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A B S T R A C T

Eddy covariance data are invaluable for determining ecosystem water use strategies under soil water
stress. However, existing stress inference methods require numerous subjective data processing and model
specification assumptions whose effect on the inferred soil water stress signal is rarely quantified. These
uncertainties may confound the stress inference and the generalization of ecosystem water use strategies across
multiple sites and studies. In this research, we quantify the sensitivity of soil water stress signals inferred from
eddy covariance data to the prevailing data and modeling assumptions (i.e., their robustness) to compile a
comprehensive list of sites with robust soil water stress signals and assess the performance of current stress
inference methods. To accomplish this, we identify the most prevalent assumptions from the literature and
perform a digital factorial experiment to extract probability distributions of plausible soil water stress signals
and model performance at 151 FLUXNET2015 and AmeriFlux-FLUXNET sites. We develop a new framework
that summarizes these probability distributions to classify and rank the robustness of each site’s soil water
stress signal, which we display with a user-friendly heat map. We estimate that only 5%–36% of sites exhibit
a robust soil water stress signal due to deficient model performance and poorly constrained ecosystem water
use parameters. We also find that the lack of robustness is site-specific, which undermines grouping stress
signals by broad ecosystem categories or comparing results across studies with differing assumptions. Lastly,
existing stress inference methods appear better suited for eddy covariance sites with grass/annual vegetation.
Our findings call for more careful and consistent inference of ecosystem water stress from eddy covariance
data.
1. Introduction

Eddy covariance observations are invaluable for characterizing
ecosystem water use strategies under soil water stress. The hundreds of
eddy covariance sites maintained by observation networks across the
globe (e.g., AmeriFlux, ICOS, AsiaFlux, TERN-OzFlux) have been lever-
aged by researchers to generalize ecosystem water use strategies across
plant functional types (PFTs) and climatic gradients (Zhou et al., 2014,
015; Lin et al., 2018; Boese et al., 2019; Fu et al., 2022a), identify
oil moisture thresholds for ecosystem stress responses (Bassiouni et al.,
018; Fu et al., 2022a,c), and quantify the relative importance of soil
ersus atmospheric water stress (Novick et al., 2016; Kimm et al., 2020;
ang et al., 2022; Fu et al., 2022c; Liu et al., 2020). Yet, the growing
ody of eddy covariance research has not comprehensively answered
critical question: which eddy covariance sites have actually observed
cosystem responses to soil water stress?
In the context of eddy covariance data, soil water stress typically

efers to reductions in evapotranspiration (ET) and/or gross primary

∗ Corresponding author at: Bioresources Science and Engineering Group, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN,
United States.

E-mail address: sloanbp@ornl.gov (B.P. Sloan).

productivity (GPP) with respect to drying soil caused by the stomatal
closure of the plants in the ecosystem. However, many eddy covariance
sites have likely not encountered a significant period of soil water
stress given their location in hydric or mesic ecosystems that may
only experience intermittent drought, which are likely missed by the
limited eddy covariance observation periods (e.g., Fig. 1 in Pastorello
et al. (2020)). Therefore, it is difficult to know a priori if a site has
experienced soil water stress without doing extensive literature review,
and, even then, many sites do not have studies pertaining to soil water
stress. Most studies on ecosystem responses to soil water stress that
leverage multiple eddy covariance sites do not exclude non-stressed
sites, which may confound their generalizations of ecosystem water
use strategies. Consistent analysis across eddy covariance sites and
ecosystems requires a comprehensive list of sites that have experienced
soil water stress, which leads to a second unanswered question: how
well can we infer soil water stress signals from eddy covariance data?
vailable online 4 November 2023
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Table 1
Summary of the key data uncertainty and modeling specification assumptions found in studies inferring ecosystem water
use strategy from eddy covariance data. Each column represents a specific assumption group or treatment discussed in
Section 2.3.1, which are used to distill the assumption sets or levels shown in Table 2.

Abbreviations: Ordinary least squares (OLS), Nonlinear least squares (NLLS), Not addressed (-), Latent heat flux (LE), Net
radiation (Rn), Ground heat flux (G), Bowen Ratio (BR), Gross primary productivity (GPP), Leaf Area Index (LAI), Day of year
(DOY), Daily average (DD), Half-hourly(HH), Artificial Neural Network (ANN), Underlying water use efficiency (uWUE),
Intercept parameter (Go), Slope parameter (G1), VPD exponent (m), Canopy conductance (Gc), Evapotranspiration (ET),
atmospheric vapor pressure deficit (VPDa), leaf-to-air VPD (VPDl)
a. Entries refer to which flux the SEB errors were applied to (see Sect. S5).
b. Also checked the three most productive GPP months for growing season.
c. The uWUE model uses the same underlying theory of Eq. 2 of this paper.
d. The authors also tested the Oren et al. (1999), Leuning et al. (1995), and Lloyd et al. (1994) model.
e. PMOC model not explicitly used in this paper.
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Most studies inferring ecosystem soil water stress signals from eddy
ovariance data follow a similar workflow: select relevant eddy co-
ariance sites, fit an interpretable model to the data to infer the soil
ater stress signal, and group site-level signals by plant functional
ypes (PFTs) and/or climatic indices to search for general patterns
cross ecosystem types. Within this workflow lies numerous subjec-
ive assumptions to control for the eddy covariance data uncertainty
e.g., noise, phenology) and specify an interpretable model (e.g., statis-
ical, mechanistic). Unfortunately, these assumptions vary across stud-
es (e.g., Table 1), with minimal quantification of their effects on the
nferred soil water stress signal (see Knauer et al. (2018) for a counter-
xample). Therefore, the sensitivity of the inferred ecosystem soil water
tress signal to the numerous data and modeling assumptions—i.e., its
obustness—must also be quantified to confidently identify sites with
oil water stress.
In summary, the ability to extract meaningful conclusions about

cosystem responses to soil water stress from eddy covariance data
equires a more thorough understanding of the presence and robustness
f the inferred soil water stress signals. The goals of this study are to:
1) develop a framework to quantify and rank the robustness of soil
ater stress signals inferred from eddy covariance data to common
ata and modeling assumptions, (2) provide a comprehensive list of
2

s

ddy covariance sites with robust soil water stress, (3) examine how
on-robust soil water stress signals confound generalizations across
cosystem categories, and (4) identify deficiencies in current soil water
tress inference approaches.
To achieve these goals, we have compiled a list of key data and
odeling assumptions taken from studies of ecosystem water use
trategies inferred from eddy covariance data. Then, for each of 151
LUXNET2015 and AmeriFlux-FLUXNET sites, we construct a prob-
bility distribution of inferred soil water stress signals and model
erformance due to the range of plausible assumption sets. We explore
hese stress signal distributions in a case study of nearly identical
ddy covariance sites with known soil water stress to illustrate the
omplexity of robust soil water stress inference (Section 3.1). Next, we
ssess how the robustness at all 151 sites affects detecting patterns in
oil water stress signals grouped across broader ecosystem categories
Section 3.2). Finally, we propose a robust ecosystem soil water stress
ramework that summarizes the stress signal and model performance
istributions to create a rank-ordered list of eddy covariance sites with
obust soil water stress (Section 3.3).
This research is fitting for the 25th Anniversary of AmeriFlux spe-

ial issue as it assesses the current practices of inferring ecosystem

oil water stress signals from growing eddy covariance datasets. To
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Fig. 1. 151 eddy covariance sites taken from the FLUXNET2015 and AmeriFlux-
FLUXNET data sets (Pastorello et al., 2020) used in this analysis, categorized by the
nternational Geosphere–Biosphere Programme (IGBP) plant functional types (PFTs) and
he annual Dryness Index (DI = Potential ET/Precipitation).

ur knowledge, this research is the first attempt at comprehensively
dentifying which eddy covariance sites exhibit robust soil water stress
ignals while highlighting deficiencies in current inference approaches.
e hope these results will inspire further work by AmeriFlux and other
ddy covariance communities to create guidance for robust soil water
tress inference across studies and ecosystems.

. Methods

.1. Common soil water stress inference workflow

In the following subsections, we lay out our workflow for inferring
oil water stress from eddy covariance data that we have summarized
rom the studies listed in Table 1.

