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Abstract (250 words)

Sleep is known to promote recovery post-stroke. However, there is a paucity of data profiling
sleep oscillations in the post-stroke human brain. Recent rodent work showed that resurgence of
physiologic spindles coupled to sleep slow oscillations (SOs) and concomitant decrease in
pathological delta (&) waves is associated with sustained motor performance gains during stroke
recovery. The goal of this study was to evaluate bilaterality of non-rapid eye movement (NREM)
sleep-oscillations (namely SOs, 6-waves, spindles, and their nesting) in post-stroke patients
versus healthy control subjects. We analyzed NREM-marked electroencephalography (EEG) data
in hospitalized stroke-patients (n = 5) and healthy subjects (n = 3). We used a laterality index to
evaluate symmetry of NREM oscillations across hemispheres. We found that stroke subjects had
pronounced asymmetry in the oscillations, with a predominance of SOs, d-waves, spindles, and
nested spindles in affected hemisphere, when compared to the healthy subjects. Recent
preclinical work classified SO-nested spindles as restorative post-stroke and &-wave-nested
spindles as pathological. We found that the ratio of SO-nested spindles laterality index to 6-wave-
nested spindles laterality index was lower in stroke subjects. Using linear mixed models (which
included random effects of concurrent pharmacologic drugs), we found large and medium effect
size for 6-wave nested spindle and SO-nested spindle, respectively. Our results in this pilot study
indicate that considering laterality index of NREM oscillations might be a useful metric for
assessing recovery post-stroke and that factoring in pharmacologic drugs may be important when

targeting sleep modulation for neurorehabilitation post-stroke.

Keywords: Stroke, Sleep, EEG
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Introduction

Stroke is a leading cause of motor disability world-wide. Despite advances in neurorehabilitation,
there is a lack of widely adopted therapies that target plasticity post-stroke, and functional
outcomes remain inconsistent’. Sleep is known to play a major role in regulating plasticity*-'2
and accordingly, there has been an interest in modulating sleep for stroke motor rehabilitation14,
To optimize efforts for effective sleep modulation, there is a need to better understand neural
processing during sleep. Additionally, it is important to consider co-morbidities and concurrent
pharmaceuticals that may impact excitatory/inhibitory neural transmission. Previous animal and
human studies have shown that sleep can influence motor recovery post-stroke®'423, however
more work is needed to understand how sleep neurophysiology is affected in stroke. This has
become all the more important with advances in our understanding of sleep neurophysiology
linking nested non-rapid eye movement (NREM) oscillations to plasticity, motor memory

consolidation, and motor recovery*6:14.24,

Sleep-dependent neural processing is crucial for memory consolidation, which is the process of
transferring newly learned information to stable long-term memory®?25. Initial investigations looked
at sleep’s role in declarative memory?$?’, but recent studies have underscored sleep’s role in
motor skill consolidation®828, Specifically, NREM sleep has been linked to the reactivation of
awake motor-practice activity and performance gains in a motor skill after sleep*®. There is now
a consensus that this consolidation occurs during temporal coupling of sleep spindles (10-16 Hz)
to larger amplitude slow oscillations (SOs, 0.1-1Hz)%252%-3' Recent work in rodents has shown
that these SOs nested with spindles decline immediately post-stroke and increase during motor
recovery'4. This work also showed that delta waves (6 waves, 1-4Hz), along with & wave-nested
spindles increased post-stroke and reduced during recovery. These two nested oscillations

(namely, SO-nested spindles versus 6 wave-nested spindles) were shown to have a competing
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role during recovery. Pharmacological reduction of tonic y-aminobutyric acid (GABA)
neurotransmission shifted the balance towards restorative SO-nested spindles in the brain and
increased the pace of recovery. The chief goal of our study was to see if NREM oscillations and
their nesting were affected post-stroke in human patients within a hospital setting. Specifically,
we wanted to check for laterality of NREM oscillations’ densities in stroke versus contralateral

hemisphere and compare it to healthy subjects.

Our study showed that, acutely post-stroke, there is an increase in SOs, § waves, and spindles
on stroke electrodes when compared to contralateral hemisphere electrodes, whereas healthy
subjects had symmetrical density of these oscillations. Our linear mixed effect model revealed
that there were significant fixed effects of stroke vs contralateral electrodes for SOs and 6 waves
with overall medium effect sizes, including random effects of concurrent pharmacologic drugs.
We also observed a large effect size of the linear mixed model for 6 wave-nested spindles. Finally,
we found that the proportion of SO-nested spindles to 6-wave-nested spindles was lower in stroke
subjects compared to healthy subjects. Our work here in a pilot dataset suggests that laterality of
NREM sleep oscillations could be a useful marker for physiological sleep activity post-stroke.
Future work that confirms our findings in a larger dataset can inform acute stroke care
management that also incorporates pharmacologic drug interactions and their effects on laterality

of ‘restorative’ sleep oscillations.
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Patients and Methods
This research was conducted in accordance with and approval of the Cedars-Sinai Medical
Center Institutional Review Board (IRB). All research participants and/or their surrogates provided

informed consent to participate in the study.

