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ABSTRACT: Monitoring and understanding the variability of heat within cities is important for urban planning and pub-
lic health, and the number of studies measuring intraurban temperature variability is growing. Recognizing that the physio-
logical effects of heat depend on humidity as well as temperature, measurement campaigns have included measurements of
relative humidity alongside temperature. However, the role the spatial structure in humidity, independent from tempera-
ture, plays in intraurban heat variability is unknown. Here we use summer temperature and humidity from networks of sta-
tionary sensors in multiple cities in the United States to show spatial variations in the absolute humidity within these cities
are weake This variability in absolute humidity plays an insignificant role in the spatial variability of the heat index and ho-
midity index (humidex), and the spatial variability of the heat metrics is dominated by tem perature variability. Thus, results
from previous studies that considered only intraurban variability in temperature will carry over to intraurban heat variabil-
ity. Also, this sugpests increases in humidity from green infrastructure interventions designed to reduce temperature will
be minimal. In addition, a network of sensors that only measures temperature is sufficient to quantify the spatial variability
of heat across these cities when combined with humidity measured at a single location, allowing for lower-cost heat moni-
toring networks.

SIGNIFICANCE STATEMENT: Monitoring the variability of heat within cities is important for urban planning and
public health. While the physiological effects of heat depend on temperature and humidity, it is shown that there are
only weak spatial variantions in the absolute humidity within nine 113, cities, and the spatial variability of heat metrics is
dominated by temperature variability. This sugpests incresses in humidity will be minimal resulting from green infra-
structure interventions designed to reduce temperature. It also means a network of sensors that only measure tempera-
ture is sufficient to quantify the spatial variability of heat scross these cities when combmned with humidity measured at
a single location.
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1. Imntroduction

As the frequency of extreme events has risen in recent dec-
ades (Seneviratne et al. 2021) and appreciation of urban vul-
nerability to heat events has increased (e.g., Hoffman et al.
2020 Tuholske et al. 2021), city governments and their part-
ners have prioritized high-resolution heat vulnerability analy-
sis (e.g., Scott et al. 2017; Shandas et al. 201%; Saverino et al.
2021). This has led to a growth in the number of studies mea-
suring heat microclimates within cities, either with fixed loca-
tion networks (e.g, Yang et al. 2013; Schatz and Kucharik
2014; Scott et al. 2017; Fenner et al. 201% Richard et al. 2021;
Ibsen et al. 2021) or mobile networks (e.g., Shandas et al.
201%; Ziter et al. 2019; Alonzo et al. 2021). These studies have
quantified a wide range of aspects of urban heat variability,
including how this variability changes during hot weather ex-
tremes, and its dependence on the characteristics of the urban
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landscape (e.g., percentage impervious surfaces, green space,
tree canopy cover). However, although motivated by the
health impacts of urban heat, the majority of these studies
have focused only on the spatial variability of air temperamure
T, and it is widely recognized that T alome does not suffi-
ciently describe conditions that can lead to physiological heat
stress (e.g., Taleghani et al. 2016).

When quantifying ambient environmental conditions rele-
vant to heat exposure, itis important to consider some combi-
nation of temperamure, humidity, radiation, and wind, all of
which contribute to the rate at which an exposed individual is
externally heated and is able to dissipate heat. To account for
these conditions, a number of different heat metrics have been
proposed, including wet-bulb globe temperature (e.g., Budd
2008), apparent temperature (e.g., Steadman 1984), heat index
(e.g., Anderson et al. 2013; Lu and Romps 2022), and humidity
index (humidex; e.g., Gosling et al. 2014), and universal thermal
climate index (Blazejezyk et al. 2013).

While these metrics are more predictive of health impacts
than temperature alone, they are difficult to calculate using
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the low-cost instruments frequently employed in urban heat
mapping campaigns. There is a trade-off between the space—
time resolution that a monitoring network can achieve and
the number of variables that can be measured within a limited
budget.

