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ABSTRACT

Biofilm growth and transport in confined systems frequently occur in natural and engineered systems.1

Designing customizable engineered porous materials for controllable biofilm transportation properties2

could significantly improve the rapid utilization of biofilms as engineered living materials for applica-3

tions in pollution alleviation, material self-healing, energy production, and many more. We combine4

Bayesian optimization (BO) and individual-based modeling to conduct design optimizations for5

maximizing different porous materials’ (PM) biofilm transportation capability. We first characterize6

the acquisition function in BO for designing 2-dimensional porous membranes. We use the expected7

improvement acquisition function for designing lattice metamaterials (LM) and 3-dimensional porous8

media (3DPM). We find that BO is 92.89% more efficient than the uniform grid search method for LM9

and 223.04% more efficient for 3DPM. For all three types of structures, the selected characterization10

simulation tests are in good agreement with the design spaces approximated with Gaussian process11

regression. All the extracted optimal designs exhibit better biofilm growth and transportability than12

unconfined space without substrates. Our comparison study shows that PM stimulates biofilm growth13

by taking up volumetric space and pushing biofilms’ upward growth, as evidenced by a 20% increase14

in bacteria cell numbers in unconfined space compared to porous materials, and 128% more bacteria15

cells in the target growth region for PM-induced biofilm growth compared with unconfined growth.16

Our work provides deeper insights into the design of substrates to tune biofilm growth, analyzing the17

optimization process and characterizing the design space, and understanding biophysical mechanisms18

governing the growth of biofilms.19

Keywords Individual-based modeling · biofilm · metamaterials · Bayesian optimization · porous media20

1 Introduction21

Biofilms, commonly defined as surface-attached communities of microorganisms (i.e., groups of bacteria cells)22

embedded in a self-produced matrix of extracellular polymeric substances (EPS) Costerton et al. [1999], grow mostly23

in confined systems such as rock cracks, industrial pipelines, biological bodies, and many other artificial or natural24

microenvironments Friedlander et al. [2013]. One of the prerequisites of biofilm growth is the existence of adhesive25

surfaces that allow bacteria to grow and cluster into “film-shaped” communities, aided by adhesive EPS. Hence,26

increasing surface areas would allow biofilm observed in mostly confined systems to attach and grow further Feng et al.27

[2015]. From the engineering perspective, biofilms possess abundant pros and cons to human society. On the negative28

side, the formation and attachment of biofilms pose serious problems for marine engineering by fouling the surfaces of29

marine vessels, equipment, and infrastructure, leading to reduced efficiency and increased maintenance costs Yebra et al.30

[2004], Dobretsov et al. [2006]. On biomedical devices, such as catheters and implants, biofilm formation can lead to31

infections that are difficult to treat Costerton et al. [1999], Donlan and Costerton [2002]. On the positive side, biofilm32

can also be utilized as engineered living materials (ELM) with important engineering applications such as for creating33

self-healing concrete by incorporating bacteria into the concrete mix Jonkers et al. [2010], for treating wastewater by34
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removing pollutants and nutrients Chattopadhyay et al. [2022], and for 3D bioprinting into functional soft materials35

Balasubramanian et al. [2019].36

Considering all these pros and cons, understanding the mechanisms of biofilm growth within confined systems is37

crucial for humanly-desirable control of biofilm, particularly in three major applications: (1) Prevent undesired biofilm38

attachment and conduct efficient biofilm removal Zhai and Yeo [2022]. (2) Using biophysics to promote the effective39

usage of biofilm as ELM, e.g., clean energy applications Liu et al. [2022]. (3) By combining both the pros and cons40

to enable biofilm control to design customized devices and sensors Mukherjee and Cao [2020]. Towards achieving41

such applications, we identify a major design challenge for biofilm control: designing porous structural materials42

that can control biofilm growth. However, two problems naturally arise in our road towards efficient biofilm control43

and utilization: (1) Conducting experiments on biofilm is time-consuming due to the lengthy growth process, hence44

characterizing and benchmarking changes in the bacterial environment cannot be achieved in a time-efficient manner;45

(2) Directly modifying the structures of porous materials in a multi-parametric way to test the corresponding biofilm46

growth is not straightforward and causes the investigation to be even more time-consuming. Hence, novel techniques47

that can bypass this “trial-and-error” approach is of urgent need.48

To tackle the problem of time-consuming experiments, we use computational modeling, more specifically, individual-49

based modeling. Notably, there are various computational modeling methods have been proposed in recent years to50

model biofilm. For example, molecular dynamics simulations were used to model the biochemical properties of biofilm51

on the molecular scale Powell et al. [2018], dissipative particle dynamics were used to model biofilm deformation under52

shear flow Xu et al. [2011], coarse-grained molecular dynamics were used to study dewetting phenomena Brandani et al.53

[2015], and finite element methods were used to simulate the linearized growth Smith et al. [2007] to model biofilm on54

the continuum scale. Here, we use individual-based modeling (IbM) Li et al. [2019] that represents each bacteria cell as55

individual spherical particles in combination with mathematical models for the growth and dynamics of biofilm. IbM56

captures the behavior of biofilms in length scales that range from individual bacterial cells to clusters of cells while57

requiring relatively low computational resources. Most importantly, we are motivated by three critical considerations:58

• IbM is a general multiscale method, capable of capturing the scaling effects from cell to “film”. Since59

each bacteria cell is modeled as a discrete particle, interactions between “cell-cell”1, “biofilm-material”, and60

“cell-material” can be also be modeled correspondingly. When studying the transport of biofilm within porous61

regions, the ability to capture such multiscale mechanics is essential as both the individual and group dynamics62

play important roles. Li et al. [2019].63

• The IbM method is physically realistic for the spatiotemporal scale of interest, where IbM can capture the64

dynamics and mechanics of the biofilms observed in natural pores with diameters on the order of 10−5 ∼65

10−3m Kapellos et al. [2015]. Each bacteria cell is approximately 1µm, hence our modeled porous structures66

perfectly capture the local morphologies of the biofilms as they grow and propagate. Moreover, the physical67

adhesion and other micromechanisms that govern the overall mechanical behavior of the biofilms primarily68

originate from the micrometer scale Galy et al. [2012], which can be directly observed and quantified using69

IbM. Also, our ultimate goal is to incorporate our theoretical predictions and understanding into experimental70

designs of ELM and the most recent work on ELM is on the micrometer scale Rodrigo-Navarro et al. [2021]71

which is directly relevant to our IbM.72

• Compared with other methods, IbM has the most decent computational burden requirement for relatively high73

fidelity2. Simulating the growth of biofilm at the molecular scale using methods like molecular dynamics74

(MD) simulation or Monte Carlo sampling will require impossibly large amounts of computational resources75

and time. As a reference, 6 months of time is needed to run MD simulations of a large protein structure for 176

µs Li et al. [2021], making this method infeasible for our problem. On the flip side, at the continuum scale,77

simulations of biofilm usually incorporate extended finite element methods (XFEM) and level set method78

(LSM) Duddu et al. [2008], which can be extremely computationally burdensome as these methods usually79

require a moving mesh that resolves the phase boundary Zhai et al. [2022], which is computationally costly80

while being unable to capture the dynamics of individual cells.81

To solve the problem of inefficient forward predictions of structural designs, we use approximation methods to solve82

the inverse problem of materials design. Suppose one were to define designing materials by perturbing their original83

structures to obtain the target properties as a forward problem. In that case, one can then define obtaining the tailored84

materials’ structures from the predefined targeted properties as an inverse problem3 The detailed inverse problem85