Inclusion/exclusion criteria

Retrospective chart review of the Cedars Sinai EEG database was done to identify patients with
acute middle cerebral artery strokes (MCA strokes; with high probability of stroke lesion affecting
sensorimotor regions in the brain) who also received EEG monitoring as part of their hospital stay.
We selected patients who received EEG in the acute period (2-3 days) post-stroke. Other
inclusion criteria were that this should be the first stroke for the patient, they should be within 50-
80 years of age, and the patients should not have any sleep disorders or circadian /diurnal rhythm
disruption. Subjects were excluded if they were pregnant or diagnosed with uncontrolled medical
conditions. Five patients were retrospectively identified for this study, with notable limited
availability of EEG studies done within 2-3 days after an MCA distribution stroke. Of the 5 patients,
3 were female and 2 males, all within the age range of 50-80 years old (see Table 1 for other
details regarding demographic and clinical information). Indications for EEG were universal for
altered mental status after acute stroke. P1 was noted to be on continuous infusion of propofol
(<10 mcg total) and infusions of dexamethasone every 4 hours. P2 and P5 were treated with
levetiracetam 500mg twice daily. P2 was also on acyclovir which was discontinued after
cerebrospinal fluid (CSF) evaluated negative for meningitis; and P5 was administered
nonepinephrine due to being in shock acutely and improved within 24 hours. P3 and P4 were not
given propofol, dexamethasone, or levetiracetam. Unlike all other patients, P4 had subcortical
involvement in stroke. It is important to note that spindle oscillations are postulated to have a
subcortical (thalamocortical) origin®. P5 had a hemorrhagic stroke (ruptured right MCA

aneurysmal stroke). P2 had partial status epilepticus involving the right temporal lobe. We
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excluded seizure related epochs based on manual inspection of recordings. This inspection was
done by epileptologist (C.M.R.) and seizures were excluded based on no evolving seizure pattern
across electrodes (10-20 EEG system). Hence, all our presented data was from sleep periods in
all the five patients (even in the patient with status epilepticus). An average of ~5.98 + 1.26 hours
(or 358.80 + 75.40 mins, mean % standard error of mean (s.e.m.)) of NREM sleep was identified
and analyzed in each of the five patients. We were not able to analyze REM/ wake periods in
these recordings due to the lack of EMGs/ video recordings. Additionally, healthy subjects’ dataset
from Cox et. al, Sleep Medicine Reviews, 20203334 with average NREM sleep of 3.07 + 0.14 hours

(or 183.91 £ 8.38 mins) was analyzed for 3 subjects.

EEG analysis and identification of NREM oscillations

Patients with overnight EEG recordings 2 to 3 days post-stroke were included. The data, obtained
by a Natus Xltek EEG and Sleep System, was de-identified and made compatible for analysis
with MATLAB. Each 30-second epoch was manually marked for NREM sleep by an expert scorer
(C.M.R. and B.K.S.). EEG epochs were analyzed for NREM sleep in a bipolar montage. In the
stroke patients, the following analyses were done with EEG data in a referential montage,
referenced to the auricle electrodes. Spindles, SOs, and 6 waves were extracted from these
NREM epochs using custom code in MATLAB (details below). This allowed for the identification
of specific sleep waveforms and how they nested temporally and topographically during NREM
sleep. We assessed spindles and their nesting to SOs and 6 waves. Topographical maps of the
average density of these sleep oscillations allowed us to visualize the average densities with

respect to electrode location, especially their lateral symmetry between hemispheres.
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From the healthy subjects dataset, we used the common linked mastoids referenced data*® and
analyzed NREM sleep. We selected 20 electrode channels in similar locations as stroke patient
data for further analysis (because the healthy subject data had more electrodes than stroke
patient dataset). Similar to stroke EEG data; spindles, SOs, and 6 waves were extracted from

these NREM epochs using custom code in MATLAB and analyzed.

EEG Data processing:

For stroke patients, NREM-marked EEG data from all channels was referenced with respect to
the average of the auricular electrodes (A1 & A2, Fig. 1A) while the heathy control dataset had
common linked mastoids referenced EEG data. Any high amplitude artifact in the differential EEG
signal was removed. We utilized previously-used methods for automatic detection of these NREM
oscillations®'4%. For &/SOs detection, signal was first passed through a 0.1 Hz high-pass filter
and then a 4 Hz low-pass Butterworth filter. All positive-to-negative zero crossings, previous
peaks, following troughs, and negative-to-positive zero crossings were identified. A wave was
considered a 6 wave if its trough was lower than the negative threshold and preceded by a peak
that was lower than the positive threshold, within 500 ms (Fig. 1B, E, H). SOs were classified as
waves with troughs lower than a negative threshold (the bottom 40 percentile of the troughs) and
preceding peaks higher than a positive threshold (the top 15 percentile of the peaks; Fig. 1C, F,
1). Duration between peaks and troughs was between 150 ms and 500 ms. For spindle
detection, EEG data was filtered using a 10 Hz high-pass Butterworth filter and a 16 Hz low-pass
Butterworth filter. A smoothed envelope of this signal was calculated using the magnitude of the
Hilbert transforms with convolving by a Gaussian window (200 ms). Epochs with signal amplitude
higher than the upper threshold (mean, y + 2.5* standard deviation (s.d.), o) for at least one
sample and amplitude higher than the lower threshold (up + 1.5%0) for at least 500 ms were
considered spindles (Fig. 1 D, G, J). The lower threshold was used to define the duration of the

spindle. Nested SO-spindles (parallel to k-complexes studied in humans) were identified as



176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

spindle peaks following SO peaks within 1.5 s duration (Fig. 1K). The same criterion was used to

identify & wave-nested spindles (Fig. 1L).

