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Abstract— Massive machine type communication (mMTC) has
attracted new coding schemes optimized for reliable short
message transmission. In this paper, a novel deep learning-
based near-orthogonal superposition (NOS) coding scheme is
proposed to transmit short messages in multiple-input multiple-
output (MIMO) channels for mMTC applications. In the pro-
posed MIMO-NOS scheme, a neural network-based encoder is
optimized via end-to-end learning with a corresponding neural
network-based detector/decoder in a superposition-based auto-
encoder framework including a MIMO channel. The proposed
MIMO-NOS encoder spreads the information bits to multi-
ple near-orthogonal high dimensional vectors to be combined
(superimposed) into a single vector and reshaped for the space-
time transmission. For the receiver, we propose a novel looped
K-best tree-search algorithm with cyclic redundancy check
(CRC) assistance to enhance the error correcting ability in the
block-fading MIMO channel. For a comprehensive understand-
ing of the proposed MIMO-NOS scheme, we further quantify
the gain from individual components/modules in the framework,
and analyze the decoding complexity measured by the floating
point operations (FLOPs). Simulation results show the proposed
MIMO-NOS scheme outperforms maximum likelihood (ML)
MIMO detection combined with a polar code with CRC-assisted
list decoding by 1 – 2 dB in various MIMO systems for short
(32 – 64 bit) message transmission.

Index Terms— Massive machine type communications, near-
orthogonal modulation, superposition coding, learned modula-
tion, learned coding, MIMO.

I. INTRODUCTION

MASSIVE machine type communication (mMTC) is
an essential technology for next generation wireless

standards to enable a wide range of applications including
health, security and transportation [2], [3], [4]. These appli-
cations, by nature, typically employ short messages/packets
carrying a relatively small number of information bits, which
make conventional codes designed with a long block length

Manuscript received 30 June 2022; revised 4 December 2022 and 13 March
2023; accepted 28 April 2023. Date of publication 9 May 2023; date of current
version 18 September 2023. This work was funded in part by NSF CAREER
#1942806. An earlier version of this paper was presented in part at the
IEEE International Conference on Communications (ICC), 2022 [DOI:
10.1109/ICC45855.2022.9838685]. The associate editor coordinating the
review of this article and approving it for publication was M. Flanagan.
(Corresponding author: Chenghong Bian.)

Chenghong Bian is with the Department of Electrical and Electronic
Engineering, Imperial College London, SW7 2AZ London, U.K. (e-mail:
c.bian22@imperial.ac.uk).

Chin-Wei Hsu, Changwoo Lee, and Hun-Seok Kim are with the Depart-
ment of Electrical and Computer Engineering, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: chinweih@umich.edu; cwoolee@umich.edu;
hunseok@umich.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3274158.

Digital Object Identifier 10.1109/TCOMM.2023.3274158

assumption less effective with relatively small error exponents
and/or non-negligible coding gain losses. Polar codes with list
decoding [5] are proven to be more reliable compared with
other modern codes such as LDPC and turbo codes for short
block lengths [6]. However, their performance is far from
capacity, and thus new coding schemes have been actively
investigated for short message transmission [7].

Hyper-dimensional modulation (HDM) is a recently pro-
posed non-orthogonal modulation scheme for short packet
communications [8], [9], [10]. HDM can be seen as a joint
coding-modulation method and a special type of superposition
codes [11]. Instead of using a random codebook as in typi-
cal superposition codes, HDM uses Fast Fourier Transform
(FFT) and pseudo-random permutations to encode sparse
pulse position modulated information vectors to a non-sparse
superimposed hyper-dimensional vector for efficient encoding
and decoding. HDM was first proposed with a demodula-
tion algorithm using an iterative parallel successive interfer-
ence cancellation (SIC) technique [8]. It is then extended
using a K-best decoding algorithm [10] in AWGN and
interference-limited channels to outperform the state-of-the-
art CRC-assisted polar codes [5] applied to binary phase-shift
keying (BPSK) under the same spectral efficiency. Despite
its excellent reliability and low complexity for short message
packets, the hand-crafted encoding scheme using FFT and
pseudo-random permutation for codeword generation in HDM
is sub-optimal. It is shown in our prior work [1] that a deep
learning-based near-orthogonal superposition (NOS) encoding
scheme can outperform HDM in single antenna additive white
Gaussian noise (AWGN) channels.

In order to overcome the limitations of hand-crafted coding
and modulation schemes, data-driven learning with deep neu-
ral networks (DNNs) has been applied to the realm of channel
coding and modulation [12], [13], [14], [15], [16]. One of early
applications of DNNs is to decode linear block codes replacing
hand-crafted decoding algorithms for polar and LDPC codes
with unmodified encoders. Taking advantage of powerful deep
learning, prior schemes [12] and [13] show improved decoding
performance and enhanced robustness under various channel
conditions. Meanwhile, new channel codes have been recently
investigated via end-to-end learning. A DNN-based learned
code was originally introduced in [14] where the encoder
learns a joint coding and modulation scheme generating a
length-7 codeword from a length-16 one-hot input to achieve
the performance similar to that of (7, 4) Hamming code. The
authors in [15] propose an RNN-based auto-encoder that emu-
lates a convolutional code (CC) which takes the bit-sequence
input instead of processing an one-hot encoded input vector.
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Fig. 1. Encoding and decoding flow of the proposed MIMO-NOS scheme.

This learned CC outperforms conventional CC to attain lower
bit/packet error rates (BER/PER). In [16], the authors propose
a learned turbo auto-encoder which employs convolutional
neural networks (CNNs) and interleaving. The decoder in [16]
unfolds the iterative decoding process to multiple DNN layers
to achieve the BER performance that is comparable to that of
the conventional turbo code.

Meanwhile, researchers are actively extending deep learn-
ing to MIMO detection problems. DetNet proposed in [17]
unfolds the projected gradient descent algorithm via deep
learning to achieve near optimal detection performance with
significantly improved running speed. The authors in [18]
further extend the topic to joint MIMO detection and polar
decoding, where a DNN-based receiver takes both the received
signal and the estimated channel state information (CSI)
as the input to produce the estimated information sequence
output. Their evaluation shows the DNN-based joint detection
and decoding scheme outperforms the conventional iterative
MIMO receiver where soft-decision information is exchanged
between a sphere decoder and a polar decoder to achieve
near-optimal performance. However, their DNN-based receiver
can only handle very short packets with 16 information bits
and each MIMO channel configuration requires a specifically
trained neural network model. These limitations make it rather
impractical for emerging mMTC applications.

Inspired by aforementioned HDM and deep learning-
based coding, we originally introduced a DNN-based near-
orthogonal superposition (NOS) coding scheme in [1] to learn
a near-orthogonal codebook for superimposed transmission of
short packets in single-input single-output AWGN channels.
In this paper, we further extend the NOS code to MIMO
configurations constructing a learned MIMO-NOS coding
scheme. In our approach, an information bit sequence is first
appended by cyclic redundancy check (CRC) bits to improve
the reliability in low signal-to-noise ratio (SNR) scenarios.
The CRC appended bit sequence b is transformed into several
one-hot coded vectors which are fed into the MIMO-NOS
encoder followed by a simple space-time coding (STC) block
that maps the encoder output to different transmit antennas and
time slots. To learn a good MIMO-NOS codebook, a DNN-
based receiver that integrates a residual-assisted minimum
mean square error (MMSE) MIMO equalizer/detector along
with a neural decoder is jointly trained to enable end-to-
end back-propagation through the encoder, MIMO channel
model, and decoder. Upon learning a good MIMO-NOS code-
book, we employ a CRC-assisted looped K-best tree-search

decoding algorithm to improve the error rate performance
beyond the limitation of the learned MIMO detector/decoder
used for the training. The overall datapath of the proposed
MIMO-NOS scheme is shown in Fig.1.

The main contributions of this paper are summarized as
follows:

1) A novel deep learning-based near-orthogonal superposi-
tion code is proposed for reliable short packet trans-
mission in MIMO channels. We combine individual
modules including channel coding, modulation, MIMO
detection, and channel decoding into a single deep
learning model and optimize it via end-to-end training.
As a result, the MIMO-NOS encoder learns a set of
superposition codes with desired properties in the high
dimensional codeword space. Moreover, to the best of
our knowledge, it is the first work that jointly learns
these individual modules for MIMO communications in
an end-to-end fashion.

