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Scientific Significance Statement

Phosphoms is one of the most important elements in lakes, and frequently serves as the limiting nutrient for aquatic plants
and plankton at the base of the food web. The effect of a changing climate on phosphorus concentrations in lakes at northern
latitudes is not well undestood. By combining data from almost 400 lakes in 18 regions in North America and Northern
Europe, we were able to observe similar patterns of year-to-year variability in phosphorus both within and among regions,
indicating that concentrations of this important nutrient are being controlled by large scale climate factors. Using a machine-
learning model, we identified winter temperature and summer precipitation as the most important climate influences on
phosphorus, and the role of winter climate was reinforced by looking at the relationship of regional median TP with large-
scale atmospheric pattems. Taken together, our results suggest that climate is important for lake phosphoms, and that winter
warming may be contributing to observed declines in lake TP at high latitudes.

Abstract

In recent years, unexplained declines in lake total phosphoms (TP) concentrations have been observed at north-
ern latitudes (> 42°N latitude) where most of the wordd's lakes are found. We compiled data from 389 lakes in
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Fennoscandia and eastem North America to investigate the effects of climate on lake TP concentrations. 5yn-
chrony in year-to-yvear varability is an indicator of climatic influences on lake TP, because other major influ-
ences on nutrients (eg., land use change) are not likely to affect all lakes in the same year. We identified
significant synchrony in lake TP both within and among different geographic regions. Using a bootstrapped
random forest analysis, we identified winter temperature as the most important factor controlling annual TP,
followed by summer precipitation. In Fennoscandia, TP was negatively correlated with the winter East Atlantic
Pattem, which is associated with regionally warmer winters. Our results suggest that, in the absence of other
overriding factors, lake TP and productivity may decline with continued winter warming in northern lakes.

Phosphorus (P) is the most (Schindler 2012; Schindler
et al. 2016), or one of the most (Bergstrim and Jansson 2006;
Elser et al. 2009; Paer et al. 2016), important elements limiting
primary production in lakes and rivers. Many studies have
addressed interactions between climate and human land use on
lake P (eg., Zia et al. 2022), but direct climate impacts on P
concentrations in relatively undisturbed lakes remain poody
understood.

Climate influences lake P concentrations directly by affect-
ing internal processing of nutrients, and indirectly by affecting
catchment processes (Vogt et al. 2011). For example, changes
in temperature affect the internal cycling of P by altering strati-
fication dynamics and biological process mtes. Changes in pre-
cipitation can mediate catchment nutrient loads to lakes and
alter lake residence times. Changes in wind speed may affect
lake P by altering lake mixing dynamics (Lau et al. 2020). If lake
P concentrations are consistently related to changes in climate,
there may be widespread changes in P availability and associ-
ated changes in lake function with future climate change.

In this study, we examined the effects of climate on lake
total phosphorus (TP) concentrations in 389 lakes assigned to
18 regions throughout Fennoscandia, southeastem Canada,
and the northeastern United States. We used the period from
1998 to 2017, when most time series were relatively station-
ary, in order to focus on drivers of yvear-to-yvear climate vari-
ability rather than climate trends (which may be morme
susceptible to spurious correlations). Regions were selected in
areas that contained lakes with relatively pristine catchments.
First, we investigated synchrony of annual median TP within
regions. Synchrony (mean pairwise correlation across a set of
lakes) is an indicator that regional factors (weather and cli-
mate) rather than local factors (land use) are influencing vari-
ability in ecosystem properties (Baines et al. 2000; Vogt
et al. 2011). We hypothesized that lake TP would be synchro-
nous within regions because of shared climate influences. Sec-
ond, we investigated synchrony among regions, to assess
larger-scale climatic influences. We hypothesized that nearby
regions would be more strongly correlated than distant
regions due to greater climate similarity. Third, we used ran-
dom forests to compare TP to seasonal climate variables to
determine which factors had the greatest influence on lake
TP, and we correlated regional median TP to seasonal climate
teleconnection indices to identify large-scale climate controls
on TP concentrations.

Methods

Epilimnion TP data were aggregated from national, state, pro-
vincial, and academic monitoring programs. We chose the period
1998-2017 to maximize overlap between datasets, and because
strong directional trends in TP were mostly absent during this
period. Futrophic lakes (median annual TP > 24 g L™') and lakes
with < 8 yr of data between 1998 and 2017 were excluded from
the analysis. Only samples from Aprl to November were used.
The lakes in Norway were the least frequently sampled, with a
single sample taken each year during fall tumowver. Other regions
had multiple samples per yvear (Data 51). If multiple samples were
taken annually, median valies were used to estimate annual TP
concentrations (Isles et al. 2023).