.1.1. Eddy covariance site selection and baseline filtering
To create a comprehensive list of eddy covariance sites with ro-

ust soil water stress signals, we first downloaded half-hourly/hourly
ddy covariance data from both the FLUXNET2015 (Pastorello et al.,
020) and AmeriFlux-FLUXNET data products. We selected 151 of the
29 potential sites that had adequate soil moisture and atmospheric
bservations (e.g., net radiation) relevant to the interpretable model
iscussed in Section 2.1.2. The 151 eddy covariance sites cover a range
f ecosystems (Fig. 1). For each site, we selected the soil moisture sen-
or with the best coverage (typically shallower) and collected ancillary
ata (e.g., vegetation height, tower height) from metadata or literature.
he full site and sensor selection details are given in Section S1, and a
ummary table of the 151 eddy covariance sites is given in Table S1.
In this study, we aim to test the sensitivity of the inferred soil

ater stress signals to common data uncertainty assumptions that are
pplied inconsistently across studies (see Section 2.3). However, many
of the studies in Table 1 agree on some baseline filtering assumptions
that focus the analysis on periods where vegetation modulates carbon
and water fluxes to the atmosphere. We apply these baseline filtering
assumptions (listed in Fig. 2a and discussed in Sect. S1) to all 151 eddy
covariance sites.

2.1.2. Interpretable model specification
The existing literature uses a wide range of interpretable models to

infer soil water stress signals from eddy covariance data, ranging from
statistical (Koster et al., 2009; Fu et al., 2022a) to mechanistic (Novick
et al., 2016; Lin et al., 2018). Here, we adopt a popular mechanistic
approach that combines the Penman–Monteith equation (Monteith,
1965) with an optimal canopy conductance (𝐺𝑐) equation to create a
simplified land surface model. These Penman–Monteith Optimal Con-
3

ductance models (called PMOC from hereon) provide an advantage
over statistical models given their basis in first principles (e.g., conser-
vation of mass and energy) and interpretable fitting parameters linked
theoretically and empirically to ecosystem water use strategies.

The Penman–Monteith equation (Eq. (1)) balances the effect of the
surface energy balance (SEB) and atmospheric turbulence on evapo-
transpiration (𝐸𝑇 , 𝑚𝑚 ⋅ 𝑑−1) from a plant canopy, where 𝛥 (𝑃𝑎 ⋅ 𝐾−1)
s the slope of the Clausius–Clapeyron relationship, 𝑅𝑛 (𝑊 ⋅𝑚−2) is the
net radiation, 𝐺 (𝑊 ⋅ 𝑚−2) is the ground heat flux, 𝜌𝑎 (𝑘𝑔 ⋅ 𝑚−3) is the
ir density, 𝑐𝑝 (𝐽 ⋅ 𝑘𝑔−1 ⋅ 𝐾−1) is the specific heat of air at constant
ressure, 𝐺𝑎 (𝑚 ⋅𝑠−1) is the atmospheric conductance, 𝑉 𝑃𝐷𝑎 (𝑃𝑎) is the
tmospheric vapor pressure deficit, 𝛾 (𝑃𝑎 ⋅ 𝐾−1) is the psychrometric
onstant, and 𝑐1 (≈ 0.035) converts 𝐿𝐸 (𝑊 ⋅ 𝑚−2) to 𝐸𝑇 . Except for
𝑐 , the inputs to Eq. (1) are constants or taken from eddy covariance

observations (see Sect. S2 for full details).

𝐸𝑇 = 𝑐1 ⋅
𝛥 ⋅

(

𝑅𝑛 − 𝐺
)

+ 𝜌𝑎 ⋅ 𝑐𝑝 ⋅ 𝐺𝑎 ⋅ 𝑉 𝑃𝐷𝑎

𝛥 + 𝛾 ⋅
(

1 + 𝐺𝑎
𝐺𝑐

) (1)

The canopy conductance (𝐺𝑐 , 𝑚 ⋅ 𝑠−1) represents how the ecosys-
tem modulates 𝐸𝑇 through stomatal control on transpiration and the
decline in surface moisture on evaporation. We require an additional
equation for 𝐺𝑐 that partitions evaporation and transpiration from the
canopy as well as the response of stomata to other environmental
variables (e.g., 𝑉 𝑃𝐷). Classic plant-scale optimality theory provides
numerous formulations for stomatal conductance (𝑔𝑠) based on the
assumption that plants close their stomata to maximize carbon gain
for a given amount of water loss (Cowan and Farquhar, 1977). These
optimal 𝑔𝑠 equations are then scaled to the optimal 𝐺𝑐 equations using
ecosystem scale observations. For example, the following 𝐺𝑐 formula-
tion from Lin et al. (2018) is a scaled version of the 𝑔𝑠 formulation
from Lloyd et al. (1994):

𝐺𝑐 =
[

𝐺𝑜 + 𝐺1 ⋅
𝐺𝑃𝑃

𝐶𝑎 ⋅ 𝑉 𝑃𝐷𝑚

]

⋅ 𝑐2 (2)

here 𝐺𝑃𝑃 (𝜇𝑚𝑜𝑙𝑒𝑠 𝐶𝑂2 ⋅ 𝑚−2 ⋅ 𝑠−1), atmospheric CO2 concentration
𝐶𝑎, 𝜇𝑚𝑜𝑙𝑒𝑠 𝐶𝑂2 ⋅ 𝑚𝑜𝑙𝑒𝑠 𝑎𝑖𝑟−1), and 𝑉 𝑃𝐷 (𝑘𝑃𝑎; can differ from 𝑉 𝑃𝐷𝑎;
ee Sect. 2.3.1) are eddy covariance observations, and 𝐺𝑜 (𝜇𝑚𝑜𝑙𝑒𝑠 𝑎𝑖𝑟 ⋅
−2⋅𝑠−1), 𝐺1 (𝑘𝑃𝑎𝑚), and 𝑚 are fitting parameters. The term 𝑐2 (≈ 0.025)
onverts 𝐺𝑐 from a molar flux to a volume flux (Lin et al., 2018). The in-
ercept parameter, 𝐺𝑜, represents the soil/plant surface evaporation (Li
t al., 2019), and the exponent parameter, 𝑚, describes the sensitivity of
tomatal closure to 𝑉 𝑃𝐷 (across plants in the canopy) with an optimal
alue of 0.5. The slope parameter, 𝐺1, is theoretically and empirically
inked to ecosystem water use strategy through its inverse relationship
o the marginal water use efficiency (𝜆) as higher (lower) 𝐺1 indicates
lants are more aggressive (conservative) in keeping their stomata open
o assimilate CO2 at the cost of transpiration (Cowan and Farquhar,
977; Lloyd et al., 1994; Medlyn et al., 2011). Therefore, 𝐺1 is the
critical parameter for inferring ecosystem responses to soil water stress.
In this study, we use an additional 𝐺𝑐 formulation from Medlyn et al.
(2017) shown in Equation S5.

2.1.3. Soil water stress inference
We use the relationship between the ecosystem water use strategy

parameter (𝐺1) and soil moisture to represent the ecosystem soil water
stress signal based on PMOC studies (Table 1) and decades of theory
and experiments (Cowan and Farquhar, 1977; Hari et al., 1986; Lloyd
et al., 1994; Manzoni et al., 2011; Zhou et al., 2013; Wolf et al., 2016;
Drake et al., 2017). A positive (negative) relation between 𝐺1 and soil
moisture (red (blue) solid line in Fig. 2f) indicates dry (wet) soil water
stress, where plants appear to close stomata in response to lower leaf
water potential (lack of oxygen) caused by drying (water-logged) soil.
For each eddy covariance site (and unique assumption set), we fit the
PMOC model to the data split into 10 soil moisture percentiles bins
(𝜃𝑝), resulting in at most 10 estimates of 𝐺1 (e.g., red and blue dots in

Fig. 2f). Then, we fit a segmented or straight line regression model to
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Fig. 2. Workflow for quantifying and ranking the robustness of the ecosystem soil water stress signal inferred from each eddy covariance site, using the (a) US-Me2 eddy covariance
site as an example. Step 1 illustrates Treatments 1–4 in Table 2 that control data uncertainty due to (b) noise and surface energy budget (SEB) closure bias and (c) vegetation
ynamics that are handled with a ‘‘growing season’’ filter (i.e., keep days above 𝐺𝑃𝑃 cut-off) or by augmenting the data with MODIS LAI. Step 2 locates where Treatments 5–8
n Table 2 occur in the (d) Penman–Monteith Optimal Conductance (PMOC) model and (e) parameter estimation. See Sect. S5 for full details on treatment levels. Step 3 illustrates
he (f) soil water stress signal extraction for two of the 2,304 assumption sets (AS, gray x’s), which differ in their Treatment 5–6 assumptions. The location of the extracted stress
ignals is used to extract both the mean (g) predictive and (h) functional performance for each AS. Finally, Step 4 illustrates how probability distributions of the 2,304 (i) soil
ater stress signals and (j) performance metrics are summarized based on a satisficing metric (dashed black line) to classify each site’s robustness (see Section 2.3.2).
b

