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Abstract

Declining oxygen concentrations in the deep waters of lakes worldwide pose a
pressing environmental and societal challenge. Existing theory suggests that low
deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback
through which anoxia (i.e., very low DO) during a given summer begets increasingly
severe occurrences of anoxia in following summers. Specifically, anoxic conditions can
promote nutrient release from sediments, thereby stimulating phytoplankton growth,
and subsequent phytoplankton decomposition can fuel heterotrophic respiration,
resulting in increased spatial extent and duration of anoxia. However, while the
individual relationships in this feedback are well established, to our knowledge,
there has not been a systematic analysis within or across lakes that simultaneously
demonstrates all of the mechanisms necessary to produce a positive feedback that
reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes
and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the
dataset span a broad range of surface area (1-124,909 ha), maximum depth (6-370m),
and morphometry, with a median time-series duration of 30vyears at each lake. Using
linear mixed models, we found support for each of the positive feedback relationships
between anoxia, phosphorus concentrations, chlorophyll @ concentrations, and
oxygen demand across the 656-lake dataset. Likewise, we found further support for
these relationships by analyzing time-senes data from individual lakes. Our results
indicate that the strength of these feedback relationships may vary with lake-specific
characternistics: For example, we found that surface phosphorus concentrations were

more positively associated with chlorophyll @ in high-phosphorus lakes, and oxygen
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1 | INTRODUCTION

Dissolved oxygen (D0) concentrations are declining in the bottom
waters of many aguatic ecosystems around the world (Breitburg
et al, 2018; Jane et al, 2021; Jenny, Francus, et al_, 2016; Schmidtko
et al, 2017; Zhi et al, 2023). These declines pose a significant
threat to both manne and freshwater ecosystems, as low DO con-
ditions can decrease habitat suitability for numerous aguatic or-
ganisms (e.g., Pilla & Williamson, 2023; Rosenberg et al, 1991;
Schindler, 2017; Vaquer-Sunyer & Duarte, 2008) and decrease redox
potential, promoting methane production (e.g.. Encinas Fernindez
et al_, 2014; Hounshell et al., 2021; Vachon et al, 2017), and altering
aquatic nutnent cycling (e.g., Carey, Hanson, Thomas, et al, 2022:
Hupfer & Lewandowski, 2008; Middelburg & Levin, 2009). In
freshwater lakes, the trend of decreasing DO concentrations may
be particularly severe, with rates of decline up to 10 times higher
than those observed in marine ecosystems (Jane et al., 2021). As
freshwaters are critical ecosystems for drinking water, recreation,
irmgation, and biodiversity (Finlayson et al., 2018; Lynch et al_, 2023;
Reid et al., 2019; Reynaud & Lanzanova, 2017), understanding and
addressing changes in freshwater DO is essential to ensuring water
security and ecosystem functioning in the face of global change.
Declines in bottom water DO concentrations are often attributed
to climate change and/or increased nutrient inputs (Bartosiewicz
et al, 2019; Jane et al., 2023; Jenny, Francus, et al., 2014). Increased
air temperatures have been shown to drive increased duration of
thermal stratification (Foley et al., 2012: Morth et al_, 2013; Oleksy &
Richardson, 2021; Woolway et al., 2021), which reduces or inhibits
mixing of oxygen to the bottom waters (hypolimnion). Consequently,
increases in stratification duration may provide more time for hy-
polimnetic DO depletion to occur, resulting in lower late-summer
DO concentrations and increased duration of anoxia. Changes in
stratification duration appear to be a particularly important driver
of DO declines in recent decades (ca. 1950-2020; Jane et al_, 2023).
However, historical nutrientinputs have likely also played a role in de-
oxygenation by increasing phytoplankton biomass and consequently
oxygen demand (Jenny, Francus, et al., 2014; lenny, Mormandeau,
et al_, 2016). The relative importance of these two pathways to deox-
ygenation (i.e., greater stratification duration due to climate change
and greater oxygen demand due to eutrophication) likely varies both
among lakes and within lakes over time. Consequently, understand-
ing interannual DO dynamics across many lakes may be critical to

demand had a strongerinfluence on the extent of anoxia in deep lakes. Taken together,
these results support the existence of a positive feedback that could magnify the
effects of climate change and other anthropogenic pressures driving the development

of anoxia in lakes around the world.

air temperature, anoxia, chlorophyll a, dissolved oxygen, feedback, hypolimnion, lake, oxygen
demand, phosphorus, residence time

disentangling the independent effects of stratification duration and
eutrophication amidst ongoing changes in global climate and land
use (e.g., Moss, 2011; Parmesan et al., 2022).

Here, we analyze a positive feedback, denved from decades of
aquatic research, by which anoxia (i.e, DO at or near 0mg/L) during
a given year begets increasingly frequent and severe occurrences
of anoxia in subsequent years. In this “anoxia begets anoxia" (ABA)
feedback, anoxic conditions promote internal phosphorus release,
thereby stimulating phytoplankton growth and subsequent decom-
position, which in turn fuels increased heterotrophic respiration and
further accelerates hypolimnetic DO declines over time (Figure 1).
As long-term limnological data have become increasingly accessi-
ble (e.g_, Jane et al., 2021; Pilla et al., 2020), we now have the op-
portunity to test the strength and ubiguity of this feedback on a
multi-continental scale.