Here, we focus on the spatial variability in absolute humid-
ity within a city. We do this because humidity is a critical input
to almost all proposed physiologically relevant heat metrics, it
is the sole input {other than T') for widely used indices such as
the heat index (HI) and the humidex (Hx), and humidity is
measured by networks in several cities. Also, few studies have
quantified the intraurban variation of absolute humidity. One
exception is Hall et al. (2016) who examined variations in T
and absolute humidity in six cities in the United States. They
showed the microclimate of residential vards were more simi-
lar between cities than native landscapes. However, they had
limited sampling within urban environments and did not
quantify the role variations in absolute humidity [as opposed
to temperature, which has a strong control on relative humid-
ity (RH)] played in the spatial variability of heat within cities.
This is the central goal of this study.

A similar question can also be asked about the role of abso-
lute humidity in spatial variations of vapor pressure deficit
(VPD). The VPD is the difference between the saturation
water vapor pressure and the actual water vapor pressure and
s closely connected to plant transpiration/atmospheric water
demand for plants {e.g., Farquhar and Sharkey 1982, Grossiord
et al. 2020; Novick et al. 2016). The VPD depends on both T
and absolute humidity, and as with the heat indices there
have been limited studies of the relative role of these factors
in driving variations in VPD. An exception is Zipper et al
(2017}, who showed that the urban—rural difference in VPD in
Madison, Wisconsin, is almost entirely driven by temperature
variations.

In this study, we quantify the spatial varability of absolute
humidity within multiple cities and the role this plays in the
spatial variability of heat indices. This is fundamental for un-
derstanding intraurban heat variability and is also relevant for
assessing the effectiveness of interventions designed to reduce
temperature—most notably, green infrastructure interven-
tions, which might be expected to increase absolute humidity.
If this increase in humidity is substantial, the effectiveness of
green infrastructure for heat reduction will be smaller than
what is reported based on temperature reductions alone.

A more practical reason to quantify the spatial variability
of absolute humidity is that if this variability is small, then
spatially distributed measurements of T alone (with humidity
measured at a single location) will be sufficient to estimate
the spatial variability of HI: that is, the RH and HI could be
estimated at each location and time using the local T measure-
ment and the single humidity measurement obtained from a
central monitoring site, such as a synoptic weather station.
This is relevant because sensors that measure both Tand RH
have a significantly higher price point than sensors that mea-
sure T alone. The same approach could also be used in cases
where there are maps showing spatial distribution of T (from,
e.g., a statistical land-use regression model) but not RH.
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Here, we quantify the spatial variability of summertime
water vapor mixing ratio w in nine cities in the United States,
using hourly measurements of T and RH from networks of
fixed sensors in these cities. We quantify the spatial varia-
tions in humidity and estimate its impact on variations in
heat metrics (HI and Hx) and VPD. The cities sampled are
of different sizes and climates (including humid coast and
hot desert climates), and comparison of the cities provides
insights in the robustness/generalizability of the results. Dif
ferent instrumentations were used among some of the cities,
and this again provides insight into the robustness of results,
especially in cities where we are able to validate results from
multiple deployments using different instrumentation.

The data and methods used are described in the next
section. In section 3 we analyze the equations for HI and Hx
to quantify the sensitivity of RH, HI, Hx, and VPD to varia-
tions in w or T, to help interpretation of the observations. The
data from Baltimore, Maryland, and other cities are then ana-
Iyzed in sections 4a and 4b, respectively. Concluding remarks
are in section 5.

2. Data and methods
a Data

We use Tand RH data from sensor networks deployed by
research groups at three different universities: The Johns
Hopkins University (JHU), University of California Riverside
(UCR), and University of Wisconsin-Madison (LTWM).