1multiple cells constitute the biofilm, while “cell-cell” interactions dictate the dynamics of individuals within the biofilms
2The goal is to combine simulation with optimization, where the simulation is treated as the evaluated function. Hence, the

function evaluation time is important for efficient optimizations.
3The rigorous formulation follows the Hadamard’s principles, which we do not discuss in details here.
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here is formulated as finding the optimal porous structure corresponding to the target biofilm transport properties (i.e.,86

maximizing biofilm growth), as a class 2 inverse problem. However, there are two main specifics to note: (A) The87

defined inverse problem is ill-posed Hadamard [1902]. Two or more different porous structures may yield the same88

biofilm transport properties, such that the material’s structure found as the solution to the inverse problem may not89

be unique. (B) There are no analytical (or symbolic) forms of the inverse map. The biofilm simulation is constituted90

of iterative growth and update of bacteria cells, where it is almost impossible to obtain an analytical inverse of this91

coupled multiphysics system with changed parameters4.92

To solve the ill-posed problem (A), we characterize the design space to approximate a surrogate model of the design93

space. We verify the approximated map by conducting verification simulations along the observed maximal solution94

and randomly selected points. This allows us to verify the accuracy of the fitted surrogate and that further analyses95

are reliable. To solve the problem of the lack of analytical forms of the inverse map (B), we avoid gradient-based96

optimizations and use machine learning (ML) techniques (specifically, Gaussian process regression (GPR)) for direct97

surrogate modeling of the design space, while also enabling our ability to characterize this design space. Hence, to98

implement the two solutions we proposed, we perform Bayesian optimization (BO) Frazier [2018], using GPR to99

approximate the design space map and an acquisition function to update the solution search scheme. There are three100

major reasons for choosing BO:101

• The flexibility of handling complex problems. Compared with gradient-based methods, BO is flexible and can102

be adapted to solving complicated optimization problems without requiring the calculation of the derivative of103

the evaluated functions.104

• It is less computationally burdensome compared with other ML methods. As a non-parametric method, GPR105

requires less computational resources compared with neural networks (NN) and is especially suitable for106

problems defined within the limited data regime Fuhg and Bouklas [2022]. Compared with the widely used107

deep reinforcement learning (DRL) Sutton and Barto [2018], BO does not require iterative training of the deep108

NN for each function evaluation, and hence is significantly less computationally burdensome.109

• Approximating the design space map allows direct characterization and analysis of the sampling process. In110

metaheuristic methods such as genetic algorithms Mitchell [1998] or particle swarm optimization Kennedy111

and Eberhart [1995], the function evaluations are based on random perturbations of the input variables inspired112

by natural phenomena. In contrast, the learned design space mapped using GPR can be characterized in113

detail. Moreover, BO usually does not heavily rely on data population while only requiring one evaluation per114

iteration, thus speeding up the characterization.115

In this study, we combine IbM and BO to solve a focused problem: Inversely design the porous structural materials for116

biofilm transport and characterize the biomechanics from the optimization processes. By solving this problem, we aim117

to answer the following questions: (1) What are the optimal porous microstructures that can maximize the transport118

of biofilms? (2) Are the approximated design space accurate and how do we verify them? (3) What biomechanical119

mechanisms are discovered by optimizing and characterizing the design space?120

In Section 2, we briefly introduce the methods used, including our computational models of biofilm physics (Section121

2.1), the BO scheme (Section 2.2), such as surrogate modeling with GPR (Section 2.2.1) and the iterative update scheme122

using an acquisition function (Section 2.2.2), followed by three numerical experiments on different porous materials123

in Section 2.3. These results are discussed in Section 3: the optimization processes and optimal structures for the124

different numerical experiments in Sections 3.1 & 3.2, verification of the discovered new phenomena that certain porous125

structures stimulate the growth of biofilms, and additional mechanistic explanations in Section 3.3. We then conclude126

our studies in Section 4.127

2 Methods128

As elaborated in Section 1, we will use IbM to model the growth of biofilms and their mechanical interactions with129

the porous metamaterials in a predefined simulation box. Here, the term “metamaterials” stand for mechanically130

architectured scaffolds that are employed to control the biomass transport at the “film-scale”. We then combine the BO131

methods together with the material representation of the porous structure parameterized based on our defined numerical132

experiments and the simulation framework to iteratively search for optimal porous structures that enhance biofilm133

transport properties.134

The general schematic of this study is represented in Figure 1. We are inspired by a natural phenomenon: biofilms135

mostly grow in confined systems Friedlander et al. [2013], hence we construct porous structures that allow the biofilm to136

4For the detail of the simulation algorithms please refer to Refs. Li et al. [2019] & Zhai and Yeo [2022]
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grow within to mimic this phenomenon (Figure 1 A). To determine the optimal porous structures for biofilm growth, we137

then run the simulations initiated by parameterized materials representation (Figure 1 B) for coupling with BO (Figure138

1 C). The coupling is enabled by “variable passing” between the simulation and optimization: the simulation takes the139

materials’ representation as input and outputs the biofilm transport properties as the objective for optimization; the140

optimization algorithm then updates and outputs the new materials’ representation for an iterative loop. This iterative141

search will eventually propose an optimal design (Figure 1 D). By characterizing the design space obtained in the142

optimization (Figure 1 C) and comparing the observation from these simulations, we then propose explanations for the143

optimal structures and identify new mechanisms of biofilm transport physics (Figure 1 E).144

In the following subsections, we first briefly introduce the basic formulation of our computational methods of IbM and145

the basic mathematical formulation of BO. We also briefly introduce the different numerical experiments of biofilm146

growth for porous membranes, lattice metamaterials, and nonconvex porous media, respectively.147

Figure 1: The overall schematic of this study. (A) Inspired by biofilm transport in porous materials (top), we define
a computational framework (bottom), where bacteria cells seeded at the bottom grow into the porous substrates as
indicated by the grey area. (B) The growth processes of the biofilms within the porous materials are simulated using
IbM. (C) BO is then used to reconstruct the design space for the porous material and (D) the extracted optimal design
is extracted from the design space. (E) New physical phenomena and the mechanism of bacteria transport in porous
materials are uncovered by comparing the optimal design(s) against benchmark cases.

2.1 Computational Models148

In this work, we used IbM based on the Newcastle University Frontiers in Engineering Biology (NUFEB) framework149

Li et al. [2019], in which each bacteria cell is modeled as a spherical particle. Biofilms are formed by cell division and150

extrusion of EPS. Following our previous study on surface topology optimization Zhai and Yeo [2022], the following151

differential equation governs the microbe growth and decay:152

dmi

dt
= ξimi (1)

where mi is the biomass of the ith bacteria cells and ξi is the growth rate. The growth rate of each bacteria cell is153

ξ = 0.00028s−1. To avoid particles overlapping while growing, which will de-stabilize the simulations, the particles154

are mechanically relaxed according to Newton’s equation155

mi
dvi

dt
= Fc,i + Fa,i (2)

where vi is the particles’ velocity. The contact force Fc,i is a pair-wise force between particles to prevent overlapping156

based on Hooke’s law157

4
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Fc,i =

Ni∑
j=1

(KNδni,j −mi,jγNvi,j) (3)

where Ni is the total number of neighboring particles of i, KN is the elastic constant for normal contact, δnij is the158

overlap distance between the center of particle i and its neighbor particle j. γN is the viscoelastic damping constant159

for normal contact, and vi,j is the relative velocity of the two particles. The EPS adhesive force Fa,i is a pair-wise160

interaction modeled as a van der Waals force161

Fa,i =

Ni∑
j=1

Hari,j
12h2

min,i,j

ni,j (4)

where Ha is the Hamaker coefficient, ri,j is the effective outer-radius of the ith and jth particles. hmin,i,j is the162

minimum separation distance of the two particles, and ni,j is the unit vector from particle i to j.163

Mechanical equilibrium is achieved when the average pressure of the microbial community reaches a plateau. The164

average pressure P of the system is calculated as165

P =
1

3V

 N∑
i=1

mivi · vi +
N∑
i=1

N∑
j>i

ri,j · Fi,j

 (5)

where V is the sum of the particles’ volumes. The first term in the bracket is the contribution from the kinetic energy of166

each particle. The second term is the interaction energy, where ri,j and Fi,j are the distance and force between two167

interacting particles i and j, respectively.168

Here, the bacterial growth rate is determined by the Monod kinetic equation Monod [1949] driven by the local169

concentration of nutrients. The porous substrates are modeled as fully rigid particles with neither growth nor decay.170

Here, under the Monod model formulation, each bacteria cell first grows with increasing radii, and after their radii171

reach a critical value rC = 1.36× 10−6m, the cell is separated into two daughter cells (full details are in Ref. Li et al.172

