

1 **Disturbed laterality of non-rapid eye movement sleep**
2 **oscillations in post-stroke human sleep: a pilot study**
3

4 Benjamin K. Simpson, M.D.^{1,†}, Rohit Rangwani, M.S.^{2,3,†}, Aamir Abbasi, Ph.D.²,
5 Jeffrey M. Chung, M.D.¹, Chrystal M. Reed, M.D., Ph.D.^{1, #}, Tanuj Gulati, Ph.D.^{1,2,3,4, #}
6

7

8 ¹ Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA.

9

10 ² Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai
Medical Center, Los Angeles, CA.

11 ³ Bioengineering Graduate Program, Department of Bioengineering, Henry Samueli School of
12 Engineering, University of California - Los Angeles, Los Angeles, CA.

13 ⁴ Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles,
14 Los Angeles, CA.

15

16 [†] These authors contributed equally and share first authorship

17 [#] These authors contributed equally

18

19 Article type: Brief research report

20 Correspondence: tanuj.gulati@csmc.edu

21 Word Count

22 Abstract: 245; Text: 4809

23

24

25 **Abstract (250 words)**

26

27 Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling
28 sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of
29 physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in
30 pathological delta (δ) waves is associated with sustained motor performance gains during stroke
31 recovery. The goal of this study was to evaluate laterality of non-rapid eye movement (NREM)
32 sleep-oscillations (namely SOs, δ -waves, spindles, and their nesting) in post-stroke patients
33 versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data
34 in hospitalized stroke-patients ($n = 5$) and healthy subjects ($n = 3$). We used a laterality index to
35 evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had
36 pronounced asymmetry in the oscillations, with a predominance of SOs, δ -waves, spindles, and
37 nested spindles in affected hemisphere, when compared to the healthy subjects. Recent
38 preclinical work classified SO-nested spindles as restorative post-stroke and δ -wave-nested
39 spindles as pathological. We found that the ratio of SO-nested spindles laterality index to δ -wave-
40 nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which
41 included random effects of concurrent pharmacologic drugs), we found large and medium effect
42 size for δ -wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study
43 indicate that considering laterality index of NREM oscillations might be a useful metric for
44 assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when
45 targeting sleep modulation for neurorehabilitation post-stroke.

46

47 **Keywords:** Stroke, Sleep, EEG

48

49

50 **Introduction**
51

52 Stroke is a leading cause of motor disability world-wide. Despite advances in neurorehabilitation,
53 there is a lack of widely adopted therapies that target plasticity post-stroke, and functional
54 outcomes remain inconsistent^{1–3}. Sleep is known to play a major role in regulating plasticity^{4–12}
55 and accordingly, there has been an interest in modulating sleep for stroke motor rehabilitation^{13,14}.
56 To optimize efforts for effective sleep modulation, there is a need to better understand neural
57 processing during sleep. Additionally, it is important to consider co-morbidities and concurrent
58 pharmaceuticals that may impact excitatory/inhibitory neural transmission. Previous animal and
59 human studies have shown that sleep can influence motor recovery post-stroke^{2,14–23}, however
60 more work is needed to understand how sleep neurophysiology is affected in stroke. This has
61 become all the more important with advances in our understanding of sleep neurophysiology
62 linking nested non-rapid eye movement (NREM) oscillations to plasticity, motor memory
63 consolidation, and motor recovery^{4,6,14,24}.

64

65 Sleep-dependent neural processing is crucial for memory consolidation, which is the process of
66 transferring newly learned information to stable long-term memory^{9,25}. Initial investigations looked
67 at sleep's role in declarative memory^{26,27}, but recent studies have underscored sleep's role in
68 motor skill consolidation^{5,6,28}. Specifically, NREM sleep has been linked to the reactivation of
69 awake motor-practice activity and performance gains in a motor skill after sleep^{4–6}. There is now
70 a consensus that this consolidation occurs during temporal coupling of sleep spindles (10–16 Hz)
71 to larger amplitude slow oscillations (SOs, 0.1–1Hz)^{6,25,29–31}. Recent work in rodents has shown
72 that these SOs nested with spindles decline immediately post-stroke and increase during motor
73 recovery¹⁴. This work also showed that delta waves (δ waves, 1–4Hz), along with δ wave-nested
74 spindles increased post-stroke and reduced during recovery. These two nested oscillations
75 (namely, SO-nested spindles versus δ wave-nested spindles) were shown to have a competing

76 role during recovery. Pharmacological reduction of tonic γ -aminobutyric acid (GABA)
77 neurotransmission shifted the balance towards restorative SO-nested spindles in the brain and
78 increased the pace of recovery. The chief goal of our study was to see if NREM oscillations and
79 their nesting were affected post-stroke in human patients within a hospital setting. Specifically,
80 we wanted to check for laterality of NREM oscillations' densities in stroke versus contralateral
81 hemisphere and compare it to healthy subjects.

82

83 Our study showed that, acutely post-stroke, there is an increase in SOs, δ waves, and spindles
84 on stroke electrodes when compared to contralateral hemisphere electrodes, whereas healthy
85 subjects had symmetrical density of these oscillations. Our linear mixed effect model revealed
86 that there were significant fixed effects of stroke vs contralateral electrodes for SOs and δ waves
87 with overall medium effect sizes, including random effects of concurrent pharmacologic drugs.
88 We also observed a large effect size of the linear mixed model for δ wave-nested spindles. Finally,
89 we found that the proportion of SO-nested spindles to δ -wave-nested spindles was lower in stroke
90 subjects compared to healthy subjects. Our work here in a pilot dataset suggests that laterality of
91 NREM sleep oscillations could be a useful marker for physiological sleep activity post-stroke.
92 Future work that confirms our findings in a larger dataset can inform acute stroke care
93 management that also incorporates pharmacologic drug interactions and their effects on laterality
94 of 'restorative' sleep oscillations.

95

96

97

98

99 **Patients and Methods**

100 This research was conducted in accordance with and approval of the Cedars-Sinai Medical
101 Center Institutional Review Board (IRB). All research participants and/or their surrogates provided
102 informed consent to participate in the study.

103

104 **Inclusion/exclusion criteria**

105 Retrospective chart review of the Cedars Sinai EEG database was done to identify patients with
106 acute middle cerebral artery strokes (MCA strokes; with high probability of stroke lesion affecting
107 sensorimotor regions in the brain) who also received EEG monitoring as part of their hospital stay.

108 We selected patients who received EEG in the acute period (2-3 days) post-stroke. Other
109 inclusion criteria were that this should be the first stroke for the patient, they should be within 50-

110 80 years of age, and the patients should not have any sleep disorders or circadian /diurnal rhythm
111 disruption. Subjects were excluded if they were pregnant or diagnosed with uncontrolled medical

112 conditions. Five patients were retrospectively identified for this study, with notable limited
113 availability of EEG studies done within 2-3 days after an MCA distribution stroke. Of the 5 patients,

114 3 were female and 2 males, all within the age range of 50-80 years old (see **Table 1** for other
115 details regarding demographic and clinical information). Indications for EEG were universal for

116 altered mental status after acute stroke. P1 was noted to be on continuous infusion of propofol
117 (<10 mcg total) and infusions of dexamethasone every 4 hours. P2 and P5 were treated with

118 levetiracetam 500mg twice daily. P2 was also on acyclovir which was discontinued after
119 cerebrospinal fluid (CSF) evaluated negative for meningitis; and P5 was administered

120 nonepinephrine due to being in shock acutely and improved within 24 hours. P3 and P4 were not
121 given propofol, dexamethasone, or levetiracetam. Unlike all other patients, P4 had subcortical

122 involvement in stroke. It is important to note that spindle oscillations are postulated to have a
123 subcortical (thalamocortical) origin³². P5 had a hemorrhagic stroke (ruptured right MCA
124 aneurysmal stroke). P2 had partial status epilepticus involving the right temporal lobe. We

125 excluded seizure related epochs based on manual inspection of recordings. This inspection was
126 done by epileptologist (C.M.R.) and seizures were excluded based on no evolving seizure pattern
127 across electrodes (10-20 EEG system). Hence, all our presented data was from sleep periods in
128 all the five patients (even in the patient with status epilepticus). An average of $\sim 5.98 \pm 1.26$ hours
129 (or 358.80 ± 75.40 mins, mean \pm standard error of mean (s.e.m.)) of NREM sleep was identified
130 and analyzed in each of the five patients. We were not able to analyze REM/ wake periods in
131 these recordings due to the lack of EMGs/ video recordings. Additionally, healthy subjects' dataset
132 from Cox *et. al*, *Sleep Medicine Reviews*, 2020^{33,34} with average NREM sleep of 3.07 ± 0.14 hours
133 (or 183.91 ± 8.38 mins) was analyzed for 3 subjects.

134

135

136

137 **EEG analysis and identification of NREM oscillations**

138 Patients with overnight EEG recordings 2 to 3 days post-stroke were included. The data, obtained
139 by a Natus Xltek EEG and Sleep System, was de-identified and made compatible for analysis
140 with MATLAB. Each 30-second epoch was manually marked for NREM sleep by an expert scorer
141 (C.M.R. and B.K.S.). EEG epochs were analyzed for NREM sleep in a bipolar montage. In the
142 stroke patients, the following analyses were done with EEG data in a referential montage,
143 referenced to the auricle electrodes. Spindles, SOs, and δ waves were extracted from these
144 NREM epochs using custom code in MATLAB (details below). This allowed for the identification
145 of specific sleep waveforms and how they nested temporally and topographically during NREM
146 sleep. We assessed spindles and their nesting to SOs and δ waves. Topographical maps of the
147 average density of these sleep oscillations allowed us to visualize the average densities with
148 respect to electrode location, especially their lateral symmetry between hemispheres.

149

150 From the healthy subjects dataset, we used the common linked mastoids referenced data³³ and
151 analyzed NREM sleep. We selected 20 electrode channels in similar locations as stroke patient
152 data for further analysis (because the healthy subject data had more electrodes than stroke
153 patient dataset). Similar to stroke EEG data; spindles, SOs, and δ waves were extracted from
154 these NREM epochs using custom code in MATLAB and analyzed.

