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Relationships of temperature and
biodiversity with stability of natural aquatic
food webs

Qinghua Zhao 1,2,3,4 , Paul J. Van den Brink 1,5, Chi Xu 6,
Shaopeng Wang 7, Adam T. Clark8, Canan Karakoç9, George Sugihara10,
Claire E. Widdicombe11, Angus Atkinson 11, Shin-ichiro S. Matsuzaki 12,
Ryuichiro Shinohara 12, Shuiqing He13, Yingying. X. G. Wang14 &
Frederik De Laender 2,3,4

Temperature and biodiversity changes occur in concert, but their joint effects
on ecological stability of natural foodwebs are unknown.Here, we assess these
relationships in 19 planktonic food webs. We estimate stability as structural
stability (using the volume contraction rate) and temporal stability (using the
temporal variation of species abundances). Warmer temperatures were asso-
ciated with lower structural and temporal stability, while biodiversity had no
consistent effects on either stability property. While species richness was
associated with lower structural stability and higher temporal stability, Simp-
son diversity was associated with higher temporal stability. The responses of
structural stability were linked to disproportionate contributions from two
trophic groups (predators and consumers), while the responses of temporal
stability were linked both to synchrony of all species within the food web and
distinctive contributions from three trophic groups (predators, consumers,
and producers). Our results suggest that, in natural ecosystems, warmer
temperatures can erode ecosystem stability, while biodiversity changes may
not have consistent effects.

Whether climate change will increase or decrease the ecological sta-
bility of food webs is a fundamental but unresolved question1,2. Eco-
logical stability consists of multiple components and combining them
enhances our understanding of ecological impacts3,4. Structural and
temporal stability, which measure stability as the volume contraction

rate5,6 and temporal variation of species abundances7,8 are two such
components, respectively. The volumecontraction rate highlights how
much population dynamics would change when modifying a para-
meter (e.g., intrinsic growth rates, species interaction coefficients)5,6.
When the volume contraction rate is smaller, populations tend to be
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more robust to parameter changes, which is indicative of a higher
structural stability5,6. Temporal stability focuses on temporal variation
of species abundance; a smaller temporal variation indicates higher
temporal stability7,8. At present, these two stability indices are often
examined separately, and their joint responses are largely overlooked.

Temperature increases are known to alter ecological parameters
of a system such as species interactions and intrinsic growth rates.
When, for example, temperature increases consumption rates9–11, a
change of structural stability can ensue, as shown by a recent study on
a coastal community of competing species5. These findings might not
readily translate to multitrophic community types such as food webs,
where different trophic levels have different sensitivities to tempera-
ture changes12,13. To our knowledge, no study examines the effects of
temperature on the structural stability of food webs.

Ecological parameter changes following a temperature increase
can also lead to effects on species abundance12,13, and lead to different
species showing different degree of variability in population
abundance14,15. Indeed, temperature can alter temporal stability of
food webs, and negative14, neutral15, and positive16 effects have been
documented in experimental and simulation studies14,16,17. Changes of
synchrony of all species within food webs18,19 can explain these effects,
and sometimes there are disproportionate changes in temporal sta-
bility of specific trophic groups (e.g., producers, consumers, and
predators)15 that drive these effects. Howconsistent thesemechanisms
are across food webs is uncertain, as available studies have focused on
single food webs.

Warming goes hand in handwith biodiversity change20–22, another
key factor shaping ecological stability23–25. To our knowledge, direct
evidence for effects of biodiversitymetrics in general on the structural
stability in food webs is absent, while higher biodiversity has been
shown to have positive7,26 or neutral27 effects on temporal stability.
How warmer temperatures and biodiversity changes jointly affect
ecological stability is uncertain, as most studies only focus on one of
these two factors. The co-occurrence of both global changes in natural
ecosystems warrants an integrative approach to studying their joint
effects20–22, so as to realistically forecast stability, and thus related
functional ecosystem features and services28–30.

Current conclusions on the effects of warming or biodiversity on
ecological stability havemostly been basedon short-term experiments
or model simulations that consider a limited range of temperature31,32.
Translating these results to natural ecosystems is challenging. First,
species interactions and their responses to temperature can change
through time33,34. Focusing on short-term effects, therefore, precludes
the adaptation of thermal reaction norms and the waxing and waning
of species interactions through time32,35,36, which has been repeatedly
observed in natural ecosystems in response to environmental
change34,37,38. Second, structural stability is traditionally computed
from predefined model equations39, often assuming systems to con-
verge to point equilibria. However, communities in natural ecosystems
often exhibit more complex dynamics24, with species interactions
varying with system state, making structural stability a dynamic
property5. Techniques to study this dynamic behaviour are now
available, and their application to field data has allowed studying the
effect of environmental variables on structural stability5,40,41.