[2019]). The EPS, also modeled as spherical particles, are secreted by the main bacteria cells in the growing process173

(full details are in Refs. Xavier et al. [2005], Jayathilake et al. [2017]). After a pre-defined number of iterations, the174

system will arrive at a total number of bacteria cells and the EPS particles, which we denote as N total
bio .175

The model we implemented assumes a constant growth rate under linear nutrient gradients5. Qualitatively, to ensure176

that the IbM reproduces experimentally observed biofilm behavior, a few parameters are of importance: (1) The growth177

rate ξi should match the experimentally observed value. The actual biofilm growth dynamics should also not strongly178

deviate from a constant growth rate. (2) The modelled bacteria should be a Heterotroph (HET), as the IbM uses the179

Monod kinetics growth model for Heterotrophic bacteria. If there are additional bacteria types, more complex IbM180

models should be considered Li et al. [2019], Jayathilake et al. [2017]. (3) Additional model parameters, such as181

nutrient distribution and diffusion coefficients, should match the environment of the bacteria (Supp. Tab. 1). (4) The182

viscosity damping constant γN should match with viscosity tested based on bacteria surround fluids. (5) The normal183

contact constant KN should also match with the parameter tested based on the bacteria cell’s mechanical properties.184

2.2 Bayesian Optimization185

The goal of optimization is to minimize or maximize an objective function, which in our case is the bacteria cell186

number under a target design region, denoted as Nbio for ease of notation (Nbio ⊂ N total
bio ∈ Z). Using Nbio =187

MNUFEB(Nunit, D̄;p) to denote a multivariate function relation, in which Nunit and D̄ stand for unit cell numbers per188

simulation box side and the dimensionless structural parameter (or dimensionless variable), respectively. Nunit and D̄189

are the design variables and further details are in Section 2.3. For simplicity, we use DV = [Nunit, D̄] to denote the190

design variables. p are the parameters used in the IbM simulations, as presented in Equations (1∼5). The optimization191

process can be simplified as:192

argmax
Nunit,D̄

Nbio = MNUFEB(Nunit, D̄;p),

subject to D̄LB ≤ D̄ ≤ D̄UB, 1 ≤ Nunit ≤ 15 (Nunit ∈ Z)
(6)

5Further discussions can be checked in Section 3.4
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Here, we define a target growth region to count Nbio (Section 2.3), so that the materials’ microstructure will be193

optimized to enhance growth towards the targeted region. Given the input design variables DV , we represent the194

biofilm physics growth simulation model as a map, MNUFEB : Nunit, D̄ → Nbio, where the simulation parameters195

p = [ξi,KN, γN, Ha, r
C, ...] are incorporated in the IbM model (Section 2.1). MNUFEB(·) denotes IbM simulations196

that map the design representation of the materials as input and the bacterial cell number count as output. Nunit is an197

integer between 1 and 15 as the number of unit cells are changing during the BO iterations. The dimensionless structure198

parameter D̄ is defined per case, as the lower and upper bounds, D̄LB and D̄UB, differ based on the simulation and199

materials basis settings, to be discussed in Section 2.3.200

BO aims to iteratively update new evaluations from the computational models in Section 2.1 to search for optimal201

porous structures. By sampling multiple simulations and mapping the design variables onto the defined objective, we202

construct a surrogate of the direct map between the input (i.e., the design variables) and the output (i.e., the objective)203

from GPR. This GPR reconstructed surrogate is then updated through the acquisition functions of choice.204

2.2.1 Gaussian Process Regression205

GPR is a Bayesian statistical approach to approximate and model function(s). Considering our optimization problem,206

the function can be denoted as Nbio = MNUFEB(DV ;p), where Nbio is evaluated at a collection of different sets of207

points (or design variables): DV1,DV2, ...,DVk ∈ R2. We can obtain the vector [MNUFEB(DV1), ...,MNUFEB(DVk)]208

to construct a surrogate model for the design parameters with the correlated objectives. The vector is randomly drawn209

from a prior probability distribution, where GPR takes this prior distribution to be a multivariate normal with a particular210

mean vector and covariance matrix. Here, the mean vector and covariance matrix are constructed by evaluating the211

mean function µ0 and the covariance function Σ0 at each pair of points DVi, DVj . The resulting prior distribution on212

the vector [MNUFEB(x1), ...,MNUFEB(xk)] is represented in the form of a normal distribution to construct the surrogate213

model Frazier [2018]:214

Nbio(DV1:k) ∼ N (µ0(DV1:k),Σ0(DV1:k,DV1:k))) (7)

where N(·) denotes the normal distribution. The collection of input points is represented in compact notation: 1 : k215

represents the range of 1, 2, ..., k.216

The surrogate model MNUFEB(DV) on 1 : k is represented as a probability distribution given in Equation (7). To217

update the model with new observations, such as after inferring the value of MNUFEB(DV) at a new point DV , we let218

k = l + 1 and DVk = DV . The conditional distribution of Nbio given observations DV1:l using Bayes’ rule is219

Nbio(DV)|Nbio(DV1:l) ∼ N(µl(DV), σ2
l (DV))

µl(DV) = Σ0(DV ,DV1:l)Σ0(DV1:l,DV1:l)
−1 (MNUFEB(DV1:l)− µ0(DV1:l) + µ0(DV))

σ2
l = Σ0(DV ,DV)− Σ0(DV ,DV1:l)Σ0(DV1:l,DV1:l)

−1Σ0(DV1:l,DV)
(8)

where the posterior mean µl(DV) is a weighted average between the prior µ0(DV) and the estimation from220

MNUFEB(DV1:l), where the weight applied depends on the Gaussian kernel. Here, we employ the Matérn ker-221

nel function to compute the covariance, with the positive parameter ν = 2.5 Rasmussen and Williams [2006]. Our222

goal is to estimate the parameters σ and θm that create the surrogate model given the training data [(Nbio)k, DVk] at223

iteration k. Here, we will use M̂GPR to denote the surrogate model constructed from GPR in the iterative updating224

process. The updating sampling scheme is achieved through the acquisition function in the following section, which225

improves the accuracy of the updated surrogate so that the reconstructed design space approximates the theoretical226

continuous design from NUFEB simulations M̂GPR ∼ MNUFEB.227

2.2.2 Acquisition Function228

Given the training data [(Nbio)k, DVk], Equation (7) gives us the prior distribution (Nbio)l ∼ N(µ0,Σ0) as the229

surrogate. This prior and the given dataset induce a posterior: the acquisition function denoted as A : X −→ R+,230

determines the point in X to be evaluated through the proxy optimization DVbest = argmaxDV A(DV). The231

acquisition function depends on the previous observations, which can be represented as A = A(DV ; (DV l, (Nbio)l), θ),232

where (DV l, (Nbio)l) leads to the reconstructed M̂GPR. Based on our mathematical notations, the new observation is233

probed through the acquisition function Deshwal et al. [2021]:234

DVk = DV l+1 = argmax
DV

A
(
DV ; (M̂GPR)l, θm

)
(9)

6
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where the input space contains the evaluation of design variables at l points: (DV1,DV2, ...,DV l). We compare and235

characterize two different acquisition functions, the Upper Confidence Bound (UCB) and the Expected Improvement236

(EI), to benchmark the effect of acquisition updates. The UCB exploits the upper confidence bounds to construct the237

acquisition function and minimize regret. UCB takes the form Snoek et al. [2012]238

AUCB (DV ; (DV l, (Nbio)l), θm) := µl (DV; (DV l, (Nbio)l), θm) + κσ (DV ; (DV l, (Nbio)l), θm) (10)

where κ is a tunable parameter balancing exploitation and exploration when constructing the surrogate model. We take239