The JHU measurements were made in Baltimore in sum-
mer 2016 and 2017 (Shi et al. 2021). These networks consist of
Maxim Integrated Products, Inc., “iButton” Model DS1923
thermometer/hygrometers, with a temperature accuracy of
=050C from 108 to 658C and RH accuracy of *0.5% from
0% to 100%. These sensors were placed inside a custom radi-
ation shield (Zaitchik et al. 2016) in trees. [Note that for the
2016 deployment, as in the 2015 deployment described in
Scott et al. (2017), the sensors were placed on poles or trees,
but here we use only sensors that were in trees.] Although all
sensors were placed in trees, the trees are located in a wide
range of local environments, including on streets, within
parks, and in urban forests, and are distributed across the city
(Fig. 1). Trees reduce the amount of direct radiation on
placed sensors, which reduces the bias inherent in many pur-
chased or novel-designed shielding (Terando et al. 2017). The
number and location of the sensors varied between years,
with 57 within Baltimore City in 2016 and 55 in 2017 (with 19
at the same locations in both summers). We examine hourly
meassurements of T and RH between 15 July and 31 August
for 2006 and 2017.

The UCR measurements were made in eight different cit-
ies, including Baltimore (see Table 1). This network used the
same iButton DS1923 sensors, inside a custom radiation
shield, and placed on trees (Ibsen et al. 2021). The radiation
shield used was of a different design from that used in the
JHU deployments [see Fig. 1d of Ibsen et al. (2021)]. Loca-
tions of sensor deployment were determined by randomly se-
lecting locations within five binned categories of normalized
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Fui 1. Maps of the Sentinel-2 L1C data (Phird et al. 2020). A median composite for June-August 2022 was areated in Google Earth Engine,
as derived from Copernicus Sentinel data (Copernicus 2023),

difference vegetation index (NDWVI) values spanning the
range within each city [see Ibsen et al. (2021) for details].
Hence, as with the JHU network, these measurements were
made in a wide range of local environments. The number of
sensors, year, and time of deployment varied by city, see
Table 1 and Fig. 1. The numbers of sensors for each of the
UCR deployments listed in Table 1 are much smaller than

those listed in Ibsen et al. (2021) as most of the iButton sen-
sors used in the deployments measure only temperature
[the focus of Ibsen et al. (2021)], and not T and RH. In addi-
tion, for Tucson, Arizona; Las Vegas, Nevada; and Phoenix,
Arizona we have removed 1-3 sensors whose measurements
are outliers (in some cases these appear to be due to irriga-
tion in the morning, with RH spiking to 100% for 1-2 h).

TABLE 1. Information for each study city: Institution that collected the data, the mean (with standard deviation in parentheses) of
the deployment-mean temperature T and water vapor mixing ratio w, the number of sensors N, and the period that wes analyzed.

The values for Madison are an average of the multiple years.

City Group  Tat1500LT (3C)  wat1S00LT (gkg™") N Dates
Baltimore, Maryland (BAL) HU 311 (1.3) 15.1 (04) 57 15 Jul-31 Aug 2016
BAL THU 281 (1.1) 14.0 (04) 55 15 Jul-31 Aug 2017
BAL UCR 28.4 (1.0) 13.1 (02) 18 11 Jul-30 Sep 2017
Denver, Colorado (DEN) UCR 306 (1.1) 7.9 (04) 10 10 Jul-12 Sep 2018
Las Vegas, Nevada (LAS) UCR 404 (1.9) 7.2 (02) 7 11 Jun-19 Aug 2018
Los Angeles, California (LOS)  UCR 29.0 (1.4) 12.8 (03) 2 23 Jun-14 Sep 2017
Miami, Florida (MIA) UCR 31.9 (0.6) 18.9 (03) 10 1Jul-17 Sep 2018
Phoenix, Arizona (PHX) UCR 42.1 (1.8) 10.0 (0.4) 16 15 Jun-15 Aug 2017
Portland, Oregon (PTL) UCR 283 (1.8) 9.4 (03) 25 20 Jun-24 Aug 2017
Tucson, Arizona (TUC) UCR 404 (1.0) 8.8 (03) 14 14 Jun-7 Sep 2019
Madison, Wisconsin (MSN) UWM 26.0 (0.4) 12.9 (03) 9 15 Jul-31 Aug 2012-19
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We examine the hourly data for the different periods of
each city’s deployment.