2) A new CRC-assisted looped K-best decoding algorithm
is designed to outperform the DNN-based receiver used
during the training. The proposed decoding algorithm
finds the top-K bit-sequences maximizing the (approx-
imated) posterior probability to significantly improve
the PER performance beyond the capability of the
DNN-based receiver utilized to learn the MIMO-NOS
codebook.

3) Numerical characterization of the learned MIMO-NOS
codebook is provided to understand the codebook prop-
erties, derive detection/decoding metrics for the looped
K-best decoder, and study the performance of the
proposed algorithm. It is also shown that the learned
MIMO-NOS codebook can be applied to different
MIMO configurations with robust performance via sim-
ple space-time mapping without retraining the encoder
network.

4) Extensive numerical evaluations are performed to quan-
tify the gain of the proposed learned MIMO-NOS
scheme compared to the ML MIMO detection with
CRC-aided list decoding polar codes, which is one of
the state-of-the-art baseline schemes.

5) Detailed analysis is provided for the decoding complex-
ity measured by the number of FLOPs as well as the
decoding latency. The proposed looped K-best decoder
can achieve lower decoding latency with improved PER
performance compared to the baseline that uses a polar
code with ML MIMO detection.
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6) Extensive simulations to quantify the gain from indi-
vidual components of the proposed scheme such as the
learned coded modulation, space-time mapping at the
transmitter, and the joint detection and decoding at the
receiver. These experiments provide more insights lead-
ing to a comprehensive understanding of the proposed
scheme.

Throughout the paper, scalar variables are represented with
normal-face letters x while matrices and vectors with upper
and lower case letters, X and x, respectively. A set is denoted
by S. Transpose and Hermitian operators are denoted by (·)⊤,
(·)†, respectively. ℜ(x) (ℑ(x)) denotes the real (imaginary)
part of a complex variable x. Moreover, vec(X) transforms
the matrix X into a column vector x by stacking the columns
of X . Finally, we denote the Frobenius norm of matrix X
as ||X||F .

II. MIMO-NOS CODE LEARNING

In this section, we briefly recap the conventional coded
MIMO transceiver for the baseline, and then introduce the
neural network structure for the proposed MIMO-NOS scheme
and its training methodology.

A. Conventional MIMO Transceiver

Let b and c denote the information bit sequence and the
corresponding coded bit sequence with length NtMc log2 Q
bits. The coded sequence c is interleaved and then mapped to
a matrix S of dimension Nt ×Mc whose entries are chosen
from a complex constellation set (e.g., QPSK) with Q symbols.
Nt is the number of transmit antennas and Mc is the number
of MIMO channel uses for transmission. The received signal
Y ∈ CNr×Mc with Nr receive antennas can be written as:

Y = HS + N , (1)

where H ∈ CNr×Nt is the complex MIMO channel which
is assumed to be perfectly known to the receiver and N is
the complex Gaussian noise whose entries are i.i.d. with zero
mean and element-wise variance Ntσ

2. Note that the Nt in the
noise variance unifies the SNR definition for MIMO systems
adopting different numbers of transmit antennas as discussed
later. In this paper, we assume each element of H is an i.i.d.
complex Gaussian random variable with zero mean and unit
variance. H is randomly realized for each and every packet.

There are numerous MIMO detection algorithms to solve (1)
and obtain soft decisions of bits in the matrix S with a sim-
plifying assumption that bits in c are independent. With that
assumption, the ML MIMO detector is the optimal scheme,1

and thus it is applied to the baseline as briefly introduced in
the following.

Consider the log-likelihood ratio (LLR) L for a certain bit
ck from c given y = Hs + n where s is a Nt × 1 transmit
vector (a column of S that involves ck), while y and n are

1The complexity of ML detection may be prohibitive for a large MIMO sys-
tem with a high-order constellation. Low complexity close-to-ML algorithms
are available but they are beyond our consideration for this paper.

the corresponding received and noise vectors, respectively. The
LLR of ck can be obtained by

L(ck|y, H) = ln
P [ck = +1|y, H]
P [ck = −1|y, H]

. (2)

Applying Bayes’ rule and assuming equal probability of the
bit symbols, the L values are obtained by

L(ck|y, H) = ln

∑
x∈Xk,+1

exp{−||y−Hx||22
2Ntσ2 }∑

x∈Xk,−1
exp{−||y−Hx||22

2Ntσ2 }
(3)

where each set Xk,+1 = {x|ck = +1} or Xk,−1 =
{x|ck = −1} contains 2Nt log2 Q−1 bit sequences of length
Nt log2 Q bits, enumerating all possible bit sequences given
ck = +1 or −1. In the baseline scheme, we first calculate
the LLR (i.e., soft decision) for each coded bit using (3),
deinterleave the LLR sequence, and then feed it into the
subsequent soft-input channel decoder (such as a CRC-assisted
list polar decoder) to recover the original information bit
sequence b.

B. MIMO-NOS Coding

In this subsection, we first briefly recap the NOS code
designed for the single antenna AWGN channel and then
extend this scheme to MIMO systems. The NOS code belongs
to the general class of superposition code whose encoding is
described as follows:

Consider a sequence of information bits b whose length
is NE × m bits, where NE is the number of encoders in
our proposed superposition coding scheme. It is split into
NE smaller bit sequences bj , j = 1, · · · , NE each carrying
m bits. Each bj is converted to an one-hot vector xj with
length M = 2m whose only non-zero position (with value
1) is determined by bj . A superposition code is defined by
a family of complex-valued codebooks Cj , j ∈ [1, NE ] each
with dimension (n/2)×M where n/2 is the codeword length.
The codeword corresponding to the bit sequence bj is obtained
by Cj@j (i.e., matrix-vector multiplication), whose dimension
is (n/2)× 1. The superimposed transmit vector s with length
n/2 for the entire bit sequence b is then obtained by adding
(superimposing) NE codewords such that:

s =
NE∑
j=1

Cjxj . (4)

Conventional superposition codes adopt pseudo-random
codebooks, e.g., random (complex) Gaussian codebooks as
in [11], whereas a more efficient scheme such as HDM [8]
defines the codebook using the Discrete (Fast) Fourier Trans-
form (DFT/FFT) matrix along with pseudo-random permu-
tations. There exist efficient decoding algorithms for these
schemes in the AWGN channel including successive interfer-
ence cancellation (SIC) [8], [11] and approximate message
passing (AMP) [19] algorithms. Although these superposition
codes are proven to be capacity achieving when the block
length goes to infinity [11], a pseudo-random codebook is
shown to be less effective under short block lengths [20]. Thus,
we proposed a new NOS code in our prior work [1] where
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Fig. 2. The proposed neural network-based MIMO-NOS encoding and decoding structure for training.

the codebook is optimized via end-to-end learning with the
assistance of a neural network decoder and the resulting code-
words belonging to different codebooks Ci, Cj , i ̸= j, are near-
orthogonal. At the receiver, the NOS decoder first estimates
the information vectors and then performs a cyclic redundancy
check (CRC)-assisted K-best tree-search algorithm to reduce
the packet/bit error rate. This prior scheme was designed
for single antenna cases where the near-orthogonal property
of the codewords is maintained after the AWGN channel.
However, the same property does not hold when the codewords
pass through MIMO channels. In this work, we propose
an extended MIMO-NOS scheme for short message MIMO
transmissions.