In this study, we quantified structural and temporal stability of
natural food webs by collating a total of 19 long-term data sets from
Europe and North America (seven from freshwater lakes, three from
marine and nine from river estuaries), each spanning 10 to nearly 30
years of data. First, we applied empirical dynamic modelling (EDM) to
the time series of the 19 planktonic food webs to infer trophic inter-
actions among consumers and resources from recorded population
dynamics, thereby reconstructing the interaction networks. Next, we
estimated time-specific net species interactions by using themultiview
distance regularised S-map, as such reconstructing the dynamics of
the Jacobianmatrix, showing how structural stability changes through

time (Fig. 1). Temporal stability in each of the 19 food webs was esti-
mated as the coefficient of variation of total community abundance.
Finally, we examined the relationships between temperature/biodi-
versity and the two stability indices (structural and temporal stability).
We found that higher temperatures were associated with lower
structural and temporal stability, while biodiversity indices had no
consistent associations. We interpret these associations as evidence of
temperature and biodiversity effects, and we use both terms (‘asso-
ciations’ and ‘effects’) hereafter to represent the associations.Whilewe
acknowledge the correlational nature of temperature and biodiversity
effects on stability in our study, we believe that our interpretation is
supported by existing knowledge on temperature and biodiversity
effects and the nature of our study design (Fig. 1). Finally, different
trophic groups (predators, consumers, or producers) had different
contributions to structural and temporal stability. Synchrony of all
species within the food web had a positive effect on the food web’s
temporal stability.

Results
We first quantified the time-varying Jacobian matrix of each food web
with the multiview distance regularised S-map41, from which the
structural stability of each food web was measured as the volume
contraction rate (VCR), which is the divergence of a vector field and is
equivalent to the trace (TrðJÞ) of the Jacobian matrix5,6 (see methods).
Smaller values of TrðJÞ (i.e., VCR) indicate lower sensitivity to para-
meter perturbations6, i.e., a higher structural stability5,6. Next, we
computed temporal stability of each food web as the coefficient of
variation of total community abundance, by using a timewindowof 1.5
years. A larger coefficient of variation indicates lower temporal
stability.

Across food webs, we found that temperature was consistently
associated with lower structural and temporal stability of food
webs, as temperature increases resulted in a higher TrðJÞ and a
higher coefficient of variation (Fig. 2a, d). In contrast, species
richness was associated with lower and higher structural and tem-
poral stability, respectively (Fig. 2b, e). Simpson diversity was only
associated with higher temporal stability (Fig. 2c, f). These trends
were robust to changing the length of the time window to compute
temporal stability of food webs (Fig. S1), and to the inclusion of rare
species—which are normally excluded from similar analyses (Fig.
S2). Within food webs, temperature and biodiversity effects on
structural and temporal stability were system dependent (Fig. 2). In
13 (11) out of 19 food webs, temperature had negative effects on
structural (temporal) stability (Fig. 2a, d). Similarly, in 14 (17) out of
19 food webs, species richness had negative (positive) effects
on structural (temporal) stability (Fig. 2b, e). Simpson diversity
in 13 out of 19 food webs had positive effects on temporal stabi-
lity (Fig. 2f).

Structural stability of foodwebsdid not vary along latitudes, while
temporal stability was higher at higher latitudes (Fig. S3). Finally, we
found that temperature had no effect on either biodiversity index (Fig.
S4). Thus, warmer temperatures mainly reduced stability directly, and
less so indirectly by changing biodiversity (e.g., temperature → biodi-
versity → stability).

The effects of temperature on structural stability of food webs
were mostly driven by temperature effects on the contribution from
predators. This contribution, which is the sum of those diagonal ele-
ments of Jacobian matrix J that belongs to predators and includes the
aggregated effects of other species on predator species, increased
(Fig. 3a), thus increasing TrðJÞ and therefore decreasing structural
stability. We did not find temperature effects on contributions from
consumers (Fig. 3d) or producers (Fig. S5a). Species richness increased
the contributions from consumers (Fig. 3e), while we found species
richness had no effects on the contributions from predators (Fig. 3b)
or producers (Fig. S5b).
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Effects of warmer temperatures and biodiversity on temporal
stability of food webs were related to the synchrony of all species
within the food web (Fig. 3g–i). Warmer temperature increased this
synchrony (Fig. 3g), while species richness and Simpson diversity
decreased it (Fig. 3h–i). The increase or decrease of this synchronywas
associated with lower or higher temporal stability of food webs,
respectively (Fig. S5d). Furthermore, we found that temperature and
species richness mostly affected the temporal stability of producers
(Fig. S6a–b), which then altered the temporal stability of the whole
food web (Fig. S7a). Conversely, Simpson diversity comparably
increased the temporal stability of all trophic groups (producers,
consumers, predators) (Fig. S6c, f, i), which then increased the tem-
poral stability of the whole food web (S7a-c). In addition, the con-
trasting effects of temperature and biodiversity on the temporal
stability of trophic groups (Fig. S6a-c, f, i) were also related to con-
trasting effects on species synchrony of corresponding trophic groups
(Fig S8a–c, f, i–l). Moreover, the synchrony of producers determined
the synchrony of the whole food web more than did consumers or
predators (Fig S7d-f).

