

(12)3-(13):
D in+1) =ﬂﬂ(ﬁ'}§x}ﬂn +1)+ “’Eﬁﬂ”i"})

2t 1) = u(nt 1),01=1 (12)
A ) =24 1),0= 1

v+ 1) =W=X(n+1) (13)

where W g RV el=l ¥ini 1) = [0+ 1), 23 (n4 1),
xﬂ“}[n+1}].lmni3th:maximmnumb€rufla}r:m.

The input weights and the reservoir weights remain unchanged after
initialization, similar to the training process of the original ESN, and
only the output weights need to be trained. We have emploved the
elastic regulanzation with Ly and Ly 5 to solve the output weighte (Liang
et al., 2013). Elastic regularization can compress and reduce the
collinearity of the output weights. Moreover, the output weights can be
trimmed sutomatically, which reduces the complexaty. The elastic reg-
ularization objective function ie shown az Bq. (14).

E[W™) = |¥ — WX||3+ & W3 + 4z W= 1113 (14

where ¥ ¢ RV Pae"lal T 5 the ctate matrix of the reservoir, ¥ &
R'"Te= iz the output matrix, Tpgy it the length of the training set, 45 is
the Ly regularization coefficient, and 4, is the Ly 5 regularization co-
efficient. Concomitantly, the state matrix X and the target output vector
Y have been supplemented to obtain the following augmented ocutput
matrix X* and the augmented target output vector ¥* are deseribed in
Eg. (15).

-z ()7 -()

Let dn =.|1|_,12,|"\|"1+12,al:lﬂ et v 1+ LW then the objective
function can be transformed into Eq. (16].

E(W™) = || ¥ — WX|| 3+ | W] 344y W12
¥ |
= — I+ i W
||( ) ?—(r;)\ﬁ W3
o |1 12
%mmw lhyz

= [ — W X A W2

(18}

into a generalized Ly 2 regulanization problem. We have used the coor-
dinate descent method iz used to solve W™ in Eq. (16) (Liang et al |
2013). In the coordinate descent method, only one parameter, i.e., the
output weight component W™, k = 1,2, -, N % ngg ® lpy, hazs been
updated during the solution process, whereas other parameters remain
unchanged. Then the objective function of the above generalized Ly 2
regularization problem has been expanded in terme of components as
Eq. (17).

Tote Nyl , 2
a{w:-'}=‘z(m-w:-'nm— 5 W:-nlll})
=1 B

17}

" N i b .3

+1*(}“T"'} + 3 W )

it

where ﬁi represents the fixed output weight component in the pre-
vipus step. After sorting out Eq. (17, we obtain

T,

B (W) =32{w:-*nm}*+3§(m}— )>

i

W xl) )

Ny e

> W?"x‘{#})“’:'"ml#} (18)
ik

L
—z‘z(ym—
=1
. * A oy . *
WA 3 W
[

Assuming that ¥ 7:2(¢} £ 0, the minimization of the objective
function in Eq. (18) iz equivalent to the minimization in Bq. (19).
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—ou
Let C Toan y ¢ N bWt xt (e,

W n 9}t the Eq. (19) has been simplified as Eq. (20).

o B % - B

(20)

Taking the derivative of Eq. (19) with respect to W2, we obtain Eq.
(21).

(2D

where sign

solve E, W«

is the sign function. According to (Liang et al., 2013), we

0 to obtain Eq. (22).

(22)

hk Ck 3 : 8 N and weout Wout* 1 2.

Based on the above analysis, the detailed training algorithm of
DHESN can be given as Algorithm 2.Algorithm 2 Step 1: Calculate the
transfer entropy of the candidate variable to the predicted variable and
set the screening threshold 5. The candidate variable is retained if the
transfer entropy exceeds or is equal to the . If it is less than g, the
candidate variable is deleted.

Step 2: Set the number of reservoir layers |  and the input weight
range of each layer. Each layer randomly generates the subreserveoirs
through SVD method, and each subreservoir contains ng; neurons.

Step 3: Select the representative nodes in each subreservoir ac-
cording to Eq. (8), and set the wavelet activation function of each
representative node according to Eq. (7).