155

156 *EEG Data processing:*

157 For stroke patients, NREM-marked EEG data from all channels was referenced with respect to
158 the average of the auricular electrodes (A1 & A2, **Fig. 1A**) while the healthy control dataset had
159 common linked mastoids referenced EEG data. Any high amplitude artifact in the differential EEG
160 signal was removed. We utilized previously-used methods for automatic detection of these NREM
161 oscillations^{6,14,35}. For **δ /SOs detection**, signal was first passed through a 0.1 Hz high-pass filter
162 and then a 4 Hz low-pass Butterworth filter. All positive-to-negative zero crossings, previous
163 peaks, following troughs, and negative-to-positive zero crossings were identified. A wave was
164 considered a δ wave if its trough was lower than the negative threshold and preceded by a peak
165 that was lower than the positive threshold, within 500 ms (**Fig. 1B, E, H**). SOs were classified as
166 waves with troughs lower than a negative threshold (the bottom 40 percentile of the troughs) and
167 preceding peaks higher than a positive threshold (the top 15 percentile of the peaks; **Fig. 1C, F,**
168 **I**). Duration between peaks and troughs was between 150 ms and 500 ms. For **spindle**
169 **detection**, EEG data was filtered using a 10 Hz high-pass Butterworth filter and a 16 Hz low-pass
170 Butterworth filter. A smoothed envelope of this signal was calculated using the magnitude of the
171 Hilbert transforms with convolving by a Gaussian window (200 ms). Epochs with signal amplitude
172 higher than the upper threshold (mean, $\mu + 2.5 \times$ standard deviation (s.d.), σ) for at least one
173 sample and amplitude higher than the lower threshold ($\mu + 1.5 \times \sigma$) for at least 500 ms were
174 considered spindles (**Fig. 1 D, G, J**). The lower threshold was used to define the duration of the
175 spindle. Nested SO-spindles (parallel to *k*-complexes studied in humans) were identified as

176 spindle peaks following SO peaks within 1.5 s duration (**Fig. 1K**). The same criterion was used to
177 identify δ wave-nested spindles (**Fig. 1L**).

178

179 **Data Analysis:**

180 We generated topographical maps of these different waveforms using *plot_topography* function
181 in MATLAB³⁶ as shown in **Fig. 2**. The patients were separated into three groups based on
182 concurrent medications, as detailed in **Table 1**. Patient 1, assigned to Group 1, was on continuous
183 propofol and dexamethasone injections every four hours. Group 2 (patients 2 and 5) was
184 administered levetiracetam (Keppra) twice daily; and Group 3 (patients 3 and 4) was not on
185 medications known to significantly modulate excitatory/inhibitory neural transmission.

186

187 Perilesional electrodes were identified by analyzing post-stroke magnetic resonance imaging
188 (MRI) and computer tomography (CT) neuroimaging. We marked *Stroke electrodes* as the
189 electrodes covering the perilesional region of the brain as shown in **Fig. 1A**. The mirror opposite
190 electrodes on the contralateral side were marked as *Contralateral mirror (CM) electrodes* for
191 further analysis (**Fig. 1A**). The non-mirror opposite electrodes on the contralateral side were
192 marked as *Contralateral non-mirror (CNM) electrodes*.

193

194 We compared the symmetry in NREM oscillations' density across hemispheres for stroke patients
195 and healthy control using a laterality index (**Fig. 3A-F**). Laterality index of 1 meant the average
196 density being analyzed for electrode locations selected across hemisphere is equal. For stroke
197 patients, laterality index was defined as the ratio of mean of stroke electrodes' NREM densities
198 to all contralateral electrodes' NREM densities. For healthy subjects, laterality index was defined
199 as the ratio of the mean of left hemisphere electrodes' NREM densities to right hemisphere
200 electrodes' NREM densities. We also compared the ratio of SO-nested spindles laterality index
201 to δ wave-nested spindles laterality index for stroke vs healthy subjects.

202

203 **Statistical Analysis**

204 We performed a linear mixed effect analysis for all patients comparing the *Stroke electrodes*
205 density vs *Contralateral (CM/CNM) electrodes* density for different waveforms using the
206 *fitlmematrix* function in MATLAB. The linear mixed effect model was fitted by maximum likelihood
207 using the formula below (1) for all the different waveforms identified during EEG data processing.
208 Medication groups were defined as the three groups mentioned earlier. This model considered
209 fixed effects of stroke vs contralateral (CM/CNM) electrodes, and the random effect of electrodes
210 and medication groups depending on the patient and was represented as:

211

212 *Waveform Density ~ Intercept + Electrode + (Intercept + Electrode + Medication Groups | Patient)*

213

214 The above formula/equation is written in a format like the documentation for *fitlmematrix* Matlab
215 function. We compared the *Stroke electrodes* density vs *contralateral (CM/CNM) electrodes*
216 density within each medication group using a two-tailed *t*-test. Contralateral electrodes chosen
217 were mirrored electrodes (Fig. 3G–L) or non-mirrored (Supp. Fig. 2A-F). One-way ANOVA was
218 used to compare the stroke electrodes' NREM oscillations' density of the three different
219 medication groups.

220

221 We calculated r-squared (R^2) and the Cohen's *d* values for the overall linear mixed effect model
222 generated. However, the p-values were specifically assessed for fixed effect of electrodes (stroke
223 vs CM/CNM). Cohen's *d* was used to evaluate if the nested data (all data combined) for NREM
224 oscillations had a small, medium or large experimental effect (Cohen's *d* = 0.20, 0.50 or 0.80,
225 respectively)³⁷. Effect size indicates if research findings have practical significance. Metrics such
226 as Cohen's *d* are better at the planning stage for pilot studies, like the one here, to determine
227 optimal sample sizes for sufficient power in bigger clinical trials³⁸. We summarized the linear

228 mixed effects models results in the tables in the Supplementary Information (**Supplementary**
229 **Tables 1 and 2**).

230

231 **Results**

232 One of the limitations of retrospectively analyzing EEG data gathered from clinical EEG was the
233 heterogeneity encountered across the subjects studied, a contrast from the controlled setting of
234 related rodent studies. With this in mind, we noted that one important similarity across the study
235 population was the indication for EEG: concern for underlying seizure in the setting of altered
236 mental status and recent hemispheric stroke. Accordingly, the patients were all hospitalized, and
237 our analysis benefited from close pharmacologic documentation. We observed differences in
238 laterality of NREM oscillations in stroke patients. We observed higher SOs, δ waves, spindles and
239 spindles nested to SOs and δ waves in the stroke hemisphere. For the patient with subcortical
240 involvement in stroke, we observed a decrease in spindles in the stroke hemisphere. We also
241 observed effects of concurrent medications, particularly medications that might influence neural
242 transmission.

243

244 **NREM oscillation densities symmetry is disturbed acutely in stroke**

245 We found that stroke patients had laterality differences (higher or lower densities in stroke
246 hemisphere) for all NREM oscillations, while the healthy subject NREM oscillation density looked
247 more symmetrical across hemispheres (**Fig. 2**). Comparing the laterality index (LI) (as defined in
248 methods), we found that the LI was closer to 1 on average with low variance for healthy subjects.
249 For stroke patients, LI was higher than 1 on average with high variance. SO density LI's were:
250 stroke: 1.78 ± 0.34 and healthy: 1.05 ± 0.06 (**Fig. 3A**). δ wave density LI's were: stroke: $1.93 \pm$
251 0.44 and healthy: 1.05 ± 0.06 (**Fig. 3B**). Spindle density LI's were: stroke: 1.65 ± 0.27 and healthy:
252 1.05 ± 0.07 (**Fig. 3C**). SO-nested spindles LI's were: stroke: 1.63 ± 0.30 and healthy: $1.09 \pm$
253 0.09 (**Fig. 3D**). δ wave-nested spindles LI's were: stroke: 1.63 ± 0.34 and healthy: 1.05 ± 0.06
254 (**Fig. 3E**). The ratios of nested SO-spindles LI's and δ wave-nested spindle LI's were: stroke: 0.90
255 ± 0.12 and healthy: 1.03 ± 0.03 (**Fig. 3F**).

256

257 **SO and δ wave density increased in perilesional electrodes**

258 Next, we wanted to look at stroke-affected electrodes in stroke patients vis-à-vis the contralateral
259 hemisphere electrodes. In the contralateral hemisphere, we looked at mirrored electrodes (CM,
260 as defined in the methods; **Fig. 3G**), or non-mirrored electrodes (CNM, as defined in methods;
261 **Supp. Fig. 2A**). Consistent with previous reports, we found that stroke electrodes had increased
262 low-frequency (< 4 Hz) oscillations (**Fig. 3H,I**; and **Supp. Fig. 2B,C**)³⁹. Our mixed-effects model
263 showed a significant fixed effect of stroke vs CM and CNM electrodes for a subset of NREM
264 oscillations and overall medium to large effect sizes which included random effects of concurrent
265 pharmaceuticals. We observed higher δ wave density in the perilesional electrodes (**Fig. 3H**;
266 **Supp. Fig. 2B**; **Supp. Table 1** and **2** provide statistical details for stroke versus CM or CNM: p-
267 value is provided for the fixed effect ('electrode'), R^2 and Cohen's d are for the overall model with
268 fixed and random effects, conventions same henceforth). Our comparison of LI's of SOs and δ
269 wave showed that LI's were higher in stroke patients compared to healthy subjects: Mean LI's for
270 SOs were: stroke: 1.78 ± 0.34 and healthy: 1.05 ± 0.06 ; mean LI's for δ wave were: stroke: 1.91
271 ± 0.44 and healthy: 1.05 ± 0.06 . We also observed that Group-1 (propofol and dexamethasone)
272 and Group-3 (others) both had higher δ wave density on stroke electrodes than Group-2
273 (levetiracetam) (**Fig. 3H** and **Supp. Fig. 2B**; stroke electrodes' δ wave density- Group 1: 11.23
274 ± 2.53 counts min^{-1} (mean \pm s.e.m.); Group 2: 9.07 ± 1.32 counts min^{-1} ; Group 3: 12.25 ± 1.59
275 counts min^{-1} , see **Supp. Table 3** for details). Group-2 and Group-3 showed a high density of δ
276 waves in the stroke electrodes vs CM/ CNM electrodes (**Fig. 3H** and **Supp. Fig. 2B**). For SOs,
277 there was a significant fixed effect of stroke vs contralateral electrodes (**Fig. 3I**; **Supp. Fig. 2C**;
278 **Supp. Table 1** and **2** provide p-values and Cohen's d). We observed that the patients in Group-
279 1 did not show a significant difference between stroke or contralateral electrode SO density, while
280 patients in Group-2 showed elevation in SO on stroke electrodes when compared to CM
281 electrodes (**Fig. 3I**). The patients in Group-3 showed increased SOs on stroke electrodes when
282 compared to CM/CNM electrodes (**Fig. 3I**; **Supp. Fig. 2C**; stroke electrodes' SO density: Group

283 1: 2.91 ± 0.71 counts min^{-1} ; Group 2: 2.42 ± 0.37 counts min^{-1} ; Group 3: 3.29 ± 0.45 counts min^{-1}
284 ¹; see **Supp. Table 3** for details).