Finally, temperature and biodiversity also altered specific
structural aspects (i.e., link density L=S, with number of links L and
number of network nodes S), which in turn affected temporal food
web stability (Fig. S9a, b, d). Higher mean temperature was asso-
ciated with a lower link density, which reduced temporal stability of
food webs (Fig S9a, d). In contrast, higher mean species richness
was related to higher link density, which then increased temporal
stability of food webs (Fig S9b, d). We did not find that other
structural aspects (i.e., connectance L=S2 and food chain length)

had effects on the temporal or structural stability of food webs
(Fig S10).

Discussion
Our results show that warmer temperatures are associated with lower
structural and temporal stability, while we found biodiversity had no
consistent effects on either stability property. The contributions from
predators and consumers, the synchrony of all species within the food
web, and temporal stability of different trophic groups explain these
results.

Temperature has been found a strong driver of structural stability
in a competitive coastal community5; here, we show that temperature
reduces structural stability across 19 planktonic food webs. Within
food webs, temperature effects on structural stability were system
dependent, albeitmostly negative. Lower structural stability inwarmer
temperatures indicates a lower robustness to parameters perturba-
tions. Temperature effects on those diagonal entries of the Jacobian
matrix that belong to predators are possible explanations to the
decrease of structural stability we found (Fig. 3a). The biological
mechanism explaining the temperature effect on the diagonal entries
for predators could involve effects on density-dependent (e.g., con-
sumption rates and self-limitation) or density-independent contribu-
tions (e.g., intrinsic growth rates, generally negative for predators) to
the per-capita growth rate of predators (see Supplementary Informa-
tion. Part 1). Increases of the per-capita growth rate of predators could
be attributed to 1) increases of predators’ consumption rates, or 2)
decreases of predators’ intrinsic growth rates, or 3) decreases of pre-
dators’ self-limitation, or 4) increases of predators’ consumption rates

Fig. 1 | An overviewof the data andmethods used in this paper, illustratedwith
the data from Lake Monona. a Species abundances over time are shown, where
the horizontal black dashed line indicates a zero species abundance (species
absence). b We reconstruct the interaction network using convergent cross map-
ping (CCM). cWecompute structural stability for each timepoint as the traceof the
local Jacobianmatrix TrðJÞ. The Jacobianmatrices are inferred bymultiviewdistance
regularised S-map (MDR S-map). The size of the Jacobian is fixed over time, as s × s
(row × column), where s is the number of network nodes in the food web. d The

temporal stability of the food web and of each trophic group is computed as the
coefficient of variation (CV) of the total community abundance and each trophic
group, respectively, using a time window of 1.5 years. Species asynchrony of the
foodweb andof each trophicgroup is computedusing themovingwindow. eTime-
varying species richness (i.e., the sampled species richness based purely on species
presence and absence) and Simpson diversity are calculated from the data, and
combined with time-varying temperature data.

Article https://doi.org/10.1038/s41467-023-38977-6

Nature Communications | (2023)14:3507 3



that are greater than the increases of the other parameters 2)−3).
Numerous studies have shown that temperature can increase predator
consumption rates9,42–44, decrease self-limitation45, or increase pre-
dator consumption rates more than it does other parameters46,47. For
example, Lang et al. (2012)48 have shown that warming increased
consumption by a predacious ground beetle to a greater extent than it
increased energy losses. Simulation studies have further shown that
such parameter changes can drive predator-consumer systems from
stable equilibria to a limit cycle46,49 or chaos50,51.

We found that species richness decreased structural stability. A
similar result is found when adopting an alternative approach to
compute structural stability in ecological communities52: the dimen-
sionality of parameter space grows as more species are added, which
reduces the fraction of that space leading to positive population
densities. In addition, the negative effects of species richness on
structural stability found in this study (Fig. 2b) can be explained by
positive effects of species richness on the contribution from con-
sumers (Fig. 3e). The mechanism behind this result could be again
attributed to changes of growth and consumption rates, and self-
limitation (see Supplementary Information. Part 2). In contrast, Simp-
son diversity did not affect structural stability and the diagonal entries
of any trophic group (Figs. 2c, 3c, 3f; Fig S5c).