Step 4: Set a two-dimensional plane with both the ranges of x-axis
and y-axis as 0 1. Set N; seed nodes randomly among the representative
nodes, and set the coordinate of seed nodes as

where Ci

chs 1 1 Iﬁ js 1
have at least a unidirectional connection. Then, a new representative
node with random coordinates has been added each time. Further, the
unidirectional or bidirectional connection with the existing represen-
tative node in the plane is realized according to Eq. (8), where the
connection distance of each representative node is set as the connection
weights between each representative node. After all the weights are
connected, the spectral radius of each hierarchical reservoir needs to be
adjusted to ensure the echo state property.

Step 5: Set the regularization parameters and initialize the output
weight W3 0. Let W*° W, and iteratively calculate the
component W k12 1 N ngy of W according to Eq.
(21). If the maximum number of iterations is satisfied, then output
wout  weu 1 ,. Otherwise, let Wo¥*
process until the condition is satisfied.

Step 6: Test the trained DHESN.

N . According to Eq. (8), make all seed nodes

WP and continue the
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2.5. Theoretical analysis

(1) Spectral radius

To ensure the echo state property of the DHESN, the spectral radius
of each hierarchical reservoir has been updated after the representative
nodes are connected as Eq. (23).

(23)

where Wgr“ ! is the hierarchical reservoir after the representative nodes

are connected, and W"* ! is the weight of the updated hierarchical
reservoir at [ th layer. Each reservoir layer of DHESN only needs to set
the random range of the singular value without setting the spectral
radius in advance (Qiao et al., 2016).(2) Sparsity

After the representative nodes are connected, the sparsity of the hi-
erarchical reservoir changes. The sparsity of the [ th reservoir layer (fully
decoupled subreservoir) before completing the representative node
connection completed is described in Eq. (24).

— (24)

Since the weight connection between representative nodes is realized
according to the small-world network method, its connection is random.
The sparsity of the hierarchical reservoir, after the node connection is
divided into two boundary cases. When all representative nodes are
connected at least, the sparsity of the hierarchical reservoir is the min-
imum, and the minimum sparsity of the hierarchical reservoir at I th
layer is shown in Eq. (25).

(25)

When all the representative nodes are bidirectional connected, the
sparsity of the hierarchical reserve pool reaches the maximum, and the
maximum sparsity of the [ th hierarchical reservoir layer is shown in Eq.
(26).

(26)

Therefore, the sparsity of the each hierarchical reservoir ranges from
nls 21N nl, *a
N nsf‘b 2N nsf‘b 2
each reservoir layer of the DHESN does not need to be set in advance.(3)
Average state entropy (ASE)

From the information theory, the instantaneous state entropy of the
reservoir output can be employed to measure the dynamic richness of
the ESN effectively. For each reservoir layer [ and each time t, its
instantaneous state entropy H! t can be defined as Eq. (27): (Ozturk

et al., 2007).

. Similar to the spectral radius, the sparsity of
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Flg. 4. Prediction results of DHESN in Henon map prediction.

1 L L
HY )= —log| ———— z ( z :(I}UU}—I}”U})) (27)

(N{?J n{i) = =

Whﬂ'c-ﬁﬂ}(r} represents the state of the j th neuron in [ th reservoir layer
at time ¢, and (-} 12 Gaussian kernel functien (Ozturk et al, 2007). The
ASE 1n the time length T 1= defined as Eq. (28).

I T
ASED — 5T HY g (28)
F 2

ASE can quantify the dynamic characteristics of each reservoir layer.
It can analyze the influences of the reservolr structure on the dynamies
from the perepective of single layer, and the deep reservoir structure on
the dynamice from the perspective of the number of reservoir layers.

3. Experiment and result

Two typical chaotic time senies datasets have been employed for
simulation experiments, including Henon mapping prediction (Henon,
1976) and Mackey-Glass time series prediction (Jacger & Haas, 2004),
for verifying the prediction performance of the DHESN, by considering
the chaotic property of algal bloom. Then, the water quality datazet of
Lake Mendota in Wisconsin, USA, has been employed to verify the
effectiveness of DHESN in the actual algal bloom prediction (Lead =t al |

2020). The compared neural network models include extreme learning
machine (ELM) (Liang =t al | 2006), onginal ESN (OBESN) (Jacser et al |
2007), GESN ((Miac <t al, 2016), RESN (Dutoit =t al., 2009), DBN
(Hinton et al., 2006), Lo regulanzed deep ESN (DeepBSN-Ls) (Gallicchio
et al., 2017), and Ly 5 regularized deep ESN (DeepESN-Ly 2). In all the
experiments, with ¢ = 0.5 and § = 40, the number of subreserveir at
each layver 1z 20, and cach subreservoir containe five fully connected
neurens. Further, the input weight range of cach layer is [ -1, 1], and the
number of seed nodes at each hierarchical reservoir layer 1= N, = 0.1N.
The grid search method has been employed to determine the optimal
parameters for the number of layers and the two regularization
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Flg. 5. Prediction error of DHESN in Henon map prediction.