285

286 For spindle oscillations, LI's were higher in stroke patients (Mean LI spindles, stroke: 1.65 ± 0.27
287 and healthy: 1.05 ± 0.07). Interestingly, in one patient with subcortical involvement with stroke
288 (P4), spindles were higher in the contralesional hemisphere (**Fig. 3J**). Linear mixed-effects model
289 did not show a significant fixed effect for spindle density on stroke versus contralateral electrodes;
290 overall, it was a medium effect size based on the Cohen's d (**Fig. 3J** and **Supp. Fig. 2D**; see
291 **Supp. Table 1** and **2** for p-value and Cohen's d). Spindle density was found to be the highest on
292 the stroke electrodes in the patient in Group-1 (8 ± 0.88 counts min^{-1}), followed by the patients in
293 Group-2 (6.83 ± 0.79 counts min^{-1}), and then patients in Group-3 (5.61 ± 0.44 counts min^{-1}) (**Fig.**
294 **3J** and **Supp Fig. 2D**; see **Supp. Table 3** for details).

295

296 **δ wave-nested spindles and SO-nested spindles**

297 Next we looked at nested oscillations, namely δ wave-nested spindles and SO-nested spindles
298 oscillations that were recently shown to have a competing role in memory consolidation and
299 inverse trend during stroke recovery^{6,14}. LI's for both nested oscillations were observed to be
300 higher in stroke subjects. Mean LI's for SO-nested spindle were: stroke: 1.64 ± 0.29 and healthy:
301 1.09 ± 0.09 ; and mean LI's for δ wave-nested spindle were: stroke: 1.63 ± 0.34 and healthy: 1.05
302 ± 0.06 . Linear mixed effects models of δ wave-nested spindles and SO-nested spindles did not
303 show a significant difference between stroke and contralateral electrodes, whereas these models
304 still had large and medium effect sizes, respectively (**Supp. Table 1** and **2**, **Fig. 3K** and **Supp.**
305 **Fig. 2E**, δ wave-nested spindle density on stroke electrodes: Group-1: 3.49 ± 0.30 counts min^{-1} ;
306 Group-2: 3.25 ± 0.48 counts min^{-1} ; Group-3: 2.70 ± 0.20 counts min^{-1} , also see **Supp. Table 3**;
307 SO-nested spindle density on stroke electrodes: Group 1: 0.92 ± 0.11 counts min^{-1} ; Group 2: 0.86
308 ± 0.17 counts min^{-1} ; Group 3: 0.68 ± 0.06 counts min^{-1} ; see **Fig. 3L**; **Supp. Fig. 2F**; and **Supp.**

309 **Table 3).** Notably, the ratios of SO-nested spindle LI's to δ wave-nested spindle LI's were lower
310 in stroke subjects compared to healthy subjects (Mean LI ratio, stroke: 0.0 ± 0.12 and healthy:
311 1.03 ± 0.03). This might indicate relatively increased δ wave-nested spindles when compared to
312 SO-nested spindles (the oscillations that have a competing role in forgetting vs strengthening,
313 respectively) in the perilesional areas for stroke brain when compared to healthy brain.

314

315 Together, the results in this limited dataset showed that lateral symmetry of NREM oscillations is
316 disturbed in stroke (**Fig. 3A-F**), when compared to healthy subjects. These results also indicated
317 that there is an elevation of SO, δ wave, spindles, and spindle nesting to SOs or δ waves in the
318 perilesional areas post-stroke. Future work can confirm these findings on laterality of sleep
319 oscillations in a larger dataset that also considers the pharmacologic drug interactions.

320

321 **Discussion**

322 Our results show that, post-stroke there is a disturbance in laterality of NREM sleep oscillations
323 across ipsilesional and contralesional hemispheres. Interestingly, hemispherical differences in
324 these nested oscillations were less pronounced in healthy subjects, and oscillations appeared
325 mostly symmetric. We used a laterality index for comparing NREM oscillations, with an emphasis
326 on nested oscillations, *i.e.*, SO-nested spindle oscillations and δ wave-nested spindle oscillations.
327 Our results here can be a precursor to future investigations studying neuromodulation of sleep for
328 rehabilitation. While our findings are preliminary in a small pilot dataset, they report an interesting
329 effect size, suggesting a roadmap for delineating pathological sleep in larger cohorts and optimal
330 therapeutic modulation to promote recovery.

331

332 ***Sleep and plasticity post-stroke***

333 Preclinical and clinical studies that have evaluated local-field potentials (LFPs) in animals^{40,41} and
334 EEG in human patients^{22,42,43} have found increased low-frequency power during awake,
335 spontaneous periods after a stroke. These studies postulate that this increased low-frequency
336 activity could be a marker of cortical injury and loss of subcortical inputs⁴⁴. Our findings on
337 increased SOs and δ waves on stroke electrodes are indicative of similar phenomena. We also
338 found an increase in SO-nested spindles and δ wave-nested spindles on stroke electrodes along
339 with a lower ratio of SO-nested spindle LI's to δ wave-nested spindle LI's (**Fig. 3F**). There is
340 growing evidence that temporal coupling of spindles to SOs is a primary driver of sleep-related
341 plasticity and memory consolidation^{6,30,31,45–48}. SO-nested spindles are linked to spike-time
342 dependent plasticity⁴⁹. These events are also related to reactivation of awake experiences^{30,47,50}.
343 Importantly, disruption of this coupling can impair sleep-related memory consolidation of awake
344 experiences⁶. This same work showed that SO-nested spindles and δ wave-nested spindles
345 compete to either strengthen or forget a memory. Our results indicate that balance of SO-nested
346 spindle density and δ wave-nested spindle density is disturbed across hemispheres in stroke

347 patients compared to healthy subjects. These disruptions might be related to impaired sleep-
348 processing that impact recovery. Interestingly, we observed large to medium effect sizes in our
349 linear mixed-effects models for δ wave-nested spindle and SO-nested spindle where we
350 considered fixed effects of electrodes and random effects of drugs and patients. It is worth noting
351 that drugs like propofol can impact such nested sleep oscillations^{51,52}. It may be important to
352 consider the effects of drugs on sleep oscillations when modulating sleep for stroke recovery.

353

354 ***Propofol and Levetiracetam: effect on sleep***

355 We made observations on different medications that stroke patients received during sleep EEG
356 recordings. Group-1 received propofol, which is one of the most commonly used anesthetics in
357 neurologic intensive care units after stroke or traumatic brain injury⁵³. It exerts its action by
358 potentiating the activity of chloride currents through GABA receptors while blocking voltage-gated
359 sodium channels⁵⁴⁻⁵⁶. The patient on propofol received less than 10 mcg dose of propofol which
360 is not known to impact sleep^{57,58}. Group-2 received levetiracetam (Keppra), which is a newer anti-
361 seizure drug. The exact mechanism for its anti-seizure function is unclear, but it is believed to
362 exert its effect through synaptic vesicle glycoprotein 2A⁵⁹. Through this mechanism, levetiracetam
363 is capable of modulating neurotransmission by inhibiting calcium currents⁶⁰. A study has shown
364 that levetiracetam has minimal effects on sleep parameters like total sleep duration, sleep latency,
365 and sleep efficiency in both healthy humans and partial epilepsy patients⁶¹. However,
366 observations have been made that levetiracetam can reduce motor activity and cause daytime
367 drowsiness in patients^{61,62}. Propofol, by its GABAergic action, causes greater loss of faster
368 frequencies during induction with a shift in alpha frequencies to the frontal regions that reverses
369 post-awakening⁶³⁻⁶⁵. Since our linear mixed-effects model had large to medium effect sizes when
370 considering random effects of drugs on all NREM oscillation, it may be useful to explore the impact
371 of drugs on NREM sleep densities with larger patient cohorts in the future.

372

373 ***Sleep processing and stroke rehabilitation***

374 Recent rodent work profiled SO-nested and δ wave-nested spindles during the course of stroke
375 recovery and found links between these nested structures and motor performance gains during
376 recovery⁶. This work specifically looked into reach task, but clinical rehabilitation approaches can
377 be varied^{66–68}. It is likely that the sleep features of nested oscillations and their putative
378 pathological or physiological roles need to be factored in when considering timing for
379 rehabilitation, irrespective of training type. Previous human and rodent studies have also
380 suggested critical periods in training that can offer long-term benefits^{69–71}. Past studies that have
381 found low-frequency power in awake state in stroke patients might be related to our findings of
382 increased SO and δ waves densities. Future studies where EEG data is captured over longer
383 periods may delineate a transition of δ wave LI, SOs LI, δ wave-nested spindles LI (pathological
384 sleep) and SO-nested spindle LI (physiological sleep), and its relation to critical periods post-
385 stroke for optimal timing of rehabilitation. For example, SO-nested spindles LI and δ wave-nested
386 spindles LI proportions between hemispheres could be targeted to be brought closer to unity as
387 in healthy subjects, to accelerate recovery.