Previous experimental and simulation studies have shown that
warmer temperatures can lead to lower temporal food web
stability14,16,17. Here we show that this finding extends to natural food
webs, analysing multiple long-term data sets. Lower temporal stability
in warmer temperatures indicates a greater degree of variability in
species abundance with respect to its mean. Our finding that the

synchrony of all species within the food web, temporal stability of
producers, and link density underpins this result, supports previous
empirical findings15,18,19,53–56. Warmer temperature was linked to higher
synchronyof all specieswithin the foodweb,whichmight be causedby
warmer temperature increasing consumer-producer interactions,
tightening the control of consumers on producers and resulting in
synchronous changes in abundance dynamics57,58. In addition, higher
mean temperature was associated with a lower link density, which
could be expected when higher temperature reduces the number of
links by favouring predators to be specialists rather than generalists56.
Higher temperature favouring specialisation in predators is supported
by evidence that increasing temperature can increase predator attack
rates more than it decreases handling time by altering activation
energy in Arrhenius function56,59.

In contrast to temperature, we found that biodiversity reduced
the synchrony of all species within the food web, but increased tem-
poral stability of trophic groups and link density, which therefore
increased temporal food web stability, again supporting previous
experiments, field studies, and theory7,26,60–62. Finally, species syn-
chrony (and temporal stability) of producers determined the syn-
chrony (and temporal stability) of the whole food web more than did
consumers or predators, supporting recent findings established in
short-term experiments15.

Natural food webs are inevitably under-sampled. Most notably,
our study focuses on planktonic species, reproducing on time scales
of days. Larger (e.g., fish, mammals) and smaller biota (e.g., bac-
teria) are excluded from our analyses because they were not
reported, or only measured infrequently. We acknowledge that
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Estuary of Patapsco River
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Fig. 2 | The effect of temperature, species richness, and Simpson diversity on
structural stability and temporal stability of food webs. a–c structural stability
(TrðJÞ ) of food webs. d–f temporal stability (coefficient of variation of species
abundance, CV) of food webs. The CV is natural log-transformed. A smaller TrðJÞ or
smaller CV indicates higher stability. a−c Coloured points correspond to values of
each food web in each season of each year (total points, n = 1572 biologically

independent samples).d−fColoured points (n = 1477) correspond to values of each
food web in each moving window (window width = 1.5 years). a–f The bold black
lines and error bands depict the significant best-fit trendline and the 95% con-
fidence interval in the linear mixed model (two-sided) across 19 food webs,
respectively. The non-bold coloured lines indicate the best-fit trendline in the linear
models (two-sided) within each food web. For statistical results see table S1.
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these biota can play critical roles in ecosystem functioning and can
mediate planktonic species dynamics63. Because their abundance
could not be accounted for in a consistent way, their contribution in
this study is only implicitly present. Given that some studies showed
warmer temperatures can reduce the synchrony between fish and
lower trophic planktonic species64,65, we expect that the explicit
inclusion of fish in this analysis might weaken the negative effect of
temperature on temporal stability.

We have applied time series analysis to quantify the effects of
temperature and biodiversity on two types of stability in complex food
webs. We found that warmer temperatures, in natural ecosystems,
were associated with lower structural and temporal stability, while
biodiversity hadno consistent effect on stability. This suggests that the
methods assuming ecosystems to exhibit static equilibria may not be
sufficient to evaluate how global change affects the stability of net-
works. Given the increasing amount of available data from natural
ecosystems66–68, our work paves the way for the application of long-
termmonitoring data sets to investigate the effects of (a)biotic factors
on ecosystems’ structure, function, and stability.