Table 1

Comparizon results of Henon map prediction performance based on different
methods.

Method Struscture NRMEE
Ave. Sud

ELM 400 0uas91 0.0009
OBSN 400 00268 0.0123
GESN 400 001zl 00006
RESN 400 QLDO7E 0L0004
DBEMN 50505050 D074 00011
DeepBESN-Ly 100100100100 00064 0.0005
DeepBESN-Ly 2 100100100100 0.00E0 00016
DHESM 100- 100100100 00057 0.0005

parameters. The maximum number of layers vary from two to five, and
the szelection range of the two regularization parameters iz
(10°7,10°2,---,10°"%). Bach experiment has been tested 50 timez, and
the experimental results were taken as the average of 50 experiments.

To test the prediction performance of DHESN, normalized root mean
square error (NEMSE) has been selected as Eq. (29).

S(dtm) (o)

NRMSE = Tool

(29)

where Lt 18 the size of the testing set, dn) is the actual value, ¥in) is the
predicted value (the n:twurknutput}l,an.dcr}isﬂl:vuim:nfﬂ::acmal

value. A smaller NEMSE yielde a better the prediction performance of
the network.

3.]. Henon map prediction

Henon map iz a classical chaotie discrete-ime dynamie system,
which iz extensively employed az a benchmark funetion for the time
formula for the Henon mapping system is deseribed as Eq. (30).:

{u1 {t+ 1) = walr) — anal{1) + 1 a0

uz(t + 1) = by (1)
wherea = 1.4, b = 0.3, the imtial value 1y (1) = wz(1) =0, and u; is the
predicted walue. The length of the dataset iz 1000, among which the
training length iz 700 and the testing length 1= 30. Furthermore, the
reservolr state iz collected following a set of 50 traiming data to over-
come the impact of the mtial transient. In this experiment, the number
of regervoir layer 1z 4, with 100 neurons in each layer. The Ly2 regu-
lanzation parameter is 1 e-5, and the Ly regulanzation parameter iz 1 e-4.

Fiz. 3 chowe the topology of the connections between the represen-
tative nodes, which exhibits the typical clustering characteristics of a
small-world networle. And each representative node can also realize the
bidirectional connection and self-feedback connection to render a hi-
erarchical structure for the improved reservoir.

Fiz. 4 and Fig. 5 show the prediction results and error of DHESN in
Henon map prediction. DHESN shows a good prediction effect, and its
error values fall in the range [ —0.02,0.02]. Table | specifically shows the
comparison of the predichion accuracy between different methods. The
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Filg. 6. Influence of different number of reservoir layers on the prediction
performance of Henon map prediction.
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Flg. 7. Influence of different reservoir stucture on the information content in
Henon map prediction.

prediction aceuracy of DHESN iz eignificantly better than the challow
ESN, and slightly better than DeepESN. The prediction accuracy with
elastic regulanization exceeds that of DeepESN-Ly and DeepESN-Ly .
Although the standard deviation of DHESN exceeds that of RESN, the
mean NEMSE of DHESHN iz the minimum of all models. It shows sood
prediction performance and stability.

Fig. 6 displays the influenece of different numbers of the reservoir
layers on the prediction performance. Owing to the increase of the
number of reserveoir layers, the NEMSE of DHESN decreases first and
then increases, chowing the best prediction effect when the number of
layers 1z four. The prediction performance may not be better for a hngher
number of reserveoir layers. We determine the appropriate number of
reservoir layers according to specific problems.