388

389 ***Modulation of sleep as a therapeutic intervention***

390 The results we have presented can form the basis of translational studies in the future that target
391 modulation of sleep post-stroke. Animal studies have suggested that modulation of GABAergic
392 transmission (specifically GABA_A-receptor mediated tonic inhibition) in the perilesional cortex can
393 serve as a therapeutic target to promote recovery, and that blocking of GABA_A-mediated tonic
394 inhibition promoted motor recovery maximally in the first 1 to 2 weeks post-stroke^{72,73}. Both short-
395 term (acute) and long-term chronic infusion of GABA_A inhibiting compounds have been tested,
396 and long-term infusion was shown to be better⁷². Long-term pharmacologic modulation, as shown
397 by Clarkson and colleagues, may be essential to achieve observable motor benefits in human

398 patients. Benefits of long-term infusion include the effect of the drug not only with rehabilitation-
399 specific online (awake) training, but also during offline memory consolidation during sleep.

400

401 Studies such as ours can also help guide electric stimulation-based neuromodulation for
402 augmenting recovery. SOs and δ waves can be easily monitored using EEG in stroke patients.
403 Non-invasive brain stimulation during sleep^{30,47,74,75} can be used to modulate specific NREM
404 oscillations. Invasive stimulation approaches, such as epidural stimulation⁷⁶, can also focus on
405 sleep state to optimize sleep neural processing. Similar approaches have shown that direct
406 epidural motor cortical electric stimulation can enhance awake performance and neural
407 activity^{77,78} and epidural stimulation of subcortical regions can also modulate low-frequency
408 oscillations in the motor cortex⁷⁹. However, such approaches have not been applied during sleep.
409 A recent study suggested that modulating UP states during sleep can enhance recovery¹⁸. It is
410 plausible that future approaches targeting sleep, when delivered in a closed-loop fashion,
411 optimize both awake task performance and its consequent sleep processing, and may lead to
412 greater long-term benefits during rehabilitation. Indices such as laterality index that we pursued
413 here may serve a utilitarian purpose in long-term sleep evaluation post-stroke with different
414 treatments. Our pilot observations here also suggest that concurrent pharmacologic drugs may
415 affect NREM oscillations. Future work can confirm these effects in larger cohorts and if medication
416 effects should be considered when personalizing sleep stimulation.

417

418 ***Limitations***

419 One of the limitations of our study is the lack of a link between sleep architecture and motor status.
420 Future work that studies sleep over longer periods post-stroke and assesses motor functionality
421 longitudinally may find more robust links between sleep processing and related gains in motor
422 performance. It is also possible that, with more effective task performance and associated awake
423 neural dynamics^{77,78,80}, efficacy of sleep may change. Precise disruption of sleep processing,

424 specifically SO-spindle coupling in healthy animals, was sufficient to prevent offline performance
425 gains, even when awake task learning was robust⁶. This work also showed that precise
426 modulation of the extent of sleep spindle-SO coupling in healthy animals could either enhance or
427 impede sleep processing. While extension of this work in stroke animals has shown SO-spindle
428 nesting resurges with recovery¹⁴, future animal studies that modulate sleep microarchitecture can
429 study if artificial manipulation of SO-nested spindles or δ wave-nested spindles after stroke are
430 sufficient to enhance or impair motor recovery. Our work here showed that both SO-nested
431 spindles and δ wave-nested spindles increased in stroke affected hemisphere acutely post-stroke.
432 Future work that monitors these oscillations for longer periods can assess if SO-nested spindles
433 should increase with respect to δ wave-nested spindles for better recovery in human stroke
434 patients.

435

436 As a pilot retrospective study, one more limitation is a smaller sample size with varying lesion
437 location and volume. While we focused on getting patients with cortical lesions and MCA
438 involvement, sleep may have been impacted differently for one patient with a primarily subcortical
439 stroke. For example, a stroke in the white matter that impacts thalamocortical networks may also
440 impact spindles. Future work with larger sample sizes and incorporation of motor task
441 rehabilitation training and drug manipulation, may provide stronger links to engineer sleep to
442 benefit motor recovery post-stroke.

443

444 **Author Contributions**
445 B.K.S., R.R., C.M.R. and T.G. contributed to the design of the study. R.R., B.K.S. and A.A.
446 contributed to the analysis of the data. B.K.S., J.M.C. and C.M.R., contributed to the acquisition
447 of data. B.K.S., R.R., C.M.R. and T.G. contributed to the interpretation of the data. B.K.S., R.R.,
448 C.M.R. and T.G. contributed to the draft of the article.

449

450 **Acknowledgment**

451 We thank the patients that participated in this study. We thank Daniel W. Bowen for manuscript
452 review and edits. We thank the Cedars-Sinai Neurophysiology team that helped in EEG data
453 acquisition and consent especially Cody Holland, Erica Quan, and Ho Duong. We thank Karunesh
454 Ganguly and Jaekyung Kim for NREM sleep oscillations detection Matlab code. The study was
455 supported by American Heart Association (AHA; predoctoral fellowship 23PRE1018175 to R.R.,
456 postdoctoral fellowship 897265 to A.A. and career development award 847486 to T.G.), National
457 Institutes of Health (NIH)'s National Institute for Neurological Disorders and Stroke (NINDS)
458 (R00NS097620 and R01NS128469 to T.G.), National Science Foundation (award 2048231 to
459 T.G.) and Cedars-Sinai Medical Center. A.A. also received support through Cedars-Sinai's Center
460 for Neural Science and Medicine postdoctoral fellowship.

461

462 **Conflict of Interest**

463 The authors report no conflicts of interest relevant to this study.

464

465 **Data Availability Statement**

466 The data that support the findings of this study are available from the corresponding author upon
467 reasonable request.

468

469 **References**

470

471 1. Ganguly K, Poo MM. Activity-dependent neural plasticity from bench to bedside. *Neuron*
472 2013;80(3):729–41.

473 2. Ganguly K, Khanna P, Morecraft RJ, Lin DJ. Modulation of neural co-firing to enhance
474 network transmission and improve motor function after stroke. *Neuron* 2022;110(15):2363–
475 2385.

476 3. Norrving B, Kissela B. The global burden of stroke and need for a continuum of care.
477 *Neurology* 2013;80:S5–12.

478 4. Gulati T, Guo L, Ramanathan DS, et al. Neural reactivations during sleep determine
479 network credit assignment. *Nature Neuroscience* 2017;20:1277–1284.

480 5. Ramanathan DS, Gulati T, Ganguly K. Sleep-Dependent Reactivation of Ensembles in
481 Motor Cortex Promotes Skill Consolidation. *PLoS Biol* 2015;13:e1002263.

482 6. Kim J, Gulati T, Ganguly K. Competing Roles of Slow Oscillations and Delta Waves in
483 Memory Consolidation versus Forgetting. *Cell* 2019;179(2):514–526 e13.

484 7. Gulati T, Ramanathan DS, Wong CC, Ganguly K. Reactivation of emergent task-related
485 ensembles during slow-wave sleep after neuroprosthetic learning. *Nat Neurosci*
486 2014;17(8):1107–13.

487 8. Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in
488 memory consolidation: a question of global versus local processes? *Trends Neurosci*
489 2014;37:10–19.

490 9. Stickgold R. Sleep-dependent memory consolidation. *Nature* 2005;437:1272–1278.

491 10. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular
492 homeostasis to memory consolidation and integration. *Neuron* 2014;81:12–34.

493 11. de Vivo L, Bellesi M, Marshall W, et al. Ultrastructural evidence for synaptic scaling across
494 the wake/sleep cycle. *Science* 2017;355:507–510.

495 12. Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during
496 sleep. *Nat Neurosci* 2019;22(10):1598–1610.

497 13. Ebajemito JK, Furlan L, Nissen C, Sterr A. Application of Transcranial Direct Current
498 Stimulation in Neurorehabilitation: The Modulatory Effect of Sleep. *Frontiers in neurology*
499 2016;7:54.

500 14. Kim J, Guo L, Hishinuma A, et al. Recovery of consolidation after sleep following stroke—
501 interaction of slow waves, spindles, and GABA. *Cell Reports* 2022;38(9):110426.

502 15. Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process
503 of Skills Acquisition After Stroke? *Front Neurol* 2018;9:1002.

504 16. Baumann CR, Kilic E, Petit B, et al. Sleep EEG Changes After Middle Cerebral Artery
505 Infarcts in Mice: Different Effects of Striatal and Cortical Lesions. *Sleep*
506 2006;29(10):1339–1344.

507 17. Duss SB, Seiler A, Schmidt MH, et al. The role of sleep in recovery following ischemic
508 stroke: A review of human and animal data. *Neurobiology of Sleep and Circadian Rhythms*
509 2017;2:94–105.

510 18. Facchin L, Schöne C, Mensen A, et al. Slow Waves Promote Sleep-Dependent Plasticity
511 and Functional Recovery after Stroke. *J. Neurosci.* 2020;40(45):8637–8651.

512 19. Gao B, Cam E, Jaeger H, et al. Sleep Disruption Aggravates Focal Cerebral Ischemia in the
513 Rat. *Sleep* 2010;33(7):879–887.

514 20. Giubilei F, Iannilli M, Vitale A, et al. Sleep patterns in acute ischemic stroke. *Acta
515 Neurologica Scandinavica* 1992;86(6):567–571.

516 21. Gottselig JM, Bassetti CL, Achermann P. Power and coherence of sleep spindle frequency
517 activity following hemispheric stroke. *Brain* 2002;125(2):373–383.

518 22. Poryazova R, Huber R, Khatami R, et al. Topographic sleep EEG changes in the acute and
519 chronic stage of hemispheric stroke. *Journal of Sleep Research* 2015;24(1):54–65.

520 23. Siengsukon CF, Boyd LA. Sleep to learn after stroke: Implicit and explicit off-line motor
521 learning. *Neuroscience Letters* 2009;451(1):1–5.

522 24. Lemke SM, Ramanathan DS, Darevksy D, et al. Coupling between motor cortex and
523 striatum increases during sleep over long-term skill learning. *eLife* 2021;10:e64303.

524 25. Born J, Rasch B, Gais S. Sleep to Remember. *Neuroscientist* 2006;12(5):410–424.

525 26. Rothschild G, Eban E, Frank LM. A cortical–hippocampal–cortical loop of information
526 processing during memory consolidation. *Nat Neurosci* 2017;20(2):251–259.