While the individual relationships in the ABA feedback cycle
(Figure 1) are well established, these relationships occur over mul-
tiple timescales and amidst numerous other interacting factors (e.g.,
climate variation) that could prevent the detection of the owverall
feedback. Hypolimnetic anoxia has been shown to enhance inter-
nal loading of phosphorus from sediments (e.g, Mortimer, 1941;
Mirnberg, 1984; Orihel et al., 2017; Figure 1a). However, while
redox-controlled phosphorus release fluxes have received signifi-
cant attention, sediment characteristics, microbial processing, and
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FIGURE 1 The proposed positive feedback through which
“anoxia begets anoxia® (ABA). Hypolimnetic anoxia results in
internal hypolimnetic total phosphorus (TP) loading (a), which in
turn increases epilimnetic TP (b) and stimulates phytoplankton
growth, resulting in increased chlorophyll a (chl a; c). Phytoplankton
decomposition fuels increased oxygen demand rates (d), which
further drive hypolimnetic oxygen declines (g). This feedback can
be externally influenced by increased air temperatures (gray dashed
lines), among other factors.
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catchment inputs may also play important roles in phosphorus
dynamics (e.g.. Hupfer & Lewandowski, 2008; Orihel et al., 2017).
Increases in hypolimnetic total phosphorus (TP) are expected to in-
crease surface water (epilimnetic) TP concentrations within a sum-
mer stratified period through both biclogical and physical processes
(e.g.. organism-mediated transport, diffusion, and internal seiche
dynamics; Carpenter et al., 1992; Cottingham et al., 2015; Haupt
et al., 2010; Kamarainen et al., 2009) or during autumn mixis when
epilimnetic and hypolimnetic waters homogenize (e.g., Miimberg &
Peters, 1984; Wetzel, 2001; Figure 1b). Higher epilimnetic TP con-
centrations inturn canstimulate phytoplankton growthin many lakes,
thereby increasing chlorophyll a (chl a, Figure 1c; Schindler, 1974),
though many other important factors, including nitrogen concentra-
tions, climate, and light availability, also contribute to phytoplankton
growth (e.g., Paerl & Huisman, 2008; Reinl et al., 2023). Increased
phytoplankton biomass and subsequent decomposition may fuel in-
creased biological oxygen demand (Figure 1d; Ladwig et al, 2021;
Miiller et al., 201%; Pace & Prainie, 2005) and result in earlier onset of
anoxia (Figure 1g), although climate can also play an important role
in driving DO dynamics in many lakes, as discussed above. Given the
substantial complexity to each of these relationships, all operating
on different timescales, it remains unclear the extent to which the
full positive feedback plays a role in controlling DO dynamics within
lakes rountd her orld.

Lake characteristics including size and residence time could po-
tentially mediate the strength of the ABA feedback across lakes,
though these relationships remain largely untested because they can
only be characterized with long-term monitoning data across many
diverse lakes. Lakes with longer residence time or larger sediment
area:volume ratios may have greater sediment-water interactions,
increasing the influence of oxygen demand on hypolimnetic DO, as
well as the influence of hypolimnetic DO on hypolimnetic TP (e.g..
Jagtman et al., 1992). Likewise, lake size may control the importance
of mixing dynamics between the epilimnion and hypolimnion, and
residence time may affect the extent to which chl a and hypolim-
netic TP influence biogeochemical dynamics the following year
(Wetzel, 2001). While many of these expected relationships have
not been assessed across lakes, an empirical analysis of data from
2849 lakes suggests that the impact of phosphorus concentrations
on chl @ may be stronger in shallow lakes relative to deep lakes, po-
tentially due to differences in light availability and macrophyte cover
(Zhao et al., 2023). Charactenzing the effect of lake charactenistics
on the ABA feedback relationships is needed to identify which lakes
are most susceptible to the feedback, enabling managers to priori-
tize conservation efforts across lakes.

In this study, we analyzed data from 656 widespread temperate
lakes to study the drivers and consequences of interannual changes
in hypolimnetic DO. Our research had three primary goals: First,
we assessed the extent of support for each of the hypothesized
relationships between anoxia, hypolimnetic phosphorus concen-
trations, epilimnetic phosphorus concentrations, epilimnetic chl a,
and oxygen demand across and within lakes (Figure 1). Second, we
analyzed records of air temperature at each lake to assess how the

ABA feedback may interact with changes in climate (Figure 1). We
focused on climate as an external driver of the ABA feedback in lieu
of accessible nutrient loading records for the study lakes. Third, we
analyzed whether the strength of ABA relationships may vary with
lake charactenistics including lake depth and residence time. While
our multi-lake approach precluded detailed consideration of exter
nal nutrient inputs and use of causal inference methods within a lake
over time, analyzing data from many lakes was essential to testing
the proposed relationships in this study and disentangling lake-spe-
cific effects amidst substantial heterogeneity.

2 | METHODS
21 | Overview of data compilation and analysis

Analyzing the ABA feedback required time-series data for
hypolimnetic DO, hypolimnetic TP, epilimnetic TP, epilimnetic chl a,
hypolimnetic oxygen demand, and climate records across numerous
lakes (Figure 1). We compiled in-lake data from 456 geographically
widespread stratified lakes to enable these analyses (Section 2.2).
We used linear mixed models, including relevant lags and climatic
data when appropriate (Section 2.3.2) to assess support for the ABA
feedback relationships across all lakes. We then ran the same linear
models within individual lakes when sufficient data were available to
assess whether the strength of ABA relationships may vary with lake
characteristics (Section 2.3.3). All data compilation and analyses are
described in detail below.

2.2 | Dataset compilation

221 | In-lake data

We synthesized data from a total of 856 temperate, seasonally
stratified lakes (Figure 2; Appendix 51: Text 51.1). Data were collated
from lane et al. (2021; n=316 unique lakes not also available in the
other datasets described here), the U.5. Wisconsin Department of
Matural Resources (DMR; n = 143), the U.5. Mew Hampshire Volunteer
Lake Assessment Program (VLAP; n=93), the U.5. Lake Stewards of
Maine (L5M) Volunteer Lake Monitoring Program (n=48), the U.5.
Adirondack lakes database (Leach et al.. 2018; Winslow et al., 2018;
n=17), and members of the Global Lake Ecological Observatory
Metwork (GLEOM; n = 29). Chl a data from Filazzola et al. (2020) were
added for n=15 lakes for which we did not have any other chl o data.

Data availability and collection methods differed substantially
among sites (documented in Lewis et al, 2023). For each site, we
collated available data for DO, water temperature, TP, and chl a, as
well as lake metadata including geographic coordinates, depth (mean
and maximum), surface area, and elevation (Lewis et al_, 2023). Total
nitrogen (TM) and dissolved organic carbon (DOC) were also com-
piled, but were more limited in availability (n =111 lakes for DOC and
n=119 lakes for TH), motivating us to primarly focus on TP in our
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FIGURE 2 Data were compiled from a
total of 656 widespread temperate lakes,
with data availability differing across sites.
(a) Map of all sites included in this dataset.
Mote that due to overlapping data points,
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analyses below. To harmonize multiple datasets, quality control was
performed on all data, as described in the data publication (Lewis
etal, 2023).

In sum, the complete dataset consisted of 108,736 distinct water
temperature and DO profiles across 656 lakes during 1938-2022
(Appendix 52: Figure 52_1). The median data duration was 30vyears
at each lake (range: 3-81years). Lakes in the dataset had a median
depth of 14m (Z__ : range: 6-370m), median surface area of 100 ha
(range: 1-126,90% ha), and median elevation of 264 m (range: -215-
2804 m). The lakes were located in 18 countries across five conti-
nents, with latitudes ranging from -42.6 to 68.3 (Lewis et al., 2023).

