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Abstract—Low-power, low-cost wireless communication is a
fundamental requirement of Internet-of-Things (IoT) and mas-
sive machine-type communication (mMTC). Various low power
connectivity standards such as Bluetooth and LoRa adopt non-
coherent frequency modulation schemes as they exhibit signif-
icantly lower complexity and power consumption compared to
coherent in-phase and quadrature (IQ) modulation schemes. In
our paper, we propose a deep learning-based joint channel coding
and modulation (JCM) scheme for digitally controlled oscillator
(DCO)-based frequency modulation. The learned encoder takes
an information bit sequence and produces DCO control samples
that represent instantaneous frequency to modulate the radio
frequency (RF) signal. The learned decoder recovers/decodes
information bits from the received noisy samples without any
preamble to assist time and frequency synchronization. We train
and test the proposed scheme under significant phase noise
and carrier frequency offset (CFO) of the DCO to successfully
mitigate these practical impairments at the receiver.

Index Terms—Deep Learning, Digitally Controlled Oscillator,
mMTC, GRU

I. INTRODUCTION

Massive machine-type communication (mMTC) in Internet-
of-Things (IoT) networks is one of essential technologies
to enable 5th and next generation communication systems
[1]. The massive number of IoT devices calls for low-cost,
low-power connectivity solutions. Popular low power wireless
standards such as Bluetooth and LoRa adopt non-coherent
frequency modulation schemes such as Gaussian frequency
shift keying (GFSK) and frequency chirp that exhibit continu-
ous phase constant envelope properties by modulating the RF
signal using digitally-controlled oscillator (DCO) [2]. Unlike
coherent 1Q-based modulation schemes such as phase-shift
keying and quadrature amplitude modulation (QAM), DCO-
based frequency modulation does not necessarily require a
phase lock-loop (PLL). Therefore, for low power low com-
plexity wireless solutions, DCO-based transmitters have been
widely adopted in Bluetooth Low Energy (BLE) [3], LoRa [4],
and proprietary protocols [5]. The fact that DCO only controls
the instantaneous frequency (not the phase of IQ samples)
with a digital signal largely simplifies the RF transmitter
implementation, and thus inspired us to explore a new DCO-
based frequency modulation scheme via deep learning.

Deep learning has achieved tremendous success in vari-
ous areas thanks to its strong representative capability and
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increasing computation power. Recently, deep learning also
appealed to the wireless communication research, especially
to learn new source and channel coding schemes. Deep
neural networks (DNN) first showed their advancement in
the decoding of Polar [6] and LDPC [7] codes. Compared
to the conventional decoding methods, the DNN-based algo-
rithms have better block error rate (BLER) performance and
robustness to variation in channel statistics. Further efforts
are made to invent novel channel codes with different neural
network structures. The authors in [8] first introduced a
DNN-based autoencoder to learn a new (7,4) code, which
significantly outperforms (7,4) Hamming code. However, the
fact that the code uses one-hot encoded information bits as the
model input, whose length grows exponentially with the block
length, limits its application to very short input blocks. One
approach to address this problem is demonstrated in [9], which
segments the input block into shorter sequences before one-
hot encoding. Each sequence is encoded with an independent
DNN module, and the outputs are summed up to produce
the superposition code. This design addresses the curse of
dimension but it is not adaptive to various block lengths as
each model is trained for a specific block length only. The
models in [10] solve both of the aforementioned issues using
a recurrent neural network (RNN) such as Gated Recurrent
Unit (GRU) [11] and Long Short-Term Memory (LSTM) [12].
The popularity of these RNN-based models in sequential data
processing tasks naturally invited attempts to create learned
channel coding schemes. Prior works [13] and [10] adopted
RNN-based autoencoder for channel coding and outperformed
conventional Turbo and TBCC coding with short blocks.