κ = 2 in our implementations. For the EI acquisition, the function writes:240

AEI (DV ; (DV l, (Nbio)l), θm) := σl (DV ; (DV l, (Nbio)l), θm) (γ(DV)Φ (γ(DV)) +N (γ(DV); 0, 1)) (11)

where γ is computed as γ = (−MNUFEB(DVbest) + µ(DV ; {DV l, (Nbio)l}l, θ)− Ξ) /σ (DV ; {DV l, (Nbio)l}l, θ),241

where Ξ is a damping factor in the code implementation, and Ξ = 10−4 in our implementation. Note that AEI preserves242

a closed form under the GP evaluations.243

Combining GPR and the acquisition function, the surrogate model can approximate the design space’s maximal value.244

In our case, such BO methods optimize porous structures to achieve maximal bacterial cell numbers in the targeted245

region. Here, the total function evaluations are different per case, as to be discussed in the following Section 2.3.246

2.3 Numerical Experiments247

Here, we define three different cases to simulate the process of biofilm growth constrained within porous materials,248

inspired by experimental setup, literature results, and natural phenomena. The general schematic representing the249

numerical experimental setup is illustrated in Figure 2. From Equation (6), Nbio is the number of bacteria cells in the250

top quarter region and denoted as the objective growth region, i.e., Lobj × LX × LY . The porous microstructures are251

defined in the materials region, i.e., Lmat × LX × LY . The initial bacteria cells are distributed in the initial biomass252

region, i.e., Lbio × LX × LY . Nunit are formulated differently based on the “dimension” of the problem, where for the253

porous membrane (Figure 2 A) Nunit is only defined in the X-Y plane. For lattice metamaterials and non-convex porous254

media, it is defined in all the X, Y, and Z directions. D̄ are defined within the unit cells. Here, LX = LY = 50µm,255

Lbio = Lobj = 12.5µm, and Lmat = 25µm. The three cases are as follows:256

• Porous Membranes. Biofilm growth and flow constrained in a microchannel are widely applied and studied257

by the microfluidics communities and their wide applications spanning from energy, biosensing, and many258

others Pousti et al. [2019], Ye et al. [2021]. Many numerical Landa-Marbán et al. [2019], Aspa et al. [2011]259

and theoretical Landa-Marbán et al. [2020] studies also explored the mechanisms of biofilm growth and flow260

in microchannels. Here, our numerical implementations for channeled biofilm growth are mainly inspired by261

the simulation setup by Aspa et al. Aspa et al. [2011], where cylinder-shaped convex pores are “drilled” in262

the solid materials to create channels for biofilm to grow within (Figure 2 A). The morphology of the unit263

cell is shown in the right subfigure in Figure 2 A: the radius of the hole (vacuum area) is denoted as Rvac and264

the length of the residual solid body (the volumetric part, equals to half length of the unit cell minus Rvac)265

is denoted as Rvol. The dimensionless variable can then be computed as D̄ = Rvac

Rvac+Rvol
. In this scenario,266

the range of the dimensionless variable is defined as D̄ ∈ [0.1, 0.9] (D̄LB and D̄UB in Equation (6)). Our267

optimized results from designing porous channels (or 2D porous membranes) could potentially be deployed268

for biofilm transport and utilization as ELM, as these topologies are easy to fabricate. We also benchmark269

the effects of the acquisition function in sampling the design space from BO (Section 2.2.2), in which we270

also characterize the design space from the sampling perspective that could guide general structural design271

optimizations.272

• Lattice Metamaterials. In recent years, there has been a huge growth in studies of the designs Ma et al.273

[2022], Shaw et al. [2019] and properties Gu [2018], Portela et al. [2020] of mechanical metamaterials (or274

synonymously architectured materials). However, their potential applications in biomass storage and transport275

are rarely explored, with very few works concerning their potential use as biofilm carriers Ovelheiro [2020],276

He et al. [2021] and related properties Hall et al. [2021]. Here, we hope to use our simulations to fill in277

this gap and bring new insights into the possibilities of using lattice metamaterials for biofilm storage and278

transport. The unit cell of such metamaterials is shown in the right subfigure Figure 2 B: the half length of279

the vacuum area is denoted as ℓvac, and the edge length of the solid volumetric part is denoted as ℓvol, where280

the dimensionless variable is defined as D̄ = ℓvac
ℓvac+ℓvol

. The range of the dimensionless variable is defined as281

[0.1, 0.5].282

7
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Figure 2: The schematic illustration for the three different porous materials formulations. The porous materials are
treated as repeated elements of unit cells, and the number of unit cells per length is Nunit (marked in the middle
sub-figures), which is defined as a design variable in the optimization. For every unit cell, the dimensionless structure
parameter, D̄, is defined to quantify the vacuum-solid region spatial ratio in a defined unit cell illustrated in the right
sub-figures. (A) Two-dimensional porous membranes for biofilm transport. Note that we use the term “two-dimensional”
to denote that there are no repeating unit cells in the third dimension, i.e., the Z axis. The design variables hence do
not perturb the geometries in the third dimension. Bacteria cells are grown within the “micro-pipelines” within the
membranes to the top region. The dimensionless variable writes D̄ = Rvac/(Rvac +Rvol), is defined as the radii ratio
between the vacuum region and the overall region (vacuum + volumetric solid). (B) Lattice porous metamaterials for
biofilm transport. Bacteria cells are grown within the porous region within the lattice microstructures to reach the top.
The unit cell dimensionless variable takes the form D̄ = ℓvac/(ℓvac + ℓvol), is defined as the length ratio between the
vacuum region and the overall region. (C) Non-convex three-dimensional porous media for biofilm transport. Bacteria
cells are grown within the porous region within the porous media to reach the top. The unit cell dimensionless variable
takes the form D̄ = Rvol/(Rvac +Rvol), is defined as the radii ratio between the volumetric region and the overall
region.
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• Non-convex Porous Media. Inspired by the fact that biofilms were mostly found in natural habitats where283

they were constrained in pseudo- or spherical solid bodies Bhattacharjee and Datta [2019], Carrel et al. [2018],284

Coyte et al. [2016], Kurz et al. [2022], we propose the simulation scenario where biofilm grows in nonconvex285

solid bodies shown in Figure 2 C. The simulations were mainly inspired by the study of Dehkharghani et al.286

Dehkharghani et al. [2023] and Bhattacharjee & Datta Bhattacharjee and Datta [2019], where we use BO287

as a tool to sample the scale effect studied in Dehkharghani et al. [2023] which defined a similar 3D porous288

packing of solid spherical bodies in Bhattacharjee and Datta [2019]. The dimensionless variable is defined289

as the radii ratio between the solid spheres and the overall unit cell lengths (right subfigure in Figure 2 C):290

D̄ = Rvol

Rvol+Rvac
. The range of the dimensionless variable is defined as [0.5, 1.2]. While such porous structures291

may not be easily fabricated, it closely resembles natural structures found in nature, hence we hope to optimize292

this structure with the BO sampling to investigate biofilm transport in such porous environments.293

We use the porous membrane case to first evaluate the acquisition functions used and apply the BO for 500 iterations294

each. For the lattice metamaterials case, due to the high computation burden of the simulation, we only apply BO295

for 300 iterations with only the EI acquisition function. For the porous media case, we apply BO for 500 iterations296

with only the EI acquisition function. For all three cases, we conduct simulations to examine the accuracy of the GPR297

approximated design space at the maximal point in the visualized reconstructed design space, as well as at a randomly298

selected point in the design space to serve as a control.299

3 Results & Discussion300

3.1 Porous Membranes301

Three questions may naturally arise from the simulation-based Bayesian optimizations:302

(I) Just observing the changes in the objectives may not be comprehensive enough to estimate whether both the303

acquisition functions are sampling toward the “correct” directions, i.e., whether the sampling directions are304

moving toward higher objective values which is the design goal.305

(II) Can we generally verify the accuracy of the design space approximated by GPR?306

(III) What are the exact geometries represented by the changing variables?307

Note that these three questions are fundamental in our following analyses for different materials design cases. Here, to308

answer Question (I), we visualize the sampling process during the optimizations and characterize them with the overall309

sampling density (Figure 3). To answer Questions (II) & (III), we characterize the approximated design space using310

simulations and visually show the general trends captured by the approximated models and simulation points (Figure 4).311

We then further visualize the geometries extracted from the characterization simulations.312