Fig. 2 shows the overview of the proposed MIMO-NOS
transmission scheme. Multiple (NE) one-hot vectors xj are
fed to dedicated neural network-based encoders F j

enc to gen-
erate real-valued coded vectors s̃j = F j

enc(xj) of length n.
Each F j

enc, j ∈ [1, NE ] has the same neural network structure
that consists of linear layers, batch normalization layers, and
non-linear activation functions. Since each s̃j conveys the
same amount of information, we assign the same energy
||s̃j ||22 = n

2NE
to each s̃j using a power normalization layer

at the end of each F j
enc. Instead of transmitting a real-valued

signal, we convert the length-n real-valued vector s̃j into a
complex vector sj = s̃R

j + is̃I
j to improve spectral efficiency

where s̃R
j and s̃I

j are (n/2)× 1 vectors obtained by splitting

s̃j so that s̃j =
[
s̃R

j

s̃I
j

]
holds. The superimposed signal s is

obtained by adding all sj , j = 1, 2, . . . , NE :

s =
NE∑
j=1

sj . (5)

Then, we map s to different transmit antennas and time slots
for space-time coding, which is extensively studied in [21] and
[22]. In this paper, we define a reshape function fSTC as a
simple space-time coding scheme that converts/reshapes the
(n/2) × 1 input vector, s, to a matrix S ∈ CNt×Mc where
Nt is the number of transmit antennas, Mc is the number of
channel uses (or time slots), and NtMc = n/2 holds. To be
precise, S = fSTC(s) and Si,j = si+(j−1)Mc

is satisfied.
We assume the block-fading (quasi-static) MIMO channel,

where channel coefficients in H ∈ CNr×Nt are instantiated as
i.i.d. complex Gaussian random variables that remain constant
for a single block transmission (Mc channel uses). The next

block observes an independent random channel realization H
following the same model used for the conventional MIMO
transmission. The received signal Y after the MIMO channel
can be expressed as Y = HS + N as in (1) where N ∈
CNr×Mc is the complex Gaussian noise whose entries are i.i.d.
with zero mean and element-wise variance Ntσ

2. The signal
to noise ratio (SNR) of the system is defined as:

SNR =
E(||HS||2F )
E(||N ||2F )

=
Nrn/2

NtNrMcσ2
=

1
σ2

, (6)

where we use the fact that NtMc = n/2 and E(||S||2F ) = n/2
(sj are near-orthogonal to each other as examined in the later
section). Note that, in practical systems, H can be obtained at
the receiver by applying channel estimation algorithms [23],
[24], [25] to the received pilots. However, we make a simpli-
fying assumption that H is perfectly available at the receiver
throughout this paper.

C. Learned MIMO-NOS Receiver

To learn a set of MIMO-NOS encoders F j
enc, j ∈ [1, NE ],

the training process uses a matching set of MIMO-NOS
decoders. For decoding, the received signal Y and the MIMO
channel H are first fed to the residual-assisted MIMO detec-
tor/equalizer that consists of a conventional MMSE equal-
ization module which serves as the backbone and a residual
connection neural network module to compensate the output
of the MMSE equalization module as shown in Fig. 2. This
residual-assisted structure is inspired by [26] and it outper-
forms the MMSE-only structure as well as the neural network-
only structure.

The MMSE equalization module output is:

XMMSE = (H†H +
1

SNR
INt)

−1H†Y , (7)

where SNR is defined in (6). The residual module, shown
in Fig. 3, is a neural network defined as Res(·) that takes
the real-valued2 received signal Ỹ ∈ R2Nr×Mc and the
real-valued vectorized CSI, h̃ ∈ R2NtNr×1 as input and
outputs calibration information for the MMSE equalization
module. To be precise, we first duplicate h̃ Mc times in a
column-wise manner to form a matrix H̃ ∈ R2NtNr×Mc ,
H̃ = [h̃, h̃, . . . , h̃]. We then concatenate each columns of

2Note that the real valued signals are obtained by concatenating the real
and imaginary parts of their complex counterpart.
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Fig. 3. Structures of each encoder decoder pair F j
enc and F j

dec, j ∈ [1, NE ]
and the residual network Res. T1 and T2 denote the number of hidden
neurons in the model.

Ỹ and H̃ to generate Ỹ ext =
[
Ỹ

H̃

]
where Ỹ ext ∈ RG×Mc

with G = 2Nt(Nr + 1). Then Res neural network module
processes this concatenated signal Ỹ ext to produce the final
output of the residual-assisted MIMO detector expressed by:

X̃EQU = X̃MMSE + Res(Ỹ ext), (8)

where X̃MMSE ∈ R2Nt×Mc is the real-valued version of the
MMSE equalization module output.

We then vectorize X̃EQU to x̃equ with n-dimension, which
is fed into each decoder F j

dec, j ∈ [1, NE ] as shown in Fig. 2.
Similar to F j

enc, these F j
dec, j ∈ [1, NE ] are neural networks

that consist of linear layers, batch normalization layers, and
non-linear activation functions. Each F j

dec for a specific j
is trained to produce/estimate the probability vector pj =
F j

dec(x̃equ). The length of pj is M and pj [m] represents the
probability of xj [m] = 1.

The detailed neural network structures of F j
enc, F

j
dec, and

Res are shown in Fig. 3 where T1, T2 denote the number of
neurons in the hidden layers. The training of F j

enc, F
j
dec, and

Res is performed by optimizing the cross-entropy loss for
each pair of the one-hot input xj and the probability vector pj .
Since xj’s assigned to different F j

enc’s are independent of each
other, the total loss is the summation of pairwise losses:

loss = −
NE∑
j=1

M∑
m=1

xj [m] log(pj [m]). (9)

We randomly generate different bit sequences b and MIMO
channel realizations H in the training phase, and adopt the
ADAM optimizer to minimize the loss in (9) corresponding
to different b, H realizations to train the proposed neural
networks.

III. THE LEARNED MIMO-NOS CODEBOOK PROPERTIES

In this section, we inspect the properties of the learned
MIMO-NOS codebook before and after the MIMO channel.

A. Codebook Properties Before the MIMO Channel

Since we divide the input bit sequence into NE

shorter sequences for separate encoding using F j
enc (j =

1, 2, . . . , NE), the dimension of learned complex-valued code-
book Cj is significantly smaller compared to that of a con-
ventional linear block code that encodes the entire input bit
sequence. Our codebook Cj has the dimension of (n/2)×M ,

and it is obtained by enumerating all length-M one-hot vectors
for each encoder F j

enc after successful training:

Cj [m] = s̃R
j,m + is̃I

j,m, (10)

where Cj [m] denotes the m-th column of Cj , s̃R
j,m and s̃I

j,m

are (n/2)× 1 vectors obtained by splitting F j
enc(xm) so that

F j
enc(xm) =

[
s̃R

j,m

s̃I
j,m

]
holds.

Similar to the analysis in [1] for single antenna channels,
we first analyze the properties of the constructed codebook
by observing the absolute values of inner products between
codewords belonging to different encoders. This forms a
cross-correlation tensor cinter with dimension NE × (NE −
1)×M ×M which is defined as:

cinter[i, j, k, l] =
|ℜ(C†

i [k]Cj [l])|
n/(2NE)

i, j ∈ [1, NE ]; i ̸= j; k, l ∈ [1, M ]. (11)

Note that cinter quantifies the level of interference from the
codewords belonging to different encoders, thus it represents
the inter-correlation property of the codebook. We further
evaluate inner products between the codewords belonging to
the same encoder to form another tensor cintra with dimension
NE ×M × (M − 1) defined as:

cintra[i, k, l] =
ℜ(C†

i [k]Ci[l])
n/(2NE)

i ∈ [1, NE ]; k ̸= l; k, l ∈ [1, M ], (12)

which represents the intra-correlation property. Since the
power of codewords are normalized, cintra directly reflects
the L2-distance between codewords belonging to the same
encoder. A small (or negative) cintra entry implies longer
L2-distance for the corresponding pair, which is desirable to
lower the error rate. Since the error performance of a code is
mainly determined by its minimum distance, we are interested
in the distribution of entries of cintra with relatively large
positive values.

Fig. 4(a) shows the distribution of entries (in dB) in cinter

for the codebooks trained with (NE = 4, M = 256, n =
64, Nt = Nr = 2) and (NE = 6, M = 256, n = 96, Nt =
Nr = 2). We observe that cross-correlation values are at
least ≈ 12 dB lower than the energy of each codeword
(n/(2NE)). This confirms that learned codewords belonging
to different encoders are nearly-orthogonal to each other.
Similarly, Fig. 4(b) shows the distribution of the positive
entries (in dB) of cintra (12) for the same codebooks plotted
in Fig. 4(a). Note that the largest positive entry of cintra is
≈ 2.5 dB lower than the energy of a codeword implying that
the minimum L2-distance among the codewords from the same
encoder is not insignificant.

B. Codebook Properties After a MIMO Channnel

The MIMO-NOS codebook {Cj} exhibits the near-
orthogonal property and reasonable minimum distances before
MIMO transmission. This observation aligns with the results
in [1], which only considers single antenna transmission cases.
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Fig. 4. The distribution of the absolute value of entries (positive entries)
in cinter / cintra for the two codebooks learned with (NE = 4, M = 256,
n = 64, Nt = Nr = 2) and (NE = 6, M = 256, n = 96, Nt = Nr = 2).

In this section, we further inspect codebook properties after
the MIMO channel.

