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Scientific Significance Statement

Invasive species can affect aquatic ecosystems, often by disrupting food webs. We investigated whether the invasive predatory
zooplankton spiny water flea could additionally impact the biogeochemistry of a lake, specifically hypolimnetic anoxia
dynamics. Using 24 years of observations spanning a spiny water flea invasion that triggered a food web-mediated increase in
phytoplankton, we found that increased spring phytoplankton coincided with an eadier onset of anoxia, thereby drawing a
connection between a species invasion and a shift in lake oxygen dynamics.

Abstract

Species invasions can disrupt aquatic ecosystemns by re-wirdng food webs. A trophic cascade trggered by the
invasion of the predatory zooplankter spiny water flea (Bythotrephes cederstriimii) resulted in increased
phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass
led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase
coincident with the invasion, and anoxic factor increased by 11d. Post-invasion, anoxia established
more quickly following spring stmatification, drdven by an increase in phytoplankton biomass. A shift in
spring phytoplankton phenology encompassed both abundance and community composition. Diatoms
(Bacillaryophyta) drove the increase in spring phytoplankton biomass, but not all phytoplankton community
members increased, shifting the community composition. We infer that increased phytoplankton biomass
increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how
a species invasion can shift lake phenology and biogeochemistry.
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Anthropogenic impacts and manipulations introduce
non-native spedes to aquatic ecosystemns, which can disrupt as
well as reshape energy flow and mass transfer in food webs
(Boivin et al. 2016; Crespo et al. 2018; Bartley et al. 2019), and
can threaten ecosystem stability and services (Vander Zanden
et al. 1999; Dudgeon et al. 2006; Lopez et al. 2022). Many
studies of species invasions in lakes focus on food web changes,
ovedooking indirect feedbacks to lake biogeodhemistry. The
invasion literature on “zoogeochemistry” is mostly focused on
nutrent shunting and rdocation. A notable example includes
the role of dreissenid mussels in shunting carbon, nitrogen,
and phosphoms from pelagic to benthic habitats (Ozessky
et al. 2015; Li et al. 2021; Vanni 2021). However, there are few
examples of food web disruptions that lead to alterations in
oxygen dynamics in lakes. The paudty of limnological datasets
that involve a species invasion and include both lake biology
and biogeochemistry has limited our undesstanding of how
species invasions affect lake biogeochemical processes.

Lake Mendota is a eutrophic lake in Wisconsin, USA, with
a long history of limnological observations through the North
Temperate Lakes Long Term Ecological Research program
(NTL-LTER). Lake Mendota experienced a population irmp-
tion of the non-native predatory zooplankton spiny water flea
(Bythotrephes cederstrimii) in 2009 (Walsh et al. 20168; note
the species name was previously Bythotrephes lomgimanus).
Spiny water flea invasions of temperate North American lakes
are widespread, and result in reduced zooplankton diversity
(Yan et al. 2011) and disrupted trophic structure (Rennie
et al. 2011). In Lake Mendota, Spiny water flea predation
reduced the abundance of the lake's dominant zooplankton,
Daphmia pulicaria, which is a keystone species in the food web,
and a key food item for native fish populations (Johnson and
Kitchell 1996; Walsh et al. 20164; Rani et al. 2022). The reduc
tion in Daphnia abundance caused a water clarity decline due
to reduction in Daphnia grazing pressure on phytoplankton
(Walsh et al. 2016a). This shortened the duration and inten-
sity of Lake Mendota's spring clearwater phase (Matsuzaki
et al. 2020) due to higher diatom biomass (Walsh et al. 2018),
and an earlier appeaance of Cyanophyta (Cyanobacteria) dur-
ing clearwater phase (Rohwer et al. 2023a).