2

u
e
b
I
t

he 𝜃𝑝 − 𝐺1 points and extracted the dominant ecosystem soil water
tress signal (slope 𝛽1,𝑠,𝑖 in Fig. 2f). The stress signal detection was
erformed in R version 4.1.0 (R Core Team, 2021) using the segmented
ackage (Muggeo, 2008). See Section S3 for full details on the dominant
tress signal extraction.
In addition to 𝐺1, we also check two other ecosystem parameters—

𝐺1
𝑉 𝑃𝐷𝑚 and the vegetation conductance 𝐺𝑣 (=

𝐺1⋅𝐺𝑃𝑃
𝑉 𝑃𝐷𝑚 )—to improve the

chances of detecting a soil water stress signal. The parameter 𝐺1 may
be confounded by parameter correlations with 𝐺𝑜 and 𝑚 during the
estimation process (i.e., practical identifiability issues (Guillaume et al.,
2019)); therefore, both 𝐺1

𝑉 𝑃𝐷𝑚 and 𝐺𝑣 can counter correlations between
𝐺1 and 𝑚, while 𝐺𝑣 may incorporate non-stomatal limitations (Zhou
et al., 2013; Dewar et al., 2018) and drought-deciduousness (Novick
t al., 2019) through its inclusion of 𝐺𝑃𝑃 . However, these two param-
4

eters have the disadvantage of potentially misattributing seasonality in s
VPD (e.g., land–atmosphere interactions (Seneviratne et al., 2010)) and
𝐺𝑃𝑃 (e.g., phenology) as soil water stress. Therefore, we check the
agreement between soil water stress signals derived from 𝐺1,

𝐺1
𝑉 𝑃𝐷𝑚 ,

and 𝐺𝑣 in the later analysis of robustness of soil water stress at each
site (see Section 2.3.2). We use the median 𝑉 𝑃𝐷 and 𝐺𝑃𝑃 in each 𝜃𝑝
in along with the estimated 𝐺1 to calculate

𝐺1
𝑉 𝑃𝐷𝑚 , and 𝐺𝑣.

.1.4. Ecosystem generalization
Many PMOC studies (Table 1) tend to compare ecosystem water

se strategies by grouping soil water stress signals (or other inferred
cosystem water use parameters) from multiple eddy covariance sites
y dominant vegetation type and/or climatic indices. Here, we use the
nternational Geosphere–Biosphere Programme (IGBP) plant functional
ypes (PFTs) and the annual Dryness Index (DI = Potential Evapotran-

piration/Precipitation) to define our ecosystem categories (Fig. 1). The
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Table 2
The data uncertainty and modeling specification treatments (columns) and levels (rows) used to create the probability
distribution functions of the soil water stress signals and performance metrics at each eddy covariance site (e.g., Fig. 2i–j).
These levels were derived from the literature review in Table 1.

Abbreviations: Nonlinear least squares (NLLS); Sum of squared errors (SSE), Lee and Choi Efficiency (LCE), Surface Energy
Budget (SEB), Latent heat flux (LE), Bowen Ratio (BR), Gross primary productivity (GPP), Leaf Area Index (LAI), Daily
average (DD), Not addressed (-), Intercept parameter (Go), Slope parameter (G1), VPD exponent (m), Canopy conductance
(Gc), Evapotranspiration (ET), atmospheric vapor pressure deficit (VPDa), leaf-to-air VPD (VPDl)
a. The optimization methods differ from least squares in that the objective value is a scalar (SSE or LCE) rather than a vector
of residuals. For least squares methods we used fitnlm and for optimization we used fmincon in MATLAB.
b. The FLUXNET method does not force closure at each time step, but rather calculates an average correction factor over a
multi-day window (Pastorello et al., 2020).
c. Same method as Knauer et al. (2017).
d. See Sect. S6 for details.
l

a
o
S
𝐴
o

IGBP PFTs are Evergreen Needleleaf Forest (ENF), Mixed Forest (MF),
Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF),
Woody Savanna (WSA), Grassland (GRA), Closed Shrubland (CSH),
Cropland (CRO), Savanna (SAV), Open Shrubland (OSH), and Wetland
(WET). We calculated the annual DI using the CRU TS v4.03 (Harris
et al., 2020) rather than the eddy covariance data given their short
observation periods. Next, we discretized the DI into three dryness
regimes: hydric (DI < 1), mesic (1 < DI < 2), and xeric (DI > 2). In
this study, the term ‘‘ecosystem’’ describes the spatial scale of eddy
covariance observations as well as a broad category defined by PFT and
DI. We test the efficacy of these broad ecosystem categories in detecting
general soil water stress patterns in Section 3.2.

2.2. Predictive and functional performance

We quantify the predictive and functional performance of the PMOC
model to check the quality of the soil water stress inference (e.g., a
strong stress signal with weak performance should be interpreted with
caution). Here, the predictive performance refers to the ability of the
PMOC model to match the data, whereas the functional performance
refers to whether the model matches the data for the right reasons.

For predictive performance, we use the Lee and Choi Efficiency
(LCE; Eq. (3) (Lee and Choi, 2022)), which is a re-balanced formulation
of the Kling–Gupta Efficiency (Gupta et al., 2012) that better captures
the model to observation correlation coefficient (𝑟), standard deviation
ratio (𝛼), and mean ratio (𝛽𝜇). A value of 1 indicates a perfect match
and there is no lower bound.

𝐿𝐶𝐸 = 1 −
√

(𝑟 ⋅ 𝛼 − 1)2 + (𝑟∕𝛼 − 1)2 + (𝛽𝜇 − 1)2 (3)

For functional performance, we use information theory to quantify
he ability of a model to match the strength of relationship between
redictor variable(s) and the response variable (Ruddell et al., 2019;
assiouni and Vico, 2021). Here, our functional performance metric
𝐴′
𝑓,𝑇 ,𝑖; Eq. (4)) is a re-scaled relative difference in the multivariate total
utual information between model and observations proposed by Rud-
ell et al. (2019). The total mutual information (𝐼(𝑋1, 𝑋2; 𝑌 ); Eq. (5))
estimates the information about a response variable (𝑌 ) contained
in predictor variables (𝑋) using Shannon’s Entropy (). Therefore,
𝐴′
𝑓,𝑇 ,𝑖 measures how closely the model matches the information transfer
5

between chosen predictor and response variables in the observations. t
We select three predictor variables (𝑉 𝑃𝐷𝑎, 𝜃𝑝, and GPP) and calcu-
ate the metric for each pair in each 𝜃𝑝 bin. The values of 𝐴′

𝑓,𝑇 ,1,
𝐴′
𝑓,𝑇 ,2, and 𝐴′

𝑓,𝑇 ,3 correspond to 𝐴′
𝑓,𝑇 (𝜃𝑝, 𝑉 𝑃𝐷𝑎; 𝑌 ), 𝐴′

𝑓,𝑇 (𝜃𝑝, 𝐺𝑃𝑃 ; 𝑌 ),
nd 𝐴′

𝑓,𝑇 (𝐺𝑃𝑃 , 𝑉 𝑃𝐷𝑎; 𝑌 ), where 𝑌 represents either ET or 𝐺𝑐 based
n the response variable selection (see Treatment 7 in Section 2.3.1).
ee Section S4 for calculation details for 𝐴′

𝑓,𝑇 ,𝑖. We use the individual
′
𝑓,𝑇 ,𝑖 values to assess site specific results in this paper, but the average
f the three functional metrics (𝐴′

𝑓,𝑇 ) is used to classify robustness (see
Section 2.3.2).

𝐴′
𝑓,𝑇 (𝑋1, 𝑋2; 𝑌 ) = 1 − |𝐴𝑓,𝑇 (𝑋1, 𝑋2; 𝑌 )|

= 1 −
|

|

|

|

𝐼(𝑋1, 𝑋2; 𝑌𝑜) − 𝐼(𝑋1, 𝑋2; 𝑌𝑚)
𝐼(𝑋1, 𝑋2; 𝑌𝑜)

|

|

|

|

(4)

𝐼(𝑋1, 𝑋2; 𝑌 ) = (𝑋1, 𝑋2) +(𝑌 ) −(𝑋1, 𝑋2, 𝑌 ) (5)

2.3. Quantifying robustness of ecosystem soil water stress signals

In the following subsections, we explain how we quantify the ro-
bustness of soil water stress signals to common, subjective data and
modeling assumptions (Section 2.3.1) and lay out our robustness frame-
work for ranking the soil water stress signals of the 151 eddy covariance
sites (Section 2.3.2).