HydrolAKES

We collated additional metadata for each lake using HydroLAKES,
a global database of 1.4 million lakes (with surface area =10ha;
Messager et al, 2014). For lakes with missing mean or maximum
depth (i.e., the depths were not reported with the data; n=43), we
used HydroLAKES data to fill in these values (Lewis et al., 2023). We
also compiled residence time estimates from HydroLAKES to assess
whether the strength of ABA feedback relationships may vary with
differences in residence time across lakes.

2.2.2 | Epilimnetic and hypolimnetic concentrations

Profile interpolation

We interpolated all temperature and DO profiles to a 1-m resolu-
tion following Jane et al. (2021). Briefly, we selected all profiles with
at least three depths, then used the pchip() function of the pracma

R package (Borchers, 2022) to interpolate measurements from the
surface to the deepest sampled depth.

To account for variation and error in sampling procedures, we
implemented a standardized screening protocol to remove tempera-
ture and DO profiles that were substantially shallower or deeper
than the reported maximum depth of the lake (Appendix 53).

Mean concentrations

We averaged data for all focal variables to an annual timestep using
datafromthe entire stratified period and, separately, the late-summer
period at each lake (Appendix 51: Text 51.2). The late summer (Le.,
mid-July through August in the northern hemisphere, following Jane
et al, 2021) is when DO concentrations are likely to approach their
lowest value (Wetzel, 2001), and may consequently be a critical time
period for some processes in the ABA feedback. Conversely, other
processes occurring throughout the entire summer stratified period
(e.g., oxygen demand, hypolimnetic temperature) can also be critical
to the ABA feedback, motivating the study of both periods within a
year.

For each profile during either the entire summer stratified pe-
riod or the late-summer period, we calculated the depths of the top
and bottom of the metalimnion (the middle thermal layer of the lake)
using the rlakeAnalyzer R package (Winslow et al., 2019). We used
mean metalimnion depths to estimate the bottom of the epilim-
nion and top of the hypolimnion for each lake year. We then aver-
aged all hypolimnetic and epilimnetic water quality measurements
throughout the time period of analysis, using interpolated profiles
for temperature and DO and all measurements for TP, chla, TH, and
DOC. To estimate the strength of stratification at the thermocline,
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we calculated maximum buoyancy frequency using rlLakeAnalyzer
(Read et al., 2011; Winslow et al_, 2019) for each temperature profile.
Maximum buoyancy frequency was averaged throughout the strati-
fied period for each lake year (Table 1).

2.2.3 | Volume-weighted hypolimnetic
oxygen demand

We calculated wolume-weighted hypolimnetic oxygen demand
(VHOD:; hereafter oxrygen demand) within each lake year, following

Wetzel and Likens (2000). Briefly, we used measured or modeled
bathymetric contours and interpolated DO profiles to calculate the
volume-weighted hypolimnetic DO concentration for each sam-
pling date, then used linear regression models to calculate the rate
of decline in volume-weighted hypolimnetic DO concentrations
within the summer stratified period (Burns, 1995; Hikanson, 2005;
Quinlan et al., 2005; Wetzel & Likens, 2000; Appendix, 54). We cal-
culated an oxygen demand rate based on the raw data, as well as
a temperature-comrected oxygen demand rate following Pace and
Prairie (2005). Detailed methods for both calculations are provided
in Appendic 54.

TABLE 1 Explanatory variables used for mixed model regression. We tested several possible explanatory variables for each response
wvariable using a mixed model approach. The time period over which mean values were calculated for each lake year is provided for all water
column vanables. For information on lags used, see Appendix 57- Figures 51-55. Epilimnion and hypolimnion are abbreviated as epi. and

hypo. throughout.

Response variable Proposed explanatory variables

Anoxic factor Creygen demand

Spring average air temp.
Autumn average air temp.
Winter average air temp.
hypo. temperature

Late-summer hypo. TP Anoxic factor

Epi. TP
Maximum buoyancy frequency
Hypo. temp

Spring precipitation
Summer precipitation
Winter precipitation
Mean TP measurement date
Stratified epi. TP Hypo. TP
Hypo. TP (-1}
Epi. TP t-1)
Spring precipitation
Summer precipitation
Winter precipitation
Maximum buoyancy frequency
Mean TP measurement date
Stratified epi. chl a Epi. TP
Epi. TH
Spring average air temp.
Summer average air temp.
Mean chl-a measurement date
Epi. chl a
Epi. chl a {t— 1)

Hypolimnetic temp.

Cygen demand

Hypo. surface area to volume ratio

Maximum buoyancy frequency

Time period Motivation for inclusion
Stratified Anoxia begets anoxia (ABA) feedback
Stratification onset
Stratification end
lce dynamics
Late-summer Solubility, stratification end
Late-summer ABA feedback
Stratified Diffusion/sinking
Stratified Diffusion
Late-summer Temperature dependence of sediment
flux
Catchment inputs/flushing
Catchment inputs/flushing
Catchment inputs/flushing
Late-summer Seasonal change
Late-summer ABA feedback
Late-summer Autumn mixing
Late-summer Legacy effect
Catchment inputs/flushing
Catchment inputs/flushing
Catchment inputs/flushing
Stratified Diffusion
Stratified Seasonal change
Stratified ABA feedback
Stratified Potential limiting nutrient
Temperature dependence of
phytoplankton growth
Stratified Seasonal change
Stratified ABA feedback
Stratified ABA feedback
Stratified Temperature dependence of respiration
Stratified Sediment oxygen demand
Stratified Diffusion
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2.24 | Anoxic factor

Anoxic factor (AF) describes the spatial and temporal extent of anoxia
within a lake and is therefore a useful metnc of deowygenation in lakes that
expenence hypolimnetic anoxia (Miirnberg, 1995, 2019). AF is expected
to increase with increased ooygen demand, and can predict internal TP
loading in lakes that experience hypolimnetic anoxia (Niirnberg, 1995,
2019; Figure 1). Here, we calculated AF within each lake year following
Mimberg (1988) and NGmberg et al. (2019), modified to address limited
data availabilty across and within lakes (Appendix 55). Briefly, we esti-
mated the duration of anoxa using cxygen profiles, oxygen demand, and
modeled turnover dates, and we used modeled or measured bathym-
etry to quantify the spatial extent of anmaa within each lake year. The
DO threshold for anoxia was defined operationally, as described below
(Section 2.3.3), with detailed methods provided in Appendix 55.

