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Autonomous Vehicle’s Impact on Traffic: Empirical
Evidence From Waymo Open Dataset and
Implications From Modelling

Xiangwang Hu", Zuduo Zheng", Danjue Chen, and Jian Sun

Abstract—Previous  empirical  behavior analysis on
Autonomous Vehicles (AV) mainly focused on vehicles with
Adaptive Cruise Control (ACC) system due to the lack of
high-level AV dataset. Recently released SAE Level-4 AV
datasets such as the Waymo Open Dataset provide great
opportunities to evaluate their behavioral impact on traffic
flow. In this study, we aim to characterize the empirical Car
Following (CF) behaviors of the Waymo autonomous vehicle
and compare its feature with human-driven Vehicles (HV),
and capture such behavioral differences using the IDM CF
model. Our main findings include: (a) AV is much safer than
HYV, based on our analysis using surrogate safety measures,
as time headways and jam spacings of the AV are significantly
larger than HV; (b) the response time of AV is also significantly
larger than that of HV in response to various types of stimuli;
(c) despite the short length of trajectories in the Waymo Open
Dataset, we have confirmed that these trajectories are suitable
for calibrating some of the IDM parameters; and the calibration
results of IDM are consistent with our empirical analysis.
Moreover, the modelling results, reveal that the proportion of
string unstable behavior of AV is less than that of HV; and
(d) for HV, there is generally no significant difference between
following AV and following HV except a smaller jam spacing
when following AV. Overall, we conclude that currently AV
behaves in a conservative way to ensure its safety at the cost of
traffic efficiency.

Index Terms— Autonomous vehicle, car following, traffic safety,
traffic efficiency, wavelet analysis.

I. INTRODUCTION

LTHOUGH research on car following (CF) behavior
of traditional Human-driven Vehicles (HV) is extensive,
very few studies are oriented to Autonomous Vehicles (AV)
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partly due to the deployment of AV is still in its infant
stage. For a long period, most researchers investigated the
impact of AV on traffic flow by simulation method where
many assumptions need to be made such as the perception
delay/error, time headway, and reaction time, see [1] for a
thorough review.

It was not until recent years that field experiments on
AV were carried out. A review of empirical analysis on
AV related field experiment data is presented in Table I.
Using a two-vehicle platoon, Milanés and Shladover [2] tested
the factory Adaptive Cruise Control (ACC), the IDM based
ACC and a proposed Cooperative ACC (CACC) algorithm
on homogeneous Infiniti M56s and found that the factory
ACC was string unstable due to delay and overshoot but
CACC could overcome this issue. Knoop et al. [3] created
a platoon of 7 vehicles (from 4 different makes) equipped
with ACC and operated the experiment on public roads for
about 500km. They concluded that it was difficult to maintain
a platoon of more than three to four vehicles due to the
disturbances from busy traffic condition and the instabilities in
the CF behavior. The string stability of commercially imple-
mented ACC systems were also assessed through CF model
calibrated from experiment data and results revealed that all
the ACC systems were string unstable [4], [5]. Many more
field experiment campaigns in which various platoon sizes
(2-ACC, 5-ACC, 10-ACC platoons) under public roads and
closed test tracks were organized by the Joint Research Center
of European Commission and the collected data are available
in the OpenACC dataset [6]. Empirical analysis on the dataset
demonstrated that the response times of the equipped ACC
systems are comparable to Human-driven Vehicles (HV) and
instability in the vehicle-platoon was also displayed [7], [8].
A recent ACC experiment by Li et al. [9], [10] focused
more on the behavior of ACC in different ACC settings,
traffic conditions and stimuli. They concluded that for a single
ACC vehicle the ACC response could amplify or dampen
an oscillation but for long platoons the oscillation amplitude
tended to exacerbate very quickly.

However, most empirical evidence mentioned above are
based on data acquired from SAE Level 2 AVs, a CF
behavior analysis of high level (SAE Level 4-5) AV is
missing. Recently, several new datasets pertaining to SAE
Level 4 AV have been released such as Argo Dataset [11], Lyft
Level 5 AV Dataset [12], nuScenes Dataset [13] and Waymo
Open Dataset [14], [15]. These data are usually collected
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Fig. 1. Flowchart of CF behavior comparison analysis.
TABLE I
REVIEW OF EMPIRICAL ANALYSIS ON AV-RELATED FILED EXPERIMENTDATA
Author and Year Test vehicles Pl;t;):n Empirical analysis
Milanés & Shladover (2014) Infiniti M56 2&4 Speed/acceleration profile, time gap, string stability
Knoop et al. (2019) 4 makers (BMW, Mercedes, Audi ,Tesla) 7 ACC usage rate, platoon stability, fuel consumption
Gunter et al. (2020) 1 model 2 OVM calibration, string stability
Makridis et al. (2020a) 1 model 2 Response time, time gap, IDM calibration
Makridis et al. (2020b) Various makers and models 5 Response time, time headway, string stability
Gunter et al. (2021) 2 makers, 7 models 2&8 String stability
Makridis et al. (2021) 17 makers, 27 models 2,5,10 Time headway, string stability, traffic hysteresis
Lietal. (2021) 3 models 3 Response time, oscillation analysis
by onboard sensors (long range Lidar) where the radius of TABLE II
the detection range is 75 meters or more [14]. Subsequently, PROPORTION OF DANGEROUS TTC AND DRAC
the trajectories of vehicles and other road users (cyclists Thresholds AV-HV HV-AV HV-HV
and pedestrians) can be obtained by continuous multi-object TTC: 1s 0.00% 1.68% 0.11%
tracking algorithm based on Lidar points. Compared to aerial TTC: 25 0.00% 1041% 3:42%
: P TTC: 4s 33.08% 49.90% 39.27%
photography based and GPS based data acquisition systems, DRAC: 2m/s? 1.64% 3.40% 2.55%
the onboard Lidar trajectory collection method is advantageous DRAC: 3.35m/s? 0.026% 0.28% 0.26%
considering its excellent scalability, higher accuracy and less DRAC: 4m/s 0.00% 0.04% 0.04%

penetration issue because of the larger detection range. These
high-resolution and large-scale data collected under various
traffic conditions provide great opportunities to evaluate the
AV’s behavioral impact on traffic flow.