To further analyze the reasons for the good predichon performance
of DHESN, Fiz. 7 displays the influence of different network structures
on ASE in Henon map prediction. Accordingly, owing to the increase of
layers, the ASE increases significantly in the second layer irrespective of
the land of reservoir structure, and iz basically stable in the later layers.
Thiz indicates that the number of reservoir layers can enrich the dy-
namic characteristics of the reservoir state. However, the ASE of
different reservoir stroctures iz different. Among them, the ASE of the
original reservoir structure iz low, and when the fully decoupled
modular reservoir 1z adopted, ite dynamics iz enhanced modestly, owing
to the fully decoupled sub-reservoir having different dynamics, which
can improve the information of the reservoir state. The ASE of the hi-
erarchical reservoir excesds that of the other two structures in each
layer. By connecting the representative nodes with the wavelet activa-
the information of the reservoir. The deep features can be appreciably
extracted, so that DHESN can have a better prediction performance.

Furthermore, elastic regularization iz also an important way to
improve the prediction sccuracy of DHESN. According to Fiz. &, the
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Flg. 8. Influence of different regularization methods on output weights in
Henon map prediction.

output weight amplitnde of DHESN exceeds that of OESN without reg-
ularization, and its cutput weight amplitude is compressed to | —2.3037,
1.1892], which iz aleo slightly better than other models based on Ly
regulanzation method. Concomitantly, Ly regulanzation alse prunes
the output weight components of DHESN. Among the 400 neurcns in
layer four, 76 output weights have been pruned. Therefore, zlashe
regularization can effectively solve the approximate collinearity prob-
lem and weight redundaney problem of DHESN, thus improving the
prediction effect of DHESN.

3.2, Mackey-Glazz syztem prediction

The Mackey-Glase system iz also a standard meodel for venfyving
network performance, which is shown in Eq. (31]).

= _ %+ bx(1) (31)
wheren =10,a =0.2,b = —0.1, ¢ = 17. The fourth-order Runge-Kutta
method has been emploved to generate 2000 ects of data, and one-step
prediction has been performed on them, ineluding 1000 training set and
1000 testing set. The reserveir state has been collected after 100 sete of
data input. In thiz experiment, the number of layers in the reservoir 1s
three, with 100 neurcns in each layer. The Ly 4 regulanzation parameter
1e 1e-6, and the Ly regulanization parameter 1= 1e-5.

Fiz. 9 and Fiz. 10 respectively show the prediction results and error
of DHESN, respectively, in Mackey-Glass system prediction, and the
prediction error range of DHESN iz between [ —0.01,0.01]. Table 2 lists
the comparizon between the prediction accuracy of different methods.
After 50 experiments, the mean NEMSE of DHESN iz better than the
prediction accuracy of shallow ESN and deep ESN models.

Fiz. 11 displaye the influenee of different reservoir layers on network
in the number of layers, DHESN chowe a better prediction performanece
for three layers.

Fiz. 12 further chows the impact of different reservoir structures on
ASE in Mackey-Glass system prediction. Owing to the increase in the
number of reservoir layers, the ASE increases significantly in the second
layer, and iz basically stable in the later layers. From the perspective of

15] —-I:Il-_'sued D':I||'.IIJ| Mebwork Duipu!

I
|
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Fig. 9. Prediction resultz of DHESN in Mackey-Glazs system prediction.
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Fig. 10. Prediction error of DHESN in Mackey-Glass system prediction.

Table 2
Method Structure NRMSE
Ave. Sed.
ELM pa 2] L0444 00013
OESN pa 2] 0.0338 00120
OBSN pa 2] 00226 00002
REEN pa 2] 00224 0L0001
DEBEN S0-50-50 0.0238 00038
DeepBESN-Ly 10100100 00126 00003
DeepBESN-L; 4 10100100 00178 00022
DHEEN 10100100 0.0095 00033
0,04
0031 ]
w I
o
= 002} |
g |
= 1
T
0,01+ } L
0

1 2 3 4 5
Researvolr Layer

Fig. 11. Influence of different rezervoir layers on the prediction performance of
Mackey-Glazss system.
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Fig. 12, Influence of different rezervoir structure on the information content in
Mackey-Glazs system predicton.
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Flg. 13. Influence of different regularization methods on owtput weights in
Mackey-Glazs system prediction.

the reserve pool structure, the information content of the modular
reservolr elightly increases, whereas the ASE of the hierarchical reser-
voIr exceeds that of the other two structures in each layer, which has
richer dynamie characteristics of the reservoir state.