Figure 3 A1 & A2 visualize the overall reconstructed design spaces updated by EI and UCB acquisition functions. Note313

that the dimensionless variable D̄ is multiplied by 100 in the visualizations for ease of analysis. The two different314

acquisition functions all approximated the same trend: there is a large objective gradient changing from the bottom-right315

corner. Physically, this would indicate that when the pores’ radii (Rvac in Figure 2 A) are small and the unit cell316

numbers (Nunit) are generally larger, the biofilm transport capabilities of the porous structures decrease. Also, the317

objective values are qualitatively higher with higher D̄ values, i.e., D̄ ⪆ 0.5. We hence visualize the “upper design318

space” in Figure 3 B1 & B2, in which the region D̄ ∈ [0.5, 0.9] are visualized. The objective values are higher in the319

“top-right” corner of the design space, where both the sampling points’ density and normalized objective values are320

higher. By directly visualizing the (normalized) sampling density (Figure 3 C), we observe that the sampling density321

distribution basically overlaps with our observations on the design space: there are higher sampling densities toward the322

top-right corners (i.e., higher D̄ and Nunit values) characterized by both acquisition functions. Combining both Figure323

3 A, B, & C, we deduce that both the reconstructed design spaces and the sampling densities tell us for the case of324

the porous membrane, the D̄ & Nunit are positively correlated to the biofilm transportability Nbio towards the target325

region. Here, the EI acquisition function samples 407 points in the “upper design space” (Figure 3 B1), and the UCB326

acquisition function samples 373 points (Figure 3 B2). If we define design space in Figure 3 B as the target region,327

the EI acquisition sampling technique is 9.12% more efficient relative to the acquisition function. If we only look at328

the last 100 iterations from the BO, the EI acquisition function samples 87 points in the target region, and the UCB329

acquisition function samples 85 points. Compared with a uniformly distributed grid search method, the EI acquisition330

function is 74% more efficient and the UCB acquisition function is 70% more efficient. The EI acquisition function is331

2.35% more efficient than the UCB acquisition by estimating the last 100 design space samples in the target region. To332

cross-verify these cross-validated observations from a more quantitative perspective and answer our Questions (II) &333

(III), we characterize the design space using additional simulations (Figure 4).334
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Figure 3: The design space reconstruction (visualized in normalized values) and sampling density maps by the two
different acquisition functions for 2D porous membrane design case. Here, (A1∼C1) stand for the design space
surrogate and sampling density map from the EI acquisition function, and (A2∼C2) stand for those by UCB acquisition
function. Note that for subfigures A, the white dots are visualized in three batches: the first batch represents the first
300 iterations, visualized in small circular dots, the mid-100 iterations are visualized as squared-shaped dots, and the
last 100 iterations are visualized in large triangular dots, which are the easiest to be identified. For subfigure B, the
visualization of the first two batches remains the same, whereas the last batch set contains different evaluations and is
marked still in triangular dots. For details please see the main text. The primary goal is to characterize the sampling
density map through the morphology of the sampling dots in the reconstructed design space. (A1) The reconstructed
design space by EI acquisition function. (B1) Zoomed view toward the target design region from subfigure A1, where
Nunit ∈ [5, 15], and D̄ × 100 ∈ [50, 100]. (C1) The normalized sampling density map for the EI acquisition function,
visualizing the density of the choice of the design variables in the optimization processes. (A2) The reconstructed
design space by UCB acquisition function. (B2) Zoomed view toward the target design region from subfigure A2,
where Nunit ∈ [5, 15], and D̄ × 100 ∈ [50, 100]. (C2) The normalized sampling density map for the UCB acquisition
function, visualizing the design variables’ densities in the optimization processes.

Figure 4 A & B show the general and zoomed views of the design space characterizations. We compare the selected335

characterization simulations (in colored dots) and randomly selected simulations (in grey dots) to verify the effect of the336

design variables (D̄ & Nunit) to the target bacteria cell numbers Nbio. Here, the blue dots and grey dots in Figure 4 A337

are extracted based on D̄ = 0.9 and 0.2, respectively. The blue dots and grey dots in Figure 4 B are extracted based on338

Nunit = 15 and 10, respectively. The D̄ and Nunit values for blue and red dots are selected based on observations from339

Figure 3 as our guess for the porous materials’ geometries that contain the highest objective value. The D̄ and Nunit340

values for the grey dots are randomly selected to compare with our observational guess. We then directly visualize the341

points from the characterization simulations on the GPR reconstructed design space in Figure 4 D. It can be observed342

that the characterization simulation tests fit well with the GPR-approximated design space as both the black and grey343

dots overlap well with the surface contours. We then pick a series of representative points from the characterization344

simulations and directly visualize them in Figure 4 C (the points marked in red triangles in Figure 4 A & B) denoted as345

Tα ∼ Tγ and Ta ∼ Tc. In Figure 4 A, Tα is evidently smaller than that of Tβ and Tγ , and we can further deduce that346

the porous membrane with larger pores does not necessarily enhance the transportability of the porous materials, which347

is not intuitive. We propose that the repulsive mechanical forces, due to the wall of the pores, drive the new bacteria348

cells to grow towards the upper region. When the radii of the pores are too large, such reactive forces acting on the349

bacteria cells are not as strong due to fewer contacts with the cells. Moreover, it can be observed from Figure 4 B that350

for Nunit = 10 & 15, the effects of the dimensionless variable D̄ on the objective Nbio are similar, where there are351

sudden increases of the objective between D̄ ∈ [0.2, 0.4].352
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Based on our analyses in the case of porous membranes, we further deduce that the EI acquisition function outperforms353

the UCB acquisition function by estimating the objective variance, the mean objective values, and sampling improve-354

ments over the design space. We also observe that with larger relative radii of the pores and more unit cells per side, the355

transportability of porous materials to biofilms is then higher, from analyzing the design space. Therefore, subsequently,356

we will adopt only the EI acquisition function and conduct further analyses for lattice and 3D nonconvex porous media357

(Section 3.2).358

Figure 4: Design space characterization for the GPR reconstructed design space and topologies extraction from the
characterization processes for the 2D porous membrane design case. (A) Characterization of the design variable
Nunit with different fixed values of D̄. Note that the blue circular dots correspond to the black triangular dots, and
the grey circular dots corresponds to the black triangular dots, in subfigure D. The blue and red circular dots are the
characterization tests informed by qualitative observation of the GPR reconstructed design space to approximate the
optimal design (i.e., maximal point), and the grey dots are random tests to benchmark our characterization informed
by the observations. The zoomed view describes the detailed differences between the two sets of characterization
simulations, in which three sets of membrane topologies are selected and highlighted in red triangular plots, nominated
as Tα, Tβ , and Tγ , respectively. (B) Design variable characterization for D̄ compared with random benchmark test
marked in red and grey dots, respectively. The zoomed view describes the detailed differences between the two sets of
characterization simulations, in which three sets of membrane topologies are selected and highlighted in red triangular
plots, nominated as Ta, Tb, and Tc, respectively. (C) Extracted porous membranes’ topologies (Tα ∼ Tγ & Ta ∼ Tc)
from characterizing both the design variables Nunit and D̄ corresponding to the selections in subfigures A & B. (D)
The characterization data match with the GPR reconstructed design spaces from both the EI and UCB acquisition
function. The black triangular dots are the characterization informed by observation from the GPR reconstructed
design space towards the maximal value. The grey triangular dots are randomly selected test points to benchmark the
observation-informed characterizations.