The UWM network is in Madison (Schatz and Kucharik
2014, 2015), and measurements have been made since 2012,
This network consists of HOBO U23 Pro v2 temperature/RH
dataloggers in solar radiation shields from Onset Computing
installed on streetight and utility poles across the Madison area
[Fig. 1 of Schatz and Kucharik {2014)]. Sensor accuracy is 0.218C
from 08 to S08C for dry-bulb temperature and 2.5% from 10%
to W% for humidity. Messurements have been available since
2012, We select the sensors identified in the dataset as urban
(whose number varied between 83 and 93 for different years)
and examine the same period of 15 July-31 August as the
Baltimore data for years between 2012 and 2019.

b. Analysis methods

From the hourly measurements of T and RH we calculate
different measures of humidity and heat. We calculate the va-
por pressure ¢ = ¢, ¥ RH, where ¢, is the saturation vapor
pressure (hPa) { Alduchov and Eskridge 1996):

e, = Gl TAETIRGMT) (1)
with Tin degrees Celsius. We then calculate the water vapor
mixing ratio w (g kg™') using w = 621.97e/(p — &), where p is
atmospheric pressure (hPa), and the vapor deficit pressure
VPD =g, —e=gfl — RH).

In the analysis below we use the mixing ratio w as our met-
ric of absolute humidity, but similar results are found using
vapor pressure or dewpoint temperature Td. For simplicity,
we use global-mean sea level pressure p = 101325 hPa in the
calculation of w. This results in an underestimate of the mix-
ing ratio for higher elevation cities that have lower p (e.g.
Denver, Colorado). This bias will apply for all stations at each
city and, while it could impact comparison of absohite values
between cities, it does not impact our analysis of variations
within cities. Also, the use of the same p for all cities makes
easier comparison of values among cities, and means the va-
por pressure can be easily estimated from valuses of w re-
ported below [ie., because ¢ <=2 p, e ~ (p621L97)w = 163w,
for w in grams per kilogram and e in hectopascals).

For heat, we calculate two commonly used metrics that
only depend on Tand RH: HI, which is commonly used in the
United States, and Hx, which is used by Environment Canada
Many formuks have been used to calculate HI [see Anderson
etal. (2013) for comparisons], and here we use the US. National
Weather Service method. This is not a single equation but
rather an algorithm involving several steps and decision
points, which is documented in Fig. 3 of Anderson et al. (2013).
Lu and Romps (2022) recently updated the HI cakeulation and ex-
tended it to higher T and RH, but for the range of T and RH that
occur in dties sidied here the differences between their method
and that used by ULS. National Weather Service are small.

The Hx is calculated as (Gosling et al. 2014)

Hx =T+ %{5:11 exp{S417:753[(11273:16) — (UT,)]} — 10),
(2)
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where T, Td, and Hx are all in degrees Celsius. To allow eas-
ier comparison with HI, we re-express Hx in degrees Fahren-
heit (the magnitude of a degree Celsius is 59 of a degree
Fahrenheit, and there is an additive offset involved in the con-
version from Celsius to Fahrenheit).

To quantify the role spatial variability in w plays in the vari-
ability in the heat metrics, we estimate RH, HI, and Hx at
each location using the T at that location together with w av-
eraged over all sites (which we refer to as the spatial-mean
mixing ratio W ). The spatial variability in these estimates (re-
ferred to as RH™, HI', and Hx") is due only to variability in T,
and the difference between these estimates and the observed
spatial variability is due to spatial variability in w. The differ-
ence i quantified by calculating the root-mean-square error
between RH™ and RH [referred to as RMSE(RH")], and by
comparing the spatial standard deviation of RH™ and RH [ie,
comparing o{RH") and o{RH)]. The caleulation of RH",
VPD", HI', and Hx" is done for summer-mean values as well
as for the hourly data.

