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2016). For instance, the increase in water temperature
can boost the algal blooms within an optimal range,
and intensive algal photosynthesis usually alters the
DO, pH and conductivity of water columns (Flynn
et al 2015), and reduces water clarity due to the high
biomass accumulations (Mantzouki andVisser 2015).
Over past years, based upon such tight empirical
links, a wide variety of methods have been success-
fully applied for predicting the algal variations and
trends, including deep neural networks (Lee and Lee
2018, Lee et al 2022, Liu et al 2022), hybrid evol-
utionary algorithms (Recknagel et al 2014, Ye et al
2014), and support vector regressions (García-Nieto
et al 2020). More recently, with the cheaper availab-
ility of computation, Bayesian regression has risen in
great popularity (Qian et al 2019, Zhang et al 2019).
Bayesian approaches usually have high power of pre-
diction and allow the use of probabilistic paradigm to
address themodeling uncertainties (He et al 2020). In
practice, the employing of Bayesian regression model
is often useful for bloom management efforts, espe-
cially for analyzing the exceeding risks of algal bio-
mass according to different guidelines (Cha et al 2014,
Mellios et al 2020).

However, algal data samples often have large vari-
ances and contain a big proportion of extreme val-
ues (Fletcher et al 2005), posing great challenges for
empirical models (Gelman et al 2013, Cusack et al
2015, Haakonsson et al 2020). To overcome this issue,
commonly the data pre-transformation can be a feas-
ible way to scale the data range and eliminate the
presence of extreme values, e.g. Box–Cox (Chung
et al 2007). Recently, as an alternative, the scale-
mixture of skew-normal (SMSN) modeling assump-
tion (Branco and Dey 2001) also provides solutions
to handle the irregular data characteristics (Benites
et al 2019). With extra scale factor and shape para-
meters, the SMSNmodels can strongly accommodate
occasional data and show generate robust modeling
analysis in many other study fields (Montenegro and
Branco 2016, Silva et al 2020, Mirfarah et al 2021).
Nevertheless, to our knowledge, there have been no
previous reports of utilizing this tool to predict algal
variations.

In view of the above considerations, our main
objectives were to explore the Bayesian SMSN regres-
sion to predict algal blooms, by (a) using only basic
water quality parameters that are convenient to
measure; (b) modeling biomass variations having
extreme data distribution characteristics; (c) incor-
porating probabilistic framework to enhance the
assessment accuracy of algal blooms. The Bayesian
SMSN models were developed and validated using
three ecological datasets with records spanning
from 2012 to 2019, which were acquired from one
large river system (Zhejiang, China) and two multi-
lake systems (Wisconsin, USA) with cyanobac-
terial and chlorophyll-a (Chl-a) levels analyzed.

The proposed approach achieved real-time predic-
tion of algal biomass dynamics and in-situ assessment
of algal blooms, supporting water environmental
management.

2. Material andmethods

2.1. Monitoring data
The Hangjiahu Region Rivers are in the down-
stream reaches of Lake Taihu, located in Taihu
Basin (figure 1). Taihu Basin is one of the most
developed areas in China, surrounded by many
large cities including Shanghai, Suzhou, Wuxi, and
Hangzhou. Over the past decades, aquatic ecosys-
tems in Taihu Basin have continuously suffered
eutrophication and harmful cyanobacterial blooms
(CyanoHABs) problems due to excessive nutrient
inputs (Qin et al 2019). During 2018–2019, we
sampled Hangjiahu Region rivers at a quarterly fre-
quency (spring: 12–18 April 2018; summer: 13–19
June 2018; fall: 25–31 October 2018; and winter:
2–8 January 2019), in total, therewere 31 sites and 124
collected samples (table 1). To acquire cyanobacterial
abundance data, the riverine cyanobacteria samples
were identified down to the species level (Hu 2006)
using a microscope (BX53, Olympus Inc., Japan) in
the laboratory and were quantified as cyanobacterial
cell biomass. Physicochemical parameters including
pH, turbidity, DO, conductivity, photosynthetically
active radiation (PAR), water temperature, and water
depth, were measured in-situ with portable multi-
parameter analyzers (YSI EXO2, YSI Inc., U.S.A.), and
water transparency was measured with Secchi disk
(Secchi disk depth, SDD; Shanghai Changmu Envir-
onment Technology Ltd) (table 2).