3.2 Lattice and Porous Materials359

Figure 5 shows the reconstructed design space and the sampling process along with the sampling density updated by the360

EI acquisition function. It can be observed from Figure 5 A1 that the reconstructed design space from 300 evaluations361

is much more nonconvex compared with that of the 2D porous membrane (Figure 3 A) and porous media (Figure362

5 A2), but the sampling is more concentrated toward the mid-top region (Nunit ≈ 0.5 & D̄ ∈ [0.4, 0.5]). Figure 5363

B1 visualizes this subregion (Nunit ∈ [1, 10] & D̄ ∈ [0.3, 0.5]), in which by qualitative estimation one deduces that364

there are more sampling points around Nunit = 6 and D̄ = 0.5. Comparing the reconstructed design space and the365

sampling density (Figure 5 C1), one observes that the general trends of the sampling density and the reconstructed366

design space overlap well, where we thence pick Nunit = 6 and D̄ = 0.45 for further simulations based on qualitative367

observations (Figure 6 1). Figure 5 A2 shows that the reconstructed design space is shaped like a “tilted wave” — the368

higher objective values are distributed along the “cross-split” across the design space coordinates. By observing Figures369

5 A2 & C2, we deduce that the sampling density is more biased towards the “upper design space”. Hence, we only370

extract the zoomed view of the top-mid design space in Figure 5 B2 (Nunit ∈ [1, 10] & D̄ ∈ [0.9, 1.2]). From Figure 5371

B2, we pick Nunit = 7 and D̄ = 1.1 to conduct characterization tests in Figure 6 2.372

To estimate the effect of the acquisition function on the sampling of the design space, we also estimate the spatial373

distribution of the last 100 iterations within the target design space (or target region), where the target regions are374

defined based on the zoomed design space in Figure 5 B (Nunit ∈ [1, 10] & D̄ ∈ [0.3, 0.5] for lattice metamaterials in375

Figure 5 B1; Nunit ∈ [1, 10] & D̄ ∈ [0.9, 1.2] for 3D porous media in Figure 5 B2). For the lattice metamaterials, there376
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are 62 points sampled in the target region, which is 92.89% higher than the uniform distribution of 100 points with377

assumed grid search methods (32.14 points in the target region). For the 3D porous media, there are 89 points sampled378

in the target region, which is 223.04% more efficient than the uniformed sampled 100 points (27.55 points in the target379

region). In summary, BO exhibits an outstanding ability for sampling towards the target design goal for both porous380

structure cases.381

Figure 5: The design space reconstruction (visualized in normalized values) and sampling density maps by the two
different acquisition functions for lattice metamaterials (A1∼C1) and 3D porous media (A2∼C2), updated by the
EI acquisition function. The morphologies of the white dots are separated into three different batches. (A1) The
reconstructed design space by EI acquisition function. The first batch represents the first 100 iterations, visualized in
small circular dots, the mid-100 iterations are visualized as squared-shaped dots, and the last 100 iterations are visualized
in large triangular dots. (B1) Zoomed view toward the target design region from subfigure A1, where Nunit ∈ [1, 10],
and D̄ × 100 ∈ [30, 50]. The first batch represents the first 100 iterations, visualized in small circular dots, the mid-50
iterations are visualized as squared-shaped dots, and the large triangular dots represent the rest visualizations. For
details please see the main text. (C1) The normalized sampling density map for the EI acquisition function for the
lattice metamaterials design case, visualizing the density of the choice of the design variables in the optimization
processes. (A2) The reconstructed design space by EI acquisition function. The first batch represents the first 300
iterations, visualized in small circular dots, the mid-100 iterations are visualized as squared-shaped dots, and the last
100 iterations are visualized in large triangular dots. (B2) Zoomed view toward the target design region from subfigure
A2, where Nunit ∈ [1, 10], and D̄ × 100 ∈ [90, 120]. The first batch represents the first 300 iterations, visualized in
small circular dots, the mid-50 iterations are visualized as squared-shaped dots, and the large triangular dots represent
the rest. (C2) The normalized sampling density map for the EI acquisition function for the 3D porous media design
case, visualizing the design variables’ densities in the optimization processes.

Other than our selected characterization tests, we also randomly pick two additional characterization tests as controls for382

characterizing Nunit and D̄ for each porous materials design case, respectively. For designing the lattice metamaterials,383

we pick D̄ = 0.1 (Figure 6 A1) and Nunit = 15 (Figure 6 B1), and for 3D porous media design, we pick D̄ = 0.5384

(Figure 6 A2) and Nunit = 15 (Figure 6 B2). It can be observed from Figure 6 A & B that the selected characterization385

tests generally capture the geometries of the highest objectives, where the blue and red dots exhibit higher values than386

the grey dots. Interestingly, for both porous materials cases, the topology corresponds to the highest objective value387

selected from the characterization tests for D̄ (Figure 6 B), Tβ are not the topology that contends the highest objective388

value by characterizing Nunit (Figure 6 A). This indicates that our observational guess toward the highest objective is389

not fully accurate, where our characterization tests correct our initial guess and contends the porous structural topologies390

Tα. By observing Figure 6 D1 & D2 we observe that the characterization tests generally match well with the GPR391

approximated design space, indicating the effectiveness of the general data-driven design scheme. Notwithstanding, by392
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comparing Figure 6 D1 and D2 it is observed that the characterization tests match better with the GPR approximated393

design space for the lattice structures than the nonconvex porous materials. Both Figure 6 A, B, & D indicate the394

importance of additional qualitative characterizations but also prove the general accuracy of the GPR approximation.395

Finally, we extract the optimal design for each case as references. Table 1 shows the objective values (Nbio), their396

corresponding design variables (Nunit & D̄), and the transformed characteristic length L (in the unit of µm) for all397

three cases benchmarked by a nonconfined pure biofilm growth in vacuum space. Very interestingly and unexpectedly,398

it is observed that all the optimal designs extracted from porous materials confined biofilm growth exhibit more bacteria399

cells in the target growth region than nonconfined biofilm growth in a vacuum space. The optimal designs of the 2D400

porous membrane, lattice metamaterials, and 3D porous media have 16%, 7%, and 11%, more biofilms in the target401

growth region than the pure growth in the vacuum space, respectively. This confinement-induced biofilm growth may402

help us (1) better utilize biofilms as ELM and address the three points presented in the second paragraph in Section 1,403

and (2) potentially explain the natural phenomena described in the first paragraph in Section 1. We focus on this point404

to conduct a further comparison study in the following Section 3.3.405

Nbio Nunit D̄ L [µm]
2D porous membrane 32655 10 0.1 0.5

32655 11 0.1 0.45
Lattice metamaterials 30096 1 0.5 25

3D porous media 31152 7 1.1 0.71
Unconfined space 28086 N/A N/A N/A

Table 1: The highest objective values and their corresponding design variables for different porous materials design
cases, with transformed characteristic lengths in the unit of µm. For 2D porous membrane, the characteristic length
is defined as L ≡ Rvac. For lattice metamaterials, the characteristic length is defined as L ≡ ℓvol. For 3D porous
media, the characteristic length is defined as L ≡ Rvol. “Unconfined space” denotes the case where there are no porous
substrates on top of the initial bacteria cells and hence the cells grow in an unconfined space.

3.3 Biomechanics of Porous Transport406

We perform further IbM simulations to potentially uncover the biomechanical mechanisms governing the optimal407

design. Figure 7 shows the benchmark study of the biofilm growth in porous membranes and in unconfined space. We408

pick the case of a 2D porous membrane with Nunit = 6 and D̄ for comparison with biofilm growth in unconfined space.409

Figure 7 A & B visualize the snapshots of the biofilm growth simulations, where τ̃ stand for the iteration number (or410

time steps), which can be converted to actual time as t = 10× τ̃ [s]. Figure 7 C visualizes the sliced view of the biofilm411

growth at τ̃ = 12000, to further explain confinement-induced biofilm growth. Figure 7 D shows the change of the total412

bacteria cells N total
bio along with the iterations τ̃ , where the blue solid line denotes biofilm growth in unconfined space413

and the red dashed line denotes biofilm growth in the porous membrane. We observe two key moments that distinguish414

the overall biofilm growth: the first moment is at τ̃ ≈ 6000 when the biofilm in the unconfined space (blue solid line)415

exceeds that of in the porous materials (red dashed line), and the second moment is at τ̃ ≈ 13500 when the biofilm in416

the porous materials (red dashed line) exceeds that of in the vacuum space (blue solid line). The sliced views of the two417

moments (τ̃ = 6000 & τ̃ = 13500) are visualized and indicated by shaded arrows. To quantitatively understand the418

mechanisms of confinement-induced biofilm growth and transport, we compute the biofilm cell numbers distribution419

along the Z-axis by counting through 100 slices at τ̃ = 12000 (detailed analysis can be found in ESI of Ref. Zhai and420