3. Heat index dependence on humidity

Before we perform an analysis of the observed T and RH,
we analyze the equations for the different metrics to quantify
the sensitivity of each field to Tand w. The change (in time or
space) of a field X (e.g.. RH, HL, Hx, or VPD) that depends
on T and w can be approximated as

aXx

ax
AX = — Aw +
dw

—FAT, (3)
where the partial derivatives 2.X/0w and X487 are a measure
of the sensitivity of X to changes in w and T. Quantifying
these sensitivities will help in the interpretation of the data
presented in the following sections, and it will also be useful
for considering the impact of w in other cities.

The variation of RH, HI, Hx, and VPD together with their
sensitivities, with T and w are shown in Fig. 2. As is well
known, RH increases with w but decreases with T (Fig. 2a),
which corresponds to dRH@w > 0 (Fig. 2e) and dRHAT < 0
(Fig. 2i). Although the sign of the sensitivity of RH to w
and T differs the magnitudes are similar, that is, JRHAw ~
2%-6% (g kg™") "' and ARHAT goes from —2% to —6% 8C77,
with larger values for lower T. This means that the change in
RH due to w and T [ie., the two terms on the right-hand side
of Eq. (3)] will be similar, if the change in w and T are of simi-
lar magnitude for w in grams per kilogram and T in degrees
Celsius,

The sensitivities of HI, Hx, and VPD to w and T are also of
similar magnitude, for example, for T ~ 308C, aHLw ~
18F (g kg™")"! and dHLAT ~ 20F 8C™" (Figs. 2fj); dHxiaw ~
168F (g kg™')™" and aHx@T ~ L758F 8C™" (Figs. 2gk); and
AVPDaw ~ 015 kPa (g kg™')™" and aVPDET ~ 0.250F 8C™!
(Figs. Zh J). Thus, for all metrics the changes due to w and T will
be similar if the variations in w and T are similar (again for w in
grams per kilogram and T in degrees Celsius). In other words, if
the spatial variance of w and T are similar within a city, then
changes in both will impact the spatial varance of RH, VPD,
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FiG. 2. Variation with T and w of (a) RH (%), (b) HI (§F), (c) Hx (§F), and (d) VPD (kPa): partial derivatives of (e) RH, (f) HI, (g) Hx,
and (h) VPF with respect to w: and partial derivatives of (i) RH, (j) HI, (k) Hx, and (I) VPD with respect to T. The thick line shows

RH = 100% , and values are not plotted for RH = 100%.

HI, and Hx, but if the variance in w is much less than the vari-
ance in T, then variations in w may not play a major role in intra-
urban variance of HI and Hx. As we show below, the latter is
the case for all cities studied.

4. Results
a. Baltimore

We first consider the spatial variation of T, w and other
fields in Baltimore. We focus first on summer-mean (15 July-
31 August) values of measurements made in 2016. All fields
show a range of values across the city, both in the moming
and aftermoon, see Fig. 3. The spatial variations in T, RH,
VPD, and the heat metrics are highly correlated or anticorre-
lated, with lower RH and higher VPD, HI, and Hx when
higher T (in both the moming and afternoon). This can be
seen in Fig. 3, which shows the values of the summer-mean w
(Fig. 3a), RH (Fig 3b), VPD (Fig. 3c), HI (Fig 3d), and Hx
(Fig. 3e) at 0600 and 1500 local time (LT), plotted against the
summer-mean 7. The magnitude of the linear correlation co-
efficient r between T and RH, VPD, HI, or Hx exceeds (195,
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The situation is, however, different for w: correlations are in-
significant between w and T in the moming (e.g. r ~ (L15 at
0600 LT) and there are only moderate anticorrelations in the
afternoon (e.g., r = —065 at 1500 LT) (Fg. 3a). The weaker w—T"
relationships in comparison with the high correlations of the
other fields with T suggests that the spatial variability of these
fields is dominated by variations in T, with a smaller role from w.