2.3.1. Data uncertainty and model specification assumptions
We reviewed the growing literature using PMOC and similar ap-

proaches to infer ecosystem water use strategies from eddy covariance
data to find common assumption groups or ‘‘treatments’’ (columns
of Table 1). We selected treatments that were applied inconsistently
across studies (rows of Table 1) without definitive guidance on what
constitutes best practice. We selected 2–4 assumptions or ‘‘levels’’ for
each treatment (Table 2) to test the sensitivity of soil water stress
signals and PMOC model performance to these common subjective
choices (i.e., robustness). Since the goal of this paper is to identify the
presence and robustness of soil water stress signals at eddy covariance
sites, we will only briefly cover the selected treatments. Section S5
contains further justification on the treatment level selection.

The first four treatments in Table 2 control for different uncertain-

ies in the eddy covariance data on the soil water stress inference.
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Fig. 3. The kernel density distribution of the (a) 𝐺1, (b) 𝐺1∕𝑉 𝑃𝐷𝑚, and (c) 𝐺𝑣
cosystem soil water stress signals from the 2,304 assumption sets (Table 2) for the
ive Metolious ponderosa pine eddy covariance sites in Oregon. The dashed red line is
he the critical stress threshold (0.4; see Section 2.3.2), and the filled area under the
urve represents the proportion of assumption sets that are deemed to have practically
ignificant soil water stress. The ‘‘Robust (○)’’ label is given to sites that have more
han 70% of their assumptions sets exceeding the critical stress threshold and is used
urther in Section 3.3.

reatment 1 controls for the large, non-normal random uncertainty
i.e., noise illustrated in Fig. 2b) in eddy covariance data (Aubinet et al.,
012) by applying different fit algorithms to the parameter estima-
ion. Treatment 2 controls for the large bias in eddy covariance data
Fig. 2b), attributed to the surface energy budget nonclosure (Mauder
t al., 2020), by applying different correction factors. Treatments 3–
control for the inference uncertainty due to vegetation dynamics

e.g., phenology, plant growth) by either filtering data to a hypothetical
‘growing season’’ based on a GPP threshold (black lines in Fig. 2c) or
ugmenting the data set with MODIS Leaf Area Index (LAI; gray line in
ig. 2c) observations (Myneni et al., 2021). See Section S6 for details
n MODIS LAI processing.
The last four treatments in Table 2 control for the inference un-

certainties incurred by the PMOC model specification. Treatment 5
(Fig. 2d) controls for uncertainty due to the optimal canopy conduc-
tance (i.e., 𝐺𝑐) formulation, while Treatment 6 (Fig. 2e) controls for
uncertainties over which PMOC parameters are estimated. Treatment 7
(Fig. 2e) tests the effect of using either 𝐺𝑐 derived from observed ET or
observed ET itself as the response variable in the parameter estimation.
Finally, Treatment 8 (Fig. 2d) tests the effect of derived versus observed
𝑉 𝑃𝐷 inputs into the PMOC model.

We quantify the sensitivity of the inferred soil water stress signals
and PMOC model performance to the assumptions in Table 2 using a
6

digital factorial experiment. The eight treatments containing up to four
levels in Table 2 result in 2,304 plausible assumption sets or treat-
ment combinations—thus, soil water stress signals and performance
metrics—that a researcher could select in a PMOC analysis. We perform
the soil water stress detection discussed in Section 2.1.3 for each unique
assumption set (shown in Fig. 2f for two unique assumption sets), which
results in 2,304 fits per each 𝜃𝑝 bin (gray points in Fig. 2f–h). We extract
the dominant soil water stress signal (𝛽1,𝑠,𝑖) for each assumption set
to create a probability distribution of plausible stress signals for 𝐺1,
𝐺1∕𝑉 𝑃𝐷𝑚, and 𝐺𝑣 (Fig. 2i). Likewise, we extract the mean predictive
and functional performance metrics corresponding to the soil mois-
ture bins that contained the dominant stress signal (𝛽𝑜,𝑝,𝑖 and 𝛽𝑜,𝑓 ,𝑖 in
Fig. 2g–h) to create a probability distribution of plausible PMOC model
performance (Fig. 2j). We fit the PMOC model in MATLAB using the
algorithm specified by Treatment 1 (Table 2) and a 2/3 calibration-
validation split. We chose not to quantify sampling variability through
methods like bootstrapping (Lin et al., 2018; Bassiouni and Vico, 2021)
because we did not want to conflate its variability with the variability
due to the assumption choices.

2.3.2. Robust ecosystem soil water stress framework
We propose a robust ecosystem soil water stress framework (or

robustness framework) to identify which sites have a detectable soil
water stress signal regardless of the selected data and modeling assump-
tions. Here, we define robustness according to the decision-analysis
literature (Mcphail et al., 2018) as the sensitivity of an outcome of
interest (i.e., stress signal or performance) to the plausible range of
decisions (i.e., data and modeling assumptions). There are numerous
metrics to quantify robustness, each with its own trade-offs (Mcphail
et al., 2018). Here, we use a satisficing metric known as Starr’s Domain
Criteria (Starr, 1963) to quantify robust stress and performance, which
calculates the proportion of assumption sets whose stress signals and/or
performance metrics exceed a critical threshold.

The critical threshold for the soil water stress signal (i.e., dominant
stress signal 𝛽1,𝑠,1 illustrated in Fig. 2f) corresponds to a stress signal
large enough to significantly influence ecosystem water and carbon
fluxes. Although subjective, we set the threshold to |𝛽1,𝑠,𝑖| ≥ 0.4
(Fig. 2f,i) for the median-normalized soil water stress signal. This
threshold corresponds to a 20% drop in the plant parameter (e.g., 𝐺1)
over half the soil moisture percentiles (i.e., 0.2∕0.5 = 0.4). Further
details on the critical stress threshold are given in Section S3. We will
refer to stress signals that exceed this threshold as ‘‘practically signifi-
cant’’ soil water stress signals throughout this paper. We preliminarily
classify the stress at each site using the stress signal pdf median and
majority agreement between the ecosystem parameters. We classify a
site as "Dry", "Negligible", or "Wet" stress if the median lies above,
between, or below the positive and negative critical stress thresholds
for at least two of the three ecosystem parameters. The few site’s whose
ecosystem parameters disagree are labelled "Unsure".

The critical thresholds for predictive and functional performance
metrics correspond to a level of acceptable performance. For predictive
performance, we have selected a threshold of 𝐿𝐶𝐸 ≥ 0.4 by assuming
that 𝑟, 𝛽𝜇 , and 𝛼 in Eq. (3) equal 0.7 (i.e., corresponding to a maximum
30% error), which is reasonable given the large uncertainties in eddy
covariance data (see Sect. S7 for more details on derivation of this
threshold). For functional performance, we require the 𝐴′

𝑓,𝑇 ≥ 0.7,
which represents a maximum 30% deviation between measurements
and observations.

These stress signal and performance thresholds are used to calculate
the robustness metrics—the proportion of 2,304 assumption sets that
exceed the critical thresholds (shown in Fig. 2i and j respectively by the
shaded region of the probability density functions (pdfs)). The larger
this proportion, the more robust the soil water stress signal and the
better the model performance used to infer the signal.

The robustness framework uses these stress and performance robust-

ness metrics to create an overall classification for each eddy covariance
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Fig. 4. The kernel density distribution of the PMOC (a) predictive and (b)–(d) functional performance metrics from the 2,304 assumption sets (Table 2) for the five Metolious
ponderosa pine eddy covariance sites in Oregon. The dashed red line indicates the critical predictive (𝐿𝐶𝐸 = 0.4) and functional performance thresholds (𝐴′

𝑓,𝑇 ,𝑖 = 0.7; see
Section 2.3.2), and the filled area under the curve represents the proportion of assumption sets that are deemed to have acceptable performance. The ‘‘Robust (+)’’ label is given
to sites that have more than 70% of their assumptions sets exceeding the critical performance threshold and is used further in Section 3.3.
site as to whether the site exhibits a robust ecosystem response to soil
water stress. Here, we define robustness as 70% of the assumption
sets matching the preliminary stress classification (e.g. "Dry", "Wet")
and/or exceeding the performance thresholds. Note, we are primarily
focused on the "Dry" stress classification for this work, but the "Wet"
and "Negligible" stress classes do occur. The possible robustness classes
for each site are ‘‘Stress Only’’ (○), ‘‘Performance Only’’ (+), or ‘‘Stress
Performance’’ (⊕). The ‘‘Stress Only’’ robustness class indicates that
0% of assumption sets agreed on a "Dry", "Negligible", or "Wet" stress
lassification for at least two of the three ecosystem water use pa-
ameters (e.g., a robust "Dry" stress signal shown in Fig. 2i), but the
erformance metrics failed to meet the robustness criteria (as in Fig. 2j).
Therefore, the stress signal may be untrustworthy because the model
does not adequately represent the data. Alternately, the ‘‘Performance
Only’’ robustness class means that 70% of the assumptions sets had
predictive and functional performance metrics jointly exceeding the
critical performance thresholds (𝐿𝐶𝐸 ≥ 0.4 and 𝐴′

𝑓,𝑇 ≥ 0.7, re-
spectively), but the stress signal was too sensitive to the assumptions,
which requires closer analysis to estimate the true soil water stress
signal. Finally, the ‘‘Stress + Performance’’ robustness class means the
stress signals and performance metrics at a site both met the above
robustness criteria, and we consider that site to have a robust soil water
stress signal. In the example shown in Fig. 2i-j, US-Me2 achieves a
robust ‘‘Stress Only’’ class, given its poor model performance. These
robustness classes and symbols will be used to rank-order all 151 sites
in Section 3.3.