Yeo [2022]) and visualize the results in Figure 7 E, in direct correspondence with the illustration in Figure 7 C. The421

blue bars indicate the accumulative bacteria counts for biofilm growth in vacuum space and the red bars indicate that of422

the porous materials.423

It can be observed from Figure 7 A & B that the biofilm is more densely compacted in the target growth region through424

the porous materials compared with the growth in the unconfined space. From the sliced view in Figure 7 C, we may425

hence propose a qualitative explanation for our observation: the existence of the porous material takes a certain amount426

of volume, which pushes the biofilm to grow upwards to occupy more space. While intuitive that this should occur, it is427

interesting to note that the growth proceeds in a nonlinear fashion. To break down this process in more detail, Figure428

7 D shows that after τ̃ ≈ 6000 the existence of the porous materials first suppress the biofilm growth, as N total
bio for429

unconfined space (solid blue line) first increases nonlinearly with larger values than that of porous materials (dashed430

red line). But after the biofilm has grown extensively in the target growth region (τ̃ ≈ 13500), the pores in the porous431

materials can be treated as “channels” that enhance the growth and transport of biofilms. This finding is significant432

in the sense that the effects of porous materials on the overall growth of biofilms change in different stages of the433

growth processes within the pores. Based on these comprehensive qualitative analyses, Figure 7 E offers quantitative434

evidence that the porous structure helps to speed up biofilms’ upward growth by taking up volumetric spaces — the435
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Figure 6: Design space characterization for the Gaussian process regression (GPR) reconstructed design space and
topologies extraction from the characterization processes for both the lattice metamaterials and 3D porous media design
optimization. (A1) Characterization of the design variable Nunit with different fixed values of D̄. Note that the blue
circular dots correspond to the black triangular dots, and the grey circular dots corresponds to the black triangular
dots, in subfigure D1. The blue and red circular dots are the characterization tests informed by qualitative observation
of the GPR reconstructed design space to approximate the optimal design (i.e., maximal point), and the grey dots
are random tests to benchmark our characterization informed by the observations. The zoomed view describes the
detailed differences between the two sets of characterization simulations, in which three sets of membrane topologies
are selected and highlighted in red triangular plots, nominated as Tα, and Tβ , respectively. (B1) Design variable
characterization for D̄ compared with random benchmark test marked in red and grey dots, respectively. The zoomed
view describes the detailed differences between the two sets of characterization simulations, in which three sets of
membrane topologies are selected and highlighted in red triangular plots, nominated as Tβ , and Tγ , respectively (Tβ is
the same topology as in subfigure A1). (C1) Extracted porous membranes’ topologies (Tα ∼ Tγ) from characterizing
both the design variables Nunit and D̄ corresponding to the selections in subfigures A1 & B1. (D1) The characterization
data match with the GPR reconstructed design spaces from the EI acquisition function. The black triangular dots are
the characterization informed by observation from the GPR reconstructed design space towards the maximal value.
The grey triangular dots are randomly selected test points to benchmark the observation-informed characterizations.
(A2) Characterization of the design variable Nunit with different fixed values of D̄. Visualization details are the same
as in subfigure A1. (B2) Design variable characterization for D̄ compared with random benchmark test marked in
red and grey dots, respectively. Visualization details are the same as in subfigure B1, except there is no zoomed view
since the range for the objective Nbio are already within a small range. (C2) Extracted porous membranes’ topologies
(Tα ∼ Tγ) from characterizing both the design variables Nunit and D̄ corresponding to the selections in subfigures A2
& B2. (D2) The characterization data match with the GPR reconstructed design spaces from the EI acquisition function.
Visualization details are the same as in subfigure D1.
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Figure 7: Comparison study for a single 2D porous membrane with vacuum biofilm growth case to unravel the
biomechanics of porous materials induced biofilm growth. (A) The snapshots of the simulation of biofilm growth in
pure vacuum space, where τ̃ is the simulation iteration step or can be treated as the pseudo-time. (B) The snapshots
of the simulation of biofilm growth in the 2D porous membrane. (C) Slice view of snapshot τ̃ = 12000 for both the
2D membrane and vacuum growth cases. (D) The accumulated bacteria cell numbers Nbio along the iteration process,
where the simulation snapshot of τ̃ = 6000 is indicated in the left top subfigure and τ̃ = 13500 is indicated in the
bottom right subfigure. The solid blue line indicates the biofilm growth in vacuum space (without any porous materials)
and the red dashed line indicates the biofilm growth in the 2D porous membrane for benchmarking. The zoomed view
for τ̃ ∈ [12000, 15000] is indicated in the right subfigure with a gradient-shaded background. (E) The bacteria cells’
spatial distribution along the perpendicular direction (Z axis) at τ̃ = 12000, where the cell numbers are counted based
on 100 interval slices visualized in bar plots. The blue bars indicate the vacuum space bacteria counts and the red bars
indicate the bacteria counts in the 2D porous membrane. For details see the text.
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biofilm accumulation within the porous materials spatial range (Z ∈ [12.5, 37.5]µm) for porous materials (red bars) are436

evidently smaller than that of vacuum space (blue bars). Based on the bacteria cell numbers count from 100 slices,437

the bacteria cell counts within the porous region for the porous membrane and that of the unconfined space are 48643438

and 58482, respectively. The unconfined space contains 20% more bacteria cells than when constrained by the porous439

membrane. The target growth region bacteria counts for porous membrane and unconfined space are 31404 and 13764,440

respectively, where the porous membrane contains 128% more cells than the cells grown in the unconfined space. The441

data not only verifies our qualitative explanations that the porous membrane facilitates biofilm growth by taking up442

volumetric space but also further explains how the porous membrane increases the overall cell counts — the pores443

behave like channels that transport biofilms to the target region so that the bacteria count in the target growth region for444

porous membrane are significantly larger than that in unconfined spaces.445

Based on our previous discussions and our inspiration in Section 1, an interesting question arose: how can we446

connect observations from our numerical experiments to natural phenomena? The “porosity-induced growth” can447

be related to both the biophysical behavior of biofilms and engineering control strategies. From the perspective of448

biofilm’s biophysical behavior, our numerical experiments unveil a novel understanding that biofilm growth within449

constrained environments is shaped by the responsive forces from the porous scaffolds that are likely to stimulate450

the biofilms’ growth, as the overall bacteria cells increase compared with the vacuum space benchmark (Figure 7).451

Moreover, the transition of porosity-induced biofilm growth happened at a specific time (Figure 7 D), suggesting that452

such a phenomenon may occur at a critical temporal moment in nature. From the engineering control perspective,453

the simulations demonstrated that vacuum volumetric spaces with certain channel-like patterns could guide biofilm454

growth in distinct directions. This observation can inspire further strategies to manufacture engineering structures for455

biofilm control. For instance, channels may be carefully crafted to control the pathways for biofilm growth to target456

biomass transport. The transition observed in Figure 7 D suggests that one should consider the temporal effects when457

manufacturing engineering scaffolds to control and utilize biofilms.458

3.4 Limitations of the Framework459

Despite the successful implementation and physical insights, there are still a few limitations of this computation-based460

framework. From the modeling perspective: First, we assume constant growth of biofilm, which may not universally461

describe the dynamical behavior of all the biofilms. Second, we assume a linear nutrient distribution to stimulate462

biofilm growth, which may not perfectly align with real-world scenarios — biofilms may grow in nonlinear nutrient463

distributions in complex environments. Eventually, we assume the metamaterials are rigid and cannot account for464

nonlinear mechanical responses (e.g., viscoelasticity, hyperelasticity, and plasticity).465

From the optimization and machine learning perspective: there are a few future possible improvements based on our466

limitations. First, the IbM simulations are still computationally expensive, and we hope to develop reduced-order467

models and/or data-driven surrogates for IbM models for fast function evaluations in BO. Second, there are currently no468

uncertainty bounds in our IbM computational models, and we are developing Monte Carlo-based uncertainty sampling469

to estimate the underlying parametric density distribution for efficiently formulating the optimization problem.470