Methods
Time series data of food webs
We used 19 long-term time series data sets representing 7 freshwater
ecosystems (lakes), 3 marine ecosystems (Western English Channel,
Wadden sea and Narragansett Bay), and 9 rivers (estuary of rivers) to
test the responses of food web stability to biodiversity and tempera-
ture (Table S2). Of those, 18 data sets were obtained from the publicly
available open database from North Temperate Lakes (NTL-LTER)69,70,
DataObservationNetwork for Earth71, Center forGlobal Environmental
Research72, UK Centre for Ecology & Hydrology73, Pangaea74 and Wai-
kato Regional Council75. The last dataset from the Western English
Channel is archived at the British Oceanographic Data Centre www.
bodc.ac.uk and was obtained upon request from Plymouth Marine
Laboratory. We selected the data sets using the following search cri-
teria: (1) the number of trophic levels was at least 2, (2) taxa were
identified to species level or to finest taxonomical level as possible
(generally species level), and (3) temperature was available. Next, we
removed the data sets that were only sparsely sampled (e.g., yearly or
semi-annually). We only kept data sets with seasonal sampling of all
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confidence interval in the linear mixed model (two-sided) across 19 food webs,
respectively. For statistical results see table S1.
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variables (if multiple samplings were conducted per season, e.g.,
monthly and bimonthly sampling data sets, those were averaged).
Here, the seasonal resolution (trimonthly) is the shared consensus that
can be applied to all 19 data sets, and the seasonal average here is also
themost representativemeasure across all data sets, because the equal
sampling interval is necessary for comparison across systems and also
for EDM analysis76. After the seasonal average, there were two missing
points across the whole dataset (accounting for 0.17% of whole data).
Onemissing point was fromNarragansett Bay (winter of 1979), and the
other one was from Wadden Sea (summer of 1989). Those 2 missing
data points were linearly interpolated using na.approx function in the
package of zoo77. Then, the abundance of each species across all data
sets was scaled to the same unit (individuals per litre). Note that fish
species were excluded from analysis, because they were either not
reported or yearly sampled only, and because the unit (catch per unit
effort) of fish species changed over sampling time. We thus found 19
long-term seasonal data sets consistingmainly of plankton species and
spanning from 10 to 30 years and originating from the continents of
North America and Europe (Table S2). Recent work showed that the
plankton species from natural ecosystems had a greater proportion of
chaotic time series than others (e.g., fishes)78, which indicated that the
plankton species could fit nicely for EDM analysis. Then, we divided all
species into producers, herbivores, omnivores, and predators by their
diet79,80. Next, we retained the species whichwere encountered at least
once per 1.5 years (at least 1 nonzero abundance data out of 6 data
points) for the analyses, to exclude the low-frequency species which
include toomany zero values in their time series. Toomany zerovalues
is a general statistical problem in time series analysis76. Before EDM
analysis, all time series data of abundance and temperature were
normalised to have zero mean and unit variance, while raw data was
used to compute temporal stability because themean and variance are
parts of the equation to compute temporal stability.

Inferring causal interactions among species
For each dataset, we identified the causal links (e.g., competition and
predation) across all potential species pairs in each dataset using
convergent cross mapping (CCM)40 (see three brief videos for a sum-
mary introduction link1: http://tinyurl.com/EDM-intro). CCM is based
on Takens’s theorem, which proves that as a generic property it is
possible to construct a shadow version of the original attractor of a
dynamical system by substituting time lags of the observable variables
for theunknownvariables40,81. An important consequenceof this is that
if the causal variable X and affected variable Y belong to the same
dynamical system, information on the causal variable X is encoded in
the affected variable Y. Thus one can predict the states of causal
variable X using the affected variable Y. CCM infers causality by mea-
suring the extent to which the causal variable X has left signatures in
the time series of the affect variable Y; a procedure known as cross-
mapping (cross-prediction)40. In this study, the appropriate embed-
ding dimensions for cross-mapping E were determined by univariate
simplex projection82, examining values of E from 2 to square root of n,
where n is the length of the time series77. Following Deyle et al.83, we
examined the same range of E across all studied data sets. Thus, we
computed n as the geometric mean time series length across all data
sets. E was finally examined from 2 to 9 across all data sets. We used
simplex projection to select the best E that gave the lowest mean
absolute error34,77.

The first necessary criterion to test for causality among variables
requires that cross-mapping skill in the real time series need to be
higher than the ones in null surrogates–generated time series con-
taining associations or temporal patterns that are conservatively
asserted to be non-causal. Because our data sets come from field
seasonally-monitoring, following Deyle et al.83, we used null surrogates
designed to factor out seasonality as a contributing factor in CCM.
Specifically, for any causal variable X,we calculated the yearly averages

of X and seasonal anomalies as the difference between the observed X
and this yearly average. Then, we randomly shuffled the seasonal
anomalies and added them back to the yearly averages to generate
surrogates with randomised time dependence between anomalies.
Thus, the new surrogate time series (Xsur) have the same seasonal
average as X, but with randomly shuffled anomalies. The conservative
reasoning described by Deyle et al.83,84 is that if X indeed causes Y in a
manner that extends beyond the effects of seasonality, then Y should
be sensitive not only to the seasonal components of X, but also to the
anomalies; thus Y should cross predict the real time series X better
than the surrogate time series Xsur

83. The analyses in this study are
based on generating 100 null seasonal surrogates for X85.

The second necessary criterion for testing causality is the con-
vergence towards higher cross-mapping skill as library length (i.e., the
number of points used for state space reconstruction) increases40.
Because longer library length increases the density of points in the
reconstructed attractor, the nearest neighbouring points used tomake
predictions from an attractor will be more accurately determined82,
which in turn leads to improved predictions40. Convergence can be
examined by testing whether there is a significant monotonic
increasing trend in cross-mapping skill ρ with an increase of library
length byKendall’s τ test86, andwhetherρ at the largest library length is
significantly higher than the one at the smallest library length (ρ) by
Fisher’s Z test86. In this study, library length was set from the smallest
(10) to the largest length (i.e., the length of the entire time series).