Deep learning has been applied to learning new modulation
schemes. The authors in [14] and [15] proposed DNN-based
modulations for optical and molecular communications. More-
over, the unique capability of deep learning models to perform
end-to-end optimization has inspired joint channel coding and
modulation (JCM) designs. A prior work [16] applied a convo-
lutional neural network (CNN) for channel coding and a time-
distributed dense layer for constellation learning. Similarly,
[17] used Turbo-Autoencoder as the channel coding model and
multi-layer perceptron (MLP) module for modulation. These
works have shown that under certain power constraints, the
JCM scheme can outperform the combination of conventional
channel coding and modulation schemes.

All aforementioned deep learning based communication
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Fig. 1. Architecture of the proposed JCM model for DCO-based non-coherent frequency modulation communication

schemes are based on coherent baseband signaling with
real-/complex-valued coherent in-phase and quadrature (IQ)
samples. Such signaling requires a PLL to maintain phase-
coherency without significant phase noise or carrier frequency
offset (CFO). Therefore, those schemes are not directly appli-
cable to DCO-based frequency modulation transmitters com-
monly employed in low power connectivity standards such as
BLE and LoRa.

Inspired by the success of deep learning in communication
systems, we design a new JCM scheme depicted in Fig. 1
for DCO-based non-coherent communication using a GRU-
Autoencoder. In our design, the encoder maps the information
bits to instantaneous frequency samples, which controls a free-
running (i.e., without a PLL) DCO for RF signal transmission.
At the receiver, another GRU module decodes the received
noisy samples into bits. In the end-to-end training process,
we take the phase noise and carrier frequency offset of the
DCO into consideration to improve the robustness of the
model. We proposed a preamble-less packet detection and time
synchronization with a separate GRU module that is jointly
trained with the encoder.

Contributions of this paper includes 1) introducing a
novel deep learning-based JCM scheme for DCO-based
non-coherent frequency modulation, 2) proposing a pilot-
/preamble-less communication scheme for time/frequency syn-
chronization and real-world impairments mitigation using deep
learning, 3) providing extensive evaluations of the proposed
scheme compared to the conventional channel coding and
DCO-based GFSK modulation.

II. DCO-BASED FREQUENCY MODULATION

In this section, we construct the signal model of our
proposed DCO-based non-coherent frequency modulation.

A continuous phase frequency modulated constant envelope
signal is modeled as

o= oo i (2r [ e )]

where f(t) is the instantaneous frequency at time ¢ and 6 is
the unknown random initial phase of the DCO. The controlling
signal of the DCO is equal to the instantaneous frequency. We
define a discrete time sequence of the controlling signal f[n]
with sampling frequency fs;. We further decompose f[n] =
fv[n] + fe. where fy[n] is the modulated baseband frequency
and f. is the constant carrier frequency. The discrete time
frequency modulated baseband signal is modeled as

yln] = exp (jQWZ fold] +0)

Practically, DCO experience phase noise caused by physical
circuit impairments of the oscillator. Phase noise is modeled
as a colored Gaussian random process NN, (t). Then by inter-
polating the controlling signal, we obtain the continuous-time
signal generated by the DCO as

y(t)BPF{exp{ ( < Zfb (t—

1=0

+fc) +

where N = |tfs| and BPF is bandpass filtering.

We suppose the transmitted signal undergoes an additive
white Gaussian noise (AWGN) channel. The normalized re-
ceived signal is modeled as

r(t) = y(t) + No(t) )

where N,(t) is the channel noise. The receiver mixes the
received signal with a local oscillation signal with frequency

)

2

Nfs VH[N]

m+6)] ).

3)
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_fc to down-convert it to the baseband signal, which is sampled
with frequency f.. Note that a practical (non-ideal) receiver
experiences carrier frequency offset (CFO) defined by f. =
f [ f c*

Suppose the starting time of the transmitted packet is 0
and the receiver detect the packet with time offset ¢ta. The
discrete-time received baseband signal r[n] is expressed by

m—+n
r[n] = exp lj (2’” (f—ls (Z foli] + tafolm +n]

+ fcn)) + Np[n] + é)] + Ny[n]

)

where 6 is the random phase offset, m = [fsta], and
ta = m/fs +1a holds. Ny[n| and N,[n| are discrete-time
phase noise and channel noise, respectively. We assume a
non-coherent receiver with an unknown random phase 6 ~
U(0, 2m).