The two multi-lake districts, i.e. Trout Lake
Region and Madison Lakes Region, are located
in northern and southern Wisconsin, respectively
(figure 1). These lakes are monitored by the North
Temperate Lakes-Long Term Ecological Research
(NTL-LTER, https://lter.limnology.wisc.edu/) pro-
ject, and are sampled every 2 weeks during the ice-
free season (late March or early April through early
September) and every 6 weeks during the ice-covered
season. In this study, the Trout lakes dataset was col-
lected in five lakes and two bog lakes from 2015 to
2018, and the Madison lakes dataset was collected
in two lakes from 2013 to 2018 (table 1). The Chl-a
concentrations were analyzed spectrophotometric-
ally, and cyanobacterial samples were identified to
species via microscope and were reported as cell bio-
mass. Together, water physicochemical parameters
including water temperature, SDD, pH, DO, and
PARweremeasured at each site withmulti-parameter
sondes (YSI EXO2, YSI Inc., U.S.A.) (table 2). All
data for the two lake systems were obtained from the
LTER website (https://lter.limnology.wisc.edu/about/
overview).
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Figure 1. Locations of monitoring sites for the study areas of Hangjiahu, Trout and Madison.

Table 1. Overview of the monitoring datasets.

Study area
(number of
sites) Frequency

Sampling
period a Samples b

Hangjiahu
Region rivers
(31)

Quarterly 04/2018–
10/2018

93

(01/2019) (31)
Trout Lake
Region lakes (7)

Every 2 or
6 weeks

01/2015–
11/2017

216

(01/2018–
11/2018)

(70)

Madison Lakes
Region lakes (2)

Every 2 or
6 weeks

02/2013–
11/2016

103

(02/2017–
11/2018)

(53)

a,b Calibration data and validation data (in parentheses).

2.2. Model development
2.2.1. Bayesian SMSN regression model
Continuous algal data, such as cell biomass, are com-
monly modeled as a normal or lognormal distribu-
tion. However, sampling data often have extreme val-
ues that can cause skewness, fat-tailedness, and even
multimodality in the distribution, which violated
Normal or lognormal assumptions. The use of the
SMSN distribution family can well characterize these
departures (Benites et al 2019). In this case, consid-
ering that response variable y (i.e. cyanobacterial bio-
mass and Chl-a concentration) were all positive, we
assumed it followed a log-SMSN distribution. Form-
ally, the general class of SMSNdistributions was given

by the location µ, the scale σ2, the positive scale factor
s, and the shape (skewness) λ. Hereby, the log-SMSN
model can be restrictively written as following hier-
archical representations within the Bayesian frame-
work (Marchenko and Genton 2010, Cabral et al
2012) (more details in text S1):

log (yi)∼ SN

(
µi,

σ2

s
, λ

)
(1)

where i denotes ith observation, the distribution of s
determines the form of log (yi). For example, when
s= 1, the SMSN distribution degenerates to skew-
normal (SN) distribution, and with both s= 1 and
λ= 0, we retrieve the normal distribution. Here, we
assigned s as following:

s∼ Gamma
(ν1
2
,
ν2
2

)
(2)

where ν1 > 0 and ν2 > 0, and can be considered as
two unknown ‘degree of freedom’ parameters that
characterize the shape of the SMSN distribution. In
fact, with the given s, the general SMSN case becomes
a special generalized-skew-t case (Branco and Dey
2001) (or well-known as the skewed Pearson type VII
case (Nadarajah and Gupta 2005, Shimizu and Iida
2006)), as we can have the usual skew-t case with
ν1 = ν2.

Then we constructed linear model conditional on
the location µi by including water quality parameters
as predictors:
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Table 2. Statistical information of monitored water quality parameters.