Sampling sites were assigned to regions based on geo-
graphic proximity and sampling authority. Geographic prox-
imity was used because nearby lakes are most likely to
experience similar variations in weather. Sampling authority
was used as an additional constraint to ensure consistency in
methods and maximize the number of years with overlapping
data within regions. In the large national monitoring pro-
grams in Fennoscandia, lakes from the same sampling author-
ity were subdivided into regions based on expert opinion as to
differences in climate and geography, as has been done in pre-
vious studies (Bergstrom et al. 2005; Isles et al. 2018; Isles
et al. 2020). The size of these regions was chosen such that
each region had enough lakes to make robust estimates of
annual regional median lake TP but had similar patterns of
year-to-year variation in weather.

Within-region synchrony was calculated as the mean
pairwise Spearman’s correlation among lakes. Synchrony at
the annual timescale is likely to be driven by climate variabil-
ity, whereas varability over longer timescales such as decades
may be driven by factors such as farming or forestry practices.
Typically, mean synchrony mnges from slightly negative to
1 (Rusak et al. 1999). To assess the significance of regional
synchrony estimates, the time series of TP for each lake in
each region was randomly permuted 1000 times and mean
pairwise comelations were calculated on each permmuted
matrix, with synchrony over the 95" percentile considered
significant.

Among-region synchrony was assessed after first calculat-
ing median zscores of TP for lakes within each region. z-
Scores for each lake were calculated by subtracting the mean
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and dividing by the standard deviation of TP for each year.
Median z-scores in each region were correlated with median
z-scores from all other regions to evaluate synchrony among
regions. Comparisons between regions with fewer than 5 yr of
overlapping data were excluded. The mean wvalues of the
pairwise correlations were calculated to derive synchrony esti-
mates for North Amerca, Fennoscandia, and the entire
dataset.

Random forests (Liaw and Wiener 2002) were used to com-
pare standardized seasonal climate varables with TP z-scores
for individual lakes. Monthly climate data were accessed
through the ERAS5-Land reanalysis product (Mufioz-Sabater
et al. 2021) for 1951-2019, and precipitation, temperature,
and wind speed were averaged into four seasons: December—
February (djf), March-May (mam), June-August (jja), and
September-November (son). Long-term trends were assessed
for winter temperature and summer precipitation by calculat-
ing the slope of linear regressions for each grid cell from 1951
to 2019. Climate variables were standardized to z-scores for
each site before mnning the random forest, so that we could
test the relative impact of changes in climate on TP (e.g., does
a relatively warm winter at lake X comespond to relatively
high TP for that lake?). For the mandom forest analysis,
100 separate forests were run, each mndomly sampling five
lakes from each region to ensure that results were not geo-
graphically biased towand regions with more monitored lakes.
Each of the 100 forests was mun with 1000 trees, testing five
variables at each node. The decrease in mean squared error
was used to rank the importance of explanatory variables, and
the mean mank across 100 mndom forests was used as an over-
all variable importance metric. A standard random forest anal-
ysis was also run with data from all lakes simultaneously
(Fig. 51).

Climate teleconnection indices including the North Atlan-
tic Oscillation (NAQ), East Atlantic pattern (EA), East Atlantic/
Western Russia pattern (EAWR), Scandinavia pattern (SCA),
East Pacific/North Pacific pattem (EPNP), Pacific/North Ameri-
can Pattern (PNA), and El Nifio Southern Oscillation (ENSO),
were accessed from the US National Oceanic and Atmospheric
Administration website https:;//www.cpc.ncep.noaa.gov/
products/precip/CWlink/daily_ao_index/teleconnections.
shtml or, in the case of the multivariate ENS0 index, hitps://
psl.noaa.gov/enso/mei/. We chose teleconnections for which
we could find reports of associations with terrestrial or aquatic
ecological processes in the study regions: for North America,
NAO, EPNP, PNA, ENSO; for Fennoscandia, NAO, EA, EAWR,
and SCA (Chen and Hellstrdm 1999; Sheridan 2003; Kingston
et al. 2006; Bai et al. 2012; Moore and Renfrew 2012; Zhu
et al. 2017). Other indices may influence regional climate, so
our analysis was not exhaustive. For each seasonal index and
for each continent, the mean and standard error of correla-
tions of seasonal teleconnections with the regional median TP
were calculated. The 95% and 99.7% (following Bonferroni’s
correction) confidence intervals around the mean estimate
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were calculated. If the confidence intervals did not include
zero, the mean correlation was considered significant
(Figs. 2, 53).