ITII. GRU-JCM DESIGN
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Fig. 2. Mechanism of a GRU cell

In this section, we introduce our GRU-based joint channel
coding and modulation (JCM) model design.

A. GRU Model

GRU is a variant of RNN architecture that inherits the
desired properties of RNN while alleviating the vanishing
gradient problem encountered by traditional RNNs. Compared
to other alternative architectures such as LSTM, GRU achieves
comparable performance with faster computation speed.

In our JCM scheme, both the encoder and decoder adopt
the GRU model. Fig. 2 illustrates the working mechanism of
a GRU cell. At time step 7 and layer £, a GRU cell takes
the input x; € R? and previous hidden state hf ; € R" to
compute the output controlled by the reset gate rf € R and
the update gate z{ € R". These gates are calculated by:

I'g =0 (xiwir + bir + hg—lwir + bir)
Zg =0 (xiwiz + biz + hf—lwiz + biz)

where W5, Wi € R¥" W, Wi € R"™" are weight

: e e R 1Xh :
matrices, and b, by bz, by € R**" are bias vectors. o
is the sigmoid activation function that forces each entry of
gates to lie within the interval (0,1). With rf, we calculate

the candidate hidden state h! € R with the following rule
h{ = tanh (x;W%, +bl, + (rf ©h{_,) W, +bf,) @)

where Wi, € R and W1 € R"*" are weight matrices,
bf,, b, € R*" are bias vectors, and symbol ® is Hadamard

(6)

product operator. Finally, we obtain the final hidden state by
taking element-wise convex combinations of hf ; and hf as

hi =z ©h{ , + (1—z) ©hj. (8)

where the update gate z; controls the update rate.

In the proposed JCM model, we leverage multi-layer bi-
directional GRU for better performance. For a GRU of layer
L, the GRU cell in the first layer takes the input x; at time
step 7 and generates hidden state hl. Layer £ with2 < £ < L
takes the hidden state of the previous layer h~' as input and
produces hidden state h¢. Furthermore, in order to produce
more inter-bit correlation in the encoded signal, we adopt bi-
directional GRU in the encoder and decoder. Bi-directional
GRU is the combination of two independent GRUs, one of
which takes the input with its original order and the other one
with the inverse order.

B. Proposed JCM Structure

The architecture of our JCM scheme is shown in Fig.
1. In our JCM architecture, the encoder module consists of
a multi-layer GRU model, a linear projection layer, and a
hyperbolic tangent (tanh) function as shown in Fig. 1. The
transmitter encoder module generates the baseband controlling
signal f; to a DCO. The RF signal generated by the DCO
is transmitted through the wireless AWGN channel to the
receiver module. At the receiver, a packet detection unit
constantly monitors received samples to detect a packet and to
enable the decoder upon packet detection. The decoder module
jointly demodulates and decodes the received packet.

For a packet with N, information bits, the input bits b €
{0, 1}*¥* are subject to independent Bernoulli distribution with
Pr(b; = 0) = Pr(b; = 1) = 0.5. The encoder has a bi-
directional GRU with L*"¢ layers and hidden state length of
Npme. We set input dimension d = 1 such that the GRU takes
one bit at each time step. That is, for the first GRU layer, x; =
b; holds. The hidden state of the last GRU layer h™ is fed
to the linear projection layer whose output size is determined
to match the coding rate R. The signal duration per bit is
given by 1/R fp, which corresponds to M = f./R f, samples
per bit. We choose proper f; and R so that M is an integer.
Thus, weight W€ and bias b*"¢ of the projection layer have
the dimension of We® ¢ R2Vi™*M and beve ¢ RM. The
output signal is restricted to (—1, 1) by the tanh function and
is scaled by the maximum instantaneous baseband frequency
Sfmaz to generate the output baseband DCO controlling signal
f, € (—1,1)M. The baseband DCO control signal from the
encoder model is expressed by

fo = fmaz tanh [W"h{¢ + b®"]. 9)