Data Analysis:

We generated topographical maps of these different waveforms using plot_topography function
in MATLAB?3®¢ as shown in Fig. 2. The patients were separated into three groups based on
concurrent medications, as detailed in Table 1. Patient 1, assigned to Group 1, was on continuous
propofol and dexamethasone injections every four hours. Group 2 (patients 2 and 5) was
administered levetiracetam (Keppra) twice daily; and Group 3 (patients 3 and 4) was not on

medications known to significantly modulate excitatory/inhibitory neural transmission.

Perilesional electrodes were identified by analyzing post-stroke magnetic resonance imaging
(MRI) and computer tomography (CT) neuroimaging. We marked Stroke electrodes as the
electrodes covering the perilesional region of the brain as shown in Fig. 1A. The mirror opposite
electrodes on the contralateral side were marked as Contralateral mirror (CM) electrodes for
further analysis (Fig. 1A). The non-mirror opposite electrodes on the contralateral side were

marked as Contralateral non-mirror (CNM) electrodes.

We compared the symmetry in NREM oscillations’ density across hemispheres for stroke patients
and healthy control using a laterality index (Fig. 3A-F). Laterality index of 1 meant the average
density being analyzed for electrode locations selected across hemisphere is equal. For stroke
patients, laterality index was defined as the ratio of mean of stroke electrodes’ NREM densities
to all contralateral electrodes’ NREM densities. For healthy subjects, laterality index was defined
as the ratio of the mean of left hemisphere electrodes’ NREM densities to right hemisphere
electrodes’ NREM densities. We also compared the ratio of SO-nested spindles laterality index

to 6 wave-nested spindles laterality index for stroke vs healthy subjects.
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Statistical Analysis

We performed a linear mixed effect analysis for all patients comparing the Stroke electrodes
density vs Contralateral (CM/CNM) electrodes density for different waveforms using the
fitimematrix function in MATLAB. The linear mixed effect model was fitted by maximum likelihood
using the formula below (1) for all the different waveforms identified during EEG data processing.
Medication groups were defined as the three groups mentioned earlier. This model considered
fixed effects of stroke vs contralateral (CM/CNM) electrodes, and the random effect of electrodes

and medication groups depending on the patient and was represented as:

Waveform Density ~ Intercept + Electrode + (Intercept + Electrode + Medication Groups | Patient)

The above formula/equation is written in a format like the documentation for fitimematrix Matlab
function. We compared the Stroke electrodes density vs contralateral (CM/CNM) electrodes
density within each medication group using a two-tailed t-test. Contralateral electrodes chosen
were mirrored electrodes (Fig. 3G-L) or non-mirrored (Supp. Fig. 2A-F). One-way ANOVA was
used to compare the stroke electrodes’ NREM oscillations’ density of the three different

medication groups.

We calculated r-squared (R?) and the Cohen’s d values for the overall linear mixed effect model
generated. However, the p-values were specifically assessed for fixed effect of electrodes (stroke
vs CM/CNM). Cohen’s d was used to evaluate if the nested data (all data combined) for NREM
oscillations had a small, medium or large experimental effect (Cohen's d = 0.20, 0.50 or 0.80,
respectively)®. Effect size indicates if research findings have practical significance. Metrics such
as Cohen’s d are better at the planning stage for pilot studies, like the one here, to determine

optimal sample sizes for sufficient power in bigger clinical trials®. We summarized the linear
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Results

One of the limitations of retrospectively analyzing EEG data gathered from clinical EEG was the
heterogeneity encountered across the subjects studied, a contrast from the controlled setting of
related rodent studies. With this in mind, we noted that one important similarity across the study
population was the indication for EEG: concern for underlying seizure in the setting of altered
mental status and recent hemispheric stroke. Accordingly, the patients were all hospitalized, and
our analysis benefited from close pharmacologic documentation. We observed differences in
laterality of NREM oscillations in stroke patients. We observed higher SOs, & waves, spindles and
spindles nested to SOs and & waves in the stroke hemisphere. For the patient with subcortical
involvement in stroke, we observed a decrease in spindles in the stroke hemisphere. We also
observed effects of concurrent medications, particularly medications that might influence neural

transmission.

NREM oscillation densities symmetry is disturbed acutely in stroke

We found that stroke patients had laterality differences (higher or lower densities in stroke
hemisphere) for all NREM oscillations, while the healthy subject NREM oscillation density looked
more symmetrical across hemispheres (Fig. 2). Comparing the laterality index (LI) (as defined in
methods), we found that the LI was closer to 1 on average with low variance for healthy subjects.
For stroke patients, LI was higher than 1 on average with high variance. SO density LI's were:
stroke: 1.78 + 0.34 and healthy: 1.05 £ 0.06 (Fig. 3A). 6 wave density LI's were: stroke: 1.93 +
0.44 and healthy: 1.05 + 0.06 (Fig. 3B). Spindle density LI’s were: stroke: 1.65 £ 0.27 and healthy:
1.05 £ 0. 0.07 (Fig. 3C). SO-nested spindles LI's were: stroke: 1.63 £ 0.30 and healthy: 1.09 +
0.09 (Fig. 3D). 6 wave-nested spindles LI's were: stroke: 1.63 + 0.34 and healthy: 1.05 £ 0.06
(Fig. 3E). The ratios of nested SO-spindles LI's and 6 wave-nested spindle LI's were: stroke: 0.90