Calibration data Validation data

Study area Parametera Unit Mean SD Mean SD

Hangjiahu Cyanobacterial biomass µg l−1 205.96 473.08 180.31 496.49
Water temperature ◦C 18.26 7.42 7.53 1.31
pH — 7.76 0.43 7.66 0.21
Conductivity µs cm−1 360.93 214.84 234.69 102.91
DO mg l−1 7.87 2.77 9.91 1.74
Water depth m 1.16 0.55 1.18 0.54
Turbidity NTU 55.08 64.86 40.32 38.93
PAR µmol m−2 s−1 514.53 595.55 145.96 95.29
SDD m 0.43 0.30 0.56 0.37

Trout Chl-a concentration µg l−1 19.02 51.62 24.65 57.47
Water temperature ◦C 9.61 5.46 8.40 5.64
pH — 6.55 1.12 6.56 1.12
DO mg l−1 6.81 3.11 6.72 3.27
PAR µmol m−2 s−1 916.26 533.43 811.71 532.98
SDD m 3.87 2.50 3.86 2.41

Madison Cyanobacterial biomass µg l−1 2234.74 2626.89 2667.59 3723.68
Water temperature ◦C 13.02 4.67 13.11 4.47
pH — 8.17 0.19 8.40 0.18
DO mg l−1 6.14 3.74 5.94 3.66
SDD m 2.47 1.58 2.94 1.80

a Parameters in bold denote the preserved model predictors via stepwise selection procedures.

µi = β0 +β1 · x1i + . . .+βp · xpi + γj[i] + δk[i] (3)

where X=
(
x1, . . . , xp

)
are predictor matrices; β =(

β0, β1, . . . , βp

)
are vectors of regression parameters.

Note that the monitoring data were collected across
sites and dates, the spatial and temporal variations
involved in data may largely influence the model
estimates (Carstensen and Lindegarth 2016). Here,
we also partially pooled the external site-specific
and date-specific information to improve the pos-
terior estimates. Thus, γj are site-specific random
effects varying by site j; δk are date-specific random
effects varying by date k. For the seasonal dataset of
Hangjiahu rivers, k= 1, 2, 3; for the multi-weekly
datasets of Trout and Madison lakes, monthly sales
(i.e. k= 1, . . . , 12) were well-fitted according to the
previous study in this area (Xiao et al 2019b).

Additionally, our preliminary correlation analysis
showed that some predictor variables were highly cor-
related (figure S1). Therefore, ridge regression was
developed to address the potential multicollinearity
problems in the linear model (Dormann et al 2013).
Via ridge regression, additional regularization para-
meters τ = (τ0, τ1, . . . , τp) were taken to describe the
prior precision of regression parameters β, thereby to
restrict the overfitting of training data with the collin-
ear variables (McElreath 2018). We assigned the pri-
ors for the ridge estimates of regression parameters as
(Shi et al 2016, Assaf et al 2019):

β ∼ Normal
(
0, τ−1

)
τ ∼ Gamma (0.01, 0.01)

(4)

For the random effects, the weakly informative priors
were assigned as:

γj ∼ Normal
(
0, σ2

γ

)
δk ∼ Normal

(
0, σ2

δ

)
σ2
γ ,σ

2
δ ∼ Normal+ (0, 10)

. (5)

For two ‘freedom’ parameters characterizing the
population-level data distribution, we considered the
priors suggested by Rômulo Barbosa Cabral et al
(2012):

ν1 ∼ Exponential (φ1)

ν2 ∼ Exponential (φ2)

φ1, φ2 ∼ Unifrom (0.1, 10)

. (6)

For the skewness and scale parameters, the weakly
informative priors were also assigned as:

σ2 ∼ Normal+ (0, 10)

λ∼ Normal (0, 1)
. (7)

2.2.2. Computation procedures
All computations for Bayesian inference were pro-
grammed in the R environment (R Core Team 2020)
using the RStan interface (Stan Development Team
2020) to Stan (Stan Development Team 2019). The
Markov chain Monte Carlo (MCMC) algorithm was
applied using the No-U-Turn sampler to sample for
parameter posterior distributions.We ran four chains
for 20 000 iterations, discarded the first 5000 (burn-
ing), and retained the second 15 000 (sampling) iter-
ations per chain to obtain 60 000 MCMC samples
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in total. We also pre-set the sampler controlling
parameters (adapt_delta = 0.99, stepsize = 0.95,
and max_treedepth = 25) and re-parameterized the
Stan codes for efficient and stable computations in
sampling procedures. The convergences of Markov
chains were assured by R-hat statistics (R̂ is main-
tained under 1.01).