It is worth noting that the proposed JCM signal does not
include any explicit pilot or preamble to assist packet detection
and carrier frequency offset (CFO) estimation/correction.
The receiver down-converts the RF signal to the baseband
and stores the complex samples in a buffer (shift register).
The packet detection unit (PDU) determines if the whole
packet is received. If the PDU produces a positive output
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Fig. 3. Spectrum of the proposed scheme compared to the spectrum of BLE-
GFSK modulation

(indicating packet detection), the samples are fed to the
decoder module. Similar to the encoder, the decoder consists
of a GRU with L4 layers and a linear projection layer. Since
most deep learning libraries (e.g., PyTorch) only implement
neural networks for real inputs, we concatenate the real and
imaginary parts of complex samples as the real-valued input
to the decoder module. Hence, each GRU cell in the first
layer of the decoder takes 20 samples at each time step.
The linear projection layer with weight Wdee ¢ RIXNA
and bias b9°° € R maps the hidden state of the last layer
of decoder GRU to a real value, which is then transformed
into the probability p[i] = Pr(b; = 1) by a sigmoid function.

R 1

The i-th decoded bit is then determined by b; = p[i] = 0.5.
0

The decoded bit probability has the form of

p =0 [Wh{° + b’ (10)

C. Bandwidth Control

A practical communication system needs to obey certain
frequency band restrictions. Although we have restricted the
maximum instantaneous frequency f,q. of the DCO control-
ling signal, abruptly changing instantaneous frequency creates
spurious emissions that could potentially exceed the bandwidth
constraints. Therefore, similar to the pulse-shaping filter in
GFSK modulation, we add an additional low-pass filter to the
instantaneous frequency samples f,[n] before feeding them to
the DCO. Specifically, we applied a (discrete version of) root-
raised cosine filter, which has the following impulse response

sin[(1-8)nt/T
ht) = 28 cos[(1+ p)mt/T] + [(465/)Tt/ ]
T 1—(4pt/T)?

The spectrum of DCO output before and after filtering is
shown in Fig. 3. We tuned our filter such that the output
bandwidth and spurious emissions follows the the require-
ments of BLE physical layer standard. Table I shows the power
spectrum evaluation result using 10dBm signal power (power
class 1.5 in BLE).

(1)

TABLE I
SPECTRAL PROPERTIES OF JCM COMPARED TO BLE STANDARD

Evaluated | BLE requirement
6dB bandwidth 670.60kHz >500kHz
forf = 2MHz£500kHz | -30.84dBm <-20dBm
forf > 2500kHz -33.21dBm <-30dBm

D. Packet Detection

In most wireless communication protocols, a preamble is
attached at the beginning of each packet for packet detection,
and frequency/phase synchronization. As a preamble takes ex-
tra time and energy for transmission, we propose a preamble-
less packet detection (and implicit frequency synchronization)
scheme to completely eliminate such overhead. The received
samples are stored in a buffer with serial-in and parallel-out
accesses, named as received-sample buffer (RSB) of length
Np samples. All samples in RSB are shifted by one position,
discarding the oldest sample when a new sample arrives. A
uni-directional GRU is used to detect a packet and determine
the starting point of the packet. The hidden state of the GRU
is mapped to the probability that the starting point of a packet
is aligned with the head of the RSB. The samples are fed to
the decoder only if the probability is larger than 0.5.