4 Conclusions & Outlook471

We presented different designs of porous structures for enhanced biofilm transport and control using computational472

simulations and Bayesian optimization. We characterized the design optimization process, comprehensively analyzed473

the approximated design space, and provided in-depth physical insights from the optimization. We formulated three474

different types of porous structural materials for design optimization aiming to maximize the biofilms in the target475

growth region. For three different types of porous materials, the trends of the reconstructed design space matched well476

with the sampling density. For the 2D porous membrane, the variance of the overall samples by the UCB acquisition477

function was 32.08% higher than that of the EI acquisition function; the mean objective of the overall samples by478

the EI acquisition function was 1.49% higher than that of the UCB acquisition function. Given the predefined target479

region of higher sampled densities, the EI acquisition function was 2.35% more efficient than the UCB acquisition480

function compared with uniformly distributed grid search methods by estimating the last 100 sampling points. The481

GPR approximated design spaces matched well with the selected characterization tests. Using only the EI acquisition482

function, we conducted the design space characterization for lattice metamaterials and porous media under the same483

procedure. For the lattice metamaterials, by observing the last 100 samples in the predefined target design space,484

BO was 92.89% more efficient than the uniform grid search. For the 3D porous media, there were 223.04% more485

sampled points by BO than the uniform grid search in the predefined target design space. We further provided the486

design variables of the selected optimal design for different porous materials formulations. Very interestingly, all the487

extracted optimal designs had more bacteria cells in the target growth region than pure biofilm growth in unconfined,488
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substrate-less space. We conducted a comparison study to understand this phenomenon and found that there were 20%489

more bacteria cells in the unconfined space than that confined in the porous materials. Furthermore, there were 128%490

more bacteria cells in the target growth region for the porous substrate-induced biofilm growth compared with the491

unconfined space. We thence proposed that the existence of porous substrates stimulated the biofilms by taking up492

volumetric space to push growth upwards. Note that this is not universally tested for all kinds of porous materials with493

all radii range, and testing the side effects for confinement-induced biofilm growth would be our follow-up work in the494

future.495

Our work is significant and innovative from three major aspects: (1) Implications and guidance to broad audiences.496

Our work could inspire theorists and programmers to develop new theories and algorithms for modeling biofilm and497

guide experimentalists to conduct new investigations. (2) Rigorous and comprehensive optimization analysis of the498

optimization process and direct characterization of the design space. (3) Understanding biophysical mechanisms from499

both the optimization characterization and computational modeling brings in new knowledge regarding the growth of500

biofilms. From these three aspects, our work bridges a broad range of different research areas spanning mechanics of501

materials, machine learning, and biology. To our knowledge, this is the first work that utilizes ML as an optimization502

tool for characterizing the underlying mechanisms of confined biofilm dynamics using computational models. We hope503

to inspire a new paradigm of conducting inverse design for physical discoveries by leveraging computational models,504

ML, and design optimizations.505
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Appendix520

Supplementary Figure 1 shows the whole optimization process updated by both EI and UCB acquisition functions521

for the porous membrane design case. The UCB exhibits more evident fluctuation along the sampling process and522

the EI acquisition sampled objectives are more “clustered” towards the upper region. To evaluate our findings more523

rigorously, Supplementary Figure 1 B visualizes the overall statistical distribution of the objectives by two different524

acquisition functions. It can be qualitatively observed that the variance of EI is evidently smaller than that of UCB,525

and the mean objective value sampled by EI is higher. Quantitatively, the objective variance for the EI and UCB526

acquisition functions are 2.62 × 107 and 3.46 × 107, respectively, where the UCB acquisition sampled objectives’527

variance is 32.08% higher than the EI acquisition. The mean objective values updated by EI and UCB acquisition528

functions are N EI
bio = 30502 & NUCB

bio = 30056, respectively. The EI mean objective is 1.49% higher than the UCB529

acquisition function. Supplementary Figure 1 C1 & C2 visualizes the trends of the normalized design variables along530

the sampling process by EI and UCB acquisition functions, respectively. It can be deduced from both the subfigures531

that D̄ is generally being sampled towards higher values and Nunit is being sampled in relatively lower values during532

the optimization processes, by observing their value range visualized by the color bar.533

17

https://github.com/hanfengzhai/PyLAMDO
https://github.com/hanfengzhai/PyLAMDO
https://github.com/hanfengzhai/PyLAMDO


Bayesian Optimization for Bioporous Materials Design A PREPRINT

Supplementary Figure 1: Optimization results for 2D porous membrane design. (A) The change of the objective
value Nbio along the iteration process. The red dotted dashed line represents the BO process through the Expected
Improvement (EI) acquisition function. The blue dotted dashed line represents the BO process through the Upper
Confidence Bound (UCB) acquisition function. (B) The statistical distribution of the objective values along the
optimization processes characterized by the two different acquisition functions. (C) The normalized design variable
change along the iteration process, corresponding to subfigure A, where subfigures C1 & C2 represent the BO updated
by EI and UCB acquisition function, respectively.

Supplementary Figure 2 visualizes the overall design processes for lattice metamaterials and 3D porous media,534

respectively (Supplementary Figure 2 B & C). The upper figure (1) stands for the change of the objectives and the535

lower figure stand for the design variables’ changes w.r.t. the iterations, similar to what has been shown in Figure 8.536

A converging process of the objective values is observed for 3D porous media (B1), whereas the objectives are most537

fluctuating more for the lattice metamaterials (A1), which can be attributed to the nonconvex design space in Figure 5.538

For the lattice metamaterials, the design variables are fluctuating along the iterations where D̄ is sampled toward higher539

values and Nunit is sampled toward the lower (A2). For the 3D porous media, similar trends are also observed yet the540

difference is they are initially sampled in a similar value range and the discrepancy of the sampling value trends begins541

to occur after approximately 300 iterations (B2).542

Supplementary Figure 3 visualizes the intrinsic relationship between the Surface Areas and Vacuum Volumes w.r.t. the543

design variables, Nunit and D̄. It can be generally concluded that the surface area varies linearly with both Nunit and544

D̄, but the vacuum volume is linear w.r.t. Nunit but nonlinear w.r.t. D̄. The goal of providing such a plot is to provide545

deeper insights into how the design variables reversibly affect the topological factors (i.e., surface areas and vacuum546

volumes), which mainly control the biofilm growth in the lattice scaffold case.547

Supplementary Table 1 shows the modeling parameters involved in the IbM models that are not completely listed in548

Section 2.1. Except for the growth rate ξi are also given explicitly for algorithmic implementations, the IbM model549

we implemented also considered nutrient distribution as a form of linear-gradient, governed by the substrate and550

oxygen nutrient distribution factor, Diffsub and DiffO2 , respectively6. The kinetics parameter controlling the growth551

of Heterotrophic Bacteria is KHETS . The yielding factor for both HET and EPS are YHET and YEPS, respectively. In this552

model, the decay rates for both HET and EPS are set to zero.553

6The detailed description of the algorithmic implementations of these parameters can be found in the Supplementary Information
of Ref. Li et al. [2019]
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Supplementary Figure 2: Design optimization process for both the lattice metamaterials and 3D porous media. The
top subfigures indicate the objective value (bacteria cell numbers Nbio) along the simulation iteration processes. The
bottom subfigures indicate the normalized design variable maps to visualize the changing trends of the design variables.
(A1) Objective value change for the lattice metamaterials optimization case. (A2) Objective value change for the 3D
porous media optimization case. (B1) The design variables’ change for the lattice metamaterials optimization case.
(B2) The design variables’ change for the 3D porous media optimization case.

Supplementary Figure 3: Model parametric relationships between the Surface Areas and Vacuum Volumes w.r.t. Nunit

and D̄ (Equations 6). The color gradients stand for the change of the other parameters different from the horizontal axis.

Diffsub DiffO2 KHETs YHET YEPS
1.6× 10−9 2.3× 10−9 3.5× 10−5 0.61 0.18

Supplementary Table 1: The additional related parameters involved in the IbM simulation framework (in SI Unit).
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