2.2.5 | Climate data

To disentangle the roles of changing climate and in-lake processes
on DO dynamics in stratified lakes, we collated monthly air
temperature and precipitation data for every lake in our dataset
from the ERAS climate reamalysis. ERAS i1s a fifth-generation
product from the European Centre for Medium-Range Weather
Forecasts (ECMWF) and provides meteorological data from 1959
to 2022 on a 0.25-degree global grid (Hershach et al, 2019). For
our analysis, we used the monthly 2-m air temperature and total
precipitation ERAS data products, and found the closest gndded
values for every lake in our dataset. We summarized "seasonal” air
temperature and precipitation values by @ eraging across multiple
months for each lake year, with southern hemisphere data offset
by & months. Spring values were calculated as the average of March
and Apnil air temperature or precipitation (following, e.g., Williamson
et al., 2015). While stratification onset varies across latitudes and
lakes, these spring months are the most likely to correspond to
ice melt and spring mixing across the temperate lakes in this study
(Woolway et al, 2021; Appendix 51: Figure 51.2). Summer values
were calculated as the average of July and August air temperature
or precipitation, as these summer months most closely correspond
with our late-summer in-lake data and were the warmest 2 months
on average across the dataset (Appendix 52: Figure 52.4). Winter
temperature and precipitation were calculated as the average of
January and February air temperature and precipitation. These
winter months were, on average, the coldest months in our dataset
(Appendix S2: Figure 52.4), and likely constituted a significant
portion of the ice-covered peniod in lakes that experience seasonal
ice cover (Magnuson et al., 2000).

2.3 | Dataanalysis

To analyze the proposed ABA relationships, we used lag analy-
sis (Section 2.3.1), mixed effects modeling (Section 2.3.2), and

within-lake regressions (Section 2.3.3). All data analyses were
performed in R, version 4.2.1 (R Core Team, 2022). Analysis code
is archived as a Zenodo repository for reproducibility (Lewis &
Lau, 2023).

231 | Laganalysis

Several of the relationships in the proposed ABA feedback may
operate across years, rather than within 1year. To assess the ap-
propriate lag for each step, we calculated the Spearman correla-
tion between each variable of analysis and the preceding variable
in the feedback cycle (e.g., between oxygen demand and chl a;
Figure 1) with 0-, 1-, and 2-year lags. These correlations were cal-
culated separately for each lake with at least 10years of paired
data for the target parameters. Across all lakes, we calculated
whether the mean of the resulting distribution of correlations
was significantly different than zero using Wilcox tests with
a=_05.

2.3.2 | Mixed effects modeling

To assess the proposed mechanisms by which anoxia could create
a positive feedback that promotes subsequent anoxia (Figure 1),
we used linear mixed models to estimate the magnitude and
direction of effect for drivers of AF, epilimnetic and hypolimnetic
TP. epilimnetic chl a, and oxygen demand among lake years. To
assess the relationship between oxygen demand and hypolimnetic
DO concentrations in lakes that did not expenence anoa (e,
AF =0days throughout the entire time series), we conducted an
additional regression analysis for oxygen demand and late-summer
hypolimnetic DO concentrations, rather than AF (Appendix 58). Lake
ID was included as a random effect on the intercept in all models.
Mixed effect models were run using the package Ime4 in R (Bates
etal, 2023).

For each response vanable, we filtered all data to only include
lake years with complete data for all proposed explanatory vari-
ables (Table 1). We log-transformed chl @ and TP concentrations
due to the substantial positive skew of these data, and we #-
standardized all explanatory variables. We fit linear mixed models
for all possible combinations of explanatory variables and identi-
fied the best model using corrected Akaike information criterion
(AICc). We report all selected models within two AlCc units of the
best model (Burnham & Anderson 2002). We assessed the multi-
collinearity of all models using the vanance inflation factor, which
we calculated using the vifi) function from the package car in R
(Fox et al., 20232).

We plotted the coefficient estimate for all fixed effects in the se-
lected models to visually compare the magnitude of effect for each
explanatory vanable. For these visualizations, we calculated 95%
confidence intervals of the fixed effects using the confint.merMody)
function from Ime4 (Bates et al., 2023).
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2.3.3 | Operational definition of anoxia

We used an operational DO threshold to define hypolimnetic
anoxia, following other studies on anoxia in lakes (e.g., Elshout
et al., 2013; LaBrie et al., 2023; Nirnberg et al., 2019). To
identify this threshold, we performed a breakpoint analysis and
piecewise regression for hypolimnetic DO and TP using the
package segmented in R (Muggeo, 2023; Appendix 56: Text 56.1).
We then added slope difference (U) and change point (Gj) pa-
rameters for the breakpoint relationship, and used the result-
ing breakpoint as a threshold value for our calculation of AF
(Appendix 55).

2.34 | Within-lake regressions

To assess whether the across-lake trends identified using mixed
models were observable within individual lakes, we performed linear
regressions separately at each lake. For each of our focal response
variables (see Table 1), we used the same model formulations from
the across-lakes analysis (i.e., the explanatory variables from Table 1
that were selected via AICc) to perform regressions within a lake. We
saved the resulting coefficient estimates for each explanatory vari-
able used to predict this focal response. We then plotted the distri-
bution of coefficient estimates for all explanatory vanables across
all lakes, and we compared the median of these distributions to the
mixed effect model coefficient estimates. For each response vanable,
we only included lakes that had at least 10years of paired data for the
response vanable and all selected explanatory variables. We removed
n =81 lakes that never experienced anoxia (Le., AF =0 throughout the
timeseries) from the within-lake analysis of the drivers of AF.

Driver analysis

The coefficient estimates for explanatory vanables included in the
ABA feedback (e.g., the coefficient of epilimnetic TP for predicting
epilimnetic chl a) indicates the magnitude of the response, while
accounting for other drivers (Table 1). As an exploratory analysis
to assess which lakes are most susceptible to the ABA feedback,
we analyzed whether there were significant differences in these
coefficients based on differences in lake characteristics. For this
analysis, we developed linear models predicting the coefficient es-
timate for each focal variable in the ABA feedback (Table 1) based
on (individually) maximum depth, surface area, mean depth, resi-
dence time, dynamic ratio (square root of lake area divided by mean
depth; H3kanson, 1982), and mean concentrations of focal (ABA)
variables (i.e., hypolimnetic DO, epilimnetic and hypolimnetic TP,
epilimnetic chl a, and oxygen demand). We then used AlCc to select
the model(s) with the greatest explanatory power. We did not as-
sess more complicated model structures (e.g., multiple drivers and
interaction effects) due to the relatively small sample size for some
of these analyses (e.g.. n=35 lakes for oxygen demand).