E. Training Methodology

JCM model can be regarded as an over-complete autoen-
coder pair aiming to communicate a message Over a noisy
random channel. Therefore, the training goal is to learn a
reliable autoencoder that has robust hidden representation
against the corruption of channel noise as well as phase noise
and CFO from a practical low power DCO circuit. Towards
that goal, we propose a deliberate training scheme. First, we
use binary cross-entropy (BCE) as our loss function for both
the JCM model and packet detection model. With batch size
denoted as B, the loss function of the JCM model has the
form

1 B N
(p) = -5 > bjilog(p;lil). (12)

j=11i=1

We adopt Adam optimizer with learning rate 10~*. Follow-
ing the finding in [10], we train our encoder, decoder, and
packet detector module separately in a round-robin fashion.
That is, during encoder training, the parameters of the other
networks (decoder and packet detector) are fixed, and vice
versa. For better model generalization, we train the encoder
with a fixed channel SNR (°"¢ and train the decoder with
various SNR values in the range of [¢<¢,¢d¢ ] (constant
for a single packet). We also add phase noise and CFO in
training to improve the robustness of the model against these
impairments.

We train the packet detector module with various states of
RSB placing the received packet at different time slots. We
set its training label as 1 when the first sample of the packet
is at the head of RSB and O otherwise.

This brings two challenges: 1) labels are heavily imbal-
anced, and 2) the difficulty of correctly detecting the packet
depends on the packet start sample index £ in RSB. Our
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experiments showed that when k(£ 0) is smaller (closer to
the head), the error probability of packet detection is higher as
expected. To address these issues, instead of using uniformly
distributed k, we sample k& with the following PMF:

0.5
Pr(k=1)=¢ 1
4NRp — 2

=0

where N r = Npg initially, and is halved every 50 epochs, until
Np = 1.

We leverage a hyperparameter optimization framework Op-
tuna [18] to jointly optimize our model. Optuna implements
a Bayesian optimization algorithm, Tree Parzen Estimators
(TPE), with sampling and pruning strategies to dynamically
construct search spaces for hyperparameters [19]. In our
scheme, we use off-the-shelf interfaces of Optuna to determine
important hyperparameters. Resulting optimized hyperparam-
eters are listed in Table II

TABLE II
HYPERPARAMETERS DETERMINED BY OPTUNA BASED OPTIMIZATION
enc [, dec Nsnc N;Liec Cglelcn Crdneacx Ceno
2 5 30 90 3dB 7dB 7dB

IV. EVALUATIONS

In this section, we evaluate the performance of the proposed
JCM scheme and compare it to conventional frequency mod-
ulation and error correction codes.

A. Complexity

The complexity of the proposed scheme consists of training
complexity and complexity after model deployment. Although
the proposed model needs a large training overhead, the
training is done only once before deploying the trained model.
Thus, we primarily care about the complexity after deploy-
ment. According to (6), (7), and (8), the number of operations
(multiplications or additions) that each GRU cell requires
is 6h(h 4+ d) + 7h. Therefore, we calculate the number of
operations per bit needed for the encoder GRU as 12V ﬁnCQ +
26N 4+ 2(Nfme — 1)(12N;§nC2 + TN;"°). The projection
layer in the encoder requires additional 41/ N;"° operations.
We estimate the baseband encoding power consumption with
the power efficiency of 3 Tera-operations per second per Watt
achieved with the low-power neural network processors such
as [20], [21]. Thus, with R = 0.5, N = 3, and Np"¢ = 25,
the power consumption of the encoder is approximately 6.74
mW. For comparison, a typical low-power BLE transceiver
consumes 24.42 mW [22]. Similarly, we estimate that our
JCM decoder consumes ~ 214.33 mW. Our main application
scenario is an Internet-of-Things network where many low-
power devices transmit messages to a powerful gateway (e.g.,
smartphone). Hence, achieving low power modulation at the
transmitter is our primary goal, and the encoder power esti-
mation (6.74 mW for encoding) justifies the practicality of the
proposed JCM.
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Fig. 4. Minimum F} /Ny and SNR required to achieve 0.01 block error rate
with block length N = 100 bits