Throughout this paper, an interaction link (e.g., X→Y) was regar-
ded as causal if both of the two criteria above were satisfied: (1) pre-
dictive skill ρ in the real-time serieswashigher than the 95% confidence
intervals of surrogates34; (2) both Kendall’s τ test and Fisher’s Z test
were statistically significant (P <0.05) for testing convergence86. As
additional consideration to (1) above, to accommodate the fact that
the causal variables (e.g., prey species) can exhibit time-delayed effects
on the affected variables (e.g., predator species)87, we carried out 0 to
6month (0~2 time point) lagged CCM analyses88, in which we retained
the CCM with the time lag resulting in the highest ρ89. Furthermore,
because causality is transitive and can occur indirectly through a
transitive causal chain40 and to narrow our focus on direct linkages, we
used the 0 to 6month (0~2 time point) lagged CCM analyses to detect
and remove the suspected indirect link90. Briefly, if the variable X
unidirectionally causes Y (X→Y, e.g., producers→herbivores) and then
the variable Y unidirectionally causes Z (Y→Z, e.g., herbivore-
s→predators), an indirect causality (X⇢Z, e.g., producers⇢predators)
may thus emerge if the effect of X on Y is sufficiently strong40,90. The
indirect link (X⇢Z) is detected and removed when it has both: (1) a
larger negative time lag, and (2) a lower predictive skill ρ than the
direct link (X→Y), due to transitivity40.

Overall, we found the number of links per reconstructed
interaction network was between 91 (Estuary of Magothy river) and
557 (Western English Channel) links, with an average of 207 links per
food web (Fig. S11–S12). Link density (i.e., L=S, with L the number of
links and S the number of network nodes91, Fig. S11–S12) was
between 4.55 (Estuary of Magothy River) and 13.92 (Western English
Channel), and on average 7.91. Foodweb connectance61 (i.e., L=S2)
was between 0.21 (Narragansett Bay) and 0.68 (Wadden Sea), and
0.32 on average.

Quantifying time-varying interaction strength among species
Once the causal links among variables were established, we attempted
to quantify the time-varying strength and direction of effects among
causal variables using the multiview distance regularised S-map (MDR
S-map)41. Here, the regression coefficients approximate the interaction
strength in the discrete-time Jacobian matrix ∂xiðt + 1Þ

∂xj ðtÞ
41. xiðt + 1Þ is the

abundance of species i at time point t + 1 and xjðtÞ is species j abun-
dance at time t. TheMDR S-map was used here because it had a higher
accuracy to recover Jacobian matrix than other techiques41, and
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because the embedding dimension E in this study was smaller than the
number of species (causal variables) in each food web (Fig. S11–S12).

The MDR S-map is a nonparametric method to reconstruct high-
dimensional time-varying interaction networks for complex systems41.
It works by linking two methods (multiview embedding and reg-
ularised S-map)92,93, but shows a higher accuracy than each one alone41.
The MDR S-map consists of two steps. The first step is to recover the
neighbourhood relationships among high-dimensional data points
from numerous low-dimensional state space reconstructions (multi-
view SSR). Then, one computes Euclidean distances between data
points under the optimal embedding dimension E. Next, one collects
these distances to achieve the multiview distances dE and to further
compute the data weights WE

t . For the second step, the data weights
WE

t from first step and regularisation are incorporated into S-map to
estimate high-dimensional interaction strength. Specifically, the for-
mula that calculates interaction strength (Bt) is described as

B̂t = argminBt

�
∣∣
ffiffiffiffiffiffiffi
WE

t

q
ðXt + 1 � XtBtÞ∣∣

2

2
+ λ½α∣Bt ∣

2
2 + ð1� αÞ∣Bt ∣1�

� ð1Þ

whereWE
t is the local weightmatrix, which is theweight obtained from

the exponential decay function of Euclidean distance, with

WE
t = expð� θdE

mean dE
� �Þ. θ is a state-dependency (nonlinearity) parameter.