3. Results

3.1. Robust soil water stress inference is a site-specific problem

We first perform a case study on five nearly identical eddy covari-
ance sites in Oregon to illustrate the complexity of robustly inferring
7

soil water stress signals. These sites are located close to each other
(e.g., max distance between sites is 31 km), contain ponderosa pine
as the dominant species and share similar climate, weather, and soil
textures. More importantly, each site has ample evidence for ecosystem
soil water stress given the seasonally dry climate in the eastern Cascade
mountains (Irvine et al., 2002; Schwarz et al., 2004; Irvine et al.,
2004, 2008; Ruehr et al., 2012). Even so, we can demonstrate that
the sensitivity of the soil water stress signals to PMOC assumptions
obfuscates stress inference in a site-specific manner.

The diffuse soil water stress signal probability density functions
(pdfs) in Fig. 3 signify a lack of robustness. Generally, the median stress
signal (black line in Fig. 3) exceeds the critical dry stress threshold for
most sites and ecosystem parameters, indicating that the majority of
PMOC assumption sets would yield a noticeable dry stress signal (see
Section 2.3.2). However, there are still many PMOC assumption sets
that yield practically insignificant or even wet soil water stress signals
(e.g., unfilled portions left of the red dashed line in Fig. 3). The fact
that opposite soil water stress inferences can result from equally valid
PMOC assumptions is concerning given that all these Metolius sites
have observed periods of dry soil water stress.

Similar to the soil water stress signals, the performance metric pdfs
(Fig. 4) show a large spread, implying that many of the assumption sets
yield unacceptable performance (unfilled portion of pdf left of the red
dashed line in Fig. 4). In particular, the functional performance metrics
that involve 𝐺𝑃𝑃 (𝐴′

𝑓,𝑇 ,2 and 𝐴′
𝑓,𝑇 ,3 in Fig. 4c–d) indicate that the

PMOC model struggles to represent the strength of association between
𝐺𝑃𝑃 and 𝐸𝑇 (or 𝐺𝑐). As most PMOC studies (Table 1) only select
a single assumption set, they do not consider the range of possible
performances shown in Fig. 4 nor the implications of these perfor-
mances on inferring the soil water stress signal. Our results indicate
that the inferred soil water stress signals should be qualified by their

corresponding performance metrics.



Agricultural and Forest Meteorology 343 (2023) 109744B.P. Sloan and X. Feng

h
w
c
o
s
s
p

The differing pdf shapes across sites in Figs. 3–4 indicate that the
robustness of soil water stress signals and model performance are site-
specific. To further illustrate this point, we have plotted the inferred
stress signals and performance metrics for an arbitrarily chosen set
of fixed PMOC assumptions as filled circles in Figs. 3–4. At each
site, the circle lies at a different percentile of the pdf, indicating
that the fixed assumption set uniquely affects inference at each site.
For example, the fixed assumption set for US-Me1 in Fig. 3 causes
a higher percentile stress signal than at the other four sites. Our
preliminary analysis indicates that the site-specific robustness results
are a consequence of unique site characteristics, such as stand age,
disturbance history, and observation period (see Sect. S8). Regardless,
the site-specific robustness results indicate that most PMOC studies—
that use a single assumption set for consistency across sites—may
actually have site-specific biases in their inferred stress signals that
complicate comparisons across sites and studies.

3.2. Lack of robustness confounds generalizing ecosystem soil water stress
signals

The case study results (Section 3.1) raise concerns over the com-
mon practice in PMOC studies (Table 1) of aggregating inferred soil
water stress signals into broad ecosystem categories to draw general
conclusions about ecosystem water use strategies. We hypothesize that
site-specific, non-robust soil water stress signals and model perfor-
mance are prevalent at sites outside of our case study, which will
compromise the ability to detect patterns between broad ecosystem
classes. To test this hypothesis, we perform a typical multi-site analysis
for 151 eddy covariance sites that groups inferred soil water stress
signals for a single assumption set (i.e., the median of each site’s pdf)
into broad ecosystem categories defined by the IGBP plant functional
types (PFTs) and the annual Dryness Index (DI; see Section 2.1.4 for
details). We test if the lack of robustness in soil water stress signals
and model performance obfuscate expected trends across ecosystem
categories.

Fig. 5 shows that the intra-ecosystem variability in the median
stress signals is far greater than the inter-ecosystem variability with
respect to DI or PFTs. Previous studies indicate that sites with higher
DI correspond to larger dry soil water stress signals given the presence
of seasonal water stress (Novick et al., 2016; Fu et al., 2022a) or that
grass/annual sites (GRA or CRO) would have more aggressive water
use strategies than forested sites (DBF or ENF) given their shorter
life-span (Lin et al., 2015). However, the intra-ecosystem variability
in Fig. 5 overwhelms any statistically significant differences between
ecosystem categories (see Sect. S9 for details).

These inconclusive inter-ecosystem patterns are further reinforced
by the lack of robustness in the soil water stress signals to the PMOC
assumptions at most sites (Fig. 5b). The low signal-to-noise ratio (SNR;
Fig. 5b; analogous to high spread in Fig. 3) indicates that a researcher
could infer a different stress signal (e.g. wet stress versus dry stress)
based on subjective assumptions. Furthermore, as in the case study,
the robustness of the soil water stress signal is site-specific (Fig. S7),
meaning that using a fixed assumption set may result in a site-specific
bias from the true ecosystem soil water stress signal, which could
contribute to the large intra-ecosystem variability shown in Fig. 5a.

Limitations of the PMOC inference approach also contribute to the
inability to generalize ecosystem water use strategies. The commonly-
used ecosystem water use parameter 𝐺1 struggles to detect soil water
stress as indicated by fewer practically significant stress signals (num-
ber of points exceeding red dashed line in Fig. 5a tallied in Fig.
S5b) and lower SNR (Fig. 5b) across ecosystem categories compared
to 𝐺1∕𝑉 𝑃𝐷𝑚 and 𝐺𝑣. We discuss this point further in Section 4.1.
The poorer predictive (LCE) and functional performance (𝐴′

𝑓,𝑇 ) of
the PMOC model (Fig. 6a) at forested sites (DBF and ENF) compared
to annual/grass sites (CRO and GRA) may also increase the level of
intra-ecosystem variability in Fig. 6a through inaccurate parameter
8

estimation. These PMOC performance differences between PFTs appear
robust (high SNR in Fig. 6b) and are discussed in Section 4.2.

Finally, a practical explanation for the failure of the ecosystem
stress generalization is the inclusion of eddy covariance sites that have
not observed periods of soil water stress—or, at least, not signals
detectable by the PMOC analysis. Unlike the Metolious case study in
Section 3.1, we do not know how many of the 151 eddy covariance
sites actually observed soil water stress. Only 35%–57% (5%–12%)
of the 151 eddy covariance sites exhibited practically significant dry
(wet) soil water stress based on their median soil water stress signal
(Fig. S5b), depending on the plant parameter (Fig. S5a). Many eddy
covariance sites are hydric or mesic (Fig. 1) and have less than 10 years
of observations (Fig. S6), meaning that there is a good chance that the
observation period did not experience an intermittent drought.

3.3. Ranking ecosystem soil water stress signals by robustness

The soil water stress signals inferred from numerous eddy covari-
ance sites are not robust to the subjective PMOC assumptions, under-
mining meaningful conclusions about ecosystem responses to soil water
stress. In this section, we apply the robust ecosystem soil water stress
framework (Section 2.3.2) to identify which sites have a robust soil
water stress signal as well as general deficiencies in the PMOC inference
approach. The robustness framework classifies and ranks each site by
its ability to yield consistent soil water stress signals and acceptable
model performance with respect to the numerous PMOC assumption
sets (Fig. 2i-j). We visualize the robustness framework results with heat
maps for all 151 eddy covariance sites (Figs. 7–8). We will first examine
these robustness results for the Metolius case study sites (Section 3.1)
to orient the reader to the heat maps, followed by an analysis of all 151
eddy covariance sites.