527 27. Sirota A, Csicsvari J, Buhl D, Buzsáki G. Communication between neocortex and
528 hippocampus during sleep in rodents. *Proceedings of the National Academy of Sciences*
529 2003;100(4):2065–2069.

530 28. Walker MP, Brakefield T, Morgan A, et al. Practice with sleep makes perfect: sleep-
531 dependent motor skill learning. *Neuron* 2002;35:205–211.

532 29. Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory
533 and planning. *Hippocampus* 2015;25(10):1073–1188.

534 30. Cairney SA, Guttesen A á V, El Marj N, Staresina BP. Memory Consolidation Is Linked to
535 Spindle-Mediated Information Processing during Sleep. *Current Biology* 2018;28(6):948-
536 954.e4.

537 31. Latchoumane C-FV, Ngo H-VV, Born J, Shin H-S. Thalamic Spindles Promote Memory
538 Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and
539 Hippocampal Rhythms. *Neuron* 2017;95(2):424-435.e6.

540 32. Fernandez LMJ, Lüthi A. Sleep Spindles: Mechanisms and Functions. *Physiological
541 Reviews* 2020;100(2):805-868.

542 33. Cox R, Fell J. Analyzing human sleep EEG: A methodological primer with code
543 implementation. *Sleep Medicine Reviews* 2020;54:101353.

544 34. Cox R. analyzing human sleep EEG [Internet]. 2020;[cited 2023 Sep 1] Available from:
545 <https://zenodo.org/record/3929730>

546 35. Silversmith DB, Lemke SM, Egert D, et al. The Degree of Nesting between Spindles and
547 Slow Oscillations Modulates Neural Synchrony. *J Neurosci* 2020;40(24):4673-4684.

548 36. Martínez-Cagigal V. Topographic EEG/MEG plot [Internet]. 2023;Available from:
549 <https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot>

550 37. Aarts E, Verhage M, Veenvliet JV, et al. A solution to dependency: using multilevel
551 analysis to accommodate nested data. *Nat Neurosci* 2014;17(4):491-6.

552 38. Sullivan GM, Feinn R. Using Effect Size—or Why the P Value Is Not Enough. *J Grad Med
553 Educ* 2012;4(3):279-282.

554 39. Cassidy JM, Wodeyar A, Wu J, et al. Low-Frequency Oscillations Are a Biomarker of
555 Injury and Recovery After Stroke. *Stroke* 2020;51(5):1442-1450.

556 40. Carmichael ST, Chesselet MF. Synchronous neuronal activity is a signal for axonal
557 sprouting after cortical lesions in the adult. *J Neurosci* 2002;22:6062-6070.

558 41. Gulati T, Won SJ, Ramanathan DS, et al. Robust neuroprosthetic control from the stroke
559 perilesional cortex. *The Journal of Neuroscience* 2015;35:8653-61.

560 42. Tu-Chan AP, Natraj N, Godlove J, et al. Effects of somatosensory electrical stimulation on
561 motor function and cortical oscillations. *J NeuroEngineering Rehabil* 2017;14(1):113.

562 43. van Dellen E, Hillebrand A, Douw L, et al. Local polymorphic delta activity in cortical
563 lesions causes global decreases in functional connectivity. *NeuroImage* 2013;83:524-532.

564 44. Topolnik L, Steriade M, Timofeev I. Partial Cortical Deafferentation Promotes
565 Development of Paroxysmal Activity. *Cerebral Cortex* 2003;13(8):883-893.

566 45. Helfrich RF, Mander BA, Jagust WJ, et al. Old Brains Come Uncoupled in Sleep: Slow
567 Wave-Spindle Synchrony, Brain Atrophy, and Forgetting. *Neuron* 2018;97(1):221-230.e4.

568 46. Maingret N, Girardeau G, Todorova R, et al. Hippocampo-cortical coupling mediates
569 memory consolidation during sleep. *Nat Neurosci* 2016;19(7):959–964.

570 47. Antony JW, Piloto L, Wang M, et al. Sleep Spindle Refractoriness Segregates Periods of
571 Memory Reactivation. *Current Biology* 2018;28(11):1736-1743.e4.

572 48. Staresina BP, Bergmann TO, Bonnefond M, et al. Hierarchical nesting of slow oscillations,
573 spindles and ripples in the human hippocampus during sleep. *Nat Neurosci*
574 2015;18(11):1679–1686.

575 49. Bergmann TO, Born J. Phase-Amplitude Coupling: A General Mechanism for Memory
576 Processing and Synaptic Plasticity? *Neuron* 2018;97(1):10–13.

577 50. Peyrache A, Khamassi M, Benchenane K, et al. Replay of rule-learning related neural
578 patterns in the prefrontal cortex during sleep. *Nat Neurosci* 2009;12:919–926.

579 51. Bhattacharya S, Donoghue JA, Mahnke M, et al. Propofol Anesthesia Alters Cortical
580 Traveling Waves. *Journal of Cognitive Neuroscience* 2022;34(7):1274–1286.

581 52. Soplata AE, Adam E, Brown EN, et al. Rapid thalamocortical network switching mediated
582 by cortical synchronization underlies propofol-induced EEG signatures: a biophysical
583 model [Internet]. 2023;2022.02.17.480766.[cited 2023 Apr 10] Available from:
584 <https://www.biorxiv.org/content/10.1101/2022.02.17.480766v2>

585 53. Bauerschmidt A, Al-Bermani T, Ali S, et al. Modern Sedation and Analgesia Strategies in
586 Neurocritical Care. *Curr Neurol Neurosci Rep* 2023;

587 54. Kang Y, Saito M, Toyoda H. Molecular and Regulatory Mechanisms of Desensitization and
588 Resensitization of GABA_A Receptors with a Special Reference to Propofol/Barbiturate. *Int
589 J Mol Sci* 2020;21(2):563.

590 55. Ouyang W, Wang G, Hemmings HC. Isoflurane and propofol inhibit voltage-gated sodium
591 channels in isolated rat neurohypophyseal nerve terminals. *Mol Pharmacol* 2003;64(2):373–
592 381.

593 56. Tang P, Eckenhoff R. Recent progress on the molecular pharmacology of propofol.
594 *F1000Res* 2018;7:123.

595 57. Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep
596 quality in mechanically ventilated critically ill patients: a physiological study. *Intensive
597 Care Med* 2012;38(10):1640–1646.

598 58. Yue X-F, Wang A-Z, Hou Y-P, Fan K. Effects of propofol on sleep architecture and sleep–
599 wake systems in rats. *Behavioural Brain Research* 2021;411:113380.

600 59. Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding
601 site for the antiepileptic drug levetiracetam. *Proc Natl Acad Sci U S A* 2004;101(26):9861–
602 9866.

603 60. Luz Adriana PM, Blanca Alcira RM, Itzel Jatziri CG, et al. Effect of levetiracetam on
604 extracellular amino acid levels in the dorsal hippocampus of rats with temporal lobe
605 epilepsy. *Epilepsy Research* 2018;140:111–119.

606 61. Bell C, Vanderlinden H, Hiersemelz R, et al. The effects of levetiracetam on objective
607 and subjective sleep parameters in healthy volunteers and patients with partial epilepsy.
608 *Journal of Sleep Research* 2002;11(3):255–263.

609 62. Bazil CW, Battista J, Basner RC. Effects of levetiracetam on sleep in normal volunteers.
610 *Epilepsy & Behavior* 2005;7(3):539–542.

611 63. Murphy M, Bruno M-A, Riedner BA, et al. Propofol Anesthesia and Sleep: A High-Density
612 EEG Study. *Sleep* 2011;34(3):283–291.

613 64. Yeh W-C, Lu S-R, Wu M-N, et al. The impact of antiseizure medications on
614 polysomnographic parameters: a systematic review and meta-analysis. *Sleep Medicine*
615 2021;81:319–326.

616 65. Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and
617 recovery of consciousness from propofol. *Proc Natl Acad Sci U S A* 2013;110(12):E1142–
618 1151.

619 66. Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed Definitions and a Shared Vision for
620 New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation
621 Roundtable Taskforce. *Neurorehabil Neural Repair* 2017;31(9):793–799.

622 67. Pearson-Fuhrhop KM, Kleim JA, Cramer SC. Brain Plasticity and Genetic Factors. *Topics*
623 in Stroke Rehabilitation

2009;16(4):282–299.

624 68. Ganguly K, Byl NN, Abrams GM. Neurorehabilitation: Motor recovery after stroke as an
625 example. *Annals of Neurology* 2013;74(3):373–381.

626 69. Dromerick AW, Lang CE, Birkenmeier RL, et al. Very Early Constraint-Induced
627 Movement during Stroke Rehabilitation (VECTORS): A single-center RCT. *Neurology*
628 2009;73(3):195–201.

629 70. Dromerick AW, Geed S, Barth J, et al. Critical Period After Stroke Study (CPASS): A
630 phase II clinical trial testing an optimal time for motor recovery after stroke in humans.
631 *Proceedings of the National Academy of Sciences* 2021;118(39):e2026676118.

632 71. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting Neurorehabilitation
633 Right: What Can Be Learned From Animal Models? *Neurorehabil Neural Repair*
634 2012;26(8):923–931.

635 72. Clarkson AN, Huang BS, MacIsaac SE, et al. Reducing excessive GABA-mediated tonic
636 inhibition promotes functional recovery after stroke. *Nature* 2010;468(7321):305–309.

637 73. He W-M, Ying-Fu L, Wang H, Peng Y-P. Delayed treatment of α 5 GABAA receptor
638 inverse agonist improves functional recovery by enhancing neurogenesis after cerebral
639 ischemia-reperfusion injury in rat MCAO model. *Sci Rep* 2019;9(1):2287.

640 74. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep
641 potentiates memory. *Nature* 2006;444:610–613.

642 75. Ngo H-VV, Martinetz T, Born J, Mölle M. Auditory Closed-Loop Stimulation of the Sleep
643 Slow Oscillation Enhances Memory. *Neuron* 2013;78(3):545–553.