A possible cause for the afternoon correlation could be the
impact of vegetation on both humidity and temperature. Veg-
etation amount, determined using NDVI, and summer-mean
T are significantly negatively correlated for all hours (with
correlation coefficient r from approximately —0.6 to —0.8).
This is consistent with lower temperatures due to increased
shade and latent heat fluxes. NDVI and w in the afternoon
(r~ 0.7) show significant positive correlation but insignificant
in the morning (r ~ 0.2). The positive correlation with NDVI
in the afternoon but not overnight to the moming is consistent
with increased daytime transpiration at more vegetated sites.
The negative T correlation with NDVI and positive w correla-
tion with NDVI during the afternoon results in the moderate
w—T" anticorrelation in the aftermoon.
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Fic. 3. Variation of summer-mean (a) w, (b) RH, (¢) VFD, (d) HI, and (&) Hx with T, for 2016 measurements in Baltimore. Black
symbols show the true measured values, red dashed lines in (a) show 7, and red symbols in (b)-(e) show the estimates RH™, VPD", HI,
and Hx". The points with T < 288C correspond to 0600 LT data, and those with T > 28IC correspond to 1500 LT data.

The diurnal cycle of w also differs from those of RH, VPD,
HI, and Hx. The spatial variances of RH, HI, and Hx (as well
as T) are similar in the moming and afternoon, and the differ-
ences between the spatial-mean in the morning and afternoon
are larger than the range at either time, resulting in a separa-
tion between moming and evening values (Figs. 3b—e). In con-
trast, diurnal cycle is limited in the spatial-mean w and spatial
variance is larger in the afternocon than in the moming, result-
ing in an overlap of the morning and afternoon distributions
of w (Fig. 3a). The difference between morning and afternoon
values of RH, VPD, HI, and Hx even though w is similar in
the moming and afternoon suggests that variations in T also
dominate the diurnal variation of RH, HI, and Hx.

While the above suggests that T variations dominate the var-
iahility in HI and Hx, it does not provide an estimate of the
magnitude of the impact of w variations. Such an estimate can
be obtained using the observed spatial standard deviations of w
and T, the HI and Hx sensitivities from section 3 (Fig. 3),
and Eq. (3). At 1500 LT, the observed standard deviations are
a{w) ~ 05 g kg™! and o T) ~ 1.30F. Combining these with
sensitivities dHUdw ~ 1LOSF (gkg™") " and dHI/dT ~ 28F 8"
indicates that variations in w will lead to ofHI) ~ 0.5 g kg™!
LOSF (g kg™)™! = 0.58F while variations in T will lead to
higher or(HI) ~ 1.3 % 2 = 2.68F. For 0600 LT, the difference is
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even larger, the estimated change in o{ HI) due to w is only
~02 = 0.2 = 0.04F as compared with ~1.1 = 1.75 = 20F due
to T varations. Similar results hold for VPD and Hx, and this
analysis mndicates that variations in w play a minor role i the
spatial variations of the heat metrics, especially in the moming,
To quantify the contributions of T and w more precisely we
use, as described in section 2, the spatial-mean W rather than
the actual w together with T at each site to estimate RH, HIL,
and Hx at each site, that is, calculate RH; = RH(T,, ¥) at
each site i. For all fields, the estimated values are close to
the true values, see red symbols in Figs. 3b-e. The RMSE
between RH™ and RH is only 1.3% at 0600 LT and 2% at
1500 LT, and the RMSE for HI" and Hx" are 0.178 and 0.39F
at 0600 LT, respectively, and 0.68 and 0.88 at 1500 LT Consis-
tent with the larger variability in afternoon w, the errors are
larger in the afternoon (see also Fig. 4 below). However, even
the afternoon RMSE are small. This indicates that the vari-
ability in w is not playing a major role in spatial variability in
RH or heat indices, that is, local RH and heat metrics can be
estimated using local T and the spatial-mean W
Amalysis of all times of day shows that the RMSE are small
in the moming and the largest differences occur in the after-
noon (Fig. 4). Similar results are found when comparing the
differences in the spatial standard deviation of the true and
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estimated values, that is, comparing o{RH) and o{RH") in Fig. 4.
There is nonnegligible difference for RH around 1500 LT, with
o RH") ~ 4% as compared with oo(RH) ~ 5%, but the differ-
ences for HI and Hx are still small at 1500 LT, for example,
o HI') ~ 230F as compared with o{HI) ~ 258F. Thus, for all
times of day the error in HI' and Hx' (either measured by the
RMSE or in difference in o) is small, and the spatial variance in
HI and Hx can be estimated using the spatial-mean value of w.
The above analysis considered summer-mean temperafure and
humidity but can be repeated for individual days during the sum-
mer. The spatial variations in w are larger for daily values than
summer mean but are still small (o < 1 g kg™"), see Fig 5a. The
errors in RH” and HI™ (and Hx") are also larger for individual
hours than summer-mean, but again are still small, see Figs. 5a
and 5b. In particalar, the difference in or{HI) is still only a fraction
of a degree (Fig. 5¢). There is relatively large day-to-day variation
in spatial variance in w (with temporal standard deviation between
025 and 045 times the summer-mean), which transktes in daily
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variability m RMSE of RH™, HI", and Hx" (vertical bars in Fig. 5).
But even in the most extreme cases the errors in HI™ and Hx™ are
small {less than 1.58F).