Motable shifts in oxygen dynamics in Lake Mendota have
also been observed (Ladwig et al. 2022). Ladwig et al. (2021a)
applied a mechanistic aquatic ecosysterm maodel that was able
to replicate hypolimnetic dissolved oxygen (DO) consumption
and bottom-water anoxia from 1995 to 2015, but model perfor-
mance declined post-2009, with the model overestimating
hypolimnetic DO. The model did not include zooplankton
grazing on phytoplankton, leading us to wonder about the
potential role of food web interactions on DO dynamics.

Past studies have quantified the impacts of trophic Gscades
on lake ecosystems (Carpenter and Kitchell 1993; Carpenter
et al. 2001), including on Lake Mendota (Walsh et al. 2016a).
Adding to this knowledge, we explore the aftermath of a tro-

phic cascade by quantifying how the impacts of the spiny water
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flea imuption in Lake Mendota resulted in an increase in the
annual spatial and temporal extent of anoxia using 24 years of
long-term data. We hypothesize that the spiny water flea imup-
tion caused an abrupt phenological shift in lake anoxia stem-
ming from increased algal biomass. Mechanistically, increased
grazing pressure on planktivorous ooplankton by spiny water
flea caused an increase in spring phytoplankton biomass, which
resulted in enhanced hypolimentic DO consumption  through
mineralization of phytoplankton biomass (Fig. 1).

Methods

Lake Mendota

Lake Mendota is a 3961 ha, dimictic, eutrophic lake with a
maximum depth of 25 m (NTL-LTER 2021). Physical, chemi-
cal, and biological data have been collected fortnightly (when
ice-free) to monthly (when ice-covered) by the NTL-LTER
since 1995 (Magnuson et al. 2006).

All in-lake measurements were collected at the central deep
hole during daylight hours (43.0988N, —89.4054 W, 25 m
depth) and inchide: ice duration (Magnuson et al. 2021a),
integrated water-column measurements from 0 to 20m of
zooplankton and spiny water flea density measured by
zooplankton net tows (Magnuson et al. 2022, integrated
water-column measurements from 0 to 8 m of phytoplankton
density and biomass (Magnuson et al. 2022q), and depth-
discrete measurements of DO, water temperature, nitrate/
nitrite (NO;~/NO,7), soluble reactive phosphorus (SRP), dis-
solved reactive silica, and Secchi depth (Magnuson
et al. 2021k, 2022b; Rohwer and McMahon 2022; Magnuson
et al. 2023). Discharge data from the Yahara River were
obtained from USGS gage 05427718 (US. Geological
Survey 2022). Precipitation data were obtained from the Dane
County Regional Airport (NOAA GHCND:USWOO0014837)
(Menne et al. 2012).

Data analysis to explore hypolimnetic anoxia
Annual anoxia was quantified using anoxic factor, AF,
which was calculated according to Niirnberg (1995) as:

X 14

AF= A,

i=1

where the daily highest areas, 4;, with DO < 1.5 gm™ (Chapma
and Canale 1991) were summed up over time §; (days); A, is
surface area (m?).

To identify break points in the time series of anoxic factor,
we applied an Ordinary Least Square Cumulative Sum test to
quantify the timing of a significant structural change,
followed by the “breakpoints” function from strucchange
R package (Zeileis et al. 2002). Years were grouped as either
pre-itmption (1 = 14) or postirmption(n = 9), with Jan 2010
as the breakpoint, and groupings compared with Wilcoxon
rank sum tests.
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Fig. 1. Consequences of the trophic cascade triggered by spiny water flea in Lake Mendota. (a) Pre-invasion: Diatom blooms after ice melt are grazed
on by rooplankton (esp. Dophnig), resulting in a spring clearwater phase that is characterized by deeper Secchi depths (blue shading). After the lake strat-
ifies, ypolimnetic anoxia develops (pink shading) and Cyanobacteria become the dominant phytoplankton. (b) Post-invasion: Spimy water flea graze on
Daphnia, in twm reducing grazing pressure on diatoms. The spring diatom bloom extends and intensifies, and the duration and magnitude of the spring
clearwater phase decreases. The additional deposition of organic matter from sinking phytoplankton biomass leads to increased hypolimnetic consump-
tion of oxygen. This reduces the lag-time between stratification onset and the formation of hypolimnetic anoxia.