The robustness framework heat maps (Figs. 7–8) encapsulate the
key information from the stress signal and performance metric pdfs
(e.g., Figs. 3–4) into three columns: overall robust stress classification
(column 1), stress signal robustness (column 2), and performance met-
ric robustness (column 3). All five Metolius case study sites (rows with
black arrows in Fig. 7) indicate a dry soil water stress signal (red in
column 1) given that their median stress signals exceed the critical
stress threshold of 0.4 for two out of three plant parameters (Fig. 3a-c).
However, the robustness and, thus, ranking of each site’s stress signal
varies as shown by the differing symbols in column 1 of Fig. 7.

US-Me5 ranks the highest with robust performance only (‘‘+’’ in
column 1), as more than 70% of the runs jointly exceed the predictive
(𝐿𝐶𝐸 ≥ 0.4) and functional performance threshold (𝐴′

𝑓,𝑇 ≥ 0.7).
The robust performance classification is based on the dark green and
‘‘+’’ symbols in column 3 that summarize the median and robustness
metrics, respectively, of the individual performance metric pdfs in
Fig. 4. Note that 𝐴′

𝑓,𝑇 ,3 does not individually meet the robustness
threshold (no ‘‘+’’ in column 3 of Fig. 7, and no ‘‘Robust (+)’’ label in
Fig. 4d), but 𝐴′

𝑓,𝑇 does (see Section 2.2). Unfortunately, US-Me5 does
not have a robust stress signal as only 𝐺1∕𝑉 𝑃𝐷𝑚 indicates robustness
(‘‘○’’ in column 2, and ‘‘Robust (○)’’ label Fig. 3b) while 𝐺1 and 𝐺𝑣
ave too many assumptions sets yielding practically insignificant soil
ater stress (Fig. 3a,c). Alternately, US-Me1, US-Me6, and US-Me2 are
lassified as robust stress only (‘‘○’’ in column 1), indicating that two
f the three ecosystem parameters have at least 70% of assumption
ets indicating dry soil water stress (‘‘○’’ in column 2). These three
ites are ranked below US-Me5 because they have very poor predictive
erformance (no ‘‘+’’ in 𝐿𝐶𝐸 sub-column of Fig. 7 and no ‘‘Robust (+)’’
label in Fig. 4a), indicating that the robust dry soil water stress signal
may be dubious due to unacceptable PMOC model performance. Lastly,
US-Me3 receives no robustness class (no symbol in column 1), which
means the soil water stress signal and performance are too sensitive to
the PMOC assumptions.

Although all five Metolius sites have experienced soil water stress

(see Section 3.1), we could not classify any of them as having robust
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Fig. 5. The soil water stress signal pdf (a) median and (b) signal-to-noise ratios (SNR = median/interquartile range) for eddy covariance sites grouped by plant functional type
(PFT) and annual Dryness Index (see Section 2.1.4). Here, we show only the most prevalent PFTs (110 of 151 sites; see Figure S4 for all PFTs): cropland (CRO), deciduous broadleaf
forest (DBF), evergreen needleleaf forest (ENF), and grassland (GRA). The black markers are the site-specific values jittered horizontally for visibility. In (a), the points above
(below) the red (blue) dashed line have a dry (wet) soil water stress signal as the median of their stress signal pdf (e.g., black line in Fig. 3) exceeds the critical stress threshold.
In (b), a larger value indicates less sensitivity to the PMOC model assumptions.

Fig. 6. The (a) predictive and (b) functional performance metric pdf medians and their corresponding signal-to-noise ratios (SNR) in (c)–(d) for the same ecosystem categories
in Fig. 5. The black markers are the site-specific median performance metrics jittered horizontally for visibility. Values in (a)-(b) above the red dashed line have acceptable
performance according to the median of their performance pdf (e.g., black line in Fig. 4), while higher values in (c)–(d) indicate less sensitivity to the PMOC model assumptions.
See caption of Fig. 5 for abbreviation descriptions. See Fig. S8 in the supplement for all PFTs.
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Fig. 7. The robust ecosystem soil water stress framework (see Section 2.3.2) heat maps for all forested eddy covariance sites, split up by PFTs: Evergreen Needleleaf Forest (ENF),
ixed Forest (MF), Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF), and Woody Savanna (WSA). Column 1 classifies the soil water stress class (color) and
orresponding robustness class (symbol) discussed in Section 2.3.2 and illustrated in Fig. 2i–j. Column 2 shows the median stress signal and the corresponding stress robustness
lass (Fig. 2i) for each ecosystem parameter. Similarly, Column 3 shows the median and robustness class for the predictive (LCE) and functional performance (𝐴′

𝑓,𝑇 ,𝑖) (Fig. 2j). A
lack ‘‘○’’ (‘‘+’’) indicates that the 70% stress (performance) robustness criteria was met for an ecosystem parameter (performance metric). A ‘‘⊕’’ in the Column 1 indicates the
ite has fulfilled both the robust stress and performance criteria, and has a robust soil water stress signal. Note, sites can have robust negligible soil water stress, e.g., CA_Obs.
tress and performance (‘‘⊕’’ in column 1 of Fig. 7). Unfortunately, this
ack of robustness in both stress and performance appears pervasive
cross all 151 eddy covariance sites as only 7 sites have robust stress
nd performance (‘‘⊕’’ in column 1 of Figs. 7–8), while 7 sites have
obust performance only and 48 sites have robust stress only (32 of
hese are dry soil water stress). This indicates that between 5% (‘‘⊕’’
n column 1) and 36% (‘‘⊕’’ or ‘‘○’’ in column 1) of the 151 sites have
robust soil water stress signal, depending on whether we consider
odel performance. Furthermore, the varying magnitudes of stress
ignals and performance (colors indicating median value in columns 2–
) as well as their robustness classes (symbols in column 1) are poorly
escribed by PFT groups in Figs. 7–8, reinforcing the site-specific nature
f robust soil water stress inference discussed in Sections 3.1–3.2.
The ecosystem water use parameter 𝐺1, primarily used to assess

soil water stress in PMOC studies (Table 1), is rarely robust (few
‘‘○’’ in 𝐺1 sub-column of Figs. 7–8). In these cases, the parameters
𝐺 ∕𝑉 𝑃𝐷𝑚 and 𝐺 must both exceed our robust stress threshold to earn
10

1 𝑣
a robust classification (e.g., US-Me1, US-Me2, CA-SF2 in Figs. 7, and
3a,c). This two-out-of-three rule (see Section 2.3.2) allows more flexible
detection of soil water stress at the risk of misattributing seasonality
in environmental forcings as soil water stress (see Section 4.1 for
discussion). Without 𝐺1∕𝑉 𝑃𝐷𝑚 and 𝐺𝑣, we would only have 4 sites (IT-
CA1/DBF, US-ARb/GRA, DE-Seh/CRO, and AU-ASM/SAV) out of 151
classified as robust soil water stress and performance.

The PMOC model performance appears to be the primary limitation
to robustly identifying soil water stress given there are only 14 sites
with robust performance (‘‘⊕’’ or ‘‘+’’ in column 1) compared to 55
sites with robust stress (‘‘⊕’’ or ‘‘○’’ in column 1). More specifically,
the predictive performance (𝐿𝐶𝐸) is the most limiting, followed by
the two functional performance metrics that include 𝐺𝑃𝑃 (𝐴′

𝑓,𝑇 ,2 and
𝐴′
𝑓,𝑇 ,3). Generally speaking, the grass/annual vegetation sites (Fig. 8)

have higher predictive and functional performance (darker colors in
column 3 of Figs. 8 over 7), indicating that the PMOC model may
more adequately describe these systems. However, the 𝐿𝐶𝐸 is still
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not robust in many cases (i.e., limited ‘‘+’’ in 𝐿𝐶𝐸 sub-column of
column 3), indicating large predictive performance sensitivity to PMOC
assumptions and/or high levels of noise in the eddy covariance data
(see Section 4.1). For functional performance, the prevalence of poor
′
𝑓,𝑇 ,2 and/or 𝐴′

𝑓,𝑇 ,3 values (last two sub-columns in column 3) may
ndicate large sensitivity to the growing season or LAI assumptions
Treatments 3–4 in Table 2) or the inability of the PMOC model to rep-
esent the influence of 𝐺𝑃𝑃 on ET (e.g., non-stomatal limitations Zhou
t al., 2013). Regardless, the inadequate performance of the PMOC
odel must be resolved to understand which eddy covariance sites have
obust soil water stress signals.