+ 0.12 and healthy: 1.03 + 0.03 (Fig. 3F).
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SO0 and &6 wave density increased in perilesional electrodes

Next, we wanted to look at stroke-affected electrodes in stroke patients vis-a-vis the contralateral
hemisphere electrodes. In the contralateral hemisphere, we looked at mirrored electrodes (CM,
as defined in the methods; Fig. 3G), or non-mirrored electrodes (CNM, as defined in methods;
Supp. Fig. 2A). Consistent with previous reports, we found that stroke electrodes had increased
low-frequency (< 4 Hz) oscillations (Fig. 3H,I; and Supp. Fig. 2B,C)*°. Our mixed-effects model
showed a significant fixed effect of stroke vs CM and CNM electrodes for a subset of NREM
oscillations and overall medium to large effect sizes which included random effects of concurrent
pharmaceuticals. We observed higher & wave density in the perilesional electrodes (Fig. 3H;
Supp. Fig. 2B; Supp. Table 1 and 2 provide statistical details for stroke versus CM or CNM: p-
value is provided for the fixed effect (‘electrode’), R? and Cohen’s d are for the overall model with
fixed and random effects, conventions same henceforth). Our comparison of LI's of SOs and &
wave showed that LI's were higher in stroke patients compared to healthy subjects: Mean LI’s for
SOs were: stroke: 1.78 + 0.34 and healthy: 1.05 + 0.06; mean LI’s for 6 wave were: stroke: 1.91
1 0.44 and healthy: 1.05 + 0.06. We also observed that Group-1 (propofol and dexamethasone)
and Group-3 (others) both had higher 6 wave density on stroke electrodes than Group-2
(levetiracetam) (Fig. 3H and Supp. Fig. 2B; stroke electrodes’ 6 wave density- Group 1: 11.23
+ 2.53 counts min~' (mean * s.e.m.); Group 2: 9.07 *+ 1.32 counts min~'; Group 3: 12.25 + 1.59
counts min~', see Supp. Table 3 for details). Group-2 and Group-3 showed a high density of &
waves in the stroke electrodes vs CM/ CNM electrodes (Fig. 3H and Supp. Fig. 2B). For SOs,
there was a significant fixed effect of stroke vs contralateral electrodes (Fig. 3l; Supp. Fig. 2C;
Supp. Table 1 and 2 provide p-values and Cohen’s d). We observed that the patients in Group-
1 did not show a significant difference between stroke or contralateral electrode SO density, while
patients in Group-2 showed elevation in SO on stroke electrodes when compared to CM
electrodes (Fig. 3l). The patients in Group-3 showed increased SOs on stroke electrodes when

compared to CM/CNM electrodes (Fig. 3l; Supp. Fig. 2C; stroke electrodes’ SO density: Group
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1:2.91 £ 0.71 counts min~'; Group 2: 2.42 + 0.37 counts min~"; Group 3: 3.29 + 0.45 counts min-

', see Supp. Table 3 for details).

For spindle oscillations, LI's were higher in stroke patients (Mean LI spindles, stroke: 1.65 + 0.27
and healthy: 1.05 £ 0. 0.07). Interestingly, in one patient with subcortical involvement with stroke
(P4), spindles were higher in the contralesional hemisphere (Fig. 3J). Linear mixed-effects model
did not show a significant fixed effect for spindle density on stroke versus contralateral electrodes;
overall, it was a medium effect size based on the Cohen’s d (Fig. 3J and Supp. Fig. 2D; see
Supp. Table 1 and 2 for p-value and Cohen’s d). Spindle density was found to be the highest on
the stroke electrodes in the patient in Group-1 (8 + 0.88 counts min~"), followed by the patients in
Group-2 (6.83+ 0.79 counts min~'), and then patients in Group-3 (5.61 + 0.44 counts min~") (Fig.

3J and Supp Fig. 2D; see Supp. Table 3 for details).

6 wave-nested spindles and SO-nested spindles

Next we looked at nested oscillations, namely & wave-nested spindles and SO-nested spindles
oscillations that were recently shown to have a competing role in memory consolidation and
inverse trend during stroke recovery®'. LI's for both nested oscillations were observed to be
higher in stroke subjects. Mean LI's for SO-nested spindle were: stroke: 1.64 + 0.29 and healthy:
1.09 £ 0.09; and mean LI's for 6 wave-nested spindle were: stroke: 1.63 = 0.34 and healthy: 1.05
+ 0.06. Linear mixed effects models of & wave-nested spindles and SO-nested spindles did not
show a significant difference between stroke and contralateral electrodes, whereas these models
still had large and medium effect sizes, respectively (Supp. Table 1 and 2, Fig. 3K and Supp.
Fig. 2E, 6 wave-nested spindle density on stroke electrodes: Group-1: 3.49 + 0.30 counts min~';
Group-2: 3.25 + 0.48 counts min~'; Group-3: 2.70 £ 0.20 counts min~', also see Supp. Table 3;
SO-nested spindle density on stroke electrodes: Group 1: 0.92 + 0.11 counts min~"; Group 2: 0.86

+ 0.17 counts min~'; Group 3: 0.68 + 0.06 counts min~"; see Fig. 3L; Supp. Fig. 2F; and Supp.
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Table 3). Notably, the ratios of SO-nested spindle LI's to  wave-nested spindle LI's were lower
in stroke subjects compared to heathy subjects (Mean LI ratio, stroke: 0.0 £ 0.12 and healthy:
1.03 £ 0.03). This might indicate relatively increased & wave-nested spindles when compared to
SO-nested spindles (the oscillations that have a competing role in forgetting vs strengthening,

respectively) in the perilesional areas for stroke brain when compared to healthy brain.