Measurements of T and RH were also made, indepen-
dently, in 2017, by the JHU and UCR groups. Repeating the
above analysis for each set of 2017 measurements produces
similar results, for example, the spatial standard deviation of
the summer-mean w is much less than that of T (Table 1), and
the RMSE between the estimate indices (RH™, HI', Hx", and
VPD") and observed values are small, see Fig. & Thus, the
conclusion that spatial variations in w play an insignificant
role in intranrban heat variability within Baltimore holds be-
tween yvears and different datasets.

b, Other cities

To test whether the insignificant role of w spatial distri-
bution holds for other cities, we repeat the above analysis
for data from the other cities listed in Table 1. The cities
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examined have a range of climates, with spatial mean w
varying from 7to 19 g kg™ (Table 1). However, the spatial
variations of w are similar to that for Baltimore, that is,
a{w) ~ 0204 g kg™, see Table 1 and Fig. 6.

As expected from the similar spatial variance among the
cities, the RMSE between estimates assuming uniform mixing
ratio (e.g, RH") and the observed values are small, for all cities
and fields considered, see Fig 6 Specifically, RMSE(RH") ~
1.5%2.0% for morning and afternoon, RMSE(HI) < 0.20F in
the moming and ~028-0.50F in the afiernoon, and RMSE(Hx) <
0.38-0.68F in the morning and ~0.58-0.88F in the afternoon.
Although not shown in Fig. 6 RMSE is small for VPD, that is,
RMSE(VPD") ~ 003006 kPa in the morming and ~05-10 kPa
in the afternoon. The small error in VPD from assuming uniform
w is consistent with the Zipper et al. (2017) analysis of the
Madison data that showed that the urban-rural differences
in WVPD are almost entirely due to temperature differences
rather than differences in air moisture content.

The small RMSEs shown in Fig. 6 are consistent with analysis
in section 3 and Eq. (3). For example, dHUdw < 18F (gkg™ )™’
and dHvdw ~ L6IF (g kg™')”" for moming conditions in
each city, coupled with observed a{w) ~ 0.2 g kg™ suggests
o{HI) = 020F and o{Hx) ~ 0.3, broadly consistent with
Fig. 6a. For afternoon conditions, dHl/dw < 1F (g kg™’
for some cities, but =18F (g kg ™)' for others (e.g., Phoenix;
Tucson, Miami, Florida), and as a result there is a larger
spread in RMSE(HI) for afternoon conditions. However,
even in cities with largest RMSEs, these are a small percent-
age of the mean HI, that is, RMSE less than 18F for mean
value around or larger than T004F.