Biweekly water temperature measurements were ternporally
interpolated to daily values using linear, constant, and
spline interpolation. The tmnsition from mixed to stratified
conditions was defined as a density gradient between surface
and bottom water layers > 0.1 gm™ and the water column
average temperature > 4°C, and stratification duration as the
number of days between stratification onset and offset. Water
column  stability was quantified wusing Schmidt stability
(Idso 1973). DO measurements were temporaly interpolated
using spline interpolation. Nutrient data were temporally line
afdy interpolated to weekly values with the NTLlakeloads R
package (Dugan 2023), area-averaged, and labded as either sur-
face or deep water based on a mean thermocline depth of 13 m.

Clearwater phase intensity (CWP in meter-days) was quan-
tified by integrating Secchi depths between April and June:

a
TWP = Fopochiol

where z..4 are Secchi depths (m) lineady interpolated to
daily values. This method allowed us to quantify year-to-year
variability in the intensity of clearwater phase without the
need to define a threshold that would arbitrarly comespond
to the formation or breakdown of a clearwater phase.
Hypolimnetic oxygen consumption fluxes, volumetric, and
areal consumption fluxes were calculated from interpolated
daily DO data according to the Livingstone and Imboden
(1996) model. Only DO concentrmations below the bottom
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metalimnion depth, calculated using the rLakeAnalyzer
R package (Read et al. 2011), were used to calculate vertical
anoxia height.

Candidate predictor selection to explain interannual wvari-
ability in anoxia in a multiple linear model was determined
with the “Bomta” mandom forest classifier function from the
Boruta R package (Kursa and Rudnicki 2010). Candidate predic-
tor importance was calculated using the melaimpo R package
sensu Lindeman et al. (1980). For predictor analyss we
inchided: annual stratification duration, stmtification start and
break-down date, water column stability, ice cover dates, and
dumtion from the previous winter, summer volumetric, areal,
and total oxygen sink, annual days of phytoplankton biomass
surpassing 1.0mg L™", annual total Yahara River discharge,
annual total precipitation, annual spring clearwater intensity,
maximum spring Secchi depth, annual average spiny water
flea biomass, annual average diatom biomass, annual average
Cyanobacteria biomass, annual average Daphnia biomass of
D, mendotae and D, pulicaria, summer stratified average surface
and bottom SEP and nitmte concentrations, and summer strati-
fied average silica concentrations. Important candidate predic-
tors were analyzed using a linear regression model.

Phytoplankton and anoxia phenology

Sampling dates were divided annually into four “lake
seasons” based on water temperature profiles: 1) ice, 2)
spring mixed, 3) stratified, and 4) fall mixed. Phytoplankton
biomass within each season and vear were averaged to
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account for uneven sampling and compared between
seasons, pre- and post- the 2010 breakpoint. Changes in
phytoplankton community composition were further inves-
tigated using the vegan R package (Oksanen et al. 2020).
Bray-Curtis distances between average annual communities
were calculated and analyzed with nonmetric mult-
dimensional scaling. Analysis of similarties (ANOSIM) was
applied to the distance matrix to determine if years within
an invasion group were statistically more similar to them-
selves than to all years. Shannon and Simpson diversity
were calculated for each vyear and averaged by invasion
group to compare preinvasion and postinvasion diversity.

(a) (b)

1
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Oxygen phenology was investigated as the difference in
days between stratification development and when the

lowest hypolimnion layer dropped to <1.5 gm™ DO.