& Global Change Biology WY | LEYM
2.3.5 | Climate effects

To summarize the effects of climatic variation on oxygen dynam-
ics, we analyzed monthly and annual air temperature data. First,
we calculated correlations between monthly air temperatures
and, separately, hypolimnetic temperature, oxygen demand,
AF, and late-summer DO concentrations (Appendix 58). Then,
we summarized the effects of high and low annual air tempera-
ture anomalies on AF and late-summer oxygen concentrations
(Appendix 58).

3 | RESULTS
3.1 | Operational definition of hypolimnetic anoxia

We identified a breakpoint relationship whereby hypolimnetic
TP increased substantially after DO decreased below a thresh-
old of 1.8mg/L (56 mol/L), averaged throughout the hypolimnion
(Figure 3). Subsequently, we used 1.8mg/L as our DO threshold
for anoxia in all analyses. OF the 3546 lakes with at least 10vyears
of hypolimnetic DO data, 146 lakes (34%) crossed the threshold
of 1.8mg/L during their time senes (i.e., had at least 1year with
hypolimnion-averaged DO <1.8mg/L and at least 1year with DO
=1.8mg/L). Lakes that crossed this threshold (n=146) were more
common than lakes that had consistently anoxic (n=120) or consist-
ently oxic (n=%0) hypolimnia. Furthermore, lakes that crossed the
threshold of 1.8mg/L had lower DO concentrations in the year fol-
lowing the first year of anooda than in the year prior to the first year
of anoaa (Appendix 59: Figure 59.1).

@
10,000 & n = 2525 lake-years

—_ n =217 lakes
—
.
2 1000
o
[
2
= 100+
=
E :
g
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1 4

Hypolimnetic DO (mg/L)

FIGURE 3 Piecewise mixed model regression identified a
breakpoint in the relationship between hypolimnetic dissolved
oygen (DO) and total phosphorus (TP) at 1.8 mg/L DO. Here,
points represent individual lake-years.
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3.2 | Regression analyses support expected
relationships within and across lakes

Our analyses across 656 lakes provided support for the ABA feed-
back. Of the explanatory variables used in our model selection pro-
cess (Table 1), all vanables that were predicted to promote the ABA
feedback were found to be statistically significant drivers of their
predicted responses (Figure 4), with expected temporal lags as ap-
plicable (0-1vyears; Appendix 57). High AF was associated with high
hypolimnetic TP (Figure 4a), and high hypolimnetic TP was associ-
ated with high epilimnetic TP, both within and between years (i.e.
both Hypo TP and Hypo TP,_, had positive coefficients; Figure 4b).
High epilimnetic TP was in turn associated with high chl @ within a
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year (Figure 4c), and high chl a was associated with high oxygen de-
mand (both VHOD and VHOD_,, ,...) the following year (Figure 4d;
Appendix 510). Lastly, high oxygen demand was associated with
greater AF in the lakes that experienced hypolimnetic anoxia
(Figure 4&). For the lakes that did not exhibit anoxaa during their time
series, high oxygen demand was associated with low late-summer
DO concentrations (Appendix 56).

All of the ABA relationships observed to be significant across
hundreds of lakes (n=111-386; Figure 4) were also supported by
regression analyses conducted within individual lake time series
(with n=35-157 lakes for each analysis; Figure 5). The direction of
each of the ABA relationships was identical within and across lakes
(Figure 5). The magnitude of the median coefficient estimates for

{d) Oxygen demand (mg/Liday)
n =792 lake-years; n = 111 lakes

Hypo. temperature - .
Hypo. surface area .

to volume ratio

Epi.chl & {(f=1)H —_——

Epi.chl af |———-—-=——

0.0 01 0.2 0.3

{e) Anoxic factor
n = 4702 lake-years; n = 386 lakes

Cheygen demand ——

Hypo. temperature | —%—

Spring air

—a—
temperature
Auturmn air .
tempearature
01 00 01 02
Estimate

Air lamperaiure

] A
Epilimnatic —— Epilimnetic
TE" chl a

FIGURE 4 The proposed “anoxia begets anoxia” (ABA) feedback (bottom right) was supported by linear mixed model results across all
wvariables (panels a-e; see Table 1). Here, panel titles indicate the response variable for each panel and y-axis labels indicate explanatory
wvariables. X-axes indicate the magnitude and 95% confidence interval of the parameter estimate for each explanatory variable presented on
the y-axis. The black vertical lines in panels (a-e) denote a parameter estimate of zero. Blue rectangles highlight dnvers in the hypothesized
ABA feedback (bottom right). Explanatory varnables are ordered by the magnitude of the parameter estimate within each panel. chl a,

chlorophyll a; epi., epilimnion; hypo., hypolimnion; TP, total phosphorus.
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FIGURE 5 Linear regressions analyzing time-senes data within individual lakes provide further support for the proposed “anoxia begets
anoxia” (ABA) feedback. Here, panel titles indicate the response variable for each panel (a-8) and y-axis labels indicate explanatory variables.
Individual points represent regression coefficients from within one lake. Density distributions describe the distribution of parameter values
across lakes, with colors delineating the quartiles of the distnbution (purple: 0%-25%, blue: 25%-50%, green: 50%-75%, and yellow: 75%-
100%). Black and white circles at the bottom of each distnbution mark the parameter estimate from the mixed model analysis (Figure 4).
Gray vertical lines denote a parameter estimate of zero. Blue rectangles highlight drivers in the hypothesized ABA feedback. Explanatory
wvariables are ordered by the magnitude of the mixed-model parameter estimate for consistency with Figure 4. All x-axes range from -1 to 1
to enable comparnison among panels. chl a, chlorophyll a; epi., epilimnion; hypo., hypolimnion; TP, total phosphorus.

ABA explanatory vanables within lakes (e.g., the coefficient for chl a
in the multiple linear regression with oxygen demand as a response
variable) tended to be slightly smaller than the mixed model coef-
ficient estimate (Figure 5) for each relationship, except for oxygen
demand as a predictor of AF (Figure 5e).

While the hypothesized ABA feedback was supported by regres-
sion analyses, vanability in the focal response variables (i.e., AF, TP,
chl a, and oxygen demand; Table 1) was also modulated by additional
driving factors, as expected (Figure 1; Appendix 58). Specifically, cli-
matic variables were selected as part of the optimal model for nearly
all focal variables: spring air temperatures were important drivers
of AF and chl a, spring and summer precipitation were significant
drivers of epilimnetic TP, and winter precipitation was a significant
driver of hypolimnetic TP (Figures 4 and 5). Water temperature
also played a role in explaining variation in several focal responses:
Hypolimnetic temperatures were a significant predictor of both AF
and oxygen demand (Figures 4 and 5). For all responses, we found
substantial variabilty in the random intercept of the mixed-model

TABLE 2 Random and residual variation from linear mixed
models. Model structure and fixed effects are summarnzed in
Figure 4.