5. Condusions

Measurements from networks of temperature and humidity
sensors deployed in multiple cities in the United States, with
different climates, show weak spatial variations in absolute
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Fii. 6. RMSE for deployment-mean w™, RH', HI, and Hx" for each dty (see Table 1 for city names) at (a) 0600 LT
and (b) 1500 LT. BAL values are the [TCR deployment in 2017, and values for MSN are a mean over 2012-19.
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humidity during summer, for example, the spatial standard devia-
tion of the water vapor mixing ratio, w, is around 02-04 g kg™,
as compared with spatial-mean w values around 8-15 g kg™
These variations in w are much smaller than those of T, and the
spatial variability in RH, VPD, and heat metrics is dominated by
the variability in T. As a consequence, maps of these fields will
look the same as maps of urban temperature, as Yang et al
(2007) showed for maps of RH and urban dryness. Farther, re-
sults from previous studies that considered only intraurban vari-
ability in T will carry over to infraurban heat variability, and
quantifying the processes that control variations in temperature is
key for understanding intraurban variability.

The small spatial variability of absolute humidity within the
cities indicates that the sources of humidity in urban areas are
weak and the level of humidity across the cities is dominated
by synoptic scale weather varations. There are, however, cav-
eats with this conclusion. First, there may be spatial gradient
of absolute humidity from the coast in the coastal cities (Miami;
Los Angeles, California) that we cannot detect given the sam-
pling in these cities, that is, there are no stations within 10 km
of the coast, see Fig. 1. Second, the conclusion of weak humid-
ity sources in cities may not apply to areas with regular irriga-
tion. For example, the sensor that was removed from our
analysis for Tucson shows RH spiking to 100%, from values
around 40%—-60%, between 0600 and 0800 LT on weekday
mornings. This is likely due to irrigation, and during this
morning period w increased from ~10 to over 14 g kg7,
which is a much larger change than the among-sensor varia-
tions. Also, we have focused on intraurban variability and the
conclusion of limited variation in w may not hold for urban—
rural variations.

Ome consequence of the minimal change in humidity could
be lower increases in humidity from green infrastructure in-
terventions designed to reduce temperature. These interven-
tions might be expected to increase absolute humidity and
offset some heat reduction from cooler temperatures. The
analysis of Baltimore data shows insignificant relationship be-
tween absolute humidity and vegetation (as diagnosed using
NDVI) during the morning and although there is a positive
relationship during the afternoon (ie. increased humidity
when more vegetation) the change in humidity, and impact
on heat metrics, is small.

A more practical consequence is that the spatial variations
in RH, VPD, HI, and Hx within these cities can be estimated
from spatially distributed measurements (or a high-resolution
map) of T combined with just a single measurement of the ab-
solute humidity. For example, if the spatial-mean w is used to-
gether with summer-mean T at each site to estimate the
summer-mean HI, the root-mean-square errors between esti-
mated and real HI are less than 028F for moming values and
between 0.28 and 0.88F for afternoon values. This has financial
implications for monitoring urban heat, as sensors that only
measure T cost much less than sensors measuring T and RH.

We note that the minor role of variahility of absolute hu-
midity does not necessarily carry over to temporal variations
in heat. In the cities studied the standard deviation of day-to-
day variations in w (at fixed time of day) is around 2-3 gkg ™",
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which is comparable to the standard deviation of T (~38-44C).
This suggests, hased on analysis in section 3 [eg., Eq. (3)], that w
and T will play comparable roles in the temporal variations in
heat and VPD. Also, there is generally low to moderate day-to-
day correlations between w and T, which further suggests that
variations i both T and w need to be considered if examining
the daily variation in heat indices. This conclusion is supported
by preliminary analyss of the Baltimore data, which shows that
assuming the fime-mean absolute humidity to estimate RH and
heat indices from temperature measurements results in large
RMSEs of around 10%-15% for RH and 2840F for HL A
more detailed analysis is required but it appears daily variations
in absolute humidity play an important role i daily variation in
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