The predictors were centered through standardiz-
ation to achieve a reliable and stable posterior estim-
ate. Model predictions were summarized as medians
(point prediction) with credible intervals of the pre-
dictive posterior distributions (PPDs; probabilistic
prediction). Predictions on new observations from
new groups were obtained using the marginal of ran-
dom effects (McElreath 2018). Moreover, for mod-
eling simplification, a stepwise regression procedure
was adopted to reduce predictor variables based on
the five-fold cross-validation results using the calib-
ration datasets (details in table S2).

2.2.3. Probabilistic assessments of algal blooms
To inform the algal blooms in three different water-
bodies, two alert standards related to the health-
based drinking water supplies were provided, as
defined by the World Health Organization (2021).
Two algal bloom thresholds were categorized accord-
ing to either cyanobacterial biomass or Chl-a concen-
tration in the water sample: alert level 1 (300 µg l−1

of cyanobacterial biomass or 1 µg l−1 of Chl-a); and
alert level 2 (4000 µg l−1 of cyanobacterial biomass or
12µg l−1 of Chl-a). Thus, we used the entire posterior
distributions to calculate the probability of exceed-
ing the two standards, denoted as the proportion of
exceededMCMC samples (more computation details
in text S2).

2.3. Model evaluation
The model performance was assessed via both cal-
ibration data (in-sample) and validation data (out-
of-sample). The regression model was evaluated with
correlation-coefficient (R2) and root-mean-square-
error (RMSE), which were the measures of the devi-
ation of predicted values from the observed values,
and calculated as:

R2 = 1−
∑n

i=1 (ŷi − yi)
2∑n

i=1 (ȳ− yi)
2

RMSE=

√∑n
i=1(ŷi − yi)

2

n

where n is the number of data points; ŷi and yi are the
ith predicted and observed values; ȳ is the mean of yi.

The prediction performance on algal bloom
stages was evaluated based on the confusion matrix
in terms of accuracy and macro-F1 score (F1). The
accuracy was normally used to accounts for the over-
all correct rates of classification, defined as:

Accuracy=
True Positives+True Negatives

n

where n is the number of data points.
The F1 statistic considered both the true rate and

false rate of classification when measuring the overall
accuracy, and was calculated using the precision and
recall as:

Precision (P)b =
True Positives

True Positives + False Positives

Recall (R)b =
True Positives

True Positives + False Negatives

F1scoreb = 2× P×R

P+R

Macro− F1 score (F1) =
B∑

b=1

F1 scoreb

where B is the number of classes from the confusion
matrix.

3. Results

3.1. Distribution of algal biomass data
For each of the three algal datasets, the distribu-
tions of response variables (i.e. Chl-a concentra-
tion or cyanobacterial biomass) were drawn by the
histogram method (figure 2). The detailed descrip-
tion was also listed in table S1, with the statistics
of Shapiro–Wilk normality statistic (W), coefficient
of Skewness (SK), and coefficient of Pearson’s kur-
tosis (K). In general, over-skewed and over-dispersed
characteristics were found in all three algal data-
sets, and a large proportion of outliers can be also
observed due to the inclusion of numerous extreme
values (figure 3). For instance, Chl-a concentration in
Trout lakes (figure 3(a)) presented the most extreme
skewed and leptokurtic features (highest SK value of
6.49, highest K value of 49.9), showing a violation
of normality (lowest W value of 0.34). Moreover,
although the excessive extreme values were well
reduced in the logarithmic scale, the logarithmic dis-
tribution still presented asymmetry and multimodal-
ity (figure 3(b)). This again justified the use of SMSN
assumption for modeling the irregular algal samples.