Response Random effect standard  Residual standard
variable deviation (intercept) deviation

Anoxic factor 282 337
Hypolimnetic TP 663 28B4

Epilimnetic TP .248 2340

Epilimnetic chl a 635 A15

Oxygen demand 630 597

regressions among lakes (Table 2) and vanability in within-lake re-
gression coefficients (Figure 5), indicating external lake-specific
factors that influence the state of each response vanable at a given
lake. Random effects were largest for AF, and residual standard de-
viation from mixed-model analyses was highest for oxygen demand
and epilimnetic chl a (Table 2).
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FIGURE & The strength of "anoxia begets anoxia" feedback relationships may be modulated by lake characternistics. (a) The coefficient
for the effect of epilimnetic total phosphorus (epi. TP) on chlorophyll a {chl a) was most positive in lakes with high mean epi. TP. (b) The
coefficient for the effect of the previous year's chl a on volume-weighted hypolimnetic oxygen demand (VHOD) was most positive in lakes
with long residence times. (c) The coefficient for the effect of VHOD on anoxic factor (AF) was most positive in lakes with deep mean
depths. This relationship was robust to including all data (solid regression ling) and excluding disproportionately influential points (Le., Cook's
distancg reatet hafi = the mean, n=12 lakes; shown as a dashed line). Linear regressions are presented as solid lines.

Across lakes, our analyses indicate that the relative strength
of ABA relationships varied with lake characteristics. Specifically,
the coefficient for the effect of epilimnetic TP on chl a was larger
for lakes with high mean epilimnetic TP values; the coefficient for
the effect of oxygen demand on AF was larger for lakes with deep
mean depth; and the coefficient for the effect of chl @ on oxygen
demand was larger for lakes with long residence time (Figure &).
The other ABA feedback relationships were not significantly medi-
ated by any one of our candidate predictors (see “Driver analysis"
section).

4 | DISCUSSION

In analyzing ABA relationships both across and within 656 lakes,
we found support for all linkages in the hypothesized ABA feed-
back (Figures 4 and 5). These results provide empirical support
for the existence of a positive feedback mechanism that could
intensify the development of anoxia in lakes around the world.
Furthermaore, our results indicate that the strength of these re-
lationships likely varies with lake characteristics, including mean
depth, TP concentrations, and residence time. To our knowledge,
our work is the first to quantitatively document all of the relation-
ships that enable anoxia to beget increasingly frequent or more
intense anoxia in future years across a large, multi-continental
dataset of lakes.

41 | Decades of research facilitate identification of
ABA feedback

Individual relationships in the ABA feedback have been the sub-
ject of substantial research inquiry over the past century or longer
(e.g., Sachs, 1874; Schindler, 1974; Thienemann, 1928). While these
previous studies primarily focused on examining biogeochemical
dynamics within one lake, they provided support for the individual
relationships in the ABA feedback (Figure 1). Modeling studies pro-
vided a means of simultaneously considering all ABA relationships,
and have shown mechanistic support for the existence of an ABA
feedback in seasonally stratified lakes (Carpenter, 2003; Carpenter
& Lathrop, 2008). However, model simulations have indicated that
the susceptibility of individual lakes to a trophic regime shift, as a
result of the ABA feedback, depends on multiple lake-specific pa-
rameters (Le., macrophyte presence, temperature, mean depth;
Genkai-Kato & Carpenter, 2005), highlighting the need for a multi-
lake empirical approach.

By synthesizing data across many lakes, our mixed model ap-
proach allowed us to identify biogeochemical dynamics that likely
would have been difficult to detect in individual lakes. The strength
of this approach is reflected in the fact that coefficient estimates
from our mixed model regressions, which integrate data from
many lakes, were typically slightly larger in magnitude than the
median coefficient estimates of regressions run within individual
lakes (Figure 5), although both approaches showed support for the
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existence of the ABA feedback. Across-lake regressions included a
larger range of variation for predictor vanables than is typically ob-
served within individual lakes, which likely facilitated the detection
of more substantial predictor-response effects. Through the study
of the hypothesized ABA feedback, we found support for several
individual limnological relationships, some of which had not been
previously analyzed on a widespread scale. Below we discuss our
findings for each ABA relationship and their implications in the con-
text of previous work (Sections 4.1.1-4.1.5).

411 | Effect of anoxia on hypolimnetic TP
(Figure 1a)

In this study, we observed a strong positive relationship between hy-
polimnetic anoxia and TP concentrations both within and across lakes.
Across lakes, our breakpoint analysis detected a threshold relation-
ship whereby hypolimnetic DO had a stronger effect on TP when DO
concentrations decreased to levels approaching anoa (=1.8mg/L;
Figure 3). Our results reinforce previous research affirming that AF
(the duration and spatial extent of anosaa) may be strongly positively
comrelated with hypolimnetic TP concentrations (Figures 4 and 5; e.g.
Morth et al., 2014; Nirnberg et al., 2019). A threshold relationship be-
tween DO and TP is well supported by previous research across sedi-
ment core incubations, in situ sediment chamber measurements, and
mass-balance whole ecosystem analyses (g, Anderson et al, 2021;
Einsele, 1936; Mortimer, 1942; Onhel et al, 2017). Here, our thresh-
old value of 1.8mg/L DO, averaged throughout the entire hypolimnion,
likely reflects DO conditions of ~0mg/L near the sediment-water inter-
face (which inherently is challenging to quantify empincally), resulting
in enhanced TP loading (Mimberg, 2019). We note that our identi-
fied breakpoint of 1.8mg/L is also remarkably similar to those identi-
fied in previous sediment incubation work (Doig et al, 2017 Matisoff
et al., 2016; Orihel et al., 2017). Overall, this analysis indicates that the
ABA mechanism may require hypolimnetic DO concentrations to de-
crease to low levels (L.e., <1.8mg/ L) before a feedback effect will occur.

In our dataset, it was common for lakes to cross the threshold of
1.8mg/L (34% of n=356 lakes). Lakes where oxygen concentrations
declined below 1.8mg/L had lower DO concentrations in the year
following the onset of anooda than in the year prior to the onset of
anoxia (Appendix 59: Figure 59.1). While our dataset was not a ran-
dom or fully representative sample of global lakes, the large number
of lakes which crossed the 1.8 mg/L threshold in this study suggests
that the ABA feedback may be prevalent.