644 76. Levy RM, Harvey RL, Kissela BM, et al. Epidural Electrical Stimulation for Stroke
645 Rehabilitation: Results of the Prospective, Multicenter, Randomized, Single-Blinded
646 Everest Trial. *Neurorehabil Neural Repair* 2016;30(2):107–119.

647 77. Khanna P, Totten D, Novik L, et al. Low-frequency stimulation enhances ensemble co-
648 firing and dexterity after stroke [Internet]. *Cell* 2021;Available from:
649 <https://www.ncbi.nlm.nih.gov/pubmed/33571430>

650 78. Ramanathan DS, Guo L, Gulati T, et al. Low-frequency cortical activity is a
651 neuromodulatory target that tracks recovery after stroke. *Nat Med* 2018;24(8):1257–1267.

652 79. Abbasi A, Danielsen NP, Leung J, et al. Epidural cerebellar stimulation drives widespread
653 neural synchrony in the intact and stroke perilesional cortex. *Journal of NeuroEngineering
654 and Rehabilitation* 2021;18(1):89.

655 80. Guo L, Kondapavulur S, Lemke SM, et al. Coordinated increase of reliable cortical and
656 striatal ensemble activations during recovery after stroke. *Cell Reports* 2021;36(2):109370.

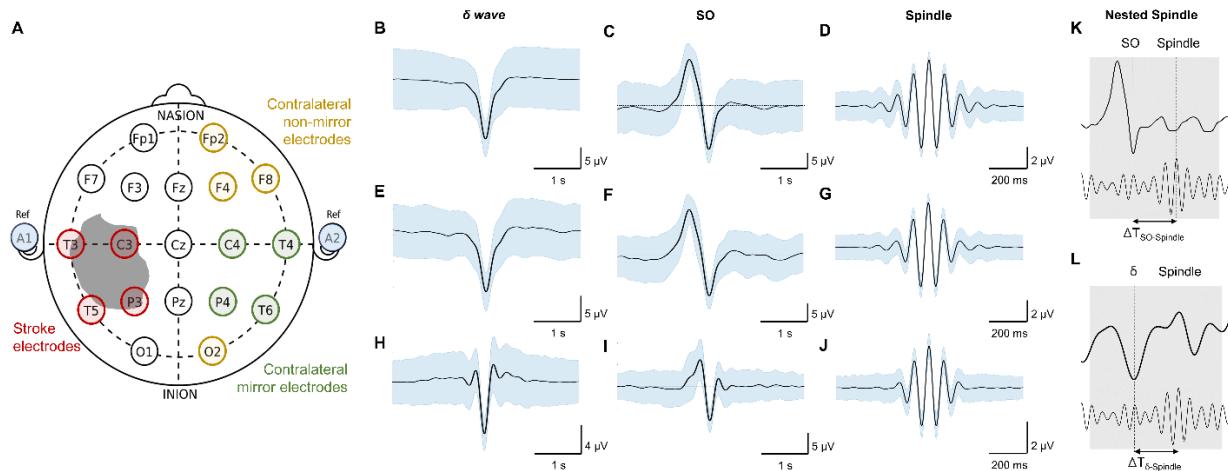
657

658

659

660

661


662

663

664

665

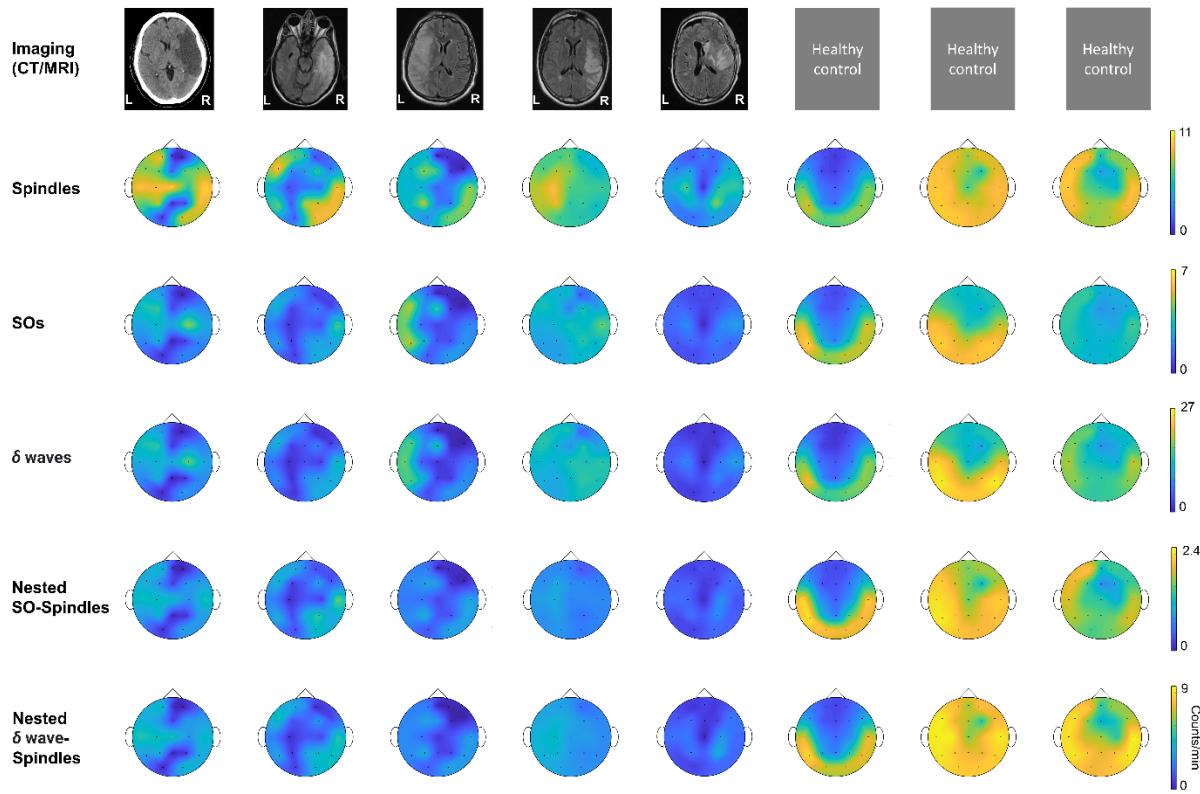
666 **List of Figures**

667

668 **Figure 1. Stroke versus contralateral mirror/non-mirror electrode assignment and NREM**
669 **sleep oscillations. A**, 10–20 system for EEG (used in stroke patients) showing locations of all
670 electrode locations recorded with an illustration of stroke. Grey shaded area shows a
671 representative stroke perilesional region. Blue shaded circles represent auricular electrodes (A1,
672 A2) that were used for referencing in stroke patients. Red circles indicate identified *stroke*
673 electrodes based on proximity to the perilesional area. Green circles indicate identified
674 *contralateral mirror* (CM) electrodes which are contralateral and mirrored to identified *stroke*
675 electrodes. Yellow circles indicate identified *contralateral non-mirror* (CNM) electrodes which are
676 electrodes other than *contralateral mirror* (CM) electrodes in non-stroke hemisphere. **B**, Mean δ –
677 wave along with s.e.m. (standard error of mean) bands (blue) for all identified δ –waves from an
678 example *stroke electrode* channel from EEG data recording for one stroke patient. **C**, Same as **B**
679 for SO waveforms. **D**, Same as **B** for spindle waveforms. **E**, **F**, **G**, Same as **B**, **C**, **D** for one
680 example *contralateral mirror* electrode channel for a stroke patient. **H**, **I**, **J** Same as **B**, **C**, **D** for
681 one example channel for a healthy subject. All waveforms are centered around the detected
682 states. **K**, Illustration of SO-spindle nesting. Nesting window was –0.5 to +1.0 s from SO’s UP
683 state as shown. **L**, Illustration of δ –wave-spindle nesting. Nesting window was –0.5 to +1.0 s from
684 δ UP state as depicted.