3.2. Predicting algal biomass variations
Three sets of optimal modeling predictors were iden-
tified via stepwise regression procedures (table S2). In
general, variables including pH, conductivity, water
depth, water temperature, DO, and SDD showed
stronger relevance to the algal variations, and pH and
conductivity were the common inclusion of model
predictors for three cases. In addition, the variance
components of site-specific variation estimated by the
model were nearly two orders of magnitude larger
than the temporal variation, showing largermodeling
uncertainties in spatial factors as compared to tem-
poral factors (table S3).
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Figure 2. Distributions of biomass data for the three study datasets (cyanobacterial biomass of Madison: yellow; Chl-a
concentration of Trout: green; cyanobacterial biomass of Hangjiahu: purple). The red points in inner diagrams denote the outliers
detected by the quartile method.

The predictive performance of SMSN models
was shown in figure 3. Overall, calibration R2 val-
ues ranged from 0.533 to 0.706, indicating that the
SMSN model presented successful goodness-of-fit
for the algal biomass data violating the normality
assumption.When comparing the out-of-sample pre-
dictions, the SMSN models still achieved acceptable
accuracy, with validation R2 values ranging from
0.412 to 0.742. The three case studies indicated that
the developed Bayesian SMSN models presented a
reliable tool to predict algal variability.

3.3. Probabilistic prediction of algal blooms
The model prediction performance of algal bloom
was shown in table 3. Results of all three probabilistic
models presented accurate assessment with low false

classification rates, as revealed by the calculated
accuracy rate and F1 score (accuracy >0.758 and
F1 > 0.725). Taking Trout lakes as an example, in
the early alert level 1 (figure 4(a)), 15 out of 22 non-
exceedances and 192 out of 194 exceedances were
correctly predicted, with 95.8% accurate rate at the
probability threshold of 0.61 (1 µg l−1 of Chl-a).
When further assessing the alert level 2 (12 µg l−1 of
Chl-a) (figure 4(c)), the model predicted 130 out of
139 non-exceedances (nine false exceedances) and 45
out of 53 exceedances (eight false non-exceedances)
at a probability threshold of 0.56. In general, 45
out of 53 exceedances of level 2 (84.9%), 130 out
of 141 exceedances of level 1 (no level 2 exceeded;
92.2%), and 15 out of 22 non-exceedances of level 1
(no alert required; 68.2%) were correctly predicted
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Figure 3. Observed and predicted cyanobacterial biomass (a), (c) and Chl-a concentration (b) based on Bayesian SMSN models.
Data used for model calibration and model validation were in yellow and blue, respectively. The red dotted lines indicated two
alert levels. The gray bars indicated the PPDs of the regression estimates with 95% credible intervals.

by the model, achieving an overall accuracy rate of
88.1% and an overall F1 score as high as 0.841.
In addition, the probabilistic method achieved high
classifying accuracy in the validation data as good as
in the calibration process (figures 4(b) and (d)). Sim-
ilarly, the other two models for Hangjiahu rivers and
Madison lakes also suggested satisfactory perform-
ances (figures S2, S3 and table 3).

As a view of comparison, the classification per-
formance of directly using point predictions was also
listed in table 3. The results showed very compar-
able accuracy, however, when the linear models did
not yield strong regression performance, the point-
prediction-based classification presented high mis-
judgments for the actual exceedances of alert stand-
ards (e.g. Hangjiahu rivers in figure 4(a) and table 3).
Moreover, the point-prediction-based classification
resulted in more false positives and false negatives in
all case studies, as indicated by its lower F1 scores
(table 3).

4. Discussion

In this study, we presented a promising Bayesian
SMSN approach to predict algal biomass from the
aquatic environment fluctuations. Differing from
many of previous works, our model was conducted
only based on the standard water physicochemical
parameters (e.g. DO, pH and conductivity). Compar-
atively, this is an advantage over predictive models
that require time-consuming predictors (e.g. nutri-
ents), since these parameters can be rapidly meas-
ured in-situ with portable sensors and have been
included in the basic monitoring of most waterbod-
ies. Using the historical observations, our method
can therefore facilitate future algal monitoring via
achieving real-time and reliable biomass variation
estimates. We also found the relatively strong effects
of water temperature, conductivity, and DO on the
algal variation (table S3), which was in line with