dE contains the multiview distances, which depict the neighbours of a
high-dimensional system state via an ensemble of numerous distances
measured in low-dimensional state space reconstructions (SSR) at the
optimal embedding dimension (E). The optimal E for a network node
was determined by univariate simplex projection82. The multiview

distances dE are calculated as the weighted average among all

Euclidean distances (i.e., dðXc tμ
� �

,Xc tν
� �Þ) between every pair of

embedded states observed at various time points for a network node,

with dE =
P
8c

wcdðXc tμ
� �

,Xc tν
� �Þ. wc is proportional to the forecast

skill ρ and
P
8c

wc = 1. The c denotes any combination consisting of

causal variables for a target network node in SSR. In practice, there are
toomany combinations because of network dimensionalitym is larger
than E (m > E). Thus, in this study, we randomly generated 1000 SSR
from combinations of causal variables and a target network node, and
finally kept the top 100 SSR with the highest forecast skills regarding
the target network node, with the consideration of computational
efficiency41. In addition, λ is the penalised factor, and α is the adjusted
parameter to balance the regularisation. Thus, the solution of
interaction strength Bt in the MDR S-map algorithm depends on
state-dependent parameter θ, the penalised factor λ, and the adjusted
parameter α. The elements in Bt at Eq. (1) approximate interaction

strengths among species ∂xiðt + 1Þ
∂xj ðtÞ . Finally, the best parameter combina-

tion (θ, λ, α) for each network node and estimated interaction
strengths are the ones that minimise rMSE of the one-step forecast on
the target network node in t + 1, based on cross-validation41.

Computing structural and temporal stability
We first computed the time-varying structural stability, considering
non-equilibrium time series generated by nonlinear dynamical sys-
tems:

_X = f ðX,ηÞ ð2Þ

Here, f is an unspecified vector field (or dynamic model). X is a vector
of state variables (i.e., species abundance). η is a vector of
environment-dependent parameters (e.g., rates of interactions such as
consumption rate). Structural stability is measured as volume
contraction rate VCR5,6, which is the divergence of a vector field and

equivalent to trace TrðJÞ of the Jacobian matrix ð∇ � f X,ηð Þ=TrðJÞ Þ5,6.
Smaller values of TrðJÞ (i.e., VCR) indicates lower sensitivity to
parameter perturbations, i.e., higher structural stability5,6. Based on
the Jacobian matrices calculated by multiview distance regularised
S-map at each time point (see the previous section), structural stability
(i.e., TrðJÞ ) was directly computed as the trace of the Jacobianmatrices
at each timestep5,6.

Second, we computed the temporal stability as the coefficient of
variation of whole community abundance CV (temporal variation). CV
was calculated using amovingwindowwith 1.5 years (windowwidth = 6-
time points) for species abundance of each food web. A smaller CV
indicates larger temporal stability. We changed the width of the time
window to 3 years (12-time points), and our results were robust (Fig. S1).

Finally, we computed the temporal stability of each trophic group
(i.e., producers, consumers, andpredators), by using amovingwindow
with 1.5 years (window width = 6-time points). Specifically, the tem-
poral stability of producers was computed as CV of producer’s popu-
lation abundance. Similarly, the temporal stability of consumers was
computed as CV of primary consumer’s population abundance. Tem-
poral stability of predators was calculated as the CV of predator’s
population abundance (i.e., including the omnivores, secondary and
higher consumer’s trophic level).

Quantifying the effects of temperature and biodiversity on
stability
Before quantifying these effects, we computed biodiversity (i.e.,
Simpson diversity and species richness) over time. Simpson diversity
on each time point was computed as 1�Ppi

2, where pi is the pro-
portional abundance of species i. Species richness in each time point
was computed as the sampled species richness, i.e., the number of
species that was observed to have positive values of abundance at that
time point. Sampled species richness is useful as it reflects changes in
the underlying relative abundances of species (historically referred to
as community structure94–96). We also considered the Shannon diver-
sity index (�PpilnðpiÞ), but it exhibited high correlations with
Simpson diversity for all 19 data sets (0.91~0.98 in Pearson’s correla-
tion, Table S3) and was thus omitted.

Next, we applied linear mixed models to test for the effect of
temperature, species richness, and Simpson diversity on structural
stability. We treated year, sampling locations (e.g., lake Mendota and
Trout Lake), and season as random factors to exclude the potential
confounding effects of them. We adopted the same approach for the
analysis of temporal stability. Specifically, we applied linear mixed
models to test for the effect of temperature, species richness, and
Simpson diversity on temporal stability of whole community and each
trophic group, but only treated the sampling locations as a random
effect. Because temporal stability was calculated using a moving win-
dow, the year and season were factored out.