To confirm the effect of the most important climate vari-
ables identified by mndom forest analysis, we calculated mean
lake TP from years with the warmest half and the coldest half
of winters from each lake, and the mean lake TP from the
years with wettest half and driest half of summers from each
lake. Ome-sample f-tests were used to assess whether the mean
of the distributions of TP differences between years with warm
and cold winters, and between wet and dry summers, were
significantly different from zero.

Results

In the 389 lakes sdected from our database as having suffi-
cient data for our analyses, median epilimnetic TP mnged from
1 to 225 g L', with a median of 6 pg L™" (Fig. 1). Seventy-
nine percent of lakes were oligotrophic (TP < 12 ug LY, the
rest mesotrophic (12< TP <24 ug L),

Synchrony was significant within all regions (Fig. 2). The
highest synchrony was observed in the Turkey Lakes, Ontario,
likely because five lakes drain one into the other. Synchrony
was lower in regions where not all lakes were measured each
year (North America: Maine, Vermont), and in southern areas
of Norway and Finland. Aaoss all lakes, TP decreased over the
study period (median slope: —0.5% yr™") but these trends
were minor relative to year-to-year variability (median within-
site coefficient of variation of 25% among vears) (Fig. 54).

At the regional scale, all Fennoscandian regions wene posi-
tively correlated with each other, except for southem Finland
(Fig. 2). The coastal regions of North America (Maine, New
Brunswick, and Nova Scotia) were positively correlated with
the Fennoscandian regions, with the exception of southem
Finland. There was not a consistent pattern of synchrony
among the other North American regions.

The bootstrapped random forest analysis explained 16% of
variation in TP based on mean out-of-bag vadance. The most
important variables were winter tempemture and summer pre-
cipitation, followed by spring temperature (Fig. 3). The partial
effects of winter and spring temperatures had flat slopes for
years with average temperatures, but large effects at both ends
of the distribution, indicating that extreme years were associ-
ated with major changes in lake TP, and higher tempemtures
were associated with lower TP. Summer precipitation was posi-
tively associated with lake TP across the upper half of the data
distribution, with relatively small effects on the lower half of
the distribution. When all data were used in a single random
forest, the model explained 18% of the variation in TP, with
winter temperature the most important predictor, followed by
surmmer precipitation.

Winter temperature was more important in Fennoscandian
lakes than in North Amercan lakes (Fig. 55), with a mean
decrease in lake TP of 5.0% from the coldest 50% of winters
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Fig. 1. Map of sites showing regions (colors) and median TP concentrations for each lake in Fennoscandia (top) and North America (bottom).
MTL_LTER_Morth denotes the north temperate lakes long-term ecological research lakes. 1SD_ELA denotes the [15D Experimental Lakes Area in Ontario.

relative to the warmest 50% of winters (p < 0.001). By con-
trast, there was a modest (mean decrease of 1.1%), non-
significant (p = 0.33) difference in lake TP between warm and
cold winters in North American lakes. Summer precipitation
was more important in North America, with a mean increase
in lake TP during wet relative to dry summers of 5.4%
(p<00001), than in Fennoscandia which had a non-
significant mean increase of only 2.3% during wet sum-
mers (p = 0.19).

Several seasonal climate teleconnection indices influenced
regional median lake TP (Fig. 4). In Fennoscandia, winter EA
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was negatively correlated with TP in all regions (mean correla-
tion -0.42), and this correlation was highly significant
(Fig. 52). The spring and fall NAO were also negatively corre-
lated with TP in Fennoscandia. In North America, the winter
EPNIP was negatively correlated with continental TP (p < 0.05)
(Fig. $3).