For a random MIMO channel realization, H , whose entries
are independent zero-mean complex Gaussian with unit vari-
ance, the post-channel codebook is updated from (10) to

Cj,H [m] = vec(H fSTC(Cj [m])) (13)

where Cj,H ∈ CNrMc×M . Following the same prin-
ciple in (11), the inter-correlation tensor cH

inter ∈
RNE×(NE−1)×M×M is obtained by:

cH
inter[i, j, k, l] =

|ℜ(C†
i,H [k]Cj,H [l])|

Nrn/(2NE)
i, j ∈ [1, NE ]; i ̸= j; k, l ∈ [1, M ], (14)

where the denominator Nrn/(2NE) is obtained by the expec-
tation of ||Cj,H [m]||22 over random realizations of H:

E(||Cj,H [m]||22) = C†
j [m]E((IMc ⊗H)†(IMc ⊗H))Cj [m]

= Nrn/(2NE). (15)

In (15), IMc
is a Mc×Mc identity matrix, ⊗ is the Kronecker

product and E(H†H) = NrINt
holds. Similarly the intra-

correlation, cH
intra after the MIMO channel is defined by:

cH
intra[i, k, l] =

ℜ(C†
i,H [k]Ci,H [l])

Nrn/(2NE)
i ∈ [1, NE ]; k ̸= l; k, l ∈ [1, M ]. (16)

Fig. 5. The distribution of the absolute values of cHinter entries and positive
entries of cHintra using random channel realizations H in a 4 × 4 MIMO
system.

To obtain empirical distributions, we randomly instantiate
one thousand 4×4 MIMO channel matrices H’s and evaluate
both cH

inter and cH
intra realizations. The distribution of absolute

values of cH
inter entries and the positive entries of cH

intra are
plotted in Fig. 5(a) and (b) respectively. The codebooks used
for this evaluation are the same ones used in Fig. 4. Fig. 5(a)
shows that the correlation between codewords belonging to
different encoders after a MIMO channel is not negligible,
and thus they do not preserve the near-orthogonal property
any more. The maximum cross-correlation cH

inter is only 4 dB
lower than the expected energy of each received codeword
(Nrn/(2NE)) which is significantly higher than the maximum
of the pre-channel correlation cinter shown in Fig. 4(a). Mean-
while, cH

intra shown in Fig. 5(b) has the largest positive ele-
ment comparable to the expected codeword energy, implying
significant minimum distance reduction between codewords
from the same encoder after the MIMO channel.

IV. K-BEST ASSISTED DECODING

Significant post-channel interference and codeword distance
reduction observed in the previous section motivate the need
for an efficient algorithm to mitigate these issues to attain
close-to-ML decoding performance. Since the ML solution is
practically infeasible due to excessive complexity, we pro-
pose and investigate a new practical CRC-assisted looped
K-best tree-search algorithm for the learned MIMO-NOS
code. Later, we will show that the proposed algorithm

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 27,2024 at 20:36:29 UTC from IEEE Xplore.  Restrictions apply. 



5114 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 9, SEPTEMBER 2023

significantly outperforms the neural network-based decoder
which was used to train the learned MIMO-NOS codebook.

A. K-Best MIMO-NOS Decoding

The encoder and decoder neural network pair introduced
in Section II is trained to minimize the number of bit errors
per vector/codeword. However, typical mMTC applications do
not tolerate any bit errors in a short packet, hence the primary
objective of our scheme is to minimize the PER. For that,
we include CRC bits in the information message to enhance
the reliability of short packets in the low SNR regime. In our
scenario, each transmitted block S ∈ CNt×Mc corresponds
to a packet (which is obtained by space-time reshaping of a
codeword, S = fSTC(s)).

Consider the joint probability P (xm1
1 , · · · , xmNE

NE
|Y , H)

where mj ∈ [1, M ]. We desire to find the top-K (K-best)
combinations that maximize the joint probability over all
possible combinations of one-hot vectors {xm1

1 , · · · , xmNE

NE
}.

Note that in [1], we have solved the top-K searching prob-
lem of the learned NOS code in the single antenna AWGN
channel. However, the assumption that the codewords are near-
orthogonal after the channel is no longer valid for the MIMO
transmission as shown in Fig. 5. Thus the joint probability
does not factorize into products of marginal probabilities∏NE

j=1 p(xmj

j |Y , H) as in the single antenna AWGN channel
case [1]. For the MIMO-NOS code, a procedure of finding the
top-K combinations is proposed as follows.

The joint probability of a MIMO-NOS code follows the
expression:

P (xm1
1 , · · · , xmNE

NE
|Y , H)

∝ exp{− 1
2Ntσ2

||y −
NE∑
j=1

Cj,H [mj ]||22}, (17)

where y ∈ CNrMc×1 is the vectorized version of the received
matrix Y and Cj,H is the codebook corresponding to H
defined in (13). The problem of finding K candidates max-
imizing the joint probability is equivalent to finding mj’s
that minimize the L2-distance ||y −

∑NE

j=1 Cj,H [mj ]||22. It is
practically infeasible for large NE and M to identify the
exact K-best candidates. To adopt the principle of K-best
tree searching and pruning algorithms designed for near-ML
MIMO detection [27], [28], we decompose the L2 term in (17),
i.e., ||y −

∑NE

j=1 Cj,H [mj ]||22 into four terms:

2ℜ(C†
NE ,H [mNE

]
NE−1∑
j=1

Cj,H [mj ]− C†
NE ,H [mNE

]y)

+ ||y −
NE−1∑
j=1

Cj,H [mj ]||22 + ||CNE ,H [mNE
]||22, (18)

where the first term is the same as the LHS except the summa-
tion is from 1 to NE−1. To allow recursive metric evaluation,
define the score metric s(l) = ||y −

∑l
i=1 Ci,H [mi]||22, which

can be expressed as:

s(l) = s(l−1) + ||Cl,H [ml]||22
+ 2ℜ(C†

l,H [ml]u(l−1) − C†
l,H [ml]y), (19)

Fig. 6. The proposed K-best algorithm. The two blue branches indicate
K = 2 survived paths in the tree.

where u(l−1) =
∑l−1

i=1 Ci,H [mi] is the cumulative vector. Our
objective is to find K-best candidates with the top-K smallest
score metric s(l) for each l-th layer and prune all the other
candidates using a tree structure shown in Fig. 6. We start
from the root of the tree and initialize the score s(0) = 0. For
the k-th (k ∈ [1, K]) survived node in the (l − 1)-th layer
with accumulated indices (mk

1 , · · · , mk
l−1), the metrics of all

its children nodes with index ml ∈ [1, M ] are calculated based
on (19), satisfying

s
(l)

mk
1 ,··· ,mk

l−1,ml
= s

(l−1)

mk
1 ,··· ,mk

l−1
+ ||Cl,H [ml]||22

+ 2ℜ(C†
l,H [ml]u

(l−1)
k − C†

l,H [ml]y),
(20)

where u
(l−1)
k =

∑l−1
i=1 Ci,H [mk

i ]. In this way, KM metrics
are obtained and we only preserve the top-K candidates to
serve as the survived parent nodes for the next layer whereas
all the other candidates are pruned from the tree. We define
this selection process as SelectNodes. By repeatedly extending
and pruning the K-best tree, K survived paths are obtained
at the last layer. The accumulated indices from the layer 1 to
NE of the k-th survived path are denoted as (mk

1 , · · · , mk
NE

).
By converting each mk

j to a bit sequence bk
j and concatenating

them together, we obtain a bit sequence bk for the subsequent
CRC validation.

A well-known weakness of the K-best decoding algorithm
is the error propagation. Any error made in previous layers
can mislead the decisions in the following layers. To mitigate
this issue, we follow the principle in [10] to first decode the
vectors from {Cj,H} that are more ‘reliable’ based on the
score metric calculated during the tree search by changing the
decoding order of remaining layers in the tree. We denote this
process as ChooseLayer. Two different sorting approaches are
proposed in [10], namely, per-layer sorting and per-branch
sorting. For per-layer sorting, we calculate the score metric
s(l) assuming each of the remaining (NE − l + 1) layers as
a possible l-th layer following (19) and using u(l−1) of the
up-to-now best candidate (with the smallest s(l−1)). Then a
layer with the minimum score metric is selected as the l-th
layer to be processed next for all the K survivors. Per-branch
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sorting also calculates the score metric s(l) of candidates for
all remaining layers to determine the order. However, the
layer evaluation is specific for each of the K survivors that
has a unique cumulative vector u

(l−1)
k . As a result, different

survivors at each tree level may have distinct decoding orders.
Since per-branch sorting determines a specific decoding order
for each survivor, it has higher complexity, but it attains
superior performance as each survivor can exploit a unique
and better ordering for itself in general.