41.2 | Effect of hypolimnetic TP on epilimnetic TP
(Figure 1b)

We found moderately strong support for an effect of hypolimnetic
TP on epilimnetic TP both within 1year and between years (iLe..
hypolimnetic TP influences epilimnetic TP the following year).
While the directionality of this relationship can be difficult
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to identify in the absence of detailed nutrient input data (ie.,
epilimnetic TP can affect hypolimnetic TP, vice versa, or a third
driver may simultaneously influence both), existing research
provides strong support for this effect. Elevated hypolimnetic
TP concentrations can increase epilimnetic TP concentrations
within a summer stratified period through organism-mediated
transport, diffusion, and internal seiche dynamics (e.g., Carpenter
et al, 1992; Cottingham et al, 2015 Haupt et al, 2010;
Kamarainen et al, 2009; Mirnberg, 2009; Soranno et al, 1997).
At the onset of autumn mixing, the concentration of TP in the
hypolimnion fundamentally determines the amount of potential TP
input to the epilimnion, which can have legacy effects throughout
the subsequent autumn, winter, and spring (e.g.. Mimberg &
Peters, 1984; Wang et al_, 2019).

41.3 | Effect of epilimnetic nutrients on epilimnetic
chl a (Figure 1c)

We found a strong positive association between surface water
TP concentrations and surface water chl a, both within and across
lakes, likely reflecting the fact that interannual variability in phos-
phorus concentrations can play an important role in regulating
phytoplankton growth in lakes (Figures 4 and 5). Qur study follows
many decades of data that illustrate the positive effect of TP on
phytoplankton biomass (MacKeigan et al, 2023; Schindler, 1974;
Smith, 1982). In this study, we were unable to identify an effect
of epilimnetic TM concentrations on chl a, suggesting that in these
lakes, TP may play a more important role in regulating phytoplank-
ton growth. However, we note that data availability was substan-
tially greater for TP (n=387 lakes) than for TN (n=84& lakes), and
complexities of nitrogen forms (not considered here) may hinder the
detection of a nitrogen effect. Previous research has documented
the importance of nitrogen for limiting or co-limiting phytoplankton
growth in some lakes, over multiple timescales (Elser et al., 2007;
Lewis et al., 2020; Lewis & Wurtsbaugh, 2008; Paerl et al., 2014;
Scott et al., 2019). Consequently, our study highlights the need for
long-term, speciated nitrogen data to disentangle the role of nitro-
gen in the ABA feedback.

414 | Effect of epilimnetic chlaoo xygen demand
(Figure 1d)

Support for the relationship between epilimnetic chl a and oxygen
demand was relatively weaker than for the other ABA relationships,
although still consistent within and across lakes. We expected that
this relationship would be more challenging to detect than the other
ABA relationships due to high levels of spatio-temporal heterogene-
ity in chl @ and uncertainty associated with oxygen demand calcu-
lations (e.g., modeled bathymetry and the assumption of a closed
system). Interestingly, the effect of chl o appeared to occur at least
as strongly between years as within a year. Legacy effects of chl
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a on oocygen demand are intuitive and expected, as decomposition
of sediment organic matter (including settled phytoplankton bio-
mass) may constitute the majority of the total hypolimnetic oxygen
demand in many lakes (Steinsberger et al., 2020). Likewise, limited
sampling of early-season bloom events could have partially ob-
scured the role of within-year chl @ on oxygen demand. Regardless,
our analyses provide support for both within-year and between-
year effects of phytoplankton blooms in perpetuating anoxia.

415 | Effect of oxygen demand on hypolimnetic
anoxia (Figure 1e)

The positive relationship between oxygen demand and AF is well
supported by this study, and is also inturtive: as biclogical and
chemical demand for oxygen increases, the onset of anoxia is
likely to occur earlier in the stratified period, increasing the total
duration of anoxia (Figures 4 and 5). Furthermore, in lakes that did
not experience anoxia throughout the time series of data used in
this study, oxygen demand was negatively associated with late-
summer DO concentrations (Appendix 56: Text 56.2), supporting
that oxygen demand and DO concentrations are closely coupled
in both oxic and anoxic lakes. Across the dataset, the effect of
oxygen demand on hypolimnetic oxygen conditions occurred
simultaneously with an additional positive effect of spring air
temperatures (Figures 4 and 5; Appendix 546: Text 56.2), and in
anoxic lakes AF was further regulated by autumn air temperatures
(Figures 4 and 5). Positive associations between anoxia and spring
and autumn air temperatures may highlight the important role
that stratification duration (i.e.. both onset in spring and end in
autumn) can play in driving the spatial and temporal extent of
anoxia (e.g., Jane et al_, 2023; Nirnberg, 1995). Previous work has
identified that the duration of summer stratification is increasing
across many lakes (Woolway et al., 2021), driving decreased late-
summer oxygen concentrations (Jane et al, 2023). However, the
factors that control oxygen demand are changing less consistently:
Temporal trends in hypolimnetic temperature are highly variable
across lakes (Pilla et al, 2020; Richardson et al, 2017), as are
trends in chl @ from 1980 to present (Kraemer et al. 2022).
Consequently, it is not surprising that trends in oxygen demand
appear to be inconsistent across lakes (Jane et al., 2023). In this
study, our focus on annual and subannual timescales allowed us
to more precisely investigate the mechanisms at play within and
across 386 lakes (Figure 4e), identifying that variability in oxygen
demand has the potential to drive a feedback effect in some lakes
that experience hypolimnetic anoxia.

4.2 | Lake characteristics can increase
susceptibility to the ABA feedback

Through our cross-lake analyses, we identified that the ABA
feedback may be stronger in some lakes than others. In particular,

mean epilimnetic TP concentrations, mean depth, and residence
time each modulated ABA feedback relationships (Figure &).

First, the effect of TP on chl a was strongest in lakes with high
mean epilimnetic TP concentrations, especially for lakes with TP con-
centrations greater than <10 g/L (Figure éa). These mesotrophic to
eutrophic/hypertrophic lakes also tended to experience substantial
varability in epilimnetic TP concentrations, which likely made the
effect of changing TP concentrations more detectable in our stan-
dardized linear regression analyses (Appendix 511: Figure 511.1).
Ultimately, our finding that TP and chl a are more closely correlated
at high TP concentrations may provide some resistance to the initia-
tion of the ABA feedback in oligotrophic lakes, while further acceler
ating the ABA feedback as eutrophication proceeds due to external
or internal nutrient loading.