Together, the results in this limited dataset showed that lateral symmetry of NREM oscillations is
disturbed in stroke (Fig. 3A-F), when compared to healthy subjects. These results also indicated
that there is an elevation of SO, é wave, spindles, and spindle nesting to SOs or é waves in the
perilesional areas post-stroke. Future work can confirm these findings on laterality of sleep

oscillations in a larger dataset that also considers the pharmacologic drug interactions.
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Discussion

Our results show that, post-stroke there is a disturbance in laterality of NREM sleep oscillations
across ipsilesional and contralesional hemispheres. Interestingly, hemispherical differences in
these nested oscillations were less pronounced in healthy subjects, and oscillations appeared
mostly symmetric. We used a laterality index for comparing NREM oscillations, with an emphasis
on nested oscillations, i.e., SO-nested spindle oscillations and  wave-nested spindle oscillations.
Our results here can be a precursor to future investigations studying neuromodulation of sleep for
rehabilitation. While our findings are preliminary in a small pilot dataset, they report an interesting
effect size, suggesting a roadmap for delineating pathological sleep in larger cohorts and optimal

therapeutic modulation to promote recovery.

Sleep and plasticity post-stroke

Preclinical and clinical studies that have evaluated local-field potentials (LFPs) in animals*®4' and
EEG in human patients??4243 have found increased low-frequency power during awake,
spontaneous periods after a stroke. These studies postulate that this increased low-frequency
activity could be a marker of cortical injury and loss of subcortical inputs*. Our findings on
increased SOs and 6 waves on stroke electrodes are indicative of similar phenomena. We also
found an increase in SO-nested spindles and & wave-nested spindles on stroke electrodes along
with a lower ratio of SO-nested spindle LI's to é wave-nested spindle LI's (Fig. 3F). There is
growing evidence that temporal coupling of spindles to SOs is a primary driver of sleep-related
plasticity and memory consolidation®303145-48  SO-nested spindles are linked to spike-time
dependent plasticity*°. These events are also related to reactivation of awake experiences3047:%,
Importantly, disruption of this coupling can impair sleep-related memory consolidation of awake
experiences®. This same work showed that SO-nested spindles and & wave-nested spindles
compete to either strengthen or forget a memory. Our results indicate that balance of SO-nested

spindle density and & wave-nested spindle density is disturbed across hemispheres in stroke



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

patients compared to healthy subjects. These disruptions might be related to impaired sleep-
processing that impact recovery. Interestingly, we observed large to medium effect sizes in our
linear mixed-effects models for & wave-nested spindle and SO-nested spindle where we
considered fixed effects of electrodes and random effects of drugs and patients. It is worth noting
that drugs like propofol can impact such nested sleep oscillations®'®2. It may be important to

consider the effects of drugs on sleep oscillations when modulating sleep for stroke recovery.

Propofol and Levetiracetam: effect on sleep

We made observations on different medications that stroke patients received during sleep EEG
recordings. Group-1 received propofol, which is one of the most commonly used anesthetics in
neurologic intensive care units after stroke or traumatic brain injury®. It exerts its action by
potentiating the activity of chloride currents through GABA receptors while blocking voltage-gated
sodium channels®-%8. The patient on propofol received less than 10 mcg dose of propofol which
is not known to impact sleep®%8. Group-2 received levetiracetam (Keppra), which is a newer anti-
seizure drug. The exact mechanism for its anti-seizure function is unclear, but it is believed to
exert its effect through synaptic vesicle glycoprotein 2A%. Through this mechanism, levetiracetam
is capable of modulating neurotransmission by inhibiting calcium currents®. A study has shown
that levetiracetam has minimal effects on sleep parameters like total sleep duration, sleep latency,
and sleep efficiency in both healthy humans and partial epilepsy patients®'. However,
observations have been made that levetiracetam can reduce motor activity and cause daytime
drowsiness in patients®!62. Propofol, by its GABAergic action, causes greater loss of faster
frequencies during induction with a shift in alpha frequencies to the frontal regions that reverses
post-awakening®*-%°. Since our linear mixed-effects model had large to medium effect sizes when
considering random effects of drugs on all NREM oscillation, it may be useful to explore the impact

of drugs on NREM sleep densities with larger patient cohorts in the future.



373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

Sleep processing and stroke rehabilitation

Recent rodent work profiled SO-nested and é wave-nested spindles during the course of stroke
recovery and found links between these nested structures and motor performance gains during
recovery®. This work specifically looked into reach task, but clinical rehabilitation approaches can
be varied®8, |t is likely that the sleep features of nested oscillations and their putative
pathological or physiological roles need to be factored in when considering timing for
rehabilitation, irrespective of training type. Previous human and rodent studies have also
suggested critical periods in training that can offer long-term benefits®®-"!. Past studies that have
found low-frequency power in awake state in stroke patients might be related to our findings of
increased SO and & waves densities. Future studies where EEG data is captured over longer
periods may delineate a transition of & wave LI, SOs LI, 6 wave-nested spindles LI (pathological
sleep) and SO-nested spindle LI (physiological sleep), and its relation to critical periods post-
stroke for optimal timing of rehabilitation. For example, SO-nested spindles LI and 6 wave-nested
spindles LI proportions between hemispheres could be targeted to be brought closer to unity as

in healthy subjects, to accelerate recovery.