many relevant studies (Cha et al 2014, Xiao et al
2019a, Haakonsson et al 2020, Liu et al 2023). This
highlighted that the selection of such indicators that
were closely related to the algae growth can be crit-
ical for future analogue modeling. To date, increasing
studies have been aware of this importance. In Aus-
tralia, Recknagel et al (2014) successfully predicted
algal dynamics in three sub-tropical reservoirs with
conductivity, turbidity, DO and water temperature;
in China, an early warning system for phytoplankton
blooms was developed based on in-situ automated
online sondes in Xiangxi Bay (Ye et al 2014); and in
South America, coastal cyanobacterial blooms were
accurately predicted (R2 = 0.82) from water tem-
perature and conductivity conditions (Haakonsson
et al 2020). Moreover, with the cheaper availabil-
ity of sonde technologies in the future, using a sim-
plified parameter approach could further cut down
the costs of algal monitoring systems, which would
greatly benefit aquatic environment management.

Interestingly, our model worked well not only for
lakes, but also for the riverine system. Compared to
the relatively static lakes, the hydrological condition
plays a more important role in algal distributions in
river systems (Qu et al 2018, Wu et al 2018). The
stream flow can cause unexpected changes to the rela-
tionships between algal biomass and environmental
factors from site to site (Smith et al 1999, Jaiswal
and Pandey 2019). This high spatial variation may
lead to a problem of Simpson’s paradox in a cross-
sectional ecological modeling (Qian et al 2015), and
often make the linear estimates of riverine algal vari-
ations less applicable (Cha et al 2016). In our prelim-
inary analysis for Hangjiahu rivers (figure S1(a)), the
low correlations between cyanobacterial biomass and
water quality parameters posed great challenges to
conducting linear models. Nevertheless, as presented
in this study and many other previous works (Malve
and Qian 2006, Gronewold and Borsuk 2010, Cha
et al 2016, Qian et al 2019, Seis et al 2020), partial
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Table 3.Model performance for probabilistic prediction of algal blooms.

Model calibrationa Model validationa

Study area Alert level Accuracy F1 Accuracy F1

Hangjiahu Level 1 0.903 0.827 (−8.4%) 0.758 0.552 (−27.2%) 0.903 0.870 (−3.7%) 0.949 0.631 (−33.5%)
Level 2 1.000 1.000 (−0.0%) 1.000 1.000 (−0.0%) 1.000 1.000 (−0.0%) 1.000 1.000 (−0.0%)
Overall 0.903 0.827 (−8.4%) 0.839 0.552 (−34.2%) 0.903 0.871 (−3.7%) 0.975 0.631 (−35.3%)

Trout Level 1 0.958 0.935 (−2.4%) 0.873 0.808 (−7.4%) 0.957 0.957 (−0.0%) 0.852 0.852 (−0.0%)
Level 2 0.912 0.912 (−0.0%) 0.889 0.883 (−0.1%) 0.889 0.928 (4.3%) 0.856 0.865 (0.1%)
Overall 0.881 0.856 (−2.8%) 0.841 0.787 (−6.4%) 0.857 0.886 (3.3%) 0.804 0.832 (0.3%)

Madison Level 1 0.893 0.883 (−1.1%) 0.857 0.832 (−2.9%) 0.868 0.868 (−0.0%) 0.826 0.805 (−2.5%)
Level 2 0.861 0.864 (0.3%) 0.750 0.669 (−10.8%) 0.861 0.906 (5.2%) 0.765 0.771 (0.7%)
Overall 0.796 0.747 (−6.1%) 0.736 0.654 (−11.1%) 0.774 0.773 (−0.1%) 0.725 0.713 (−1.7%)

a The values with parentheses represent the classification directly using point-predictions and their relative changes to the probabilistic

classifications.

Figure 4. Observed log Chl-a concentration versus the probability of exceeding the alert levels in Trout. The red vertical line
represented the two alert standards in terms of log Chl-a concentration. The red horizontal dot line represented the optimal
probability threshold determined by the model.
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pooling of such site-specific heterogeneity as external
information can succeed in addressing this issue. The
spatial hierarchical structure appears to be useful to
improve the overall fitting ability of a model based
on large-scale monitoring data. In addition, although
spatial heterogeneity was substantially stronger than
temporal heterogeneity for affecting algal biomass in
our three cases, considering that the distribution of
algal community usually has high variation in both
spatial and temporal scales (Kolber and Falkowski
1995), temporal hierarchy is still important and need
to care within a time-varying algal prediction model.
In recent years, given the increasing monitoring of
spatiotemporal scales for ecology science (Xiao et al
2014), there are broader applications of the proposed
approach.