Fiz. 13 chows the influence of different regularization methods on
the output weights in the Mackew-Glass syetem predichon. The output
weight amphtude of DHESN 1z sigmificantly smaller than that of the ESN
model without Ly regulanzation, and itz cutput weight amplitude has
been compressed to [ —1.5459, 1.6731). The pruning «ffect of DHESN iz
better than that of Ly 5 regulanzed deep EEN. 36 weights of DHESN have
been pruned, whereas 23 output weight components of Ly o regulanzed

ESN are zero.

3.3, Algal bloom prediction

The predichion of algal bloom 1= pomarily based on the concentration
of chlorophyll-a as the characteristic vanable. In this experiment, the
water gquality and meteorological data collected in Lake Mendota, Wis-
consin, USA has been used to venfy the effectivencss of DHESN. Lake
Mendota has generated 1489 sete of data from July 2016 to September 1,
2016. The data sampling interval has been for one hour. The name, unite,
and statiztical indicators of all vanables in the dataset are listed 1 Table 3.

The length of the dataset iz 1489, of which the length of the training
get is 1036 and the length of the testing set is 453. Furthermore, the
experiment imitially collects the reservoir state after 100 times. Owing to
the large number of variables in the dataset, there may be redundant
ones. Therefore, this experiment quantifies the causal relationship be-
tween the candidate varables and chlorophyll-a by transferring entropy.

Table 3
Wariahle Unit Max. Mo Ave. Sud
Air temperature c 3239 1492 33295 2 9663
Relative humidity L] °09 43.79 TE.00B6 120879
Wind speed m/a 10L65 a3 36565 1.8665
Wind direction @ 345.39 20.59 204.7823 B2 53804
Phycocyanin mg/l 13285 43481 6541126  95.8418
Photosynthetically- pmel/ 19967 O 487.663  GOLTI6S
active radistion {m®a)
Submurface pmol’ 216.66 L] 20.035 33,3408
photoaynthetically-  (ms)
active radiation
Water temperahure c 2935 23.52 I5.34B 1.0503
Ohrygen saturation L] 213.02 1919 o0 8364 204296
Dimsolved oxygen mg/L 1718 153 £.1964 16664
Partial presmure of pPpm 410.12 19867 I271.6251 34.6309
carbon dioxide
Chlorophyll-a mg/ 33962 85395 16058 341447
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Fig. 14. The transfer entropy of cand

idate variables to chlorophyll-a.
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Fig. 15. Comparison of prediction resu

According to Fig. 14, the screening threshold has been set in this
experiment, hence all the variables except photosynthetically-active
radiation and subsurface photosynthetically-active radiation have
been used as the input of DHESN for the chlorophyll-a prediction.
Furthermore, the number of layers in this experiment is four, with 100
neurons in each layer. The L, regularization parameter is 1e-2, and the
Ly regularization parameter is le-5.

Fig. 15, Fig. 16 and Fig. 17 show the prediction results, prediction
errors, and regression plots of DHESN, respectively, in this experiment.
Compared with the alternate ESN models, the prediction results of
DHESN are proximate to the actual value, and the prediction error range
isin the interval 400 300 . Table 4 shows the comparison between the
different methods. The mean NRMSE and standard deviation NRMSE of
DHESN are better than other variant ESN, which realizes the effective
prediction of actual algal bloom.

Fig. 18 displays the influence of different reservoir layers on the
network performance in chlorophyll-a concentration prediction. DHESN
shows better prediction performance for four layers. Fig. 19 shows the
effect of different reservoir structures on ASE. ASE increases signifi-
cantly in the second layer, but the number of later layers does not change

Its of chlorophyll-a concentration.

significantly. The ASE of the hierarchical reservoir exceeds that of the
other two structures in each layer, which verifies that the hierarchical
reservoir has richer information and improves the ability of feature
extraction with the increase in the number of layers.

Fig. 20 depicts the influence of different regularization methods on
the output weights in the experiment of chlorophyll-a concentration
prediction. The output weight amplitude of DHESN is smaller than that
of other types of regularized ESN models, and compressed to 1 4518
0 6296 , which has better robustness. The pruning effect of DHESN is
also better than that of L; » regularized deep ESN in which 306 weights
of DHESN are pruned, whereas 142 output weight components of L2
regularized deep ESN are zero. DHESN can better reduce the complexity
of the prediction model. By the mechanism design of hierarchical
reservoir, the feature extraction of deep reservoirs, and the integration
of regularization methods, the effective feature extraction and the self-
organization of the structure have been achieved. Therefore, it can be
applied to the actual lake and reservoirs for an effective prediction of
algal bloom.
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Table 4

Comparison results of prediction performance of chlorophyll-a concentration
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Fig. 16. Comparison of prediction errors of chlorophyll-a concentration with different methods.
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Fig. 17. Regression plots of predicted and actual values of chlorophyll-a concentration with different methods.

based on different methods.