B. CRC-Assisted Looped K-Best Decoding

While per-layer and per-branch sorting approaches improve
the error rate performance, any errors made in previous layers
still cannot be corrected in the subsequent layers in the K-
best decoding algorithm. To address that issue, we propose
a looped K-best decoding algorithm that can correct errors
in previously visited layers of the tree to further improve the
PER performance.

The proposed looped K-best decoding algorithm performs
Niter additional layers of K-best decoding to revisit layers
that were previously processed. After finishing regular K-best
decoding for the final NE-th layer, K survivors are obtained
with corresponding accumulated indices (mk

π1
, · · · , mk

πNE
),

the score metrics s
(NE)

mk
π1

,··· ,mk
πNE

, and the decoding order

(π1, . . . , πNE
).3 To proceed to the next additional iteration

of K-best decoding, it first updates K score metrics for
these survivors by subtracting the terms that correspond to
Cπ1,H [mk

π1
] to obtain:

t̃
(NE+1)

mk
π2

,··· ,mk
πNE

= s
(NE)

mk
π1

,··· ,mk
πNE

− ||Cπ1,H [mk
π1

]||22

− 2ℜ(C†
π1,H [mk

π1
]

NE∑
j=2

Cπj ,H [mk
πj

]− C†
π1,H [mk

π1
]y),

(21)

where t̃ denotes the updated metric. Then it repeats the
standard process of the (revisited) first layer in the K-best
decoding algorithm using the survived nodes as the parents
by calculating the new score metrics of their children nodes
with the index mπ1 ∈ [1, M ]:

s
(NE+1)

mk
π2

,··· ,mk
πNE

,mπ1

= t̃
(NE+1)

mk
π2

,··· ,mk
πNE

+ ||Cπ1,H [mπ1 ]||22

+ 2ℜ(C†
π1,H [mπ1 ]

NE∑
j=2

Cπj ,H [mk
πj

]− C†
π1,H [mπ1 ]y).

(22)

One important aspect in the proposed looped K-best is that,
among the newly generated KM candidates from the revisited
layer, it only selects K distinct candidates with the best
score metrics obtained with the updated accumulated indices

3Although we assume per-layer sorting for simplicity, it is straightforward
to extend it to per-branch sorting.

Fig. 7. The proposed looped K-best algorithm with parameter
(NE = 3, M = 3, K = 2) with two additional iterations. The decoding
order (π1, π2, π3) is assumed to be (1, 2, 3). The two blue branches indicate
two survived paths in this example.

(mk
π2

, · · · , mk
πNE

, mk
π1

) and new ordering (π2, · · · , πNE
, π1).

These indices are reordered to (mk
1 , · · · , mk

NE
) which will

be further converted into bit sequences. This process repeats
for the next revisited layer until Niter additional layers of
K-best tree decoding are processed. Fig. 7 depicts the decod-
ing process of the looped K-best decoding algorithm using an
example with (NE = 3, M = 3, K = 2) and Niter = 2.

An interesting property of the proposed looped K-best
decoding algorithm is that the score metrics of the K survivors
are non-increasing with respect to Niter. It is expected as we
revisit the first element mk

π1
for the k-th survived path, it is

always possible to choose the original element mk
π1

selected
in the previous round, maintaining the same score metric.
However, in many cases, the algorithm can find new paths
with smaller score metrics to improve the performance.

We emphasize that the looped K-best needs a new con-
straint (which is unnecessary in the original K-best algo-
rithm) to select distinct paths from KM candidates that have
unique metrics (22) without duplication. We term this process
as SelectDistinctNodes to distinguish it from the procedure
SelectNodes previously defined. In the original K-best decod-
ing without a loop, the K survivors from the first layer are
always different although they might share the same path
for the remaining (NE − 1) layers. One possible example
is (m(1)

π1 , mπ2 , · · · , mπNE
) and (m(2)

π1 , mπ2 , · · · , mπNE
) as

the final K = 2 candidates. In this case, when the first
branch is revisited during the looped K-best decoding, it is
likely that these two survived paths select the same mπ1

making the two paths identical and reducing the effective K
from 2 to 1. To avoid such conditions, the proposed algorithm
is constrained to only maintain distinct survivor paths by
eliminating duplicated paths with the same score metric. For
that, we first sort the KM score metrics in an increasing order
and then eliminate duplicated metrics in the list before we
select the final K best unique survivor metrics.

Once the algorithm finishes processing Niter additional lay-
ers, K survived paths (after ordering them back to the original
transmit order) are converted to K bit-sequences bk. Finally,
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Algorithm 1 CRC-Aided Looped K-Best Decoding
Algorithm With Per-Layer Sorting
Input : K, Niter, y, {Cj,H}
Output: decodedBits, errFlag

1 for k = 1 to K to
2 u(k)← 0 (zero accumulative vector)
44 s(k)← 0 (zero score metric)
66 idx(k)← [ ] (empty candidate index)

7 L ← [ ] (empty decoded layer index)
99 for j = 1 to NE to

10 lj ← ChooseLayer(L)
1212 L ← [L, lj ]
1414 for k = 1 to K to
15 stmp(k)← s(k)− 2ℜ(y†Clj ,H −

u†(k)Clj ,H) + diag(C†
lj ,HClj ,H)

16 [s, idxnew, anc]← SelectNodes(stmp, K)
1818 for k = 1 to K to
19 u(k)← u(anc(k)) + Clj ,H [idxnew(k)]
2121 idx(k)← [idx(anc(k)), idxnew(k)]

22 for j = 1 to Niter to
23 lj , idxj ← L(j), idx(:, j)
2525 L ← [L, lj ]
2727 for k = 1 to K to
28 u(k), Ijk ← u(k)− Clj ,H [idxj(k)], idxj(k)
3030 ttmp(k)← s(k) + 2ℜ(y†Clj ,H [Ijk]−

u†(k)Clj ,H [Ijk])− ||Clj ,H [Ijk]||22
3232 stmp(k)← ttmp(k)− 2ℜ(y†Clj ,H −

u†(k)Clj ,H) + diag(C†
lj ,HClj ,H)

33 [s, idxnew, anc]←
SelectDistinctNodes(stmp, K)

3535 for k = 1 to K to
36 u(k)← u(anc(k)) + Clj ,H [idxnew(k)]
3838 idx(k)← [idx(anc(k)), idxnew(k)]

39 idx,L ← idx(:, Niter : end),L(Niter : end)
4141 outputList ← Reorder(idx, L)
42 while errFlag ̸= 0 and k ≤ K do
43 decodedBits ← IdxToBits(outputList (k))
4545 errFlag ← CRCDecode(decodedBits)

we pass them to check the CRC bits for error detection. A can-
didate bk with a smaller metric is checked first until one that
passes the CRC bits is identified as the final decoding output.
The entire CRC-assisted looped K-best decoding algorithm for
the learned MIMO-NOS code is summarized in Algorithm 1.
Note diag(A) in Algorithm 1 is a function that returns the
diagonal elements (a11, a22, · · · , aNN ) of an N × N square
matrix A.

V. EVALUATION

The PER performance of the proposed scheme is evalu-
ated via Monte-Carlo simulations. For short MIMO message
transmission, we compare the performance of the learned

TABLE I
LIST OF IMPORTANT VARIABLES

MIMO-NOS coding using the CRC-assisted looped K-best
decoding algorithm with a polar-coded MIMO-QPSK (quadra-
ture phase shift keying) scheme demodulated/decoded by
ML MIMO detection and CRC-assisted list polar decod-
ing. We also compare the performance of the proposed
looped K-best decoding with the neural network-based NOS
decoder that is used to train/learn the NOS codebook. The
decoding complexity and latency for the proposed looped
K-best decoder are analyzed, and we also carry out exper-
iments to quantify the gain from different components of the
proposed MIMO-NOS scheme. To improve the readability
of the simulation results, we summarize the key parameters
defined in Sections II, III and IV in Table I.