The synchrony and random forest analyses were performed
over arelatively period of 20 yr. The longer climate time series
of almost 70 yr revealed temporal trends in variables impor-
tant for lake TP. Winter tempermture increased in all regions
from 1951 to 2019 (Fig. 5). The range of winter tempemtures
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Fig. 2. Synchrony within (left) and among (right) regions. Left: Violin plots of synchrony within regions, showing distributions of pairwise correlations of
TP between lakes with each region. Regions are ordered from east (top) to west (bottom). Mumbers next to each violin represent the total number of
lakes (n) within each region (total number of pairwise comrelations = [n2 — n]/2). Black circles represent the mean pairwise correlation for each region.
The blue bars represent the g5t percentile range of mean correlations from 1000 randomized pemmutations of the annuwal data in each lake (black circles
outside of this range indicate significant synchrony). The black horizontal line divides Fennoscandian and Morth American regions. Top right: Correlation
plot showing synchromy among regions. Colors represent pairwise cormelations of years with overlapping data from pedect negative correlation (—1, dark
red) to no relationship (0, white), to perfect positive correlation (1, dark blue). Regions are ordered from west o east; dark lines divide Marth American
and Fennoscandian regions. X's are shown for comparisons where there were fewer than five overlapping years of data between regions. Bottom right:
Same data as above, with kernel density plots of pairwise corelations amaong Morth American regions (blue dashed lines), Fennoscandian regions (red

dotted lines), and all regions together (solid black line).

was similar in the Fennoscandia and North America regions
(Fig. 57); however, the rates of temperature increases were gener-
ally larger in Fennoscandia (min slope 0.024, median 0.043, max
0,065 C yr") than in North America (min 0.012, median 0.028,
and max 0.082°Cyr™"). Summer predpitation generally
increased, and trends were similar between Fennoscandia (min
dope —0.002, median 0.005, max 0.018 mm yr~') and North
America (min sope —0.002, median 0.007, max 0.014 mm yr™").
The winter EA and spring NAO, which both had significant neg-
ative comelations with lake TP in Fennoscandia, increased owver
time (Fig. 5).

Discussion

We found evidence for widespread synchrony in Lake TP
concentrations in northern lakes indicating the importance

of climate factors in controlling lake nutrient cycling. Previ-
ous studies investigating climate impacts on lakes at large
spatial scales (Oliver et al. 2017; Collins et al. 2019) have
frequently focused on the slopes of long-term trends, which
are sometimes estimated from relatively few datapoints over
varying time periods and which may be more susceptible to
spurious correlations than year-to-year variability. How-
ever, year-to-year variability is often much greater than
long-term trends in TP concentrations (as well as other
analytes), as was the case in this study (Fig. 54). By focusing
on year-to-yvear synchrony, and by constructing our ran-
dom forest analysis to look at drivers of relative changes in
-score transformed TP in different lakes, we were able to
take advantage of the information contained in the year-to-
year variability in TP to uncover relationships with climate
variables.
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Fig. 3. Top: Mean variable importance rankings (top) across 100 random
forests (each sampling five sites from each region). All predictor varables,
as well as TP, were standardized to z-scores within each site before run-
nimg the random forest, to compane relative variations in climate variables
to relative variation in TP. Bottom three panels: Partial effects plots for the
three most important vardables showing partial effects from each of the
100 random forest iterations (transparent blue lines). X-axes represent the
ramge of z-scores for each variable.

Direct human impacts on lakes are unlikely to be synchmo-
nous among lakes either within or across regions at the scale
of vear-to-year varability, whereas climate- and weather-
mediated changes are likely to be synchronous across large
geographic areas. The consistently significant within-region
synchrony presents strong evidence for the influence of cli-
mate variables on TP, as does the high synchrony among
regions in Fennoscandia. The large difference in among-region
synchrony between Fennoscandia and North America suggests

P concentrations in northern lakes

either stronger control of regional climate on Fennoscandian
lakes, or more consistent year-to-year varation in climate vari-
ables across Fennoscandia relative to the North America study
area (which has a complex mix of continental and maritime
climate influences; Fig. 56). Previous studies have used syn-
chrony analyses as an indicator of climate influence on lake
properties (e.g., Baines et al. 2000; Rusak et al. 2008; Vogt
et al. 2011), but we are unaware of other studies in lakes that
have used something like the regional approach deweloped
here to identify synchrony across broader spatial scales.