685

686


687

688

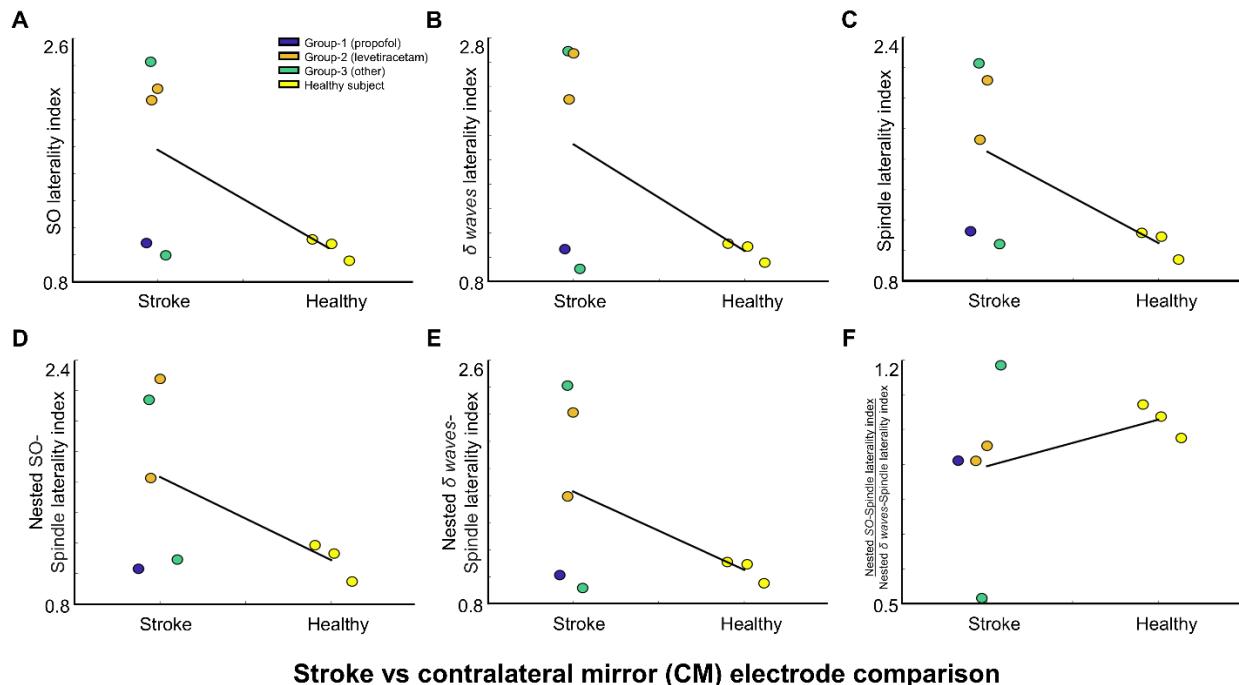
689

690

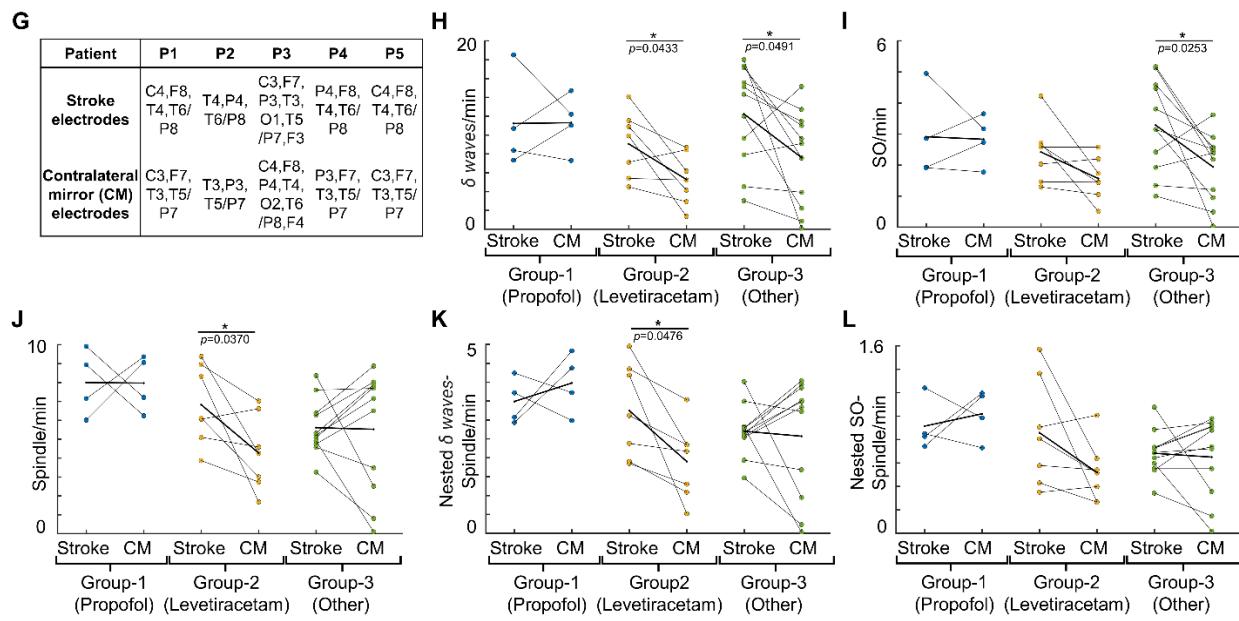
691

692

693 **Figure 2. Imaging data and topographical density plots for different NREM oscillations.** Top
 694 to bottom: **Imaging data:** CT (computed tomography) image for patient P1, T2 sequences of MRI
 695 (magnetic resonance imaging) images for patients P2 to P5; no imaging data available for healthy
 696 subjects (P6 to P8). Radiologic imaging has been flipped horizontally to align with topographic
 697 density maps; *i.e.*, image left, and right are ipsilateral to patient left and right. Left and right are
 698 marked in imaging figures (P1-P5) and apply to density topographical maps below them;
 699 **Topographical maps** for detected **spindle** density (count/min) during NREM sleep for all
 700 subjects; **Topographical maps** for detected **SO** density (count/min) during NREM sleep for all
 701 subjects; **Topographical maps** for detected **δ waves**' density (count/min) during NREM sleep
 702 for all subjects; **Topographical maps** for detected **nested SO-spindle** density (count/min) during
 703 NREM sleep for all subjects; **Topographical maps** for detected **δ wave-nested-spindle** density
 704 (count/min) during NREM sleep for all subjects. Color map shown at right for all the panels in a
 705 row.


706

707


708

709

Laterality index comparison

Stroke vs contralateral mirror (CM) electrode comparison

710

711 **Figure 3. NREM oscillations' laterality in stroke patient's vs healthy controls; and NREM**
712 **oscillations' densities for different patient groups on stroke versus contralateral mirror**
713 **(CM) electrodes.** For stroke patients' laterality index (LI) is defined as ratio of mean of stroke

714 **electrode NREM densities to all contralateral electrode NREM densities. For healthy subjects'**

715 **laterality index is defined as ratio of mean of left hemisphere electrode NREM densities to right**

716 **hemisphere electrode NREM densities. A, LI for SO density for stroke patients and healthy**

717 **controls. Black line connects the mean of stroke and control group. Dots represent different**

718 **patients/subjects; blue dots: Patients in propofol medication group; orange dots: Patients in**

719 levetiracetam medication group; **green dots**: Stroke patients in other medication group; **yellow**
720 **dots**: Healthy subjects. **B**, Same as **A** for δ wave density LI. **C**, Same as **A** for spindle density LI.
721 **D**, Same as **A** for nested SO-spindle density LI. **E**, Same as **A** for Nested δ wave-spindle density
722 LI. **F**, Ratio of LI for nested SO-spindle density and nested δ wave-spindle density. **G**, Table
723 showing selected *stroke* and *contralateral mirror electrodes* (CM) for all patients. **H**, Comparison
724 of δ wave density (count/min) on *stroke* versus *CM electrodes* for patients on different
725 medications. Thick black line shows the mean values within the group. Thinner black lines join
726 pair of stroke and CM electrode. Dots represent the NREM oscillations' density for single
727 electrode. **I**, Same as **H** for SO density. **J**, Same as **H** for spindle density. **K**, Same as **H** for nested
728 δ wave-nested spindle density. **L**, Same as **H** for SO-nested spindle density. *: statistically
729 significant p values for two-tailed t -test.
730
731

Patient	P1	P2	P3	P4	P5
Age	56	68	51	56	52
Sex	F	F	M	M	M
Race/ethnicity	Hispanic	White/Caucasian	Hispanic	Black/African-American	White/Caucasian
Stroke location	R MCA	R MCA	L MCA	R MCA	R MCA
NIHSS	3	N/A	21	N/A	N/A
Time of recording after stroke	2 days	2 days	3 days	3 days	3 days
Comorbidities	COVID	Partial status epilepticus (right temporal)	ESRD, HFrEF	Pituitary macroadenoma, Central hypoT	Ruptured R MCA aneurysm
Sleep disorders (e.g., obstructive sleep apnoea)	No	No	No	No	No
Circadian rhythm disruption	No	No	No	No	No
Alcohol	Yes	No	N/A	No	No
Smoking	No	No	N/A	No	No
Rx (concurrent)	Propofol gtt Dexamethasone Remdesivir	Levetiracetam Acyclovir Vancomycin Cefepime	ASA/Plavix	ASA Levothyroxine	Levetiracetam Levophed

Table 1. Patient clinical information. From top to bottom, information for five patients P1 to P5. Patient age, sex, race/ethnicity, stroke location, NIHSS, days from stroke when the EEG data was acquired, associated co-morbidities, sleep disorders, circadian rhythm disruption, alcohol and smoking substance consumption status, and concurrent medications during EEG recording are specified. Abbreviations: NIHSS: National Institutes of Health Stroke Scale; R/ L MCA: Right/ left middle cerebral artery; COVID: Coronavirus disease - 2019; ESRD: End-stage renal disease; HFrEF: Heart failure with reduced ejection fraction; HypoT: hypothyroidism; ASA: Acetylsalicylic Acid (Aspirin); N/A: not available. Patient groups: **blue**: patients in propofol medication group (Group-1); **orange**: patients in levetiracetam medication group (Group-2); **green**: patients in other medication group (Group-3).

747 **Supplementary Information**

748
749 The supplementary information below includes a table on the statistical details of stroke
750 versus contralateral mirrored (CM) electrodes' NREM oscillations comparisons (**Supp.**
751 **Table 1**), and stroke versus contralateral non-mirrored (CNM) electrodes' NREM
752 oscillations comparisons (**Supp. Table 2**); and a table on one-way ANOVA results for just
753 stroke electrodes comparison in 3 medication-based groupings (**Supp. Table 3**).
754 Supplementary figure (**Supp. Fig. 1**) shows the topographical density plots for different
755 NREM oscillations with each panel with specific colormap scale for easier visualization of
756 trends. Supplementary figure (**Supp. Fig. 2**) is included at the end that compares the
757 NREM oscillations' densities for different patient groups on stroke verses contralateral
758 non-mirror (CNM) electrodes.

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

NREM oscillation density	Fixed-effects coefficients (95% CIs)				Random effects covariance parameters (95% CIs)						Model	
	Intercept		Electrode		Intercept	Electrode	Medication group	Intercept– Electrode	Intercept– Medication group	Electrode– Medication group		
	<i>tStat</i> ₄₂	<i>p</i> value	<i>tStat</i> ₄₂	<i>p</i> value	<i>std</i>	<i>std</i>	<i>std</i>	<i>corr.</i>	<i>corr.</i>	<i>corr.</i>	<i>Cohen's</i> <i>d</i>	<i>R</i> ²
Spindle	6.9079	1.9688 $\times 10^{-8}$	0.85155	0.39929	1.7457	1.45640	0.54078	-0.95336	-0.61764	0.82622	0.5651	0.2719
SO	7.2316	6.7928 $\times 10^{-9}$	3.0559	0.00389	0.6636	0.50056	0.46378	-1	-1	1	0.5346	0.2582
Delta (δ)	5.4601	2.3645 $\times 10^{-6}$	3.6979	0.00063	5.0144	2.90430	2.559	-1	-1	1	0.7788	0.3629
Nested SO- Spindle	7.1156	9.939 $\times 10^{-9}$	0.82454	0.41429	0.1458	0.18701	0.14452	-0.99279	-0.2272	0.34227	0.6823	0.3229
Nested δ - Spindle	5.6176	1.4069 $\times 10^{-6}$	0.56857	0.57268	1.0624	0.98551	0.43146	-0.9972	-0.56061	0.621	0.9031	0.4115

778

779 **Supplementary Table 1.** Linear mixed effect model results for stroke vs contralateral
 780 mirrored (CM) electrode analysis. *tStat*_{df}: t-statistic and df: degree of freedom; *std*:
 781 standard deviation; *corr.*: correlation; *R*²: coefficient of determination.