Modulation of sleep as a therapeutic intervention

The results we have presented can form the basis of translational studies in the future that target
modulation of sleep post-stroke. Animal studies have suggested that modulation of GABAergic
transmission (specifically GABAa-receptor mediated tonic inhibition) in the perilesional cortex can
serve as a therapeutic target to promote recovery, and that blocking of GABAa-mediated tonic
inhibition promoted motor recover maximally in the first 1 to 2 weeks post-stroke’?73. Both short-
term (acute) and long-term chronic infusion of GABAa inhibiting compounds have been tested,
and long-term infusion was shown to be better’2. Long-term pharmacologic modulation, as shown

by Clarkson and colleagues, may be essential to achieve observable motor benefits in human
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patients. Benefits of long-term infusion include the effect of the drug not only with rehabilitation-

specific online (awake) training, but also during offline memory consolidation during sleep.

Studies such as ours can also help guide electric stimulation-based neuromodulation for
augmenting recovery. SOs and 6 waves can be easily monitored using EEG in stroke patients.
Non-invasive brain stimulation during sleep®#7:747% can be used to modulate specific NREM
oscillations. Invasive stimulation approaches, such as epidural stimulation’®, can also focus on
sleep state to optimize sleep neural processing. Similar approaches have shown that direct
epidural motor cortical electric stimulation can enhance awake performance and neural
activity’’’® and epidural stimulation of subcortical regions can also modulate low-frequency
oscillations in the motor cortex”®. However, such approaches have not been applied during sleep.
A recent study suggested that modulating UP states during sleep can enhance recovery'. It is
plausible that future approaches targeting sleep, when delivered in a closed-loop fashion,
optimize both awake task performance and its consequent sleep processing, and may lead to
greater long-term benefits during rehabilitation. Indices such as laterality index that we pursued
here may serve a utilitarian purpose in long-term sleep evaluation post-stroke with different
treatments. Our pilot observations here also suggest that concurrent pharmacologic drugs may
affect NREM oscillations. Future work can confirm these effects in larger cohorts and if medication

effects should be considered when personalizing sleep stimulation.

Limitations

One of the limitations of our study is the lack of a link between sleep architecture and motor status.
Future work that studies sleep over longer periods post-stroke and assesses motor functionality
longitudinally may find more robust links between sleep processing and related gains in motor
performance. It is also possible that, with more effective task performance and associated awake

neural dynamics’”"8%0, efficacy of sleep may change. Precise disruption of sleep processing,
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specifically SO-spindle coupling in healthy animals, was sufficient to prevent offline performance
gains, even when awake task learning was robust®. This work also showed that precise
modulation of the extent of sleep spindle-SO coupling in healthy animals could either enhance or
impede sleep processing. While extension of this work in stroke animals has shown SO-spindle
nesting resurges with recovery', future animal studies that modulate sleep microarchitecture can
study if artificial manipulation of SO-nested spindles or & wave-nested spindles after stroke are
sufficient to enhance or impair motor recovery. Our work here showed that both SO-nested
spindles and 6 wave-nested spindles increased in stroke affected hemisphere acutely post-stroke.
Future work that monitors these oscillations for longer periods can assess if SO-nested spindles
should increase with respect to & wave-nested spindles for better recovery in human stroke

patients.

As a pilot retrospective study, one more limitation is a smaller sample size with varying lesion
location and volume. While we focused on getting patients with cortical lesions and MCA
involvement, sleep may have been impacted differently for one patient with a primarily subcortical
stroke. For example, a stroke in the white matter that impacts thalamocortical networks may also
impact spindles. Future work with larger sample sizes and incorporation of motor task
rehabilitation training and drug manipulation, may provide stronger links to engineer sleep to