. Discussion

Our proposed robustness framework quantifies the uncertainties
ssociated with inferring ecosystem soil water stress signals from eddy
ovariance data, stemming from the numerous data uncertainty and
odel specification assumptions. We find that these stress signals are
ften not robust, and caution against using a single assumption set
or PMOC and similar inference approaches. The lack of robustness
s likely due to both practical identifiability of the ecosystem water
11

se strategy parameter 𝐺1 and poor PMOC model performance. The
on-robust stress signals also hinder generalization of ecosystem water
se strategies using common groupings of PFTs and climatic indices.
evertheless, we find that grass/annual vegetation sites tend to have
ore robust performance compared to forested sites. We will now
iscuss the implications of these findings for inferring ecosystem soil
ater stress from eddy covariance data.

.1. Lack of robustness in the soil water stress signals

The small number of sites with both robust soil water stress signals
nd model performance metrics (only 7 sites total with ‘‘⊕’’ in column
of Figs. 7–8) with respect to the plausible PMOC assumptions calls
or greater care when inferring ecosystem water use strategies from
ddy covariance data with PMOC or similar inference approaches
e.g., statistical models). Currently, many studies (Table 1) select a
ingle set of PMOC assumptions, or, in the best case, explicitly test the
ensitivity of several assumptions in a one-at-a-time fashion (Knauer
t al., 2018; Lin et al., 2018). Unlike the factorial approach used in
this study, the one-at-a-time sensitivity approach likely underestimates
the assumption uncertainty (i.e., overestimates robustness) by ignoring

the interactions between assumptions (Table 2). Our results reveal that
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different assumption sets can yield diametrically opposed stress con-
clusions (e.g., wet and dry stress signals possible for all US-Me sites in
Fig. 3) and/or differing model performances (e.g., Fig. 4). Furthermore,
we illustrate that a consistent set of PMOC assumptions will not provide
a consistently biased estimate of the true underlying soil water stress
signal across sites (e.g., the filled circles in Figs. 3–4). In other words,
the sensitivity of the inferred stress signal and model performance to
a set of PMOC assumptions appears site-specific. Therefore, comparing
results across studies that use different PMOC assumptions should be
avoided. Future work will focus on understanding which assumptions
maximize model performance and stress signal robustness for each site,
and determine if these best assumption sets can be generalized across
sites (Sloan, 2023).

Our results highlight that 𝐺1 is often not robust to PMOC assump-
tions (few ‘‘○’’ in 𝐺1 sub-column of Figs. 7–8), despite its widespread
use (Table 1) and association with ecosystem water use strategies
(see Section 2.1.3). The decision of which PMOC parameters to fit
(Treatment 6 in Tables 1–2) may be the most influential for determining
𝐺1 robustness. Given the high level of noise in eddy covariance data
e.g., Fig. 2b), the parameters 𝐺1, 𝐺𝑜, 𝑚 may not be practically iden-
tifiable (Guillaume et al., 2019) and correlations between parameters
during the fitting process can yield unrealistic 𝐺1 values. Previous
PMOC studies have avoided the identifiability issue by simply fitting
𝐺1 (Medlyn et al., 2017; Knauer et al., 2018), while some studies argue
that fitting the other parameters quantifies important physical pro-
cesses, such as soil evaporation (𝐺𝑜) and sub-optimal plant sensitivity
to VPD (𝑚) (Novick et al., 2016; Lin et al., 2018; Li et al., 2019). In
this study, we supplemented the poorly-constrained 𝐺1 estimates by
examining two additional ecosystem parameters, 𝐺1∕𝑉 𝑃𝐷𝑚 and 𝐺𝑣.
Nevertheless, using these parameters runs the risk of masquerading
environmental seasonality (e.g., in net radiation, temperature, VPD,
and leaf area) as ecosystem response to soil water stress. Disentangling
the multi-scale coupling of these environmental forcings on ecosystem
soil water stress response is an area of active research (Novick et al.,
2019; Feldman et al., 2021; Fu et al., 2022a), requiring data-driven and
mechanistic approaches. More detailed parameter identifiability (Guil-
laume et al., 2019) and targeted data analysis (Fu et al., 2022b) are
required to ensure that inferred 𝐺1 values represent the ecosystem’s
water use strategy and are not artifacts of correlations with other
parameters or environmental variables.

Poor model performance is the primary constraint to robust ecosys-
tem soil water stress inference (only 14 of 151 sites have robust
performance in Figs. 7–8). The predictive performance (𝐿𝐶𝐸) appears
the most limiting (fewer ‘‘+’’ in the 𝐿𝐶𝐸 sub-column of Figs. 7–8),
which could stem from limitations in the eddy covariance data quality.
The inherent noise and bias in eddy covariance data (Fig. 2b and
Sect. S5) places an upper bound on achievable model performance,
which we have estimated for each site (see Sect. S6). The performance
upper bounds appear site-specific with many sites near or below the
acceptable predictive performance threshold (Fig. S9). The site-specific
performance upper bound may also explain part of the site-specific
robustness of ecosystem soil water stress signals, as sites with lower
upper bounds (i.e., more noise) would likely not meet the acceptable
performance threshold, and may also have less robust stress signals due
to greater 𝐺1 identifiability issues. These data quality issues may also
be exacerbated by the extensive filtering required by the PMOC analysis
(Fig. 2a), which, on average, removes over 90% of the available data
(Fig. S10 in supplement), leaving less information to inform the PMOC
model parameters. Overall, the performance deficiencies motivate fu-
ture work (1) identifying which PMOC assumptions adversely affect
performance (Sloan, 2023), and (2) testing more complex interpretable
12

model formulations that can leverage more of the eddy covariance data.
4.2. Soil water stress cannot be generalized across ecosystem categories

Our results challenge the validity of grouping site-level soil water
stress signals inferred from eddy covariance data by broad ecosystem
categories to make general conclusions about ecosystem water use
strategies under soil water stress. The ecosystem categories do not
explain variations in the median stress signal behavior (Fig. 5a and Sect.
S9), which is further confounded by the lack of robustness to PMOC as-
sumptions (low SNR in Fig. 5b). The Metolious case study (Section 3.1)
and robustness framework heat maps (Figs. 7–8) emphasize the site-
specific nature of ecosystem soil water stress inference. We hypothesize
that the ecosystem generalization of soil water stress fails due to both
the complexity in ecosystem water use strategies and practical data
limitations.

Plant water use strategies emerge from the interplay of plant hy-
draulic and functional traits with their environment over time. These
plant traits exhibit wide inter- and intra-species variability (Anderegg,
2015) and plasticity to environmental forcings (e.g., increased root
growth after a drought Rowland et al., 2023), hindering generalization
by broad categories (Matheny et al., 2017; Kannenberg et al., 2021).
he difficulty in generalizing water use strategies compounds when
caling from plant to ecosystem, as multiple species may have differing
ater use strategies that are not easily captured by the broad cate-
ories used here (PFT and DI) and in other PMOC studies (Table 1).
he Metolious case study (Section 3.1) provides evidence for different
cosystem water use strategies under the same ecosystem classification
all sites are hydric ENF) driven by site-specific differences in stand
ge, disturbance history and observation period (see Sect. S8 for further
iscussion).
The eddy covariance observation periods themselves also contribute

o the failure of ecosystem soil water stress generalization, as most
ites have less than 10 years of observations (c. 75% in Fig. S6). Our
esults estimate that 5%–21% (ignoring 16 sites with negligible robust
tress only in Figs. 7–8) of the sites experienced dry soil water stress
ased on the robustness heat maps (Figs. 7–8). Therefore, many sites
ither do not observe soil water stress during the short observation
eriod or the PMOC model cannot detect the signal due to the lack of
obustness. The strongest dry soil water stress signals are found at xeric
ites (Figs. 5a and 8)—primarily ecosystems with shorter vegetation
e.g., GRA, CRO, SAV)—as these sites have soil water stress seasonally,
aking detection more likely. Unfortunately, the stress signals from the
arger number of mesic and hydric sites (Fig. 1) are more ambiguous,
eing more indicative of whether a site observed a period of soil water
tress rather than the true response of that ecosystem to soil water
tress. The poor performance of ecosystem categories may also be
xplained by the fact that the annual DI poorly represents dryness over
hort observation periods or in seasonal environments (e.g., seasonal
roughts in Mediterranean climates; Feng et al. (2019)). However, we
id test other ecosystem categories using a tower-measured DI and a
easonality index, but the intra-ecosystem variability still vastly out-
eighed inter-ecosystem variability (Fig. S11–S12). Thus, we would not
xpect any similarly broad ecosystem categories to detect patterns in
tress signals from hydric or mesic sites. We recommend more thor-
ughly characterizing soil water stress signals at the site-level before
ttempting to look for patterns between numerous sites.