For each of the two stability indices, temperature and species
richness were natural log transformed before analysis. Given that
values of temperatures were negative in winter, we transferred tem-
perature in all 19 sites from Celsius to Fahrenheit (°C to °F), before
natural log transformation. Temporal stability was also natural log
transformed before analysis to minimise the variance across
sampling sites.

Quantifying the contribution of trophic groups on structural
stability
Since structural stability TrðJÞ for each food web was computed as the
sumof each diagonal element; that is, sumacross all trophic levels (i.e.,
producers, consumers, or predators); the effects of temperature/bio-
diversity on structural stability can be understood how the diagonal
elements from each trophic groups were changed by the two effects.
Specifically, the contribution of TrðJÞ by producers, including the
aggregated effect of other species on producer’s species (hereafter
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called “contribution from producers”) was thus computed as the sum
of these diagonal elements that only belonged to producers. Similar
computations for the contribution of TrðJÞ by primary consumer’s
trophic group on structural stability (“contribution from consumers”),
and contribution of TrðJÞ by omnivores, secondary and higher con-
sumer’s trophic level on stability (“contribution from predators”).

Next, we applied linear mixed models to test for the effect of
temperature, species richness and Simpson diversity on the con-
tribution from producers, by treating the year, sampling locations
(e.g., lake Mendota and Trout Lake), and season as random effects to
exclude the potential confounding effects. We adopted the same
approach for the analysis of the contribution from consumers and the
contribution from predators.

Quantifying the contribution of synchrony on temporal stability
of whole community
The degree of synchrony φ of all species within the food web was
quantified as

φ= σ2=
Xs
i = 1

σi

 !2

ð3Þ

σ2 is the variance ofwhole community abundance and σi is the s.d.
of abundance of species i in a food web with s species. Species syn-
chrony φ is ranging from 0 (perfectly asynchronized of species fluc-
tuations) to 1 (perfectly synchronised of species fluctuations)15,97,98. We
did the samecomputation for species synchronyof each trophicgroup
(producers, consumers, or predators).

Then, we applied linear mixed models to test for the effect of
synchrony of all species within the food web on temporal stability of
foodweb, by treating sampling locations (e.g., lakeMendota andTrout
Lake) as randomeffects. Similarly, linearmixedmodelswereemployed
to test for effects of species synchrony of each trophic group on
temporal stability of each trophic group, by treating sampling loca-
tions as randomeffects. Finally, we applied linearmixedmodels to test
for the effects of temperature, species richness and Simpson diversity
on the synchrony of all species within the food web, or synchrony
within each trophic group, again treating sampling locations as ran-
dom effects.

Quantifying the effects of temperature on biodiversity
Across 19 food webs, we applied linear mixed models to test for the
effect of temperature on either species richness or Simpson diversity,
by treating year, sampling locations (e.g., lake Mendota and Trout
Lake), and season as random effects. By doing so, one can infer the
indirect effects of temperature on structural (or temporal) stability, via
direct temperature effects on biodiversity.

Sensitivity analysis
Given that previous studies showed that some of low-frequency rare
species may contribute to stability patterns99,100, we extended the
analysis to include a large number of rare species; these were species
which appeared at least once per 2 years (1 nonzero abundance data
out of 2 years). The inclusion of rare species in the analysis did not
change the conclusions (Fig. S2).

The CCM and S-map were performed using “rEDM” package
(https://cran.r-project.org/src/contrib/Archive/rEDM, version 1.2.3).
The multiview distance regularised S-map was performed following
Chang et al. (2021)41. Linear mixedmodelling was performed using the
lme4 package (https://cran.r-project.org/src/contrib/Archive/lme4,
version 1.1.27.1). The missing data points after seasonal average were
linearly interpolated using the zoo package (https://cran.r-project.org/
src/contrib/Archive/zoo, version 1.8-11). All statistical analyses were
performed in R 4.1.2101.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this study are publicly available (see Methods
and Table S2). Station L4 marine data (Western English Channel) are
archived and available from the British Oceanographic Data Centre
BODC (www.bodc.ac.uk) with the most recent versions and are freely
available upon request to Dr. Claire Widdicombe (clst@pml.ac.uk)
and Dr. Angus Atkinson (aat@pml.ac.uk) at Plymouth Marine
Laboratory. The structural and temporal stability data generated in
this study have been deposited in the Zenodo database (https://doi.
org/10.5281/zenodo.7877806)102. These data are also available on
GitHub (https://github.com/QZhao16/aquatic.foodweb.stability).

Code availability
Programming code for empirical dynamic modelling (EDM) to infer
causal links among species, interaction networks, and structural sta-
bility of the food web is available on GitHub. (https://github.com/
QZhao16/aquatic.foodweb.stability), and on Zenodo. (https://doi.org/
10.5281/zenodo.7877806)102.
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