Results
Anoxia increased with spiny water flea irruption

Anoxic factor increased from an average of 56 (£ 6.8) days
preJan 2010 to 67 (+ 4.4) days post-Jan 2010, concordant
with the spiny water flea irruption. Additionally, we observed
an increase in  total oxygen consumption flux of
002+002gm™>d™" and a decrease in average spring
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Fig. 2. Long-term dynamics of lake variables. (a) Anoxic factor over time. Breakpoint analysis of anoxic factor identified 2010 as a breakpoint. The dot-
ted vertical line indicates the breakpoint. (b) Modeled hypolimnetic total oxygen depletion flux calculated from observed DO data. (€) Spring clearwater
phase intensity {OWF) over time quantified from Secchi depth. (d) Spiny water flea biomass over time. (e) Daphnio mendotoe biomass over time. (F)
Daphnio pulicorio biomass over time. (g) Days per year with a phytoplankton biomass over 1.0mg L~". (h) Diatom biomass over time. (i) Cyanobacteria
biomass over ime. (j) Stratification duration over time. The gray Abbon represents the potential uncertainty between sampling points. The red line repre-
sents the spline interpolation. (k) Schmidt stability, as a proxy for water column stability, over time. (1) lce duration over time. (m) Summer stratified
average SRP concentrations in the surface water layer (solid line) and bottom water layer (dotted line). Box plot highlights only the surface layer SRP con-
centrations. () Summer stratified average MO3~ /MNC:™ concentrations in the surface water layer (solid line) and bottom water layer (dotted line). Box
plot highlights anly the surface layer MOy~ /MOy~ concentrations. (o) Annual average M:P ratios in the surface water layer (solid line) and bottom water
layer (dotted line). Box plot highlights anly the suface layer M : P ratio.
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clearwater intensity by 169 + 99 m-days per year (Fig. 2a-d).
Daphnia mendotae biomass increased by 7.7 +99 mgL™"
(Fig. 2e, p =0.05), whereas Daphmia pulicaria biomass did not
significantly change (Fig. 2f). Although Walsh et al (2017)
attribute post-spiny water flea water clarity declines to a loss
of Daphnea pulicaria, this dynamic is masked in Fig. 2 F by
high wvariability in zooplankton biomass. D. pulicaria propor-
tion declined precipitously in spring (Supporting Information
Fig. 51), but we did not include compositional data as linear
model input. Phytoplankton-related metrics broadly showed
significant change (p< 0.05) between pre- and post-spiny
water flea regimes (Fig. 2g h): average total days with phyto-
plankton biomass >1.0 mg L~ increased by 76 + 20 d per year,
and average diatom biomass increased by 0.6 + 0.6 mgL™".
Average Cyanobacteria biomass did not significantly change
during the summer stratified season (Fig. 2i). Stmatification, sta-
bility, ice dumtion, and NO;~ /NO;~ did not change signifi-
cantly (Fig. 2j-1,m). SRP decreased with a significant decline in
the surface layver (p<0.01), and accordingly N :P mtio
increased significantly (Fig. 2m,0).

Eight predictors were significant predictors for annual
anoxia: annual stratification duration and breakdown,
annual ice-cover dumtion, annual duration of phytoplankton
biomass over 1.0mgL~!, annual average spiny water flea
biomass, annual clearwater phase intensity, and annual aver-
age surface water layer SRP and bottom water layer SREP con-
centrations (adjusted R® of 0.73, p-value <0.05). Stratification
dumtion and breakdown, phytoplankton biomass and spiny
water flea biomass had a positive corelation with anoxia,
whereas ice cover duration and both SEP concentrations were
inversely correlated. Phytoplankton biomass (30%), stratifica-
tion breakdown (19%), stratification dumtion (14%), and
clearwater phase intensity (13%) drove interannual varability
in anoxic factor, whereas the remaining five predictors
accounted for 24%.

An altemate interpretation of Fig. 2a.g is a gradual phyto-
plankton biomass and anoxic factor increase since 2002,
However, we posit that 2002/2003 are outlier years with low
precipitation and discharge that resulted in unusual mesotrmo-
phic conditions (Lathrop and Carmpenter 2014; Supporting
Information Fig. 52), rather than the start of a long-term trend.
Additionally, in late 2015 zebra mussels invaded the lake,
potentially confounding our results. We reanalyzed these same
dynamics excluding vears after 2015 (Supporting Information
Fig. 53). Anoxia, spiny water flea, diatoms and N:P ratios still
significantly increased, whereas days of phytoplankton biomass
>1.0mgL™" did not. Stratification breakdown (45%), phyto-
plankton biomass (24%), spiny water flea (15%), diatoms
(10%), and bottom SEP (4%) were significant predictors.