Second, the effect of the previous year's chl @ on oxygen de-
mand was strongest in lakes with long residence times (Figure b). In
these lakes, decomposing chl a and autochthonous organic carbon
may ha e more time to settle and accumulate on the hypolimnetic
sediments, fueling oxygen demand the following year. Conversely,
the effect of the previous year's chl a on oxygen demand was negli-
gible in lakes with residence time less than ~100days (Figure &b), as
chl @ may be quickly flushed and exported downstream from these
lakes. Consequently, lakes with longer residence time may be more
susceptible to the ABA feedback.

Third, the magnitude of the effect of oxygen demand on AF gen-
erally increased with increasing mean depth of the lake (Figure &c).
Mechanistically, deeper lakes often have relatively lower oxygzen
demand due to low sediment area to hypolimnetic volume ratios
{Livingstone & Imboden, 1994; Miller et al, 2012; Steinsberger
et al_, 2020). Consequently, variation in oxygen demand can substan-
tially affect the amount of time it takes to reach anoxia in these deep
lakes. Conwversely, in shallow lakes, hypolimnetic DO concentrations
may be more strongly impacted by factors other than cxygen de-
mand, including hypolimnetic primary production, stratification
phenology, and miang events (Wetzel, 2001). Utimately, deep lakes
{i.e., mean depth =5 m; Figure &) appear to have a particularly strong
coupling between oxygen demand and AF, strengthening the ABA
feedback in these lakes.

Combined, these results suggest that deep mesotrophic or eu-
trophic lakes with long residence times are particularly likely to be
susceptible to the ABA feedback, though more data are needed to
test these hypotheses. Importantly, our identification of factors that
may affect the strength of the ABA feedback across lakes would not
have been possible without the use of a multi-lake dataset like the
one analyzed in this study.

4.3 | Climate change has the potential to
trigger the ABA feedback

Our analysis of 656 widespread lakes suggests a strong relation-
ship between climate variation and deoxygenation. Importantly,
this climate variability may ha e the potential to push hypolimnetic
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DO below the ~1.8mg/L threshold that is associated with increased
hypolimnetic TP release from sediment, thereby initiating the ABA
feedback.

4.3.1 | High spring air temperatures are associated
with anoxia

Our results suggest that increased spring air temperatures
can contribute to DO declines not only by prolonging summer
stratification, as demonstrated previously (Jane et al, 2023;
Wioolway et al., 2021), but also by increasing chl a, hypolimnetic
temperature, and oxygen demand (Figure 4c; Appendix 58). While
we saw a clear effect of spring air temperatures on hypolimnetic
DO dynamics, we did not observe a similar effect for summer
temperatures (Appendix 58: Figure 58_1). Spning may be a particularly
influential time period for the DO and temperature dynamics
of warm monomictic and dimictic lakes, as this period sets the
beginning of stratification and the initial heat and oxygen content
of the hypolimnion (Jane et al., 2023; Shatwell et al, 2019; Woolway
et al_, 2021). While mean air temperatures are increasing around the
world as a result of anthropogenic climate change, these impacts
are not consistent across seasons or locations (Masson-Delmotte
et al, 2021). Specifically, the time period during which temperatures
fall in the historical range of spring temperatures is shortening across
Morthern Hemisphere mid-latitudes, which are representative
of most of the lakes in this study (Wang et al., 2021). Conversely,
the time period during which temperatures fall in the historical
range of summer temperatures is lengthening (Wang et al., 2021;
Wioolway, 2023). Our work highlights the importance of accounting
for these differential changes in seasonal air temperatures, not just
annual means, when anticipating how changes in climate may affect
hypolimnetic DO dynamics. Furthermore, as spring air temperatures
continue to increase across many lakes, our work suggests that these
climatic changes may play a role in causing hypolimnetic oxygen
concentrations to decline, potentially initiating the ABA feedback.

44 | Strengths and limitations of this analysis

Using regression models within and across lakes, we were able
to simultaneously analyze the extent of support for each of the
relationships in the hypothesized ABA feedback. Lakes analyzed in
this study span five orders of magnitude in surface area and two
orders of magnitude in maximum depth (Z__: Lewis et al., 2023).
Amidst these substantial differences, we found consistent support
for the ABA feedback relationships within and across lakes.

While the dataset analyzed here is larger than those used in pre-
vious studies, data limitations continued to constrain our analysis.
specifically, we were unable to analyze the effects of external nu-
trient loads, or DOC concentrations on the ABA feedback due to
lack of data, and we were unable to use causal inference methods
to study ABA dynamics within individual lakes over time. Moreover,

the majority (82%) of lakes analyzed here are temperate lakes lo-
cated in the United States; consequently, results may not be fully
generalizable to global lakes, and more research is needed to char
acterize DO dynamics in a broader, representative range of eco-
systems, especially in tropical and southern hemisphere lakes. Our
calculated AF values have substantial uncertainty, particularly with
respect to stratification end dates, though we have done our best to
minimize these uncertainties through detailed methodological test-
ing (Appendix 55). To standardize across a wide range of lakes and
sampling regimes, our analysis considered the entire hypolimnion as
one homogenized layer, averaging over potentially meaningful vari-
ation in DO dynamics across a depth gradient in the hypolimnion
(e.z., LaBrie et al., 2023). Given the promising results we observed
here, further exploration of depth-resolved DO declines across lakes
likely has substantial potential to further our understanding of bio-
geochemical processing in lakes.

5 | CONCLUSIONS AND GLOBAL CHANGE
IMPLICATIONS

We found widespread empirical support for the ABA feedback in
analyzing time-series data across 656 diverse lakes. Relationships
were particularly strong between oxygen demand and AF; AF and
hypolimnetic TP; and epilimnetic TP and chl a. Conversely, the
effect of epilimnetic chl @ on oxygen demand was comparatively
less strong, though still detectable both within and across lakes.
As oxygen concentrations are decreasing in many lakes around
the world, accounting for the ABA feedback may help effectively
prioritize restoration and conservation efforts. Motably, our work
suggests that catchment-scale nutrient management may be
particularly critical for preventing detenioration of water quality in
lakes with late-summer hypolimnetic DO concentrations just above
1.8mg/L that have not yet crossed this threshold. These lakes are
less likely to currently expenence feedback effects of anoxia, but
may cross this threshold in the future, thereby initiating an ABA
feedback that, once triggered, will make water quality management
maore challenging. As climate and land use continue to change on a
global scale, understanding and accounting for the ABA feedback
may enable more effective conservation of culturally, economically,
and ecologically important lake ecosystems.
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