A. Deep Learning Model Training

The neural network structure shown in Fig. 2 is defined
by the parameter set (NE , M, n,Nt, Nr, T1, T2) where T1

denotes the number of hidden neurons in the encoder F j
enc

and decoder F j
dec, j ∈ [1, NE ], and T2 is the number of

hidden neurons in the residual connection module Res. We set
T1 = 4n, T2 = 128 for all experiments. All DNN models
are trained for 5× 103 epochs with 5× 105 training samples
(packets or codewords) for each epoch. During training, each
training sample/packet observes an independent realization of
the random MIMO channel matrix H ∈ CNr×Nt as described
in Section II. The batch size is set to 1024 and the dynamic
learning rate changes linearly from the initial value of 2×10−4

to the final 2 × 10−6. All models are trained under a fixed
SNR of 10 dB although they are evaluated under different
mismatched SNRs. Once the deep learning model training is
complete, we construct a lookup table (LUT) of the learned
codebook, {Cj} as defined in (10).
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Fig. 8. PER performance of the CRC-assisted looped K-best decoder for
the learned MIMO-NOS codebook trained with the system parameter set
(NE = 4, M = 256, n = 64, Nt = Nr = 4). We set K = 16 and
NCRC = 11. The number of additionally processed layers for the K-best
decoder is set to Niter .

Fig. 9. Error rate performance of the looped K-best algorithm with various
Niter settings given the parameter set (NE = 6, M = 256, n = 96,
Nt = Nr = 4) under different SNRs.

B. Performance of the Looped K-Best Decoder

For PER evaluation, each packet goes through an indepen-
dent MIMO channel H while the channel stays the same
for a single packet. Fig. 8 shows the performance of the
CRC-assisted looped K-best decoder given the system param-
eter set of (NE = 4, M = 256, n = 64, Nt = Nr = 4). This
corresponds to transmitting 32 (= NE · log2(M)) information
bits (including CRC bits) with 4 transmit (Nt) and receive
(Nr) antennas with 8 (Mc = n/(2Nt)) MIMO channel uses.
In Fig. 8, K is 16, the number of CRC bits NCRC is 11,
and Niter denotes the number of additional layer decoding
iterations. Niter = 0 corresponds to the original K-best
decoding without any loop. Relatively worse performance of
Niter = 0 is expected since the errors made in earlier layers
can not be corrected without additional loops. The looped
K-best algorithm with a higher Niter, on the other hand, can
correct some previous errors and it attains a 1.5 dB gain with
Niter = 4 for PER ≈ 10−2.

We then evaluate the error rate performance of the looped
K-best algorithm with respect to a wide range of Niter in
Fig. 9 for MIMO-NOS code with the parameter set (NE = 6,
M = 256, n = 96, Nt = Nr = 4) and evaluated at different
SNRs. We set K = 16 and NCRC = 11. The error rate

Fig. 10. PER performance of different (NE , M) combinations with
≈ 32 information bits for a 4×4 MIMO system. There is an optimal NE for
the target rate as the performance is not a monotonic function of NE given
the target rate.

performance is quantified using the probability P (b∗ /∈ B)
where b∗ is the correct bit sequence and B is the set of
K-best candidates bk, k ∈ [1, K], obtained by the algorithm.
As Niter increases, P (b∗ /∈ B) monotonically decreases
resulting in the improved PER. Fig. 9 further shows that
the error rate performance improvement from the increased
number of iterations is more substantial when the SNR is
higher. To strike a good balance between the PER performance
and the decoding complexity, we set Niter = NE for the
remaining evaluations unless noted otherwise.

C. Performance With Different System Parameters

As shown in Table I, the rate R of the proposed MIMO-NOS
scheme is determined by the number of information bits
(NE ·log2(M)) and the length of the complex-valued codeword
(n/2), satisfying R = NE log2(M)

n/2 . With a fixed n, there are
different (NE , M) combinations to obtain the same target rate
R whereas one configuration outperforms the other. Our prior
work [1] for single antenna AWGN channel argues that the
number of superimposed vectors NE should be minimized
(with a larger M ) as long as the complexity (i.e., model size)
of the neural network to learn a NOS codebook is manageable.
However, we find that for the proposed MIMO-NOS coding,
using a smaller NE (and larger M ) does not necessarily
improve the PER performance while it definitely increases the
complexity of the network model. The analysis is involved
but numerical evaluation of the score metric in (20) under
the MIMO channel shows that there is an optimal NE (and
corresponding M ) that balances the inter- and intra-codeword
correlation tradeoff. Fig. 10 shows the PER performance of
three different (NE , M) combinations that are (NE = 3, M =
2048), (NE = 4, M = 256) and (NE = 8, M = 16) evaluated
under 4 × 4 MIMO transmission with n = 64, K = 16, and
NCRC = 11. Note that all these settings have (almost) the
same rate. The setting of (NE = 4, M = 256) outperforms
the other with smaller or larger NE’s. Note that Niter is set to
4 for (NE = 3, M = 2048) setting which has a larger FLOP
count and decoding latency compared with the NE = 4 setting
with the same Niter. We set Niter = 8 for (NE = 8, M = 16)
setting which has a similar FLOP count but larger decoding
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latency compared to NE = 4 setting with Niter = 4. As can be
shown in Fig. 10, the NE = 4 setting outperforms the others
with a less/similar FLOP count and shorter decoding latency.
We also observed that (NE = 4, M = 256) outperforms
the other settings when all use unlimited Niter. It is worth
noting that the (NE = 8, M = 16) setting is inferior to
(NE = 3, M = 2048) at low SNRs while the opposite is
observed at high (> 7 dB) SNRs. It is because of the tradeoff
between inter- and intra-codeword distances that the proposed
K-best algorithm experiences during the decoding process.
A larger NE (smaller M ) creates more severe inter-codeword
interference with a deeper tree structure that makes the algo-
rithm suffer from early decoding errors in the tree at low
SNRs. When the SNR is relatively high with lower chance
of early stage errors in the K-best decoding, the performance
is limited by the intra-codeword distance as more candidates
M are evaluated for each layer. Although it is difficult to
accurately analyze this tradeoff, Fig. 10 shows that there is
an optimal parameter set and the PER performance is not
necessarily a monotonic function of NE or M . Empirically,
we observed that a setting with M = 256 usually outperforms
others (as observed in Fig. 10). Hence, we use M = 256 (with
a corresponding NE to attain the target rate) for the rest of
the paper to evaluate the performance of the proposed MIMO-
NOS scheme.

In the proposed scheme, the dimension of the codebook
{Cj} (10) is determined by the parameter set (M,n) and it
does not depend on the MIMO configuration, (Nt, Nr). For
a given codebook {Cj}, the MIMO configuration (Nt, Nr)
defines the space time coding scheme by reshaping the samples
of a transmitted codeword with proper space and time indices
as discussed in Section II-B. This implies that it is possible
to use a codebook for different MIMO settings by simple
reshaping even though they are not necessarily identical to
that used during the codebook training. In other words, one
can apply reshaping based on the desired (Nt, Nr) to an
existing learned codebook trained with different (Nt, Nr) as
long as (NE , M, n) is unchanged. To facilitate the discussion
to follow, we distinguish the number of transmit and receive
antennas used during the training by N l

t and N l
r, respectively.

Consequently, Nt and Nr denotes the number of antennas for
evaluation of a learned MIMO-NOS codebook. We observed
that N l

r makes little impact to the PER performance of the
codebook for a given evaluation setup Nt or Nr as long as
N l

r ≥ N l
t holds. Thus we only show the impact of N l

t(= N l
r)

in the following discussion.
Fig. 11 shows the PER performance of the codebooks for

the setting (NE = 6, M = 256, n = 96) trained with
N l

t = N l
r = 2, 3, 4 and evaluated for Nt = Nr = 4 MIMO

transmission. We set K = 16, NCRC = 11 and Niter = 4.
Intuitively, one would expect the best performance when N l

t =
Nt. However, the simulation shows that the codebooks trained
with N l

t = 2 or 3 outperform the one with N l
t = 4 for the

Nt = 4 evaluation, showing the ‘mismatch’ between N l
t and

Nt for the optimal performance.
To understand this mismatch, Fig. 12 analyzes inter-

correlation cH
inter and intra-correlation cH

intra for different N l
t ’s

with random 4 × 4 MIMO channel realizations. Notice that

Fig. 11. The PER performance of the codebooks learned under
N l

t = 2, 3, 4 applied to the 4 × 4 MIMO transmissions with parameters
(NE = 6, M = 256, n = 96, K = 16, Niter = 6, NCRC = 11).