Spring phytoplankton changes are coincide with increase
in anoxia

After establishing a step-change increase in anoxia after the
spiny water flea imuption (Fig. 2a), we observed a concurrent
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phenological shift in anoxia. Anoxia onset shifted earlier,
from July to June (Fig. 3b). However, shifts in anoxia gradient,
maximum vertical extent, and breakdown timing were not
apparent. Given that the regression model identified phyto-
plankton biomass as drving anoxia variability, we compared
phytoplankton biomass before and after the irruption
(Fig. 3a). Post-irruption phytoplankton biomass was elevated
prior to the period of anoxia.

Mean phytoplankton biomass during the mixed spring
season increased to concentrations typical of the stratified
summer season, from 1 + 1 preinvasion to 3 + 2mg L™" pos-
tinvasion (p< 0.005) (Fig. 4a). Similarly, biomass under lake-
ice increased to concentrations previously typical of spring,
from 0.3 +03 to 2+ 2mgL™" (p<0.005). In contrast, later
in the season no statistically significant change in total bio-
mass was observed during the stratified summer season
(p = 0.1) and more modest increases were observed during the
fall mixed season (p < 0.05).

Post irmaption, the lag between stratification and anoxia
onset, when DO in the lowest hypolimnion layer was
<1.5gm™, decreased by nearly 2weeks, fom 51+9d to
39 + 15 d (p < 0.05) (Fig. 4b), confirming the shift toward ear-
lier anoxia onset.

Diatoms drive phytoplankton increase

Seasonal phytoplankton community composition was
broadly consistent before and after the spiny water flea inva-
sion; spring was dominated by Bacillariophyta (diatoms), sum-
mer was dominated by Cypanophyta (Cyanobacteria), and fall

(a)
=
L
o
E
E
1=
o 0.01 4
T T T T T T T
Mar  Apr  May  Jun Jul Aug  Sep  Oct
b) *
2]
T 10
N Pre .E*:_*
£ g
B Post B3 154
]
20

T T T T -
Jun Jul Aug Sep  Oct
Fig. 3. Phytoplankton biomass and anoxia depth. (a) Annual time series
of total phytoplankton biomass before (pre) and after (post) the spimy
water flea irruption in late 2009, Gray lines denote the average timing of
ice-off and spring stratification. (b) Annual time series of anoxia transition

depth (DO <1.5g m™).
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was dominated by a mix of diatoms and Cyanobacteria
(Fig. 5). This follows a typical phenology for a eutrophic lake
sensu PEG model (Sommer et al. 1986), which was previously
documented in Lake Mendota (Carey et al 2016). Diatoms
were predominantly responsible for the increase in spring bio-
mass, comprising the majority of the phytoplankton commu-
nity in all years (67+20% and 65 + 25%, respectively).
Diatom biomass in the spring increased two-fold, from
09+09 to 2+2mgL™" (p=0.08), but diatom proportion
to total phytoplankton biomass remained relatively constant.
Although diatoms dominated the spring phytoplankton
community, three other phytoplankton divisions also contrib-
uted to the increase in sprng phytoplankton biomass.