B. Performance

We use Monte-Carlo method to simulate the BER and
BLER performance of the trained model. Our model is trained
with CFO and phase noise for non-coherent communication
under the BLE spectrum requirements. Therefore, we use
GFSK in the BLE standard with non-coherent demodulation
as our baseline. We compare our JCM scheme with GFSK
protected by a Polar code with soft-decision successive cancel-
lation list decoding (list size L = 8) and also a soft-decision
based tail-biting convolutional code (TBCC) with constraint
length M = 8 and the generator polynomial of 165,357 (in
Octal). The data rate for coded bits is 1 Mbps for GFSK. The
information rate is R Mbps, which is identical between our
JCM and GFSK-Polar / GFSK-TBCC for a given rate R. The
sampling rate is fs = 8MHz.

It is difficult to obtain the theoretical capacity of the pro-
posed DCO-based communication scheme. Thus we numeri-
cally evaluate the required E}/Ny for different coding rates
R. Ey and Ny denotes energy per information bit and noise
power, respectively. Fig.4 shows the minimum E,/Ny and
SNR ( J\;EObR) required for different coding rates to get BLER
less than 0.01 when the message/block length is N = 100
bits. The numerical result shows that, in general, lower E}, /Ny
is required for lower coding rates. However, the decreasing
slope is flattened when R < 0.6. It is observed R ~ 0.6 is an
energy-efficient setup without extensive loss of performance in
Ey /Ny perspective. Setups with R < 0.5 are still useful when
the main objective is longer communication distances at low
SNRs. The proposed scheme requires significantly lower (1.5
—2dB) E} /Ny and SNR to achieve a BLER of 0.01 compared
to GFSK-Polar for the same rate.

Fig.5 shows the BER and BLER performance under dif-
ferent E,/Ny when R = 0.5 and message length N is 100
bits. The proposed JCM outperforms TBCC or Polar coded
GFSK in the low E,/Ny region. The intersection between
the B(L)ER curve of the proposed scheme and conventional
baselines appears when Ej/Ny is 9.5 — 10 dB with BER
~ 1076 and BLER ~ 5 x 1074

Another important property of the proposed scheme is the
robustness against phase noise and CFO. The phase noise is
modeled as colored Gaussian random process. The spectrum
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Fig. 5. BER and BLER performance of the proposed scheme compared to
conventional soft-input Polar code and TBCC with GFSK modulation, when
block length is N = 100 bits and coding rate is R = 1/2

of the phase noise is centered at the carrier frequency and
approximated as a linear interpolation in the log-log domain
of measured phase noise power S(A f) at frequency deviation
Af. In our experiments, we consider a phase noise spectrum
model shown in Table III representing a conventional LC-
tank-based low power free-running DCO (without a PLL)
[23]. We assume that CFO is uniformly distributed between
+150kHz following the BLE requirement. The BER and
BLER performance of our JCM with this realistic phase noise
and CFO is shown in Fig. 5. For comparison, GFSK-Polar
and GFSK-TBCC performance in Fig.5 was evaluated without
phase noise and CFO. Our JCM performance degradation
brought by the impairments is small (=~ 0.1dB) despite that
our JCM waveform does not include any explicit preamble to
estimate CFO. Note that BLE requires the overhead of 8-bit
preamble for packet detection and CFO synchronization.

TABLE III
PHASE NOISE SPECTRA OF PLL-LESS FREE-RUNNING Low POWER DCO

Af (kHz) 0.1 I 10 | 100
S(Af) (dBc/Hz) | -30 | -60 | -80 | -100

V. CONCLUSION

In this paper, we proposed a novel data-driven model for
joint channel coding and continuous-phase frequency mod-
ulation. The proposed architecture complies with the BLE
bandwidth specification and has an encoder that runs with
lower encoder power than BLE device. Simulation shows that
the proposed scheme outperforms Polar or TBCC code with
GFSK modulation in the low E}, /Ny region under severe phase
noise and CFO without the need for preamble.
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