.3. PMOC models perform better at grass/annual ecosystems

Our results do indicate better PMOC model performance for
rasses/annual (e.g., crops, grasslands) sites compared to those with
aller trees. The median functional and predictive performance metrics
ere higher for GRA and CRO ecosystems compared to ENF and DBF
Fig. 6a-b), while robustness heat maps show a greater number of sites
ith robust performance (more ‘‘+’’ markers in Fig. 8 compared to

Fig. 7). The superior performance likely reflects the reduced complex-

ity of grass/annual vegetation stress responses compared to those of
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forested ecosystems. We will now discuss several factors that favor
performance improvements in grass/annual versus forested vegetation.

The PMOC approach here primarily uses shallow soil moisture
sensors, which are likely more representative of root zone moisture
dynamics in grass/annual vegetation compared to deeper-rooted trees.
For instance, at US-Me2, nearly half the root water uptake occurs below
80 cm (Irvine et al., 2004). Other studies have attempted to counter
his by using deeper moisture sensors where available (Novick et al.,
016; Bassiouni and Vico, 2021); however, many sites do not have
oil moisture profiles with a long observation period (US-Me2 is an
xception), and deeper soil moisture observations may not represent
he surface soil evaporation component of the PMOC model (i.e., fitting
𝑜).
The poorer PMOC model performance for forested compared to

rass/annual vegetation sites may also be due to the omission of plant
ydraulic transport. Sloan et al. (2021) found that the coupling of soil
nd atmospheric water stress through a Plant Hydraulics Model (PHM)
as critical for carbon, water, and energy flux predictions at US-Me2,
hich has been supported by similar studies mechanistically modeling
range of eddy covariance sites (Kennedy et al., 2019; Eller et al., 2020;
abot et al., 2020). The inability of the PMOC model to realistically
espond to VPD and soil moisture could explain both the poor 𝐿𝐶𝐸 and
′
𝑓,𝑇 ,2 − 𝐴′

𝑓,𝑇 ,3 values at forested sites (column 3 in Fig. 7). Allowing
ariation in 𝐺1 and/or 𝑚 with respect to VPD (in addition to soil
oisture) may better represent plant hydraulic behavior and improve
he predictive and functional performance at forested sites.
Finally, the PMOC performance discrepancy may be due to the

ifferences in long-term dynamics between annual and perennial vege-
ation. For grass/annual sites, the vegetation resets every year, leading
o similar ecosystem water use strategies (especially in cropped sys-
ems) as long as there are no major disturbances or changes in plant
pecies. At perennial forested sites, the exhaustion of carbon pools and
hanges in allocation between roots, stems and leaves due to drought
ill result in plasticity of underlying plant hydraulic traits controlling
he ecosystem water use strategy over years (Anderegg et al., 2015;
owland et al., 2023). For instance, the data from US-Me2 covers
early 20 years, and it is well known that this site responds non-
inearly to single versus multi-year droughts (Thomas et al., 2009).
hese dynamics will be missed by fitting time-constant parameters
s we have in this study. Knauer et al. (2018) found inter-annual
variability of 𝐺1 derived from six forested eddy covariance sites under
well-watered conditions, and we suggest future work perform a similar
analysis at more sites under soil water stress.

4.4. Limitations

A primary limitation of this study is the subjective nature of the
obustness criteria (Section 2.3.2). We used a 30% threshold for error
for performance (𝐴′

𝑓,𝑇 ≥ 0.7 and 𝐿𝐶𝐸 ≥ 0.4) and the robust satisficing
riteria (>70% of assumption runs must meet slope and performance
riteria). For error, 30% seems like a practical upper bound, as higher
rror values may be undesirable. Thus, our estimates represent an
pper bound on how many sites have robust performance, as a lower
cceptable error would result in fewer sites able to meet the criteria. We
djusted the robust satisficing criteria and the critical stress threshold
nd found that higher (lower) values reduced (increased) the number
ites with robust classifications, but the robustness rank-order of sites
oes not change drastically (Figure S13). Additionally, the robustness
etric itself creates some non-intuitive results as the performance
etrics appear more robust in Fig. 6c–d (i.e., higher SNR), yet only
4 of 151 sites have robust performance (‘‘⊕’’ or ‘‘+’’ in column 1
f Figs. 7–8). Although, the performance metrics are less sensitive to
ssumptions than the stress signals, their values fail to meet the critical
erformance thresholds for many assumption sets. Further refinements
o the robust ecosystem stress—such as using variance-based robustness
13

r

metrics (Mcphail et al., 2018)—could help ensure that our robustness
framework is robust to our assumptions.

The stress signal extraction (Section 2.1.3) required assumptions
of (segmented) linearity, which may provide inaccurate stress signals
for non-linear stress responses. Furthermore, binning by soil moisture
percentiles rather than parametrizing the soil moisture stress response
on 𝐺𝑜, 𝐺1, and 𝑚 can mask non-linearity in the stress response and
reduces the number of data points for the linear regression (i.e., max
of 10 points illustrated in Fig. 2f). However, binning by soil moisture
is a common approach in many PMOC studies (Table 1), and allowed
testing different functional forms for the stress response. Regardless,
this analysis could be repeated without binning and specifying a piece-
wise linear or other function multiplied by 𝐺1 in the PMOC model.
Finally, the choice to use soil moisture percentiles (𝜃𝑝 Novick et al.,
2016; Lin et al., 2018; Li et al., 2019) to represent soil moisture
ather than the observed volumetric water content (𝜃, Bassiouni et al.
2018) and Fu et al. (2022a)) or estimating soil water potential with
pedotransfer function (Bassiouni and Vico, 2021) could affect the
esults. We selected 𝜃𝑝 because it (1) standardizes results between sites
ith differing 𝜃 ranges, (2) maps closer to soil water potential than
(Novick et al., 2016), (3) avoids large uncertainties in pedotransfer
unctions (Novick et al., 2022), and (4) contextualizes soil moisture in
erms of frequency of occurrence at a site. However, future refinements
o the robustness framework could test a change in soil moisture
ariable. Lastly, we were not able to test all pertinent assumptions for
he PMOC and similar modeling approaches (Table 1), as the number
f simulations grow exponentially with additional treatment levels.
imilar to other PMOC studies, we assumed baseline data filtering as-
umptions (see Section 2.1.1), and used the recommended atmospheric
onductance (𝐺𝑎) parametrization from Knauer et al. (2018) (see Sect.
2). We also were not able to test the effects of deeper soil moisture
ensors as many sites do not have profile measurements with adequate
overage. Finally, we restricted the analysis to PMOC models over
impler data-driven models (e.g., Koster et al. (2009)) because the
MOC models tend to be more interpretable with respect to stomatal
losure in response to soil water stress. The PMOC model explicitly
ttempts to control for other environmental variables that influence
tomatal closure and are correlated with soil moisture (e.g., 𝑅𝑛, 𝑉 𝑃𝐷,
𝑃𝑃 , 𝑇𝑎) when inferring the soil water stress signal. Simpler data-
riven approaches are useful for separating regimes of energy-limited
ersus water-limited 𝐸𝑇 (Koster et al., 2009), but eventually have to
verage over longer timescales (e.g., daily, seasonally) (Koster et al.,
009; Fu et al., 2022a) to control for other drivers of stomatal closure.
owever, future refinements of the robustness framework could assess
hese simpler, data-driven models.

. Conclusions

Our results are a first attempt to comprehensively identify which
ddy covariance sites have observed soil water stress and assess the
urrent ability to infer these soil water stress signals. We find that
ost ecosystem soil water stress signals inferred from eddy covariance
ata are not robust with respect to the numerous data and modeling
ssumptions required by current inference approaches. Furthermore,
he robustness of the soil water stress signals and model performance
re site-specific, which undermines current practices of using a single
ssumption set and generalizing site-level results by broad ecosystem
ategories. Our proposed robust ecosystem soil water stress framework
rovides a road map for quantifying and ranking the site-specific
obustness of stress signals inferred from eddy covariance data that can
e extended to additional sites and updated data sets. The robustness
ramework revealed that the deficient interpretable model performance
nd poorly constrained ecosystem parameters hinder robust soil water
tress inference. These results will guide future research in identifying
he assumption sets that maximize model performance and minimize
ncertainty in the inferred soil water stress signal. Only once soil water
tress can be robustly inferred from eddy covariance data will we be
ble to confidently extract meaningful conclusions about ecosystem
esponses to soil water stress around the globe.
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