Method Structure NRMSE
Ave. Std.

ELM 400 0.5906 0.0096
OESN 400 0.5976 0.0269
GESN 400 0.5826 0.0891
RESN 400 0.5712 0.0188
DBN 50 50 50 50 0.4321 0.0105
DeepESN-Ly 100 100 100 100 0.4042 0.0226
DeepESN-L; 5 100 100 100 100 0.4071 0.0283
DHESN 100 100 100 100 0.3758 0.0085

10

4. Discussion

According to the previous references and the water quality data from
Lake Mendota, the evolution of chlorophyll-a concentration is a mixture
of nonlinearity and periodicity. Combined with Table 4, the shallow ESN
model can achieve good prediction accuracy, whereas the deep reservoir
model can improve the prediction performance. Combined with the
above three experiments, the proposed model exploits the advantages of
deep neural network structure, and finds application in algal bloom
prediction.

DHESN adopts a hierarchical structure and mixed activation function
for each reservoir layer. These highlights improve the information
processing ability of deep ESN. According to Fig. 7, Fig. 12 and Fig. 19,
the information content of the reservoir neurons is gradually increased
with the further modularization and hierarchical design of the neuron-
coupled reservoir, which helps in the improvement of the prediction
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Flg. 18. Effects of different reservoir layers on the prediction performance of
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Filg. 19. Effects of different rezervoir structure on the information content in
chlorophyll-a prediction.

accuracy. The structural improvement of the reservoir 1= consistent with
the actual prediction results, which reflects the effectivensss of the
reservolr Improvement.

According to the above experimental resultz, deep neural network
architecture 1z an effective way to mmprove the performance when
compared with challow architecture. The inerease of the number of
layers does not significantly increase the complexity of the output
weights, which i1z also the training advantage of the ESN model,
particularly for the ESN model, when compared with the general mult-
layer perceptron model Combined with the elastic regularization
method, the robustnesz of DHESN has been enhanced and the
complexity reduced, which theoretically ensures the reliability and
compactness of DHESN.

The theoretical analyeis demonstrates the invariance of the hyper-
parameter settings complexity before and after the improvement of the
reservoir structure, Le., two important hyperparameters, viz., spectral
radius and sparsity, do not need to be pre-set However, the sub-
reservoir size, the number of sub-reservoirs, the number of reservoir
layers, and the regularization parameters also need to be considered.
Any further improvement in the efficiency of hyperparameter optimi-
zation iz to be considered in the subsequent research.

5. Concluzion

The evolution process of algal blooms 1z characterized by nonlinear
and time-varying characteristics. To overcome the lack of the ability of
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Flg. 20. Influence of different regularization methods on output weights in of
chlorophyll-a prediction.

shallow neural networks to deal with nonlinear problems, a DHESN 1in
thiz paper iz proposed to predict the concentration of chlorophyll-a, the
charactenistic vanable of algal bloom. Combined with the experiment
results of henon mapping prediction, mackey—glass prediction and algal
bloom prediction, the application advantages of DHESN are given:

1). Compared with variant ESMs and other typical networks, it 15
found that DHESN hae lower average NRMSE and higher prediction
accuracy. In the actual algal bloom dataset, the NRMSE of DHESN
decreased by at least 34.2]1 % compared to shallow networs, and 7.03 %
compared to deep reservolr networl.

2). Compared with other reservoir structures, DHESN has higher
ASE, which can be used as an effective reservoir structure for further
optimization.

3). Compared with other regulanized ESN model, DHESN have a
prunable and compressible output weight training process to obtain a
compact structure. In the actual algal bloom dataset, compared with
other pruning regularization methods, the output weight can be reduced
by more than one times.

Therefore, DHESN can achieve high precision, which also indicates
that this data-driven model ie suitable for actual algal bloom prediction
in lake and reservoir. In future research, we expect to optimize the to-
pological structure between different reservoir layers and further
explore the fusion of ime series features in the reservoir networlc It 15
performanee of the reservoir method in the application of algal bloom in

lake reservoir.
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