In the literature, most studies focused on the safety per-
formance of an individual AV while more or less ignoring
AV’s impact on the overall traffic flow efficiency. Since AV is
likely to co-exist with other vehicle types in the foreseeable
future, safety and efficiency of mixed traffic are two crucial but
conflicting goals which need to be evaluated simultaneously.
Moreover, current efforts on assessing the impact of AV on
the whole traffic rely on oversimplistic simulations with strong
assumptions regarding AV features and how AV and HV would
interact with each other. Therefore, by exploiting the newly
released Waymo Open Dataset the aim of this study is twofold.
First, as one of the first studies in the literature, we provide
empirical evidences on the CF behaviors of AV and its
impact on surrounding vehicles both in terms of traffic safety
using surrogate safety measures and efficiency using various
measures (e.g., time headways, jam spacings, responses, etc.).
Second, this study answers a critical question: if AV’s impacts
on CF behavior is significant, can such impacts be captured
by some of the parameters of existing CF models? Before we

can answer this question, one additional question needs to be
addressed, that is, will the short-length trajectories (i.e., 20 s)
in the Waymo Open Dataset be suitable for calibrating CF
models?

To this end, the remainder of this paper is organized
as the flowchart shown in Fig. 1. Specifically, the next
section introduces the paired CF trajectories utilized in this
study. Section III is the empirical analysis consisting of four
parts: part A is the safety evaluation, part B/C/D are about
the efficiency evaluation including time headway, velocity-
spacing relationship and response time. Then in Section IV
CF behavior modelling using Intelligent Driver Model (IDM)
is first validated with short synthetic trajectories and then
implemented on the Waymo’s trajectory data, followed by
statistical tests on the calibration results and stability analysis.
Conclusion is presented in Section V.

II. PAIRED CAR FOLLOWING TRAJECTORIES

The Waymo Open Dataset (https://waymo.com/open/)
consists of two parts: (a)Perception Dataset for 3D
object detection and tracking; and (b)Motion Dataset for
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motion/interaction prediction. Exploration on these two
datasets show that the AV’s trajectory covers all the frames
recorded in each segment in Perception Dataset. However,
in many segments from Motion Dataset, the AV’s trajectories
were involved in complex interactions (lane changing, merg-
ing, unprotected left turn, etc.) or covering only part of the
frames. In this paper, only the Perception Dataset is utilized.
The Waymo’s Open Dataset refers to the Perception Dataset
hereafter.

The Perception Dataset includes large-scale and high-
resolution sensor data collected by Waymo autonomous vehi-
cles in multiple cities in US (i.e., San Francisco, Phoenix, and
Mountain View). A total of 1000 segments (scenarios) were
originally released in 2019, and this number is continuously
growing. The driving conditions covered in this dataset is
diverse in terms of road types (urban streets, freeways),
weather (sunny, rain), and time of day (dawn, day, dusk, night).
The distributions of driving segment environment features
(namely time of day, weather and segment road type) are pre-
sented in Fig. 2. Obviously, in most segments the drivers were
in conditions of daytime, sunny weather and urban streets.
Only 0.7% segments are in rainy days and only 3.5% segments
were on freeways. In general, the driving environments are
quite homogeneous.

The sensor data were collected by 5 Lidars (1 mid-range
and 4 short-range) and 5 cameras (front and sides), where
the Lidars and cameras were calibrated and synchronized.
In addition, a large number of 3D ground truth bounding boxes
(labels) for Lidar data was manually annotated by Waymo
for the purpose of object tracking. This dataset can be very
valuable for the research community because: (a) the data vol-
ume is large; (b) the time resolution is high, i.e., 0.1 seconds;
and (c) the data quality is high and is better than NGSIM
dataset [16]. The authors have previously processed, assessed,
and enhanced the Waymo Open Dataset for driving behavior
research [16]. The processed dataset has also been shared with
the public (https://data.mendeley.com/datasets/wfn2c3437n/2).

In the stage of preliminary data processing, the original
dataset is re-structured and transformed to a user-friendly tabu-
lar format trajectory data with 25 essential attributes, including
the segment environment information (time of day, weather,
etc.), object features (object type, length, etc.) and object track-
ing trajectory (position, speed, heading, etc.). Camera videos
and trajectory view animations are generated for qualitative
verification. Then the CF pairs are extracted manually by
recording the IDs of the leader and the follower based on
trajectory view videos. Great effort has been dedicated to
ensuring that each paired CF trajectory is in a proper CF state.
The impact of large vehicles (i.e., bus and heavy truck), lane
changing, and traffic signals or stops signs has been excluded.
To investigate AV CF behaviors, the paired trajectories are
classified into 3 groups: an AV follows an HV (AV-HV),
an HV follows an AV (HV-AV), and an HV follows an HV
(HV-HV). Unfortunately, there is no AV-AV pair since there is
at most one AV in one segment. The sample size for each type
of CF group is 196 for AV-HV, 274 for HV-AV, 1032 for HV-
HV. Other influencing factors (such as time of day, road types
and weather) in car following behavior are not considered in
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TABLE III
MEAN TIME HEADWAY UNDER DIFFERENT SPEED RANGES

Speed range AV-HV HV-AV HV-HV

(m/s)

05-5.5 535 4.01 430
5.5-10.5 4.04 2.93 2.67
10.5-15.5 3.5 2.54 2.13
15.5-20.5 2.41 2.26 1.77

this paper since the sample size would be too small to draw
statistically conclusions.

Comprehensive assessing of the data quality is then
implemented on the extracted and paired trajectory data.
consistency analysis shows that the dataset itself is not inter-
nally consistent, i.e., the differentiation of positions yields
inconsistent speeds and accelerations. Jerk value analysis
reveals that some proportion of anomalies still exist in the
data. Moreover, a pattern recognition algorithm is adopted to
assess the trajectory completeness [17]. Specifically, different
driving regimes (e.g., following, acceleration, deceleration,
etc.) in the trajectories are objectively and automatically
identified based on Dynamic Time Warping and Bottom-Up
algorithms. The related codes can be downloaded from this
website  (http://www.connectedandautonomoustransport.com/
reproducible-research.html). Our analysis suggests that the
trajectories in the Waymo Open Dataset are all incomplete.

Furthermore, the extracted trajectory data are enhanced
by using an optimization-based outlier removal method and
a wavelet denoising method [16]. The linear programming
optimization model in the outlier removal method can be
implemented efficiently and ensure that the resulted trajectory
is outlier-free. A wavelet denoising method is applied on the
data to filter out noise. Overall, the quality of the trajectory
data utilized in this study is adequately high to support our
empirical analysis.

IIT. EMPIRICAL ANALYSIS
A. Safety Evaluation

To evaluate AV’s safety performance during car following
using the Waymo Open Dataset, surrogate measures of safety
(SMS) are used. SMS are microscopic traffic flow measures
that can relate to crash risk, and often used in the road safety
literature to diagnose traffic conflicts or near misses (situations
in which two or more road users are sufficiently close in space
and time for their trajectories to cross unless evasive action
is taken) which occur more frequently than crashes—for a
short period of time, rather than waiting for long time periods
to accrue a large number of crashes. In terms of CF safety
analysis, two widely used surrogate measures are Time to
Collision (TTC) and Deceleration Required to Avoid Crash
(DRAC). TTC is the time remaining until a collision will
occur between two vehicles if the collision course and speed
difference are maintained [18], as shown in Equation (1); thus,
a smaller TTC value indicates a more dangerous scenario.
And DRAC was defined by Cooper and Ferguson [19] as the
minimum deceleration rate required by the following vehicle
to come to a timely stop (or match the leading vehicle’s speed)
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and hence avoid a crash, as shown in Equation (2); thus,
a higher DRAC value indicates a more dangerous CF scenario.

d .

, if vy >0
rre = v =g TUrM 1)

00, otherwise

2
(vr—w)”
DRAC={— 5 — v>wu @)
0, otherwise

where vy and v; are the speeds of the follower and the leader
vehicle, respectively; and d is the gap between the follower
and the leader vehicle.

Since no SMS is perfect and each has its own limitations,
to increase the reliability of our safety analysis, both TTC and
DRAC are adopted in this study to compare the CF safety
performances between the defined three CF groups. Since it
is not meaningful to use TTC as a surrogate safety measure
when the speed is zero, and TTC is not capable of identifying
dangerous cases when speed is too small [20]. In this study
trajectories with speed smaller than 1m/s are removed before
the TTC analysis. The Empirical Cumulative Distribution
Function (ECDF) for TTC and DRAC are presented in Fig. 3
and Fig. 4, respectively. By looking at Fig. 3, it is clear that AV
following HV is the safest while HV following AV is the most
dangerous, among the three groups. However, the pattern is not
clear by visually checking Fig. 4. Therefore, to quantitatively
evaluate the CF safety, the proportions of dangerous TTC and
DRAC values for each group are calculated by using two
commonly used thresholds in the road safety literature, i.e.,
2 s as the threshold for TTC and 3.35m/s? as the threshold
for DRAC [21], [22]. Meanwhile, to test the sensitivity of the
thresholds two more values are also analyzed for TTC (ls,
4s) and DRAC (2m/s?, 4m/s?), respectively. The results are
shown in Table II.

Table II clearly shows that among the three CF groups, the
AV-HV group has the smallest proportion (0%) of dangerous
TTC, while the HV-AV group has the largest proportion
(nearly 10%) of dangerous TTC (threshold 2s). The same
pattern can be found by comparing the dangerous DRAC
proportions across three CF groups (0.026% for AV-HV group
and 0.28% for HA-AV group, under threshold 3.35 m/s?).
If we consider the cases where both TTC and DRAC values
are dangerous, the proportions are 0%, 0.28% and 0.19%
for AV-HV, HV-AV and HV-HV group, respectively. Similar
phenomenon can be observed from other thresholds. Moreover,
K-S tests on the distributions of TTC and DRAC values
show significant difference among CF groups with very small
p-values. Therefore, we can conclude that regarding CF safety,
AV’s behavior is obviously the safest, indicating that AV is
designed to be more conservative than HV in terms of safety.
Interestingly, HV tends to behave more dangerously when
following an AV, compared with when following another HV.

B. Time Headway

Time headway is an important parameter in car following
because it is related to flow rate, safety, and can act as a bridge
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connecting macroscopic traffic characteristics and microscopic
driving behavior. Therefore, it would be interesting to compare
the difference of time headway distribution between AV and
human, as shown in Fig. 5. The time headways are fitted to
the typical lognormal distribution, where the 1 and o values
are: © = 1.25, 0 = 0.43 for AV; u = 0.99,6 = 0.49 for
human. Normally, one would expect a relative smaller variance
or some simple patterns of time headway distribution for AV
compared to human, since AV is of the same vehicle type and
is controlled by algorithms while human drivers tend to be
more unpredictable thus display larger heterogeneity in terms
of desired time headway. For instance, the time headway dis-
tributions from OpenACC Dataset have two distinctive peaks
which correspond to the maximum and minimum settings of
the ACC controllers, respectively [6]. However, in Fig. 5 it
is not obvious that the AV is following any constant desired
headways. Moreover, the variance in the time headway of AV
is comparable to that of human drivers, which indicates that
the controller in Waymo is sophisticated enough to generate
significant behavioral heterogeneity in the time headway.

Previous research demonstrated that time headway dis-
tribution varies among different speed ranges [23]. In this
study, we also adopt four speed ranges (i.e., 0.5-5.5, 5.5-10.5,
10.5-15.5, 15.5-20.5, unit:m/s) to comprehensively compare
the time headway distributions among the three CF groups,
as is shown in Fig. 6. In general, the time headway increases
as the speed decreases, which is similar to the results in [23].
Moreover, regardless of speed range, the time headway of the
AV-HV group tends to be larger than those of the HV-AV and
HV-HV group, although this discrepancy becomes smaller as
the speed ranges increase. Additionally, the difference of time
headway distribution is not significant between HV-AV group
and HV-HV group. Quantitatively, the mean time headways
under the selected speed ranges are shown in Table III, and
similar phenomenon can be found consistently. Overall, we can
conclude that the time headway of AV-HV CF group is
larger than that of the other two groups, indicating that the
introduction of current AV will bring negative influence on
traffic flow efficiency because of the reciprocal relationship
between time headway and traffic flow rate.

C. Velocity-Spacing Curve

The velocity-spacing (v-s) relationship is essential to many
widely used car following models, e.g., it is explicitly used
in Optimal velocity Model [24], General Force Model [25],
Full Velocity Difference Model [26]; and implicitly used
in Newell’s simplified car following models [27], and IDM
[28]. To construct v-s curve would require homogeneous
equilibrium traffic flow condition, which is not possible in our
study due to the short length of the trajectories and limited
sample sizes. Nevertheless, even with traffic data under inho-
mogeneous condition the comparison of v-s curve between the
predefined three CF groups would still be meaningful in light
of its vital role in delineating car following behavior.

The shape of v-s relationship in this study is assumed to be
a piecewise linear curve composed of a free flow part and a
congested part. As pointed out by Newell [27], it is certainly
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Fig. 2. Driving segment environment features of the Waymo Open Dataset.
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Fig. 4. DRAC empirical cumulative distribution function.

not obvious to assume a non-linear v-s relation according to
the empirical observations in previous research. On the other
hand, with a piecewise curve the critical traffic state between
free flow and congested flow can be pinpointed. Under such
hypothesis, the piecewise curve fitting problem would be an
optimization problem in which the number of line segments is

two and the breakpoint is unknown. A recently released Python
library (https://pypi.org/project/pwlt/) called piwf is adopted
to solve this problem, in which the users can conveniently fit
a piecewise linear curve with or without known breakpoint
locations, fit for a specified number of line segments, and
force a fit through data points and so on [29]. Additionally,
in order to obtain a robust optimization solution and make
curve fitting results more comparable, we add the following
three constraints:

o The slope of free flow part is O

« The free flow speed v is set to be the same for the three
CF groups

o The congested part will go through the average jam
spacings s; calculated from the empirical data

The first and the second constraint is a simplification on
the free flow part in light of the complexities that arise from
various road speed limits and maximum desired speed from
different drivers. Since in this Python library users cannot
specify a constraint on the slope of a line segment, we work
around by forcing the curve pass through (S1, v¢) and (52, vy),
where S7 and S» are large values of spacing to prevent
inaccurate breakpoint (critical state). Meanwhile, we also force
the fit pass through the point (s;, 0). Specifically, the values
of 81, $2, and vy are 200m, 300m, and 15m/s, respectively.
And the s; values are 10.0m for AV-HV group, 6.73m for HV-
AV group, 7.88m for HV-HV group. The global optimization
algorithm used in this library is efficient enough to solve our
problem within seconds.

The v-s scatter plots and the curve fitting results are pre-
sented in Fig. 7. The primitive v-s curve for each CF pair
is directly plotted so that some extreme cases can be clearly
demonstrated. Compared to averaging speed over spacings or
averaging spacing over speeds analysis methods, the curve
fitting method is able to avoid bias near the standstill regime
and critical point. Considerable dispersion is observed in the
v-s plots of each group. By analyzing empirical HV CF
data, Jiang et al. [30] attributed such phenomenon to two
driving behaviors: (a) In certain range of spacing, the drivers
are not sensitive to the changes in spacing if the velocity
differences are small; (b) During the driving process, the driver
change their preferred spacing intentionally or unintentionally
resulting in unfixed spacing at given velocity. The feature of
the scatter plot in Fig. 7(a) implies that the AV might behave
similarly. The parameters of the curve fitting are given in
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Fig. 5. Comparison of time headway distribution between AV and human.

Table IV. The AV-HV group has the largest jam spacing and
critical spacing (the intersection between the free flow branch
and the congested branch, i.e., the turning point), the smallest
slope for the congested branch, and largest critical spacing,
consistently indicating that the AV is more conservative while
following a leader, as depicted in Fig. 7(d). Compared to
the HV-HV group, the HV-AV group shows similar critical
spacing, but a smaller congested branch slope and larger jam
spacing.

D. Response Time

Driver response time is an important measure that is closely
related to traffic safety such as rear-end collision [31], dilemma
zones at signalized intersections [32], cut-off scenario [33] and
take-over control of an automated vehicle [34]. Meanwhile,
driver response time is also a contributing factor in traffic flow
efficiency (i.e., discharge rate) [35].

Due to the inconsistencies of terminology and definitions in
the literature, the theoretically and practically justified defini-
tion of driver response time proposed by Sharma et al. [36] is
adopted in this study: Response time is defined as “the time
taken by a driver to adjust his/her speed against a stimulus,
with or without deliberately delaying his/her decision.” In
this definition, the response time is divided into two parts:
(a) Latent Response Time (LRT) which includes reaction
time (sensation, perception, decision, initiation) and delay
(intentionally produced by the driver) and (b) Observable
Response Time (ORT) which is the time between when the
foot movement starts and when it ends.

1) Methodology: Regarding the methodologies for estimat-
ing response time, Sharma et al. [36] provided a thorough
review and demonstrated that wavelet-based energy distri-
bution (WED) method is advantageous to existing methods.
Suppose the speed time series is a continuous function v (¢),
and the selected wavelet function is (¢), then the wavelet
transform coefficients can be formulated as:

+00 _
T (s, x) = %/ v(t)w(th) di 3)
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TABLE IV
VELOCITY-SPACING CURVE FITTED RESULTS

AV-HV HV-AV HV-HV
Jam spacing (m) 10.0 6.73 7.88
Congested branch slope (s™1) 0.44 0.57 0.66
Critical spacing (m) 439 33.1 30.5
TABLE V
MEAN RESPONSE TIME FOR DIFFERENT TYPES OF DRIVING STATE
CHANGE
State AV-HV HV-AV HV-HV
change type (to) (t1) (t2)
AF 2.51(25) 1.88 (45) 2.05(191)
AD 2.59(22) 1.90 (27) 1.94 (174)
SA 1.62 (52) 1.48 (53) 1.34 (253)
FD 2.13 (20) 1.97 (38) 1.79 (128)
DS 3.59 (36) 2.03 (52) 2.06 (164)

where s and x are the scale and translation parameter, respec-
tively, T (s, x) is the corresponding wavelet coefficient at scale
s and location x. Subsequently, the wavelet-based energy at x
can be expressed as:

400
Ey = %/ T (5, 3) 2 ds 4
max (s) Jo

The principle of WED method is that an abrupt change
in speed profile will produce a peak in the temporal wavelet
energy distribution profile, where the driving state change
points normally locate.

Despite the capabilities of WED method in detecting sin-
gularities, one problem Sharma et al. [36] did not empha-
size enough is the boundary effect of wavelet transform.
When computing wavelet decomposition coefficients, bound-
ary effect will be introduced due to finite size of the signal
length, as pointed out by Zheng et al. [37], which is charac-
terized by large wavelet transform coefficients at both ends of
the signal range. This occurs because the speed outside the
signal range is assumed to be zero. Large wavelet transform
coefficients are obtained at the boundaries where the signal
shifts from zero to an actual speed value, causing inaccurate
detection of singularities (driving state change points in our
case) near the boundary. Normally the wavelet coefficients at
the boundary are discarded due to this effect, and this is not
a problem if the data length is long enough, which is the case
(the trajectory length is 180s) in [36]. Yet in Waymo’s dataset
such information loss is unacceptable since the length of the
trajectories is only 20s. Hence, in this study signal extension
is implemented on every trajectory by adding 100 trajectory
points on each side of the boundary. Note that such extension
of the signal at each end will not distort WT analysis of the
original signal since the wavelet coefficients from the extended
portions are discarded. The acceleration values of the extended
trajectories are constant, which are equal to the corresponding
real acceleration at the boundaries. In this way, the driving
state change points near the boundary can also be accurately
identified while no new singularities are introduced.

Moreover, while implementing WED method, the selection
of maximum decomposition scale can lead to early or late
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TABLE VI
T TEST P VALUES AMONG DIFFERENT TYPES OF STIMULI

AF AD SA FD DS
AF - - - - }
AD 0.328 - - - -
SA <0.001 <0.001 - - -
FD 0.005 0.072 <0.001 - -
DS 0.026 0.005 <0.001 <0.001 -

detection of driving state change point [37]. To remedy this
issue, wavelet-based Local Maxima Lines (LML) method
is adopted in this study. Specifically, the modulus maxima
is defined as any point (sg,xo) such that |T (sg,x)| <
|T (so, x0)| when x belongs to either a right or the left
neighborhood of x¢, and |T (so, x)| < |T (so,x9)| when x
belongs to the other side of the neighborhood of xp [38].
And a local maxima line is formed by connecting all nearest
modulus maxima points in the scale space (s,x). Then the
accurate location of a state change point can be found using
the corresponding local maxima line at the finest scale [39].
LML method is more precise than WED method because the
original signal is scrutinized at all decomposition scales, and
is less sensitive to the designated maximum decomposition
scale.

The settings of wavelet-based LML method designed in
this study are specified as below. First, the wavelet function
adopted here is Mexican hat, as suggested in Zheng and Wash-
ington [39] and Sharma et al. [36]. Second, with regard to the
maximum decomposition scale, we have conducted sensitivity
analysis using synthetic trajectory data (thus the ground truth
location of the state change point can be obtained). Results
show that scales between 10 to 50 are trustworthy for both
WED and LML methods. In our study, this number is set to
be 32. Third, the scale to calculate response time is set to
be 15, which is the middle scale under the selected maximum
decomposition scale, to avoid too sensitive (insensitive) detec-
tions at small (large) scales.

2) Empirical Results: As mentioned above, the response
time is defined as the time taken by a driver to adjust his/her
speed against a stimulus, which needs to be classified in detail.
In this study, the type of driving state change point is adopted
to distinguish different stimuli. In car following regimes, the
driving states can be divided into 4 types: following the leader
at a constant speed (F), accelerating behind a leader (A),
decelerating behind a leader (D), and standing behind a leader
(S) [17], [40]. Accordingly, 5 types of stimulus points are
generated: AF, AD, SA, FD, DS. Note that the FS is excluded
since the vehicle is not able to change its state directly
(deceleration or acceleration is required) from following to
standstill, and vice versa. Using the aforementioned estimation
methodology, for each CF group the average response time
of each type of stimulus is given in Table V (numbers in
parentheses are sample sizes). Across all the stimulus types,
the average response times of AV-HV, HV-AV, and HV-HV
groups are 2.42s, 1.84s, 1.80s, respectively.

Further analysis on response time is focused on three
questions:
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TABLE VII

T TEST (WMW TEST) P-VALUES FOR RESPONSE TIME COMPARISON
AMONG CF GROUPS

State

change CF group comparison Alternati\./e p-value

type hypothesis

AF AV-HV vs HV-HV to > t, <0.001 (<0.001)
HV-AV vs HV-HV t, >t 0.084 (0.047)

AD AV-HV vs HV-HV ty > t, 0.003 (<0.001)
HV-AV vs HV-HV t, >t 0.417 (0.319)

SA AV-HV vs HV-HV ty > t, <0.001 (<0.001)
HV-AV vs HV-HV t, >t 0.041 (0.020)

FD AV-HV vs HV-HV ty > t, 0.060 (0.066)
HV-AV vs HV-HV t, >t 0.125 (0.146)

DS AV-HV vs HV-HV to > t, <0.001 (<0.001)
HV-AV vs HV-HV t, >t 0.454 (0.211)

o Is the response time significant different among various
stimulus points?

o Is the response time of AV significantly different from
HV (AV-HV vs HV-HV)?

« For HYV, is the response time of following an AV signif-
icantly different from following an HV (HV-AV vs HV-
HV)?

For the first question, our finding is that the difference of
response times between different types of stimuli should not
be ignored. For instance, the response time of SA stimuli
is apparently smaller than other types of stimuli. To further
validate this observation, unpaired t-tests are conducted and
the pair-wise p-values are shown in Table VI. Apart from the
AD-AF pair and FD-AD pair, all other p-values are less than
0.05, indicating that the response times among all types of
stimuli are significantly different. Thus, it is necessary to treat
each type of response time separately.

For the second and third question, p-values of statistical tests
are presented in Table VII. Note that our samples are mostly
not in normal distribution and many researchers would adopt
nonparametric test such as Wilcoxon-Mann-Whitney (WMW)
test rather than parametric test such as t test. However,
according to the research by Lumley et al. [41], Fagerland [42]
and Skovlund and Fenstad [43], the following rules are more
preferable: (a) if the sample size is modestly large enough,
t test should always be adopted, regardless of the distribution;
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(b) if the sample size is small and the distribution is long
tailed and skewed, WMW test should be used. In our study,
for most samples the sample sizes are modestly large, so t test
is more desirable although the distributions are not normal.
Nevertheless, the p-values of both t test and WMW test are
provided to make the analysis more holistic and rigorous.

In Table VII, the t test p-values are directly given and
WMW test p-values are given in parentheses. Overall, the
results from t test and WMW test are quite consistent. For
the second question, we can conclude that the response time
of AV is significantly (marginally significant in the case of FD)
different from HV. Specifically, the response time of AV under
all types of stimuli is consistently larger. For the third question,
when the follower is an HV, the response time difference
between following an AV and an HV is not significant (almost
marginally significant in the case of SA).

According to the aforementioned definition of response time
which is composed of LRT and ORT, the ORT time of AV
would be smaller than HV since there is no foot movement.
In terms of LRT which includes reaction time and delay time,
the reaction time (sensation, perception, decision, initiation)
of AV is similar to HV [7]. Since the overall response time
of AV is larger, we can deduce that the delay time of AV is
larger than HV. In other words, AV is deliberately delaying its
action against a stimulus. This is reasonable considering the
conservative behavior of AV.

Some previous study on ACC and CACC systems revealed
that the observable response times of ACC system range from
1.3s to 2.5s and the corresponding values for CACC are
0.1s to 0.5s [44]. Compared to the average response times
of AV (2.4s) and HV (1.8s) in this study, it is found that:
(a) CACC system has undoubtedly the smallest response time;
(b) in general the ACC system and HV have comparable
response times; and (c) the AV has the largest response time.
In conclusion, among these four types of vehicles, AV is the
most conservative.

IV. CF BEHAVIOR MODELLING

In this section, we use the IDM car following model to
model car following behavior of each vehicle group in the
Waymo Open Dataset. IDM is a widely used car following
model which is known for its capability to replicate many
real-world traffic flow phenomena and its straightforward
interpretation of each model parameter [28], [45]. Previous
studies also adopted the IDM model to simulate the behavior
of CACC vehicle and AV [2], [46]. Although IDM might not
be able to precisely replicate the behavior of both HV and
AV, it is a reasonable tool for us to detect any significant
differences in AV’s and HV’s car-following behavior, given
that: (a) IDM has been frequently used in the literature to
model both HV car-following and AV car-following; and (b) in
our study, results from IDM calibrations are only used as a
supplement to our empirical analysis. A common formulation
of IDM is:

B O 0N
a,(t)=a |:1 — (_Uo ) — (_Sn (t)) j| 5

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 6, JUNE 2023

U () Avy (1)
2/ ab

where a is the maximum acceleration ( m/ 52), vo is the desired
speed ( m/s), so is the minimum gap ( m), T is the desired
time gap ( s), b is the comfortable deceleration ( m /s2), sy()
is the desired gap, a, (), v, (t),, s, (), s;(t) are the follower’s
acceleration, speed, spacing (vehicle length not included) and
desired spacing, respectively, Av, (¢) is the speed difference
(the leader’s speed minus the follower’s speed).

The impact of trajectory incompleteness on CF model cali-
bration error has been investigated in [40] and [47]. However,
both studies used very long trajectories (large than 180s)
and the most incomplete trajectory still included acceleration,
deceleration and following (AFD). In our case, the driving
regimes could consist of only two states or only one state in
extreme situations. With such short trajectories, it is unlikely
to expect all the calibrated IDM parameters are reliable
simultaneously. Nevertheless, whether part of the IDM model
parameters can be calibrated under certain corresponding
driving situations is still an open question. If this is true,
calibration results from the Waymo’s trajectory data can still
be used since our purpose is to compare the difference of
CF behavior, not to precisely replicate the behavior. Thus,
before implementation on Waymo’s dataset it is imperative to
verify the effectiveness of calibrating IDM with rather short
trajectories (20s in Waymo’s case).

53(6) = 50+ T () — (©)

A. Validation of CF Model Calibration With Short Synthetic
Trajectories

In order to investigate the impact of short trajectories on
IDM calibration, synthetic trajectories generated with ground
truth model parameters have been used. In principle, efforts
have been made to force the synthetic trajectories to be as
similar as the actual Waymo’s data. The following rules are
designed to generate the paired synthetic trajectory data:

o The length and resolution of the synthetic trajectory is
the same as that in Waymo’s data (20s, 0.1s)

« 8 types of driving state combinations are considered: F,
AF, FD, DS, AFS, AFD, FDS, AFDS, which are based
on the analysis in Hu et al. [16]

o The leader trajectories are directly obtained from the
actual Waymo’s paired trajectory data. For each type of
driving regime, 10 typical paired trajectories are selected

o For each chosen leader trajectory, generate 10 set of
model parameters and their corresponding follower tra-
jectories

o Each generated follower trajectory has the same initial
state as the actual follower

Examples of the generated synthetic trajectories and the
corresponding IDM parameter values are shown in Fig. 8.
As can be observed, these trajectories are rather similar to
the actual Waymo’s trajectories which have been shared in
Hu et al. [16]. If the model parameters (at least some of
the parameters) of these trajectories can be reproduced by
calibration, then it is also valid to use the trajectories in
Waymo Open Dataset to calibrate IDM model.
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TABLE VIII
CALIBRATION ERROR WITH SYNTHETIC TRAJECTORIES

Drl\./mg Error o T S a b
regime type
F MAE 0.37 0.17 1.33 0.20 0.29
MAPE 2.1% 11.0% 1009%  10.4% 14.6%
AF MAE 0.05 0.04 0.23 0.04 0.07
MAPE 0.3% 2.6% 16.7% 1.7% 2.8%
FD MAE 0.01 0.02 0.02 0.02 0.02
MAPE 0.1% 0.7% 0.8% 1.0% 0.8%
DS MAE 0.00 0.02 0.03 0.20 0.07
MAPE 0.0% 2.6% 1.5% 13.6% 3.8%
AFS MAE 0.22 0.04 0.00 0.07 0.18
MAPE 2.2% 3.1% 0.3% 3.9% 10.8%
AFD MAE 0.02 0.02 0.07 0.04 0.02
MAPE 0.1% 1.5% 7.0% 3.0% 0.9%
FDS MAE 1.41 0.01 0.03 0.13 0.12
MAPE 14.1% 1.2% 1.8% 6.8% 6.8%
AFDS MAE 2.01 0.01 0.01 0.02 0.08
MAPE  20.1% 0.9% 0.5% 1.1% 3.8%

By largely following the guidelines in [48], the calibration
settings in this study are described below:
« Global calibration is adopted in which the whole original
trajectory is compared with the simulated trajectory rather
than each data point.
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« The measure of performance is spacing instead of speed
or acceleration.

o The goodness of fit function is the RMSE of spacing.
Although this is not the optimal choice according to [48],
the results from this function are reasonable with a small
computational cost.

« Interior point method is selected to solve the optimization
problem.

o The ranges of parameters are set as: vg [10], [30], T
[0.1]3, s [0.1]10, a [0.5]5, b [0.5]5.

The errors (Mean Absolute Error, MAE, and Mean Absolute
Percentage Error, MAPE) between the calibrated parameters
and the ground truth values with synthetic trajectories are
presented in Table VIII. Surprisingly, in most cases the overall
calibration errors are not large even with 20s trajectories. It is
obvious that if only F regime is present, the calibration results
are not trust worthy. Also, in some cases, certain parameters
are not precisely calibrated (MAPEs larger than 10% are in
bold): sg in AF, a in DS, b in AFS, vy in FDS and AFDS. How-
ever, for all driving regime combinations (except F in which
T is still extracted reasonably well), the calibration results of
desired time gap T (the principal parameter in IDM [16], [49])
are always reliable. Additionally, if standstill regime is present,
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(12, 0.8, 2.0, 2.8, 2.5); (h) AFDS (10, 1.2, 0.9, 1.4, 2.0).

the accuracy of 5o will generally be improved. In conclusion,
this outcome verifies that it is feasible to compare the CF
behavior of each vehicle group by calibrating IDM using the
trajectories in Waymo Open Dataset.

B. CF Model Calibration With the Waymo’s Dataset

This subsection compares the CF behavior difference among
the three CF groups by calibrating the IDM model using
the trajectories in the Waymo Open Dataset. Each model
parameter is analyzed separately, where vy is excluded since
it might be influenced by the road speed limits and thus
not a good indicator to distinguish CF behavior. Trajectory
data from 196 AV-HV pairs, 274 HV-AV pairs and 1032 HV-
HV pairs are used in calibrating IDM separately. However,
based on the aforementioned findings from using synthetic
trajectories results from the pairs with the only F regime are
excluded; and minimum gap sq results from those with the AF
regimes and maximum acceleration a results from those with
the DS regimes, and comfortable deceleration b results from
those with the AFS regimes are discarded as well. In addition,
to avoid bias, boundary values from the calibration results (a
common issue in CF model calibration) are also removed from
the comparison analysis.

The mean values of IDM parameters with their corre-
sponding sample sizes are shown in Table IX. To quickly
assess the accuracy of the calibration results, the value of
minimum gap so can be analyzed because of its clear phys-
ical meaning, i.e., the jam spacing with the vehicle length

TABLE IX
CALIBRATION RESULTS USING WAYMO’S TRAJECTORY DATA
T So a b
AV-HV (group 0) 1.55(52) 5.22 (51) 1.87 (44) 1.02 (45)
HV-AV (group 1) 1.13 (63) 2.24 (63) 1.58 (50) 1.19 (52)
HV-HV (group2) 1.17(317) 3.28 (304) 1.84 (271) 1.29 (250)
TABLE X

T TEST (WMW TEST)P-VALUES FOR CALIBRATION RESULTS COMPAR-
ISONAMONG CF GROUPS

IDM CF group Alternative
. - p-value
parameter comparison hypothesis
r AV-HVvs HV-HV Ty > T, <0.001 (<0.001)
HV-AVvsHV-HV T, >T, 0.291 (0.248)
s AV-HV vs HV-HV s >s2 <0.001 (<0.001)
0 HV-AV vs HV-HV s > sg <0.001 (<0.001)
a AV-HV vs HV-HV a, > a, 0.444 (0.364)
HV-AV vs HV-HV a, > a, 0.029(0.084)
b AV-HV vs HV-HV b, > b, 0.019 (0.452)
HV-AV vs HV-HV b, > b, 0.278 (0.566)
TABLE XI
STRING UNSTABLE PROPORTION
AV-HV HV-AV HV-HV
5.8% 20.3% 16.6%

excluded. Recall that the average empirical jam spacings
(vehicle length included) are shown in Table III. If we subtract
the minimum gap so from the jam spacings for each CF
group, the corresponding values are 4.78m, 4.49m, 4.6m,
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Fig. 9. Calibrated parameters distribution: (a) desired time gap 7'; (b) minimum gap so; (¢) maximum acceleration a; (d) comfortable deceleration b.

which turns out to be very close to the typical average length of
light-duty vehicles (4.5m), which indicates that our calibration
results are accurate. In addition, the calibrated parameters from
HV-HV group are compared with previous IDM calibration
research on pure HV interactions [40], [45], [50], results also
demonstrate that our calibrated parameters are in reasonable
ranges.

OAs shown in Table IX, compared to the other two groups
the AV-HV group has the largest mean desired time gap T
and minimum gap sg. Compared to the HV-HV group, the
HV-AV group shows similar calibration results except that
the minimum gap s¢ is smaller. Meanwhile, the distribution
for each model parameter is presented in Fig. 9. To draw a
more rigorous conclusion, statistical tests are carried out using
both unpaired t test and WMW test, and results are shown
in Table X, where p values from WMW test are given in
parenthesis. In most cases, the p-values of t test and WMW
test are consistent (assume that the confidence level is 95%).
However, with regard to the comfortable deceleration b, these
two tests give contradictory conclusion when comparing the
AV-HV and HV-HV group. we believe the result from WMW
test should be preferred in this case because the sample size
is not large and the distribution of b is long tailed and skewed
in all CF groups.

From Fig. 9 and Table X, the difference of parameters max-
imum acceleration a and comfortable deceleration b are not
significant or only marginally significant, either in comparing
AV-HV and HV-HV group or comparing HV-AV and HV-
HV group. Although there’s no strict one to one matching
between IDM parameters and their corresponding driving
regimes [47], in general a@ and b are related to the acceleration
and deceleration behavior. In this sense, we can roughly
conclude that the difference of acceleration and deceleration
characteristics in car following between AV and HV is not
significant. In contrast, 7 and s¢ values of the AV-HV group
are both significantly larger than those of the HV-HV group.
Such results are consistent with the empirical analysis section
in this paper. Compared to the HV-HV group, the HV-AV
group has a significantly smaller so value, but the difference
in T values is not significant between these two groups. One
possible explanation is that out of curiosity, the HV drivers
might tend to keep a smaller jam spacing in order to observe
the AV more closely.

Furthermore, once the model -calibration results are
obtained, CF string stability analysis can be carried out sub-
sequently. String stability analysis investigates the evolution
of small perturbations (i.e., speed and spacing deviation from
the equilibrium state) in driving behavior over a platoon
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of vehicles. If a perturbation amplifies (diminishes) along
space, then the platoon is unstable (stable). In general, the
empirical L, instability analysis [51] should be implemented
if the dataset includes a platoon of vehicles’ trajectories with
equilibrium states, perturbations and their propagations. In this
study we do not have such trajectories and a stability analysis
method based on calibrated IDM is adopted. Suppose a general
form of CF model a, (t) = f (sy, vn, Avy,);, according to [52]
the measure of string stability can be defined as:

)

where S is the yalue of stability measure, f; = %le, fo =
%b, fav = %b are the Taylor expansion coefficients of
the acceleration function at the steady state after first order
linearization.

Under the equilibrium speed v, and equilibrium spacing s,
the coefficients of IDM are constructed as follows:

2
P (M) 8)

Se Se

3
fo=—a |:i (&) + —2T (s0 '2|‘ Tve):| ©)]
Vo Vo S

a Ve SO+Tv,
fav = & e e
bs. Se

Thus, for each pair of CF trajectories, a value of stability
measure S can be calculated. A positive value of § indicates
that the CF behavior is string stable. And a negative value
of S can be interpreted as different severity levels of traffic
oscillations as defined by Sun et al. [50].

The proportion of string unstable CF behavior for each CF
group is presented in Table XI. Clearly, the AV-HV group has
the least string unstable CF behavior, which mostly can be
attributed to the larger desired time gap 7. According to Sun
et al. [50], a higher stability can alleviate the traffic oscillation
(stop/slow and go waves) severity. In fact, previous studies also
corroborated that a larger time gap is required to successfully
dampen the traffic oscillation [53], [54], [55]. Therefore, this
result indicates that the current AV technology can poten-
tially mitigate traffic oscillations thanks to its conservative
behavior.

(10)

V. CONCLUSION

By utilizing the Waymo Open Dataset this paper has com-
pleted two goals: a comprehensive and rigorous CF behavior
comparison analysis between AV and HV; and capturing
important behavioral differences between AV and HV using
the IDM car-following model. For the first goal, AV’s impact
on traffic safety and efficiency is revealed through a four-part
empirical analysis. First, two safety surrogate measures TTC
and DRAC are adopted to evaluate the CF safety of different
vehicle pairs. Second, the time headways under various speed
ranges are analyzed. Third, the velocity-spacing relationship
is approximated by using a piecewise linear curve fitting
method. Fourth, the response times under different stimuli are
estimated with a wavelet-based Local Maxima Lines method.
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For the second goal, we have first confirmed the feasibility of
using the short-length trajectories (i.e., 20 s) to calibrate IDM,
using synthetic trajectory data, and then calibrated IDM using
vehicle pairs contained in the Waymo Open Dataset. Based on
the modelling result, AV’s implication on string stability has
also been assessed.

Regarding the safety evaluation, results from both TTC
and DRAC consistently show that AV is often observed to
have a larger time headway, jam spacing, critical spacing
and response time, and thus is much safer than HV during
the car-following process. However, AV’s conservative CF
behavior indicates negative influence on traffic flow efficiency,
which is further confirmed by result from IDM modelling
that the desired time gap 7 and the minimum gap sy of
AV is significantly larger than HV. Further string stability
analysis suggests that the proportion of string unstable CF
behavior of AV is smaller than that of HV. This feature
of AV can be potentially beneficial for mitigating traffic
oscillation.

Meanwhile, results from the comparison analysis of HV-AV
group and HV-HV group show that when HV is the following
vehicle, there is no significant difference in its CF behavior
regardless whether the lead vehicle is AV or not, with only
one exception, i.e., the jam spacing is significantly smaller
when the leader vehicle is an AV, which is likely caused by
the curiosity of the HV driver.

Nevertheless, there are several open questions that need to
be further investigated. First, note that this study only analyzes
the case of a single AV rather than a platoon of AVs due to
the limitation of the dataset. In such a case, it is not surprising
to see that AV ensures its safety at the cost of efficiency since
there is no coordination between AV and other vehicles. In the
future, it is possible that a platoon of AVs with the cooperative
driving capability is capable of improving their safety and
efficiency simultaneously. Second, also note that the Waymo
data used in this study were all collected in US. Although we
believe the main conclusions drawn in this study will hold
in a different country, specific details are likely to change
when IDM models are re-calibrated using a new dataset.
It would be interesting to check those differences between
different countries if more data are available. Third, due to
lack of hardware-level microscopic data (e.g., the error and
delay of the actuation or control system), the safety evaluation
of this study is limited to surrogate safety measures. It is
important to pinpoint the underlying causal factors that can
lead to a collision in the context of designing AV car-following
algorithms in the future.

In conclusion, the implications of the main findings in this
study are threefold: (a). currently AV has significantly larger
TTC and smaller DRAC values, which is much safer than HV;
(b) compared to HV, ACC and CACC vehicles, trajectories
from AV show that they have larger average time headways,
response times and jam spacings, indicating that AV is less
efficient as other vehicle types; and (c¢) for HV, in general,
there is no significant difference between following AV and
following HV. Overall, we conclude that currently AV behaves
in a conservative way to enhance its safety at the cost of traffic
efficiency.
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