Under favorable conditions such as climatewarm-
ing (Xiao et al 2019a, 2019b), stable hydraulic status
(Park et al 2015, Cha et al 2017), and high nutritional
level (Heisler et al 2008, Beaulieu et al 2013), algal
biomass can increase dramatically from low values
to blooming levels in a short time. As such, extreme
and occasional values frequently show up in the algal
samples. This can prevent standard Normal linear
models from correct predictions as their parameter
inferences are typically sensitive to the occasional
values (Gelman et al 2013). Similar to this study,
increasingly improvedmodels have been used to over-
come the challenges caused by the extremely distrib-
uted biomass data. For example, the hurdle model
(Cha et al 2014), zero-inflatedmixturemodel (Cusack
et al 2015), and compound Poisson-gamma model
(Haakonsson et al 2020) were successively developed
to address the ‘excessive zeros’ problem in cyanobac-
terial bloompredictions; and the over-dispersed Pois-
son model was developed for fitting the abundance
data with large variance (Cha et al 2017). For our
cases, the SMSN models accurately predicted the
skewed algal variations with intensive extreme points
(table 3 and figure 3). Further, since the family of
SMSN distribution conceptually allows for the pos-
sibility of outliers in the data distribution, namely that
the SMSN regression model is robust to avoid para-
meter inference bias (Silva et al 2020). In practice, a
robust and high fault-tolerance approachwith power-
ful predictability could better support the decision-
making works such as the bloom management.

We showed that the incorporation of probab-
ilistic framework benefits the assessment of algal
bloom stages, which successfully addressed the high
false rate problem when employing regression point-
prediction (table 3). For ecological studies, regres-
sion estimates are often useful for classification pur-
poses. However, this utilization often tends to show
appreciable false rates even it has good overall accur-
acy (Motamarri and Boccelli 2012), since regression-
based outcomes are typically point-wise and inevit-
ably involve a large amount of uncertainties (Zhao
and Kockelman 2002, Carstensen and Lindegarth

2016, Hutorowicz and Pasztaleniec 2021). The uncer-
tainty may come from the spatiotemporal variations,
inaccuracy and mistakes in measurements when col-
lecting the source data (He and Kolovos 2018), or
resulted from the statistical models (Carstensen and
Lindegarth 2016). Nevertheless, the effect of uncer-
tainty on data-driven ecological research receives less
attention (Carstensen and Lindegarth 2016), though
it has been informed that the uncertainty will propag-
ate through the input to the output of models (Zhao
and Kockelman 2002) and may bias a modeling ana-
lysis if without prior acknowledged (He et al 2020).
Fortunately, in a Bayesian model, the overall uncer-
tainties can be propagated forward to the entire PPDs
via inference (McElreath 2018). The PPDs approxim-
ate the probability of true values within a creditable
interval, offering a natural uncertainty assessment
framework to the parameter and outcome estimates
(Qian et al 2004, He and Christakos 2018). In our
case, the PPDs of algal biomass estimates were applied
for the probabilistic prediction of algal bloom stages.
Using this method, all of the categorizations presen-
ted high accuracy even when the regression models
performed poorly (figure 4 and table 3). Additionally,
this development gave us direct information about
the probability of water samples in exceeding certain
alert standards, which can further be used as the sci-
entific basis for the lake or river managers to build
bloom-warning advisories.

5. Conclusion

This work presented a promising and efficient
Bayesian probabilistic SMSN modeling technique,
allowing for the real-time prediction of algal vari-
ations and in-situ assessments of algal bloom stages,
which:

(a) Required only basic physiochemical water qual-
ity parameters.

(b) Had good prediction performance on biomass
data having over-dispersed characteristics and
containing a big proportion of extreme values.

(c) Achieved robust prediction accuracy of algal
blooms through combining probabilistic frame-
work.

In the future, the modeling could be enhanced
via involving more diverse predictor variables such
as hydrometeorological and anthropogenic factors,
which were limited by the dataset as shown in the cur-
rent study.
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