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

NREM oscillation density	Fixed-effects coefficients (95% CIs)				Random effects covariance parameters (95% CIs)						Model	
	Intercept		Electrode		Intercept	Electrode	Medication group	Intercept– Electrode	Intercept– Medication group	Electrode– Medication group		
	<i>tStat₃₈</i>	<i>p</i> value	<i>tStat₃₈</i>	<i>p</i> value	<i>std</i>	<i>std</i>	<i>std</i>	<i>corr.</i>	<i>corr.</i>	<i>corr.</i>	<i>Cohen's</i> <i>d</i>	<i>R</i> ²
Spindle	6.3677	1.7844 x10 ⁻⁷	1.9379	0.060086	3.1972	2.6202	1.4867	-0.96893	-0.91878	0.98787	0.5043	0.2445
SO	5.5363	2.4625 x10 ⁻⁶	3.5961	0.00091675	1.3433	0.99767	0.85578	-1	-1	NaN	0.5522	0.2662
Delta (δ)	4.9445	1.579 x10 ⁻⁵	3.9165	0.00036151	6.905	4.4912	4.0991	-1	-1	1	0.6900	0.3261
Nested SO- Spindle	6.1161	3.9458 x10 ⁻⁷	1.8632	0.070179	0.42091	0.41908	0.23671	-0.99061	-0.95263	0.98526	0.6246	0.2981
Nested δ- Spindle	6.1211	3.8835 x10 ⁻⁷	1.8995	0.065103	1.8198	1.6238	0.93552	-0.99626	-0.95183	0.97478	0.6374	0.3036

803

804 **Supplementary Table 2.** Linear mixed effect model results for stroke vs contralateral
 805 non-mirrored (CNM) electrode analysis. *tStat_{df}*: t-statistic and *df*: degree of freedom; *std*:
 806 standard deviation; *corr.*: correlation; *R*²: coefficient of determination.

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

NREM oscillation density	Group			Error			<i>F</i>	<i>p</i>
	SS	df	MS	SS	df	MS		
Spindle	44.844	2	22.4218	137.218	19	7.22	3.1	0.0681
SO	7.8303	2	3.91514	82.5297	19	4.34367	0.9	0.4227
Delta (δ)	106.01	2	53.0062	1041.95	19	54.8394	0.97	0.3983
Nested SO- Spindle	0.53641	2	0.26821	4.3391	19	0.23153	1.16	0.3352
Nested δ- Spindle	5.7491	2	2.87454	37.112	19	1.95326	1.47	0.2546

828

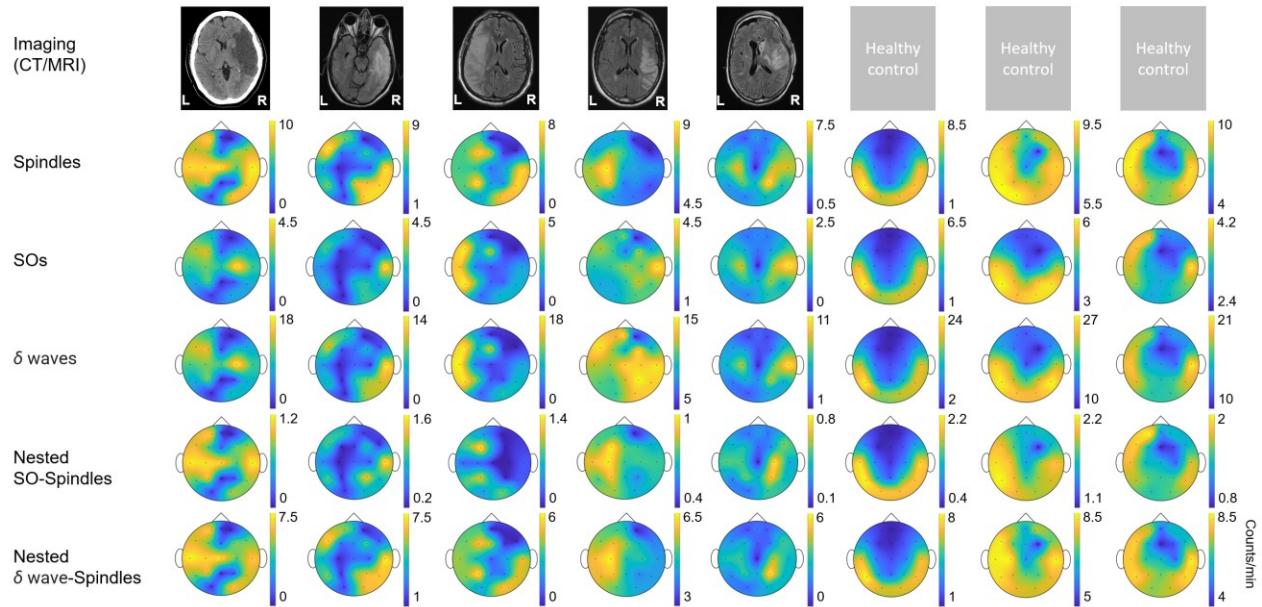
829 **Supplementary Table 3.** One-way ANOVA results for stroke electrode analysis. SS:
 830 sum of squares; df: degree of freedom; MS: mean square; *F*: *F*-statistic (ratio of two
 831 MS); *p*: significance values.

832

833

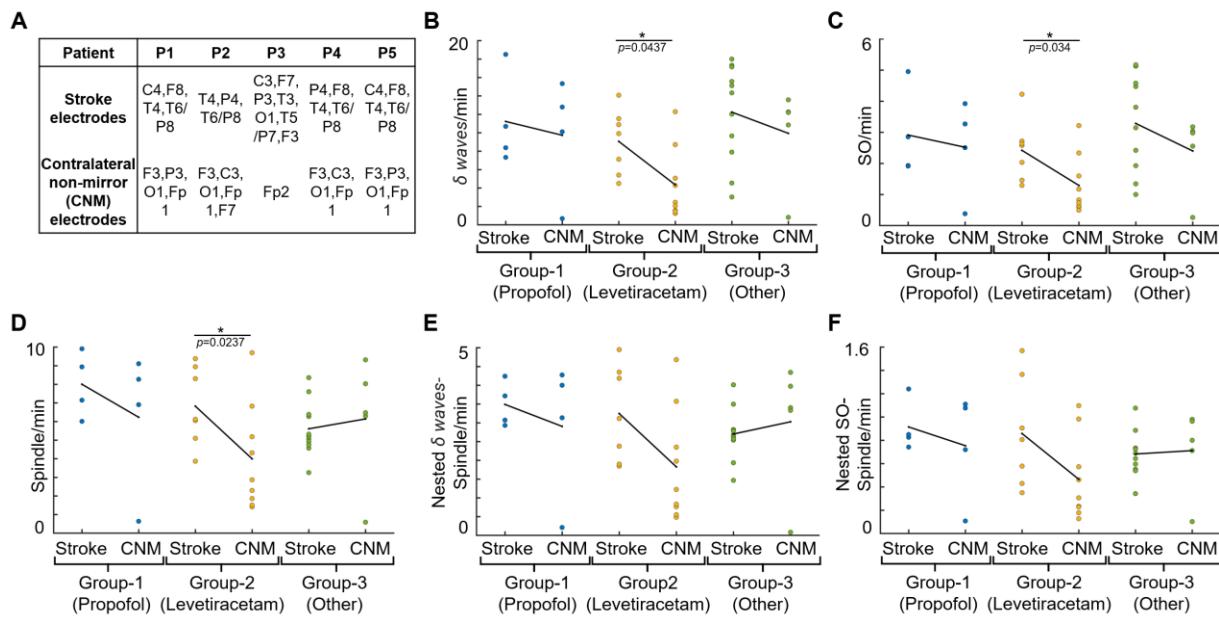
834

835


836

837

838


839

840

841
842
843 **Supplementary Figure 1. Imaging data and topographical density plots for different**
844 **NREM oscillations.** Top to bottom: **Imaging data:** CT (computed tomography) image for
845 patient P1, T2 sequences of MRI (magnetic resonance imaging) images for patients P2
846 to P5; no imaging data available for healthy subjects (P6 to P8). Radiologic imaging has
847 been flipped horizontally to align with topographic density maps, *i.e.*, image left, and right
848 are ipsilateral to patient left and right. Left and right are marked in imaging figures (P1-
849 P5) and apply to density topographical maps below them; **Topographical maps** for
850 detected **spindle** density (count/min) during NREM sleep for all subjects; **Topographical**
851 **maps** for detected **SO** density (count/min) during NREM sleep for all subjects;
852 **Topographical maps** for detected **δ waves**' density (count/min) during NREM sleep for
853 all subjects; **Topographical maps** for detected **nested SO-spindle** density (count/min)
854 during NREM sleep for all subjects; **Topographical maps** for detected **δ wave-nested-**
855 **spindle** density (count/min) during NREM sleep for all subjects. Colormap scale shown
856 at right individually for each topographical plot.

Stroke vs contralateral non-mirror (CNM) electrode comparison

857
858
859
860
861
862
863
864
865
866
867
868

Supplementary Figure 2. NREM oscillations' densities for different patient groups on stroke versus contralateral non-mirror (CNM) electrodes. A, Table showing selected *stroke* and *contralateral non-mirror electrodes* (CNM) for all patients. **B**, Comparison of δ wave density (count/min) on *stroke* versus *CNM electrodes* for patients on different medications. Black line shows the mean values within the group. Dots represent the NREM oscillations' density for single electrode. **C**, Same as **B** for SO density. **D**, Same as **B** for spindle density. **E**, Same as **B** for nested δ wave-nested spindle density. **F**, Same as **B** for SO-nested spindle density. *: statistically significant p values for two-tailed t -test.