The relatively low amount of variance explained by our
random forest analyses (16-18%) is common in large-scale
studies (Oliver et al. 2017; Collins et al. 2019), and was not
surprsing given that many factors klnown to influence lake TP
were not addressed in this study. By focusing on climate fac-
tors in this analysis, we do not intend to downplay other fac-
tors that may impact TP, including local land-use activities,
the mediating role of catchment and lake morphometry and
underlying geology, or the specific ecological histories of indi-
vidual lakes, all of which influence TP. Rather, we intend to
quantify the portion of vadability in TP that is influenced by
climate, with the understanding that relatively small climate-
driven changes across large areas can have large cumulative
impacts on global biogeochemical cycles.

The positive influence of summer precipitation on lake TP
that we observed in North America is consistent with other
studies (e.g., Rose et al. 2017) and may indicate increased P
loading from catchments during wet years. The strong influ-
ence of summer precipitation in the North American lakes
may reflect the fact that they generally received higher sum-
mer precipitation (Fig. 57), as well as warmer summer temper-
atures relative to the Fennoscandian lakes, which could lead
to more dmamatic shifts in wetting and dryving (e.g., Senar
et al. 2018). It may also reflect a mixed influence of precipita-
tion in parts of Fennoscandia. Previous research has shown
that in wetter areas (especially westem Norway), high annual
precipitation results in dilution and therefore decreasing sol-
ute concentrations during wet vears, whereas in dder areas,
high annual precipitation results in higher solute concentma-
tions (de Wit et al. 2016).

Three distinct approaches were used to explore climatic
influences on lake TP (random forest analysis, correlations of
TP with seasonal teleconnection indices, and a f-test compari-
son of TP in warm and cold winters), and all indicated that
winter conditions are an important driver of year-to-year vari-
ability in lake TP, particulady in Fennoscandia. This was
remarkable given that no winter TP measurements were
included in our analysis, and suggests that winter conditions
have a persistent impact on lake TP during the following ice-
free period. The winter EA can have a strong influence on
European winter climate (Comas Bru and McDermott 2014;
Moore and Renfrew 2012; Salmaso and Sarasino 2012), and
the positive phase of the EA is associated with warmer win-
ters, so the significant negative correlations observed between
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Fig. 4. Pearson correlations of median lake TP in regions in Fennoscandia (top panel) and Morth America (bottom panel) with atmospheric tele-
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MAC = Maorth Atlantic Oscillation, EA = East Atlantic pattern, EAWR = East Atlantic/Western Russia pattem, 5CA = Scandinavia pattern, EPNP = East
Pacific/ Morth Pacific pattern, PMA = Pacific/Morth American Pattern, ENS0 = B Nifio Southern Oscillation.

the EA and TP in Fennoscandia provide further support that
warmer winters are associated with lower lake TP.

Catchment processes, in-lake processes, or a combination
of both may explain the negative effect of winter tempemture
on lake TP. In catchments, differences in snowmelt timing
may have a lasting effect on lake biogeochemistry during sub-
sequent summers (Cortés et al. 2017; Hrycik et al. 2021). More
frequent freeze-thaw cycles and changes in the structure of
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the snowpack (Pulliainen et al. 2020) during winter may result
in a variety of biogeochemical changes in soils, including
changes in the mobilization of redox-sensitive P pools
(Bjtirnerds et al. 2017; Rosenberg and Schroth 201 7). Wammer
winters may also result in extended terrestrial growing sea-
sons, increasing retention of P and other nutrients by terres-
trial plants (Finstad et al. 2016). In lakes, biotic and abiotic
processes may remove P delivered during winter (Schroth
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et al. 2015; Joung et al. 2017), and increased light availability
resulting from decreased snowpack on the frozen lake surface
may increase under-ice primary production (Salmi and
Salonen 2016), thereby reducing available nutrients later in
the season.

Climatic factors that influence year-to-year variation in lake
TP may also influence long-term trends. We selected short
time series during which declines in lake TP were modest
(Fig. 54). However, over longer time series, the substantial
trends in climate varables that we identified as important

suggest that if the correlations observed in this study repre-
sent causal relationships, changes in winter temperature may
have contributed to previously observed longer-term declines
in lake TP in some of our study regions (Crossman et al. 2016;
Huser et al. 2018). If winters continue to warm, as is expected,
it could predispose northern lakes to reduced TP concentra-
tions, although other changes such as increased summer pre-
cipitation could offset this effect. Taken together, our findings
suggest that climate has a strong influence on P cycling in
northern landscapes.
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