Fig. 12. Inter- and Intra-correlation distributions for codebooks learned
under different transmit antennas N l

t = 2, 3, 4 evaluated for 4 × 4 MIMO
transmission given the system parameter (NE = 6, M = 256, n = 96).

the codebooks trained with N l
t =2 or 3 have better cH

inter

distribution compared with the N l
t = 4 counterpart, while

the N l
t = 4 codebook has better cH

intra distribution. From
this experiment using the given parameter set, we observe
that the PER of the proposed looped K-best decoding is
dominated by the inter-codeword interference that propagates
down to later tree levels during the looped K-best decoding.
When inter-codeword interference is correctly cancelled out,
decoding of each layer (whose performance is governed by
intra-codeword correlation) using a reasonably high K ≫
1 with respect to M does not limit the PER performance
at high SNRs. The codebook learned with N l

t = 2 strikes
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the balance between inter- and intra-codeword correlation for
Nt = 4 evaluation.4

The above observation brings one question why the pro-
posed MIMO-NOS framework learns a better codebook under
a mismatched MIMO scenario N l

t ̸= Nt. It can be explained
by the mismatch between the hand-crafted looped K-best
decoder used for evaluation and the neural network-based one-
shot decoder used for training as introduced in Section II.
Although the looped K-best coding outperforms the neural
network based decoder (as shown in the next subsection),
it is not differentiable and thus cannot be directly used as a
decoder for the end-to-end training to learn a codebook. Since
the training is performed with a sub-optimal neural network-
based decoder, the property of the learned codebook is not
necessarily optimal for the proposed looped K-best coding
algorithm.

An intuition is that it might be possible to learn a better
MIMO-NOS codebook if the encoder was optimized with a
neural network decoder that has a built-in K-best decoding
structure. This resembles a prior work [29] in machine lan-
guage translation where a (K) beam-searching algorithm is
used to improve the BLEU score of the translation model.
In our case, it would require selecting K survivors from KM
number of branches and back-propagating the gradient through
a maxk(·) operation (which is not differentiable). Devising
and successfully training such a new neural network structure
with a built-in K-best selection mechanism is non-trivial, thus
left as future work.

D. PER Performance Comparison With a Conventional
Scheme

Finally, we compare the performance of our MIMO-NOS
scheme with the conventional polar-coded MIMO sys-
tem. As discussed in [5], the CRC-assisted polar code is
proven to be robust for short packet transmission, thus we
selected it as the baseline. Although there exist multiple
computationally-efficient MIMO detection algorithms such as
sphere decoding and K-best decoding [28], [30] that provide
soft decisions, we choose the ML MIMO detection for the
baseline to avoid degrading the polar code performance.
We apply a successive cancellation list decoding algorithm
(SCL) [5] with list size L to polar decoding.

For comparisons with the CRC-assisted list decoding polar,
we train the MIMO-NOS codebook with N l

t = N l
r = 2, and

evaluate both in the 4×4 MIMO configuration. In the first case,
we evaluate transmission of 32 message bits (Fig. 13(a)), and
in the second and third case we increase the message length to
48 bits (Fig. 13(b)) and 64 bits (Fig. 13(c)). The MIMO-NOS
scheme uses the parameter set (NE = 4, M = 256, n = 64)
for the first case (32 bits), (NE = 6, M = 256, n = 96) for
the second (48-bit), and (NE = 8, M = 256, n = 128) for
the last case (64-bit) while K = 16 for all these cases. The
baseline uses 3GPP polar code [31] with QPSK modulation
and 0.5 coding rate for all these cases. Its list decoding size L
is set to be L = K = 16 for fair comparison. The 11-bit CRC

4We note that the simulation results in Fig. 8 and Fig. 9 also adopt N l
t =

N l
r = 2.

Fig. 13. The proposed MIMO-NOS scheme outperforms the polar with
ML MIMO detection under different number of information bits ranging
from 32 to 64 bits in 4 × 4 MIMO channels.

with a generator polynomial x11+x10+x9+x5+1 is adopted
to both MIMO-NOS and the Polar code baseline. Note that
for the proposed MIMO-NOS scheme, we also provide results
using neural network decoder (introduced in Section II) with
K = 1 without CRC and the looped K-best decoder with
K = 16 without CRC to quantify the gain from different
decoding algorithms and the CRC. Note that different schemes
have different spectral efficiency depending on appending
the CRC bits or not. Thus, for a fair comparison, we use
Eb/N0 as x-axis. The Eb/N0 in our setup is defined as:
Eb/N0 = SNR + 10 log10(

n/2
NE log2(M)−NCRC

), where SNR
is shown in (6).
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Fig. 14. The comparison of the MIMO-NOS and the baseline polar code
applied to 2× 2, 3× 3 and 4× 4 MIMO transmissions given the parameters
(NE = 6, M = 256, n = 96), K = L = 16, and NCRC = 11. The
information length is 48-bits.

Fig. 13 presents the MIMO-NOS schemes with CRC (adopt-
ing either per-branch or per-layer sorting) outperform the
polar baseline by 1− 2 dB in terms of Eb/N0 for short mes-
sages in the range of 32 – 64 bits. We also observe the schemes
adopting looped K-best decoder consistently outperform the
scheme employing a neural network decoder labeled ‘NOS,
NN decoding (K = 1) w/o CRC’ showing the effectiveness
of the proposed decoding algorithm. It is due to the fact
that, in the DNN-based decoding algorithm, each F j

dec only
estimates the posterior probability p(xj |y, H) in a one-shot
manner and searches one xj which maximizes the posterior.
Since each F j

dec only selects one candidate, xj , it cannot fully
exploit the potential gain from the additional CRC bits (it
quits when the only candidate does not pass the CRC check).
Our CRC-aided looped K-best decoding algorithm, on the
other hand, aims to find K combinations that maximize the
joint posterior probability, p(x1, · · · , xNE

|y, H). The selected
K combinations are then fed to the CRC decoder to find
the first one that passes CRC. Although adding CRC bits
increases Eb, the improved PER performance offsets that
overhead, providing gains in terms of Eb/N0. We further note
that the neural network for ‘NOS, NN decoding (K = 1) w/o
CRC’ curve is trained and tested with the residual connection
Res in parallel with the conventional MMSE detection. The
importance of the Res module should be emphasized where a
≈ 2 dB gain is observed compared to a version without Res in
the Nt = Nr = 2 setting. We can also observe the gain of the
per-branch sorting over the per-layer sorting improves with
the number of information bits from approximately 0.2 dB
for 32 bits to 1 dB for 64 bits. Fig. 13(c) shows that the gain
of the proposed scheme over the polar baseline reduces with a
larger number of information bits, which is expected because
polar coding is capacity-achieving when the codeword length
is sufficiently long.

We now compare the performance of the MIMO-NOS
scheme and the baseline under different MIMO settings. The
parameters of the MIMO-NOS for this simulation are (NE =
6, M = 256, n = 96), 48 information bits, and K = 16 with
per-layer sorting. The codebook is learned with N l

t = 2. The
SCL decoding based polar scheme has the same information

Fig. 15. The PER performance for the Polar baseline and proposed
MIMO-NOS scheme with different numbers of CRC bits (11-bit, 6-bit, and
0-bit (no CRC)) over a 4×4 MIMO channel. The packet is 32 bits including
information and CRC bits.

bit length and coding rate of 0.5 with QPSK modulation and
L = 16. Both schemes adopt 11-bit CRC and are tested with
2×2, 3×3, and 4×4 MIMO configurations. Fig. 14 shows the
proposed MIMO-NOS scheme outperforms the polar baseline
for all tested MIMO settings.

Finally, we study the impact of using different CRC lengths.
Similar with the simulations in Fig. 13, our evaluation is based
on Eb/N0 which includes the energy overhead to transmit
different number of CRC bits. In this experiment, the PER
performance for both the Polar baseline and the proposed
MIMO-NOS scheme using the aforementioned 11-bit CRC,
a 6-bit CRC5 and 0-bit CRC (without CRC) are simulated.
We consider transmitting 32 bits (including CRC bits) over
a 4 × 4 MIMO channel. The Polar baseline adopts QPSK
modulation, ML MIMO detection, and list size L = 16 while
we set K = 16, Niter = 4 for the proposed looped K-
best decoder. The comparison of these schemes is shown in
Fig. 15. As can be seen from the figure, both the Polar baseline
and the proposed MIMO-NOS scheme perform better using
the 6-bit CRC compared with the 11-bit CRC specified in
the 5G standard. Whereas it is observed that transmission
without CRC bits has worse performance than using 6-bit or
11-bit CRC. For the same CRC setting, the proposed
MIMO-NOS scheme outperforms the Polar baseline.

E. Complexity Analysis

We analyze the complexity of the per-layer sorting which
can be estimated by summing the number of FLOPs (floating
point operations) of the three parts: 1) constructing/updating
the codebook for the observed MIMO channel realization,
2) initial K-best decoding, and 3) additional looped K-best
decoding. To simplify the analysis, we assume Nt = Nr = N .