Increased anoxia following invasion

Chiorophyta (green algae) remained at 5-9% of the commumity
but increased four-fold, from 0.04 + 0.02 to 0.1 £ 0.1 mg L™’
(p < 0.005), Cyanobacteria remained at 5-9% of the commu-
nity, but increased by six-fold, from 0.03 +0.03 to 0.2 + 0.2
(p<0.005), and Pyrhophyta (dinoflagellates) remained at
1-3% of the community but increased thmee-fold, from
0.02+0.03 to 0.05+ 003 (p<005). Two phytoplankton
divisions decreased their relative contribution, thus shifting
the community composition. Cryptophyta  (cryptophytes)
decreased from 17+ 12 to 9+ 7% of the community
(p =0.07), and Chrysophyta (golden algae) decreased from
3 +2to 1+ 1% of the community (p = 0.05), although the
absolute biomass of both taxa remained constant. Excluding
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Fig. 4. Seasonal phytoplankton biomass and anoxia onset timing before and after spiny water flea. (a) Boxplots of annual averages of phytoplankton
biomass in each season. The ice and spring mixed seasons had increased phytoplankton biomass postspiny water flea (p = 0,05, Wilcoxon test with
Bonferoni correction). (b) Boxplot of lag between stratification development and anoxia onset in days. Anoxia onset occurred sooner after stratification
development post-spiny water flea (p = 0.05).
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Fig. 5. Spring phytoplankton biomass composition. (a) Bamplots of average annual spring phytoplankton taxa biomass in the spring mixed season. (b)
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unclassified organisms. The spring mixed season is majority diatoms (Bodloriophyta), which increase along with green algae (Chiorophyta), Cyanobacteria

(Cranophytd), and dinoflagellates (Pyrmhophyta). Despite shifts in spring phytoplankton community composition to include more green algae, Cyano-
bactera, and dincflagellates, diatoms remained most abundant in spring and drove the increase in spring phytoplankton biomass.
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zebra mussel years from the analysis did not change the
observed trends, although Cyanobacterda increased by only
three-fold (p <0.05). A comparison of community composi-
tion found the communities were more similar during vyears
with the same invasion status than among all years (ANOSIM
significance < 0.05), but these changes were modest enough
that phytoplankton Shannon and Simpson diversity did not

significantly change.

Discussion

Pre-spiny water flea interannual anoxia dynamics in Lake
Mendota were predominantly driven by changes in water col-
umn stability and stratification duration (Ladwig et al. 2021a),
in agreemnent with global anoxia observations (Jane et al. 2022).
We propose a mechanism where the step change increase in
anoxia observed after spiny water flea was drven by indirect
emsystern impacts of spiny water flea on Lake Mendota's phy-
toplankton. Our proposed step-change mechanism is drven by
spiny water flea predation on the zooplankton grazer Daphiria
pulicaria that enabled spring diatoms to flourish (Walsh
et al. 2017, 2018). The link between epilimnetic phytoplankton
biomass and elevated hypdimnetic ox ygen consumption is well
established for eutrophic lakes (Paerl 1988). The increased
springtime phytoplankton biomass observed in this study likely
increased the settling flux of organic matter and availability of
labile substrates for hypolimnetic minemlization. Given that
physical factors like strmatification did not change following the
species invasion, the observed increases in springtime phyto-
plankton biomass and anoxia, as indicated by the decrease in
lag between stratification development and anoxia onset, seems
beyond coincidence.

Alongside anoxia changes, epilimnetic SEP concentrations
decreased by 65% following the spiny water flea invasion
(Walsh et al. 2019). While this pattern mns counter to positive
relationships between nutrient availability and phytoplankton
biomass (Conley et al. 2009), biophysical processes may provide
an explanation. Whiting events ocour when phytoplankton
blooms raise eplimnetic pH through the uptake of inorganic car-
bon, thus triggering the precipitation of calcium carbonate and
the co-predpitation of SEP (Walsh et al. 2019). Simultaneously,
increased phytoplankton biomass may have also reduced surface
layer SEP concentrations due to uptake. Nutrents are often con-
sidered a bottom-up control on phytoplankton growth; but in
this case, we speculate that the top-down processes responsible
for increased phytoplankton growth in turn resulted in reduced
SRP. This highlights another possible biogeochemical impact
of the spiny water flea irruption.