benefit motor recovery post-stroke.
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Figure 1. Stroke versus contralateral mirror/non-mirror electrode assignment and NREM
sleep oscillations. A, 10-20 system for EEG (used in stroke patients) showing locations of all
electrode locations recorded with an illustration of stroke. Grey shaded area shows a
representative stroke perilesional region. Blue shaded circles represent auricular electrodes (A1,
A2) that were used for referencing in stroke patients. Red circles indicate identified stroke
electrodes based on proximity to the perilesional area. Green circles indicate identified
contralateral mirror (CM) electrodes which are contralateral and mirrored to identified stroke
electrodes. Yellow circles indicate identified contralateral non-mirror (CNM) electrodes which are
electrodes other than contralateral mirror (CM) electrodes in non-stroke hemisphere. B, Mean 6—
wave along with s.e.m. (standard error of mean) bands (blue) for all identified 6—waves from an
example stroke electrode channel from EEG data recording for one stroke patient. C, Same as B
for SO waveforms. D, Same as B for spindle waveforms. E, F, G, Same as B, C, D for one
example contralateral mirror electrode channel for a stroke patient. H, I, J Same as B, C, D for
one example channel for a healthy subject. All waveforms are centered around the detected
states. K, lllustration of SO-spindle nesting. Nesting window was —0.5 to +1.0 s from SO’s UP
state as shown. L, lllustration of —wave-spindle nesting. Nesting window was —0.5 to +1.0 s from
0 UP state as depicted.
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Figure 2. Imaging data and topographical density plots for different NREM oscillations. Top
to bottom: Imaging data: CT (computed tomography) image for patient P1, T2 sequences of MRI
(magnetic resonance imaging) images for patients P2 to P5; no imaging data available for healthy
subjects (P6 to P8). Radiologic imaging has been flipped horizontally to align with topographic
density maps; i.e., image left, and right are ipsilateral to patient left and right. Left and right are
marked in imaging figures (P1-P5) and apply to density topographical maps below them;
Topographical maps for detected spindle density (count/min) during NREM sleep for all
subjects; Topographical maps for detected SO density (count/min) during NREM sleep for all
subjects; Topographical maps for detected & waves’ density (count/min) during NREM sleep
for all subjects; Topographical maps for detected nested SO-spindle density (count/min) during
NREM sleep for all subjects; Topographical maps for detected & wave-nested-spindle density
(count/min) during NREM sleep for all subjects. Color map shown at right for all the panels in a
row.
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Figure 3. NREM oscillations’ laterality in stroke patient's vs healthy controls; and NREM
oscillations’ densities for different patient groups on stroke verses contralateral mirror
(CM) electrodes. For stroke patients' laterality index (LI) is defined as ratio of mean of stroke
electrode NREM densities to all contralateral electrode NREM densities. For healthy subjects'’
laterality index is defined as ratio of mean of left hemisphere electrode NREM densities to right
hemisphere electrode NREM densities. A, LI for SO density for stroke patients and healthy
controls. Black line connects the mean of stroke and control group. Dots represent different
patients/subjects; blue dots: Patients in propofol medication group; orange dots: Patients in
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levetiracetam medication group; green dots: Stroke patients in other medication group; yellow
dots: Healthy subjects. B, Same as A for 6 wave density LI. C, Same as A for spindle density LlI.
D, Same as A for nested SO-spindle density LI. E, Same as A for Nested & wave-spindle density
LI. F, Ratio of LI for nested SO-spindle density and nested & wave-spindle density. G, Table
showing selected stroke and contralateral mirror electrodes (CM) for all patients. H, Comparison
of & wave density (count/min) on stroke versus CM electrodes for patients on different
medications. Thick black line shows the mean values within the group. Thinner black lines join
pair of stroke and CM electrode. Dots represent the NREM oscillations’ density for single
electrode. I, Same as H for SO density. J, Same as H for spindle density. K, Same as H for nested
0 wave-nested spindle density. L, Same as H for SO-nested spindle density. *: statistically
significant p values for two-tailed t-test.
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Table
Patient P1 P2 P3 P4 P5
Age 56 68 51 56 52
Sex F F M M M
Race/ethnicity Hispanic White/Caucasian Hispanic BIack/A_f rean-\white/Caucasian
american
Stroke location R MCA R MCA L MCA R MCA R MCA
NIHSS 3 N/A 21 N/A N/A
Time of
recording after 2 days 2 days 3 days 3 days 3 days
stroke
Partial status Pituitary
Comorbidities COVID epilepticus (right =il macroadenoma, RIPHITEES R I
HFrEF aneurysm
temporal) Central hypoT
Sleep disorders
(e.g.,' No No No No No
obstructive
sleep apnoea)
Circadian
rhythm No No No No No
disruption
Alcohol Yes No N/A No No
Smoking No No N/A No No
Propofol gt Levetiracetam
Rx (concurrent) [Dexamethasone Acyclowr. ASA/Plavix i . el e
- Vancomycin Levothyroxine Levophed
Remdesivir .
Cefepime

733
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745
746

Table 1. Patient clinical information. From top to bottom, information for five patients P1 to P5.
Patient age, sex, race/ethnicity, stroke location, NIHSS, days from stroke when the EEG data was
acquired, associated co-morbidities, sleep disorders, circadian rhythm disruption, alcohol and
smoking substance consumption status, and concurrent medications during EEG recording are
specified. Abbreviations; NIHSS: National Institutes of Health Stroke Scale; R/ L MCA: Right/ left
middle cerebral artery; COVID: Coronavirus disease - 2019; ESRD: End-stage renal disease;
HFrEF: Heart failure with reduced ejection fraction; HypoT: hypothyroidism; ASA: Acetylsalicylic
Acid (Aspirin); N/A: not available. Patient groups: blue: patients in propofol medication group
(Group-1); orange: patients in levetiracetam medication group (Group-2); green: patients in other
medication group (Group-3).
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Supplementary Information

The supplementary information below includes a table on the statistical details of stroke
versus contralateral mirrored (CM) electrodes’ NREM oscillations comparisons (Supp.
Table 1), and stroke versus contralateral non-mirrored (CNM) electrodes’ NREM
oscillations comparisons (Supp. Table 2); and a table on one-way ANOVA results for just
stroke electrodes comparison in 3 medication-based groupings (Supp. Table 3).
Supplementary figure (Supp. Fig. 1) shows the topographical density plots for different
NREM oscillations with each panel with specific colormap scale for easier visualization of
trends. Supplementary figure (Supp. Fig. 2) is included at the end that compares the
NREM oscillations’ densities for different patient groups on stroke verses contralateral
non-mirror (CNM) electrodes.