1) Codebook Update: We generate the post-channel code-
book {Cj,H} from the original codebook {Cj} by matrix
multiplications (13) and calculate the norm of each codeword
in {Cj,H}. These steps are based on the QR decomposition of
the channel CSI, H , and they require NEMN(N +1)n/4 and
NEMn/2 operations, respectively.

5The polynomial for the 6-bit CRC is x6 +x5 +1 used in the 5G standard.
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2) Initial K-best Decoding: This involves four sub-steps to
choose the next layer (ChooseLayer), calculate metrics, select
survivor nodes (SelectNodes) and update cumulative vector.
At layer j, each sub-step requires (NE−j+1)Mn/2+(NE−
j+1)M,Kn/2+KMn/2+KM , 2KM+2(KM+1)HKM−
2(KM +3−K)HKM+1−K −6K +6, and Kn/2 operations,
respectively where Ht is the t-th harmonic number. In the third
sub-step, we use partial quick sort [32] to select K survivor
nodes from KM candidates (denoted as Choose(K, KM) for
convenience).

3) Looped K-best Decoding: This step differs from the
initial K-best decoding only in the first and third sub-step,
which requires 3Kn/2 + 2K and Choose(aK, KM) opera-
tions, respectively. The parameter a = 1.5 is chosen based on
numerical evaluations to find a reasonable tradeoff between
complexity and performance.

Summing these three steps, the total number of oper-
ations of the proposed algorithm is upper bounded by:
NEMN(N + 1)n/4 + NEMn/2 + NE(NE + 1)Mn/4 +
NE(NE + 1)M/2 + NE(Kn + KM + KMn/2 +
Choose(K, KM))+Niter(1.5Kn+2K +KMn/2+KM +
Choose(1.5K, KM))−Kn.

To evaluate the complexity of the baseline scheme, we use
ML QPSK (Q = 4) MIMO detection where the total number of
operations can be estimated as NMc log2 Q2N log2 Q(0.5 N2+
2.5 N + 1). For polar code list decoding, we use the result
in [33] and estimate 103 FLOPs per bit when L = 16.
Thus, for an example where (NE , M, n) = (4, 256, 64), K =
16, Niter = 4 and Nt = Nr = N = 4, the proposed
MIMO-NOS scheme exhibits substantially higher complexity
(1.569 × 106 FLOPs) compared to the QPSK Polar baseline
(2.88× 105 FLOPs).

However, we observed that the decoding speed of the
proposed scheme can be faster than that of the baseline. This is
because our K-best decoding algorithm is inherently parallel
whereas the list decoding Polar uses successive cancellation
which is sequential and unable to parallel hardware computa-
tion resources. The run time measured on Intel Xeon(R) Sil-
ver 4110 CPU using Python / Matlab implementations shows
that the runtime of the proposed algorithm is approximately 2
times faster for the same aforementioned scenario.

F. Quantified Gain From Each Component

To quantify the gain from each component in the pro-
posed framework, we show in Fig.16 the performance of
our proposed scheme when each component was replaced by
an alternative approach. In this experiment, the number of
information bits (including CRC bits with NCRC = 11) is set
to be 32, MIMO configuration is set to 4×4, and we set K =
16, Niter = 4 for the looped K-best decoder with per-layer
sorting. The case ‘Random codebook’ is when the learned
encoders are replaced with a randomly generated codebook
Cj [m] ∼ N (0, In/2); j ∈ [1, NE ]; m ∈ [1, M ] under the same
power constraint, while the other components are kept the
same to isolate the gain from the learned encoding/modulation.
The gap from the proposed scheme (‘Proposed Niter = 4’)
can be explained by the lack of the near-orthogonal property

Fig. 16. The gain of the proposed scheme (‘Proposed Niter = 4’)
compared to the Polar baseline and alternative schemes replacing one com-
ponent/parameter in the proposed scheme with another.

discussed in Section III-A. A randomly generated codebook
for a short block length does not satisfy a similar near-
orthogonal property, thus its PER performance is limited by
the interference between codewords.

Fig. 16 shows the performance when the codebook is
replaced with the one in [1] which is optimized for the
single antenna AWGN channel (without the space-time map-
ping module). Although the codebook in [1] satisfies the
near-orthogonal property at the transmitter, it does not con-
sider the inter-codeword distance/orthogonality at the receiver
after the MIMO channel. Therefore, it exhibits a significant
performance gap compared with the proposed scheme where
the codebook is trained with a space-time mapping module
under the MIMO channel.

The codebook training of the proposed scheme involves a
neural network decoder and residual-assisted MMSE MIMO
detection as explained in Section II. We quantify the perfor-
mance of the case when the explicit residual-assisted MMSE
MIMO detection and neural network decoders are used in
the K-best decoding algorithm introduced in [1]. Specifically,
in the l-th layer, the K-best decoding is performed by selecting
K candidates with the top-K values

∏l
i=1 pi[mi] where pi’s

are obtained from the neural network decoders that take
residual-assisted MMSE MIMO detection results as the input.
For the (l + 1)-th tree level, the K survivors in the l-th
layer will be served as the parent nodes and we select K
candidates with the top-K metrics among their children nodes
while pruning the others. The K-best decoding process is
repeated until it reaches the last layer. We set K = 128 for
this neural network decoder-based scheme and compare it with
the proposed looped K-best decoder with K = 16. As can be
seen in Fig. 16, there is a significant gain from the proposed
looped K-best decoder over the neural network decoder-based
approach using the same codebook and space-time mapping.
Fig. 16 also shows the gain of the proposed scheme when the
number of iterations increases from 0 to 4.

G. Discussion

In this subsection, we will discuss the use-case for the
proposed MIMO-NOS scheme and its limitations which invite
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future studies. Our main use-case scenario is an uplink network
from many devices (such as vehicles and factory robots) to
a central powerful gateway (infrastructure) to exchange short
control-type messages. These devices as well as the gateway
may employ a modest number of antennas (2 – 4). Note that
the overhead for MIMO CSI estimation at the receiver would
be significant but using multiple antennas can still reduce
the overall latency as the message payload length decreases
by a factor of 2 – 4. The devices use a relatively simple
MIMO-NOS encoder while the gateway uses the CRC-assisted
looped K-best decoding algorithm on a parallel computing
platform to reduce the latency. The superior PER performance
as well as the lower latency property make the proposed
MIMO-NOS scheme a promising scheme.

We then point out the limitations of the proposed
scheme: As shown in Fig. 13, the performance gap between
the learned MIMO-NOS and the polar baseline reduces
as the message length increases. This can be explained using
the inter-correlation of the codewords belonging to different
codebooks after the MIMO channel, cH

inter in (14). When
the NE grows larger for longer block lengths (with M fixed
at 256), the error propagation problem of the proposed looped
K-best decoding will become more severe unless cH

inter is
greatly reduced with the increased NE . However, Fig. 5(a)
indicates there is no significant improvement of the cH

inter

with a larger NE , illustrating that the error propagation prob-
lem will definitely degrade the performance of the looped
K-best decoder. With the analysis above, it is not practical
to scale the proposed scheme to an arbitrarily long length
although conventional superposition codes are known to be
capacity achieving for long sequences [11]. Nevertheless, the
proposed MIMO-NOS is a promising solution for reliable
short message MIMO transmission in the low SNR regime
with superior PER performance and an efficient decoding algo-
rithm. Investigating new network structures and corresponding
training schemes for learned superposition coding that scales
better to longer information bit lengths is left as future
work.

VI. CONCLUSION

This paper proposes a novel deep learning based
MIMO-NOS coding scheme for reliable transmission of short
messages in MIMO channels. The proposed end-to-end frame-
work enables the encoder to successfully learn near-orthogonal
superposition codewords with the aid of a neural network
decoder. To improve the error rate performance, we propose
and evaluate a CRC-assisted looped K-best decoder, which
significantly outperforms the neural network decoder used
during the training. We characterize the proposed MIMO-NOS
coding and provide empirical evaluations with different MIMO
settings and NOS encoding parameters. The decoding com-
plexity of the proposed looped K-best decoder is analyzed
and the gain from individual components/modules is quan-
tified. Simulation results show the proposed MIMO-NOS
scheme outperforms CRC-aided list decoding polar codes
with maximum likelihood MIMO detection by 1 – 2 dB in
various MIMO configurations for short (32 – 64 bits) message
transmission.
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