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Autonomous Vehicle’s Impact on Traffic: Empirical

Evidence From Waymo Open Dataset and

Implications From Modelling

Xiangwang Hu , Zuduo Zheng , Danjue Chen, and Jian Sun

AbstractÐ Previous empirical behavior analysis on
Autonomous Vehicles (AV) mainly focused on vehicles with
Adaptive Cruise Control (ACC) system due to the lack of
high-level AV dataset. Recently released SAE Level-4 AV
datasets such as the Waymo Open Dataset provide great
opportunities to evaluate their behavioral impact on traffic
flow. In this study, we aim to characterize the empirical Car
Following (CF) behaviors of the Waymo autonomous vehicle
and compare its feature with human-driven Vehicles (HV),
and capture such behavioral differences using the IDM CF
model. Our main findings include: (a) AV is much safer than
HV, based on our analysis using surrogate safety measures,
as time headways and jam spacings of the AV are significantly
larger than HV; (b) the response time of AV is also significantly
larger than that of HV in response to various types of stimuli;
(c) despite the short length of trajectories in the Waymo Open
Dataset, we have confirmed that these trajectories are suitable
for calibrating some of the IDM parameters; and the calibration
results of IDM are consistent with our empirical analysis.
Moreover, the modelling results, reveal that the proportion of
string unstable behavior of AV is less than that of HV; and
(d) for HV, there is generally no significant difference between
following AV and following HV except a smaller jam spacing
when following AV. Overall, we conclude that currently AV
behaves in a conservative way to ensure its safety at the cost of
traffic efficiency.

Index TermsÐ Autonomous vehicle, car following, traffic safety,
traffic efficiency, wavelet analysis.

I. INTRODUCTION

A
LTHOUGH research on car following (CF) behavior

of traditional Human-driven Vehicles (HV) is extensive,

very few studies are oriented to Autonomous Vehicles (AV)
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partly due to the deployment of AV is still in its infant

stage. For a long period, most researchers investigated the

impact of AV on traffic flow by simulation method where

many assumptions need to be made such as the perception

delay/error, time headway, and reaction time, see [1] for a

thorough review.

It was not until recent years that field experiments on

AV were carried out. A review of empirical analysis on

AV related field experiment data is presented in Table I.

Using a two-vehicle platoon, Milanés and Shladover [2] tested

the factory Adaptive Cruise Control (ACC), the IDM based

ACC and a proposed Cooperative ACC (CACC) algorithm

on homogeneous Infiniti M56s and found that the factory

ACC was string unstable due to delay and overshoot but

CACC could overcome this issue. Knoop et al. [3] created

a platoon of 7 vehicles (from 4 different makes) equipped

with ACC and operated the experiment on public roads for

about 500km. They concluded that it was difficult to maintain

a platoon of more than three to four vehicles due to the

disturbances from busy traffic condition and the instabilities in

the CF behavior. The string stability of commercially imple-

mented ACC systems were also assessed through CF model

calibrated from experiment data and results revealed that all

the ACC systems were string unstable [4], [5]. Many more

field experiment campaigns in which various platoon sizes

(2-ACC, 5-ACC, 10-ACC platoons) under public roads and

closed test tracks were organized by the Joint Research Center

of European Commission and the collected data are available

in the OpenACC dataset [6]. Empirical analysis on the dataset

demonstrated that the response times of the equipped ACC

systems are comparable to Human-driven Vehicles (HV) and

instability in the vehicle-platoon was also displayed [7], [8].

A recent ACC experiment by Li et al. [9], [10] focused

more on the behavior of ACC in different ACC settings,

traffic conditions and stimuli. They concluded that for a single

ACC vehicle the ACC response could amplify or dampen

an oscillation but for long platoons the oscillation amplitude

tended to exacerbate very quickly.

However, most empirical evidence mentioned above are

based on data acquired from SAE Level 2 AVs, a CF

behavior analysis of high level (SAE Level 4-5) AV is

missing. Recently, several new datasets pertaining to SAE

Level 4 AV have been released such as Argo Dataset [11], Lyft

Level 5 AV Dataset [12], nuScenes Dataset [13] and Waymo

Open Dataset [14], [15]. These data are usually collected
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Fig. 1. Flowchart of CF behavior comparison analysis.