Fixed-effects coefficients (95% Cls) Random effects covariance parameters (95% Cls)
Model
Medication | Intercept— | Intercept— | Electrode~
NREM Intercept Electrode Intercept | Electrode Electrod Medication | Medication
oscillation group ectrode group group
density
P Cohen’s 2
tStats2 value tStats2 p value std std std corr. corr. corr. d R
Spindle 6.9079 1)(?8238 0.85155 | 0.39929 1.7457 1.45640 0.54078 —-0.95336 —-0.61764 0.82622 0.5651 0.2719
SO 7.2316 GXZS?QB 3.0559 | 0.00389 0.6636 0.50056 0.46378 -1 -1 1 0.5346 0.2582
2.3645
Delta () 5.4601 %105 3.6979 | 0.00063 5.0144 2.90430 2.559 -1 -1 1 0.7788 0.3629
Nested 9.939
SO- 7.1156 x.1 0o 0.82454 | 0.41429 0.1458 0.18701 0.14452 —-0.99279 —-0.2272 0.34227 0.6823 0.3229
Spindle
Nestedd- | ;q176 | 14089 | 56857 | 0.57268 | 1.0624 | 0.98551 0.43146 —0.9972 | -0.56061 0.621 0.9031 | 0.4115
Spindle x10
778

779  Supplementary Table 1. Linear mixed effect model results for stroke vs contralateral
780  mirrored (CM) electrode analysis. tStatqr: t-statistic and df: degree of freedom; std:

781  standard deviation; corr.: correlation; R?: coefficient of determination.
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Fixed-effects coefficients (95% Cls) Random effects covariance parameters (95% Cls)
Model
Medication | Intercept— Intercept— | Electrode—
NREM Intercept Electrode Intercept | Electrode Electrod Medication | Medication
oscillation group ectrode group group
density
P Cohen’s 2
tStatss value tStatss p value std std std corr. corr. corr. d R
Spindle 6.3677 1)(:?74 1.9379 | 0.060086 3.1972 2.6202 1.4867 -0.96893 -0.91878 0.98787 0.5043 0.2445
2.4625
SO 5.5363 <10-6 3.5961 | 0.00091675 1.3433 0.99767 0.85578 -1 -1 NaN 0.5522 0.2662
Delta (5) 4.9445 11507,2 3.9165 | 0.00036151 6.905 4.4912 4.0991 -1 -1 1 0.6900 0.3261
Nested 3.9458
SO- 6.1161 )‘(1 o7 1.8632 0.070179 0.42091 0.41908 0.23671 -0.99061 -0.95263 0.98526 0.6246 0.2981
Spindle
Ne_sted 5- 6.1211 3'88?75 1.8995 0.065103 1.8198 1.6238 0.93552 -0.99626 -0.95183 0.97478 0.6374 0.3036
Spindle x10
803

804 Supplementary Table 2. Linear mixed effect model results for stroke vs contralateral
805 non-mirrored (CNM) electrode analysis. tStatqr: t-statistic and df: degree of freedom; std:

806 standard deviation; corr.: correlation; R2: coefficient of determination.
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NREM Group Error
oscillation F p
density SS df MS SS df MS
Spindle 44.844 2 224218 | 137.218 19 7.22 3.1 0.0681
SO 7.8303 2 3.91514 | 82.5297 19 4.34367 0.9 0.4227
Delta (d) 106.01 2 53.0062 | 1041.95 19 54.8394 0.97 0.3983
Nested
SO- 0.53641 2 0.26821 4.3391 19 0.23153 1.16 0.3352
Spindle
Nested 6-

5.7491 2 2.87454 37.112 19 1.95326 1.47 0.2546
Spindle

Supplementary Table 3. One-way ANOVA results for stroke electrode analysis. SS:
sum of squares; df: degree of freedom; MS: mean square; F: F-statistic (ratio of two
MS); p: significance values.
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Supplementary Figure 1. Imaging data and topographical density plots for different
NREM oscillations. Top to bottom: Imaging data: CT (computed tomography) image for
patient P1, T2 sequences of MRI (magnetic resonance imaging) images for patients P2
to P5; no imaging data available for healthy subjects (P6 to P8). Radiologic imaging has
been flipped horizontally to align with topographic density maps, i.e., image left, and right
are ipsilateral to patient left and right. Left and right are marked in imaging figures (P1-
P5) and apply to density topographical maps below them; Topographical maps for
detected spindle density (count/min) during NREM sleep for all subjects; Topographical
maps for detected SO density (count/min) during NREM sleep for all subjects;
Topographical maps for detected & waves’ density (count/min) during NREM sleep for
all subjects; Topographical maps for detected nested SO-spindle density (count/min)
during NREM sleep for all subjects; Topographical maps for detected & wave-nested-
spindle density (count/min) during NREM sleep for all subjects. Colormap scale shown
at right individually for each topographical plot.
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Stroke vs contralateral non-mirror (CNM) electrode comparison
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Supplementary Figure 2. NREM oscillations’ densities for different patient groups
on stroke verses contralateral non-mirror (CNM) electrodes. A, Table showing
selected stroke and contralateral non-mirror electrodes (CNM) for all patients. B,
Comparison of & wave density (count/min) on stroke versus CNM electrodes for patients
on different medications. Black line shows the mean values within the group. Dots
represent the NREM oscillations’ density for single electrode. C, Same as B for SO
density. D, Same as B for spindle density. E, Same as B for nested 6 wave-nested spindle
density. F, Same as B for SO-nested spindle density. *: statistically significant p values

for two-ta

iled t-test.