Cascading impacts of species invasions can also extend
through time, as disturbed ecosysterns may be more vulnerable
to future disturbance (Tumer et al. 2020; Spear et al. 2021). The
susceptibility of Lake Mendota to spiny water flea may stem
from a biomanipulation in the 1980s, when piscivorous fish
were stocked to improve water clarity. Fewer planktivorous fish
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opened a trophic niche that spiny water flea filled (Walsh
et al. 2017). Like the post-invasion period, smaller-bodied
D, galeata mendotae, which reach lower biomass and result in
lower water clarity, were the prominent Daphinia species before
the 1987 biomanipulation (Lathrop et al. 2002). Consistent DO
data prdor to 1995 is too s@amce to tradk anoxic factor from the
1970s through the biomanipulation to present. However, his-
torc oxygen profiles taken in 1906/07 and 1961-1971 show
that Lake Mendota pre-biomanipulation suffered from similar
hypolimnetic oxygen consumption rates compared to present
day (Stewart 1976).

In Lake Mendota, zebra mussels invaded in 2015 (Spear
et al. 2022), potentially confounding the second half of our
post-2009 analysis. In Lake Mille Lacs, USA, a spiny water flea
invasion had no net effect on phytoplankton biomass because
of a simultaneous zebra mussel invasion (Rantala et al. 2022).
In Lake S5Simcoe, Canada, a simultaneous invasion of
dreissenids and spiny water flea improved water quality by
lowering hypolimnetic hypoxia and increasing water clarity
(Goto et al. 2020). However, in Lake Mendota no water
clarity change was observed with the subsequent zebra mussel
invasion (Spear et al. 2021), and we did not observe an associ-
ated change in anoxia or phytoplankton biomass. Dreissenids
are known to shift phytoplankton community composition
(Naddafi et al. 2007), and Rohwer et al. (2023a) did observe
an earlier seasonal timing of Cyanobactera onset in the
microbial community post-zebra mussels; however, note that
our lake season “spring mixed” differs from the “spring” sea-
son in Rohwer et al. (2023a) in that “spring mixed” also
includes a large portion of clearwater phase. Nonetheless, our
finding that Cyanobacterda and green algae increased along
with diatoms, by maintaining but not increasing their propor-
tion of total phytoplankton biomass, holds true with or with-
out the zebra mussel vears included. Further, a reanalysis of
the time series including only years prior to the zebra mussel
invasion resulted in similar regression model results. Given
our proposed mechanism where higher phytoplankton bio-
mass increases anoxia, it makes intuitive sense that since
zebra mussels did not impact water clarity in Lake Mendota,
they also did not impact anoxia. We present one plausible
mechanistic pathway of decreased phytoplankton grazing
leading to increased anoxia, but note that trophic cascades
from zooplankton grazers to zooplankton and phytoplankton
biomass are complex beyond grazing pressure, food quality
and nutrient recycling (McQueen and Post 1988; Vanni and
Findlay 1990).

A longer anoxia duration extends the pedod of reduced
fish habitat due to oxythermal stress in Lake Mendota (Magee
et al. 2019), as well as the season of cyanotoxin production
(Rohwer et al. 2023a). We attribute an anoxic factor increase
of 11 d (corresponding to an increase of hypolimnetic anoxic
volume of 19 Million m®) to a spiny water flea irmption in
Lake Mendota. Climate change impacts, such as shortened ice
duration (Sharma et al. 2021), increased water temperature
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(Woolway et al. 2022), and decreased wind speeds (Magee
et al. 2016), as well as freshwater salinization (Ladwig
et al. 2021F) are likely to further increase summer water col-
umn stability, amplifying habitat constmints. Increased
anoxia represents a biogeochemical invasion impact that has
not been previously accounted for, and identifies invasive spe-
cies as interacting drivers of anoxia alongside climate change
and road salt. Comprehensive long-term monitoring programs
that collect observations of food webs, physical chamcteristics,
and biogeochemistry are essential to studying impacts of these
interacting drivers on lake ecosystems.
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