TABLE I

REVIEW OF EMPIRICAL ANALYSIS ON AV-RELATED FILED EXPERIMENTDATA

by onboard sensors (long range Lidar) where the radius of

the detection range is 75 meters or more [14]. Subsequently,

the trajectories of vehicles and other road users (cyclists

and pedestrians) can be obtained by continuous multi-object

tracking algorithm based on Lidar points. Compared to aerial

photography based and GPS based data acquisition systems,

the onboard Lidar trajectory collection method is advantageous

considering its excellent scalability, higher accuracy and less

penetration issue because of the larger detection range. These

high-resolution and large-scale data collected under various

traffic conditions provide great opportunities to evaluate the

AV’s behavioral impact on traffic flow.

In the literature, most studies focused on the safety per-

formance of an individual AV while more or less ignoring

AV’s impact on the overall traffic flow efficiency. Since AV is

likely to co-exist with other vehicle types in the foreseeable

future, safety and efficiency of mixed traffic are two crucial but

conflicting goals which need to be evaluated simultaneously.

Moreover, current efforts on assessing the impact of AV on

the whole traffic rely on oversimplistic simulations with strong

assumptions regarding AV features and how AV and HV would

interact with each other. Therefore, by exploiting the newly

released Waymo Open Dataset the aim of this study is twofold.

First, as one of the first studies in the literature, we provide

empirical evidences on the CF behaviors of AV and its

impact on surrounding vehicles both in terms of traffic safety

using surrogate safety measures and efficiency using various

measures (e.g., time headways, jam spacings, responses, etc.).

Second, this study answers a critical question: if AV’s impacts

on CF behavior is significant, can such impacts be captured

by some of the parameters of existing CF models? Before we

TABLE II

PROPORTION OF DANGEROUS TTC AND DRAC

can answer this question, one additional question needs to be

addressed, that is, will the short-length trajectories (i.e., 20 s)

in the Waymo Open Dataset be suitable for calibrating CF

models?

To this end, the remainder of this paper is organized

as the flowchart shown in Fig. 1. Specifically, the next

section introduces the paired CF trajectories utilized in this

study. Section III is the empirical analysis consisting of four

parts: part A is the safety evaluation, part B/C/D are about

the efficiency evaluation including time headway, velocity-

spacing relationship and response time. Then in Section IV

CF behavior modelling using Intelligent Driver Model (IDM)

is first validated with short synthetic trajectories and then

implemented on the Waymo’s trajectory data, followed by

statistical tests on the calibration results and stability analysis.

Conclusion is presented in Section V.

II. PAIRED CAR FOLLOWING TRAJECTORIES

The Waymo Open Dataset (https://waymo.com/open/)

consists of two parts: (a)Perception Dataset for 3D

object detection and tracking; and (b)Motion Dataset for
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motion/interaction prediction. Exploration on these two

datasets show that the AV’s trajectory covers all the frames

recorded in each segment in Perception Dataset. However,

in many segments from Motion Dataset, the AV’s trajectories

were involved in complex interactions (lane changing, merg-

ing, unprotected left turn, etc.) or covering only part of the

frames. In this paper, only the Perception Dataset is utilized.

The Waymo’s Open Dataset refers to the Perception Dataset

hereafter.

The Perception Dataset includes large-scale and high-

resolution sensor data collected by Waymo autonomous vehi-

cles in multiple cities in US (i.e., San Francisco, Phoenix, and

Mountain View). A total of 1000 segments (scenarios) were

originally released in 2019, and this number is continuously

growing. The driving conditions covered in this dataset is

diverse in terms of road types (urban streets, freeways),

weather (sunny, rain), and time of day (dawn, day, dusk, night).

The distributions of driving segment environment features

(namely time of day, weather and segment road type) are pre-

sented in Fig. 2. Obviously, in most segments the drivers were

in conditions of daytime, sunny weather and urban streets.

Only 0.7% segments are in rainy days and only 3.5% segments

were on freeways. In general, the driving environments are

quite homogeneous.

The sensor data were collected by 5 Lidars (1 mid-range

and 4 short-range) and 5 cameras (front and sides), where

the Lidars and cameras were calibrated and synchronized.

In addition, a large number of 3D ground truth bounding boxes

(labels) for Lidar data was manually annotated by Waymo

for the purpose of object tracking. This dataset can be very

valuable for the research community because: (a) the data vol-

ume is large; (b) the time resolution is high, i.e., 0.1 seconds;

and (c) the data quality is high and is better than NGSIM

dataset [16]. The authors have previously processed, assessed,

and enhanced the Waymo Open Dataset for driving behavior

research [16]. The processed dataset has also been shared with

the public (https://data.mendeley.com/datasets/wfn2c3437n/2).

In the stage of preliminary data processing, the original

dataset is re-structured and transformed to a user-friendly tabu-

lar format trajectory data with 25 essential attributes, including

the segment environment information (time of day, weather,

etc.), object features (object type, length, etc.) and object track-

ing trajectory (position, speed, heading, etc.). Camera videos

and trajectory view animations are generated for qualitative

verification. Then the CF pairs are extracted manually by

recording the IDs of the leader and the follower based on

trajectory view videos. Great effort has been dedicated to

ensuring that each paired CF trajectory is in a proper CF state.

The impact of large vehicles (i.e., bus and heavy truck), lane

changing, and traffic signals or stops signs has been excluded.

To investigate AV CF behaviors, the paired trajectories are

classified into 3 groups: an AV follows an HV (AV-HV),

an HV follows an AV (HV-AV), and an HV follows an HV

(HV-HV). Unfortunately, there is no AV-AV pair since there is

at most one AV in one segment. The sample size for each type

of CF group is 196 for AV-HV, 274 for HV-AV, 1032 for HV-

HV. Other influencing factors (such as time of day, road types

and weather) in car following behavior are not considered in

TABLE III

MEAN TIME HEADWAY UNDER DIFFERENT SPEED RANGES

this paper since the sample size would be too small to draw

statistically conclusions.

Comprehensive assessing of the data quality is then

implemented on the extracted and paired trajectory data.

consistency analysis shows that the dataset itself is not inter-

nally consistent, i.e., the differentiation of positions yields

inconsistent speeds and accelerations. Jerk value analysis

reveals that some proportion of anomalies still exist in the

data. Moreover, a pattern recognition algorithm is adopted to

assess the trajectory completeness [17]. Specifically, different

driving regimes (e.g., following, acceleration, deceleration,

etc.) in the trajectories are objectively and automatically

identified based on Dynamic Time Warping and Bottom-Up

algorithms. The related codes can be downloaded from this

website (http://www.connectedandautonomoustransport.com/

reproducible-research.html). Our analysis suggests that the

trajectories in the Waymo Open Dataset are all incomplete.

Furthermore, the extracted trajectory data are enhanced

by using an optimization-based outlier removal method and

a wavelet denoising method [16]. The linear programming

optimization model in the outlier removal method can be

implemented efficiently and ensure that the resulted trajectory

is outlier-free. A wavelet denoising method is applied on the

data to filter out noise. Overall, the quality of the trajectory

data utilized in this study is adequately high to support our

empirical analysis.

III. EMPIRICAL ANALYSIS

A. Safety Evaluation

To evaluate AV’s safety performance during car following

using the Waymo Open Dataset, surrogate measures of safety

(SMS) are used. SMS are microscopic traffic flow measures

that can relate to crash risk, and often used in the road safety

literature to diagnose traffic conflicts or near misses (situations

in which two or more road users are sufficiently close in space

and time for their trajectories to cross unless evasive action

is taken) which occur more frequently than crashesÐfor a

short period of time, rather than waiting for long time periods

to accrue a large number of crashes. In terms of CF safety

analysis, two widely used surrogate measures are Time to

Collision (TTC) and Deceleration Required to Avoid Crash

(DRAC). TTC is the time remaining until a collision will

occur between two vehicles if the collision course and speed

difference are maintained [18], as shown in Equation (1); thus,

a smaller TTC value indicates a more dangerous scenario.

And DRAC was defined by Cooper and Ferguson [19] as the

minimum deceleration rate required by the following vehicle

to come to a timely stop (or match the leading vehicle’s speed)
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and hence avoid a crash, as shown in Equation (2); thus,

a higher DRAC value indicates a more dangerous CF scenario.

T T C =







d

v f − vl

, i f v f > vl

∞, otherwise

(1)

DR AC =











(

v f − vl

)2

d
, i f v f > vl

0, otherwise

(2)

where v f and vl are the speeds of the follower and the leader

vehicle, respectively; and d is the gap between the follower

and the leader vehicle.

Since no SMS is perfect and each has its own limitations,

to increase the reliability of our safety analysis, both TTC and

DRAC are adopted in this study to compare the CF safety

performances between the defined three CF groups. Since it

is not meaningful to use TTC as a surrogate safety measure

when the speed is zero, and TTC is not capable of identifying

dangerous cases when speed is too small [20]. In this study

trajectories with speed smaller than 1m/s are removed before

the TTC analysis. The Empirical Cumulative Distribution

Function (ECDF) for TTC and DRAC are presented in Fig. 3

and Fig. 4, respectively. By looking at Fig. 3, it is clear that AV

following HV is the safest while HV following AV is the most

dangerous, among the three groups. However, the pattern is not

clear by visually checking Fig. 4. Therefore, to quantitatively

evaluate the CF safety, the proportions of dangerous TTC and

DRAC values for each group are calculated by using two

commonly used thresholds in the road safety literature, i.e.,

2 s as the threshold for TTC and 3.35m/s2 as the threshold

for DRAC [21], [22]. Meanwhile, to test the sensitivity of the

thresholds two more values are also analyzed for TTC (1s,

4s) and DRAC (2m/s2, 4m/s2), respectively. The results are

shown in Table II.

Table II clearly shows that among the three CF groups, the

AV-HV group has the smallest proportion (0%) of dangerous

TTC, while the HV-AV group has the largest proportion

(nearly 10%) of dangerous TTC (threshold 2s). The same

pattern can be found by comparing the dangerous DRAC

proportions across three CF groups (0.026% for AV-HV group

and 0.28% for HA-AV group, under threshold 3.35 m/s2).

If we consider the cases where both TTC and DRAC values

are dangerous, the proportions are 0%, 0.28% and 0.19%

for AV-HV, HV-AV and HV-HV group, respectively. Similar

phenomenon can be observed from other thresholds. Moreover,

K-S tests on the distributions of TTC and DRAC values

show significant difference among CF groups with very small

p-values. Therefore, we can conclude that regarding CF safety,

AV’s behavior is obviously the safest, indicating that AV is

designed to be more conservative than HV in terms of safety.

Interestingly, HV tends to behave more dangerously when

following an AV, compared with when following another HV.

B. Time Headway

Time headway is an important parameter in car following

because it is related to flow rate, safety, and can act as a bridge

connecting macroscopic traffic characteristics and microscopic

driving behavior. Therefore, it would be interesting to compare

the difference of time headway distribution between AV and

human, as shown in Fig. 5. The time headways are fitted to

the typical lognormal distribution, where the µ and σ values

are: µ = 1.25, σ = 0.43 for AV; µ = 0.99, σ = 0.49 for

human. Normally, one would expect a relative smaller variance

or some simple patterns of time headway distribution for AV

compared to human, since AV is of the same vehicle type and

is controlled by algorithms while human drivers tend to be

more unpredictable thus display larger heterogeneity in terms

of desired time headway. For instance, the time headway dis-

tributions from OpenACC Dataset have two distinctive peaks

which correspond to the maximum and minimum settings of

the ACC controllers, respectively [6]. However, in Fig. 5 it

is not obvious that the AV is following any constant desired

headways. Moreover, the variance in the time headway of AV

is comparable to that of human drivers, which indicates that

the controller in Waymo is sophisticated enough to generate

significant behavioral heterogeneity in the time headway.

Previous research demonstrated that time headway dis-

tribution varies among different speed ranges [23]. In this

study, we also adopt four speed ranges (i.e., 0.5-5.5, 5.5-10.5,

10.5-15.5, 15.5-20.5, unit:m/s) to comprehensively compare

the time headway distributions among the three CF groups,

as is shown in Fig. 6. In general, the time headway increases

as the speed decreases, which is similar to the results in [23].

Moreover, regardless of speed range, the time headway of the

AV-HV group tends to be larger than those of the HV-AV and

HV-HV group, although this discrepancy becomes smaller as

the speed ranges increase. Additionally, the difference of time

headway distribution is not significant between HV-AV group

and HV-HV group. Quantitatively, the mean time headways

under the selected speed ranges are shown in Table III, and

similar phenomenon can be found consistently. Overall, we can

conclude that the time headway of AV-HV CF group is

larger than that of the other two groups, indicating that the

introduction of current AV will bring negative influence on

traffic flow efficiency because of the reciprocal relationship

between time headway and traffic flow rate.

C. Velocity-Spacing Curve

The velocity-spacing (v-s) relationship is essential to many

widely used car following models, e.g., it is explicitly used

in Optimal velocity Model [24], General Force Model [25],

Full Velocity Difference Model [26]; and implicitly used

in Newell’s simplified car following models [27], and IDM

[28]. To construct v-s curve would require homogeneous

equilibrium traffic flow condition, which is not possible in our

study due to the short length of the trajectories and limited

sample sizes. Nevertheless, even with traffic data under inho-

mogeneous condition the comparison of v-s curve between the

predefined three CF groups would still be meaningful in light

of its vital role in delineating car following behavior.

The shape of v-s relationship in this study is assumed to be

a piecewise linear curve composed of a free flow part and a

congested part. As pointed out by Newell [27], it is certainly
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Fig. 2. Driving segment environment features of the Waymo Open Dataset.

Fig. 3. TTC empirical cumulative distribution function.

Fig. 4. DRAC empirical cumulative distribution function.

not obvious to assume a non-linear v-s relation according to

the empirical observations in previous research. On the other

hand, with a piecewise curve the critical traffic state between

free flow and congested flow can be pinpointed. Under such

hypothesis, the piecewise curve fitting problem would be an

optimization problem in which the number of line segments is

two and the breakpoint is unknown. A recently released Python

library (https://pypi.org/project/pwlf/) called plwf is adopted

to solve this problem, in which the users can conveniently fit

a piecewise linear curve with or without known breakpoint

locations, fit for a specified number of line segments, and

force a fit through data points and so on [29]. Additionally,

in order to obtain a robust optimization solution and make

curve fitting results more comparable, we add the following

three constraints:

• The slope of free flow part is 0

• The free flow speed v f is set to be the same for the three

CF groups

• The congested part will go through the average jam

spacings s j calculated from the empirical data

The first and the second constraint is a simplification on

the free flow part in light of the complexities that arise from

various road speed limits and maximum desired speed from

different drivers. Since in this Python library users cannot

specify a constraint on the slope of a line segment, we work

around by forcing the curve pass through (S1, v f ) and (S2, v f ),

where S1 and S2 are large values of spacing to prevent

inaccurate breakpoint (critical state). Meanwhile, we also force

the fit pass through the point (s j , 0). Specifically, the values

of S1, S2, and v f are 200m, 300m, and 15m/s, respectively.

And the s j values are 10.0m for AV-HV group, 6.73m for HV-

AV group, 7.88m for HV-HV group. The global optimization

algorithm used in this library is efficient enough to solve our

problem within seconds.

The v-s scatter plots and the curve fitting results are pre-

sented in Fig. 7. The primitive v-s curve for each CF pair

is directly plotted so that some extreme cases can be clearly

demonstrated. Compared to averaging speed over spacings or

averaging spacing over speeds analysis methods, the curve

fitting method is able to avoid bias near the standstill regime

and critical point. Considerable dispersion is observed in the

v-s plots of each group. By analyzing empirical HV CF

data, Jiang et al. [30] attributed such phenomenon to two

driving behaviors: (a) In certain range of spacing, the drivers

are not sensitive to the changes in spacing if the velocity

differences are small; (b) During the driving process, the driver

change their preferred spacing intentionally or unintentionally

resulting in unfixed spacing at given velocity. The feature of

the scatter plot in Fig. 7(a) implies that the AV might behave

similarly. The parameters of the curve fitting are given in
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Fig. 5. Comparison of time headway distribution between AV and human.

Table IV. The AV-HV group has the largest jam spacing and

critical spacing (the intersection between the free flow branch

and the congested branch, i.e., the turning point), the smallest

slope for the congested branch, and largest critical spacing,

consistently indicating that the AV is more conservative while

following a leader, as depicted in Fig. 7(d). Compared to

the HV-HV group, the HV-AV group shows similar critical

spacing, but a smaller congested branch slope and larger jam

spacing.

D. Response Time

Driver response time is an important measure that is closely

related to traffic safety such as rear-end collision [31], dilemma

zones at signalized intersections [32], cut-off scenario [33] and

take-over control of an automated vehicle [34]. Meanwhile,

driver response time is also a contributing factor in traffic flow

efficiency (i.e., discharge rate) [35].

Due to the inconsistencies of terminology and definitions in

the literature, the theoretically and practically justified defini-

tion of driver response time proposed by Sharma et al. [36] is

adopted in this study: Response time is defined as ªthe time

taken by a driver to adjust his/her speed against a stimulus,

with or without deliberately delaying his/her decision.º In

this definition, the response time is divided into two parts:

(a) Latent Response Time (LRT) which includes reaction

time (sensation, perception, decision, initiation) and delay

(intentionally produced by the driver) and (b) Observable

Response Time (ORT) which is the time between when the

foot movement starts and when it ends.

1) Methodology: Regarding the methodologies for estimat-

ing response time, Sharma et al. [36] provided a thorough

review and demonstrated that wavelet-based energy distri-

bution (WED) method is advantageous to existing methods.

Suppose the speed time series is a continuous function v (t),

and the selected wavelet function is ψ(t), then the wavelet

transform coefficients can be formulated as:

T (s, x) =
1

√
s

∫ +∞

−∞
v (t)ψ

(

t − x

s

)

dt (3)

TABLE IV

VELOCITY-SPACING CURVE FITTED RESULTS

TABLE V

MEAN RESPONSE TIME FOR DIFFERENT TYPES OF DRIVING STATE

CHANGE

where s and x are the scale and translation parameter, respec-

tively, T (s, x) is the corresponding wavelet coefficient at scale

s and location x . Subsequently, the wavelet-based energy at x

can be expressed as:

Ex =
1

max (s)

∫ +∞

0

|T (s, x)|2 ds (4)

The principle of WED method is that an abrupt change

in speed profile will produce a peak in the temporal wavelet

energy distribution profile, where the driving state change

points normally locate.

Despite the capabilities of WED method in detecting sin-

gularities, one problem Sharma et al. [36] did not empha-

size enough is the boundary effect of wavelet transform.

When computing wavelet decomposition coefficients, bound-

ary effect will be introduced due to finite size of the signal

length, as pointed out by Zheng et al. [37], which is charac-

terized by large wavelet transform coefficients at both ends of

the signal range. This occurs because the speed outside the

signal range is assumed to be zero. Large wavelet transform

coefficients are obtained at the boundaries where the signal

shifts from zero to an actual speed value, causing inaccurate

detection of singularities (driving state change points in our

case) near the boundary. Normally the wavelet coefficients at

the boundary are discarded due to this effect, and this is not

a problem if the data length is long enough, which is the case

(the trajectory length is 180s) in [36]. Yet in Waymo’s dataset

such information loss is unacceptable since the length of the

trajectories is only 20s. Hence, in this study signal extension

is implemented on every trajectory by adding 100 trajectory

points on each side of the boundary. Note that such extension

of the signal at each end will not distort WT analysis of the

original signal since the wavelet coefficients from the extended

portions are discarded. The acceleration values of the extended

trajectories are constant, which are equal to the corresponding

real acceleration at the boundaries. In this way, the driving

state change points near the boundary can also be accurately

identified while no new singularities are introduced.

Moreover, while implementing WED method, the selection

of maximum decomposition scale can lead to early or late
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TABLE VI

T TEST P VALUES AMONG DIFFERENT TYPES OF STIMULI

detection of driving state change point [37]. To remedy this

issue, wavelet-based Local Maxima Lines (LML) method

is adopted in this study. Specifically, the modulus maxima

is defined as any point (s0, x0) such that |T (s0, x)| <

|T (s0, x0) | when x belongs to either a right or the left

neighborhood of x0, and |T (s0, x)| ≤ |T (s0, x0) | when x

belongs to the other side of the neighborhood of x0 [38].

And a local maxima line is formed by connecting all nearest

modulus maxima points in the scale space (s, x). Then the

accurate location of a state change point can be found using

the corresponding local maxima line at the finest scale [39].

LML method is more precise than WED method because the

original signal is scrutinized at all decomposition scales, and

is less sensitive to the designated maximum decomposition

scale.

The settings of wavelet-based LML method designed in

this study are specified as below. First, the wavelet function

adopted here is Mexican hat, as suggested in Zheng and Wash-

ington [39] and Sharma et al. [36]. Second, with regard to the

maximum decomposition scale, we have conducted sensitivity

analysis using synthetic trajectory data (thus the ground truth

location of the state change point can be obtained). Results

show that scales between 10 to 50 are trustworthy for both

WED and LML methods. In our study, this number is set to

be 32. Third, the scale to calculate response time is set to

be 15, which is the middle scale under the selected maximum

decomposition scale, to avoid too sensitive (insensitive) detec-

tions at small (large) scales.

2) Empirical Results: As mentioned above, the response

time is defined as the time taken by a driver to adjust his/her

speed against a stimulus, which needs to be classified in detail.

In this study, the type of driving state change point is adopted

to distinguish different stimuli. In car following regimes, the

driving states can be divided into 4 types: following the leader

at a constant speed (F), accelerating behind a leader (A),

decelerating behind a leader (D), and standing behind a leader

(S) [17], [40]. Accordingly, 5 types of stimulus points are

generated: AF, AD, SA, FD, DS. Note that the FS is excluded

since the vehicle is not able to change its state directly

(deceleration or acceleration is required) from following to

standstill, and vice versa. Using the aforementioned estimation

methodology, for each CF group the average response time

of each type of stimulus is given in Table V (numbers in

parentheses are sample sizes). Across all the stimulus types,

the average response times of AV-HV, HV-AV, and HV-HV

groups are 2.42s, 1.84s, 1.80s, respectively.

Further analysis on response time is focused on three

questions:

Fig. 6. Speed dependent time headway distribution.

TABLE VII

T TEST (WMW TEST) P-VALUES FOR RESPONSE TIME COMPARISON

AMONG CF GROUPS

• Is the response time significant different among various

stimulus points?

• Is the response time of AV significantly different from

HV (AV-HV vs HV-HV)?

• For HV, is the response time of following an AV signif-

icantly different from following an HV (HV-AV vs HV-

HV)?

For the first question, our finding is that the difference of

response times between different types of stimuli should not

be ignored. For instance, the response time of SA stimuli

is apparently smaller than other types of stimuli. To further

validate this observation, unpaired t-tests are conducted and

the pair-wise p-values are shown in Table VI. Apart from the

AD-AF pair and FD-AD pair, all other p-values are less than

0.05, indicating that the response times among all types of

stimuli are significantly different. Thus, it is necessary to treat

each type of response time separately.

For the second and third question, p-values of statistical tests

are presented in Table VII. Note that our samples are mostly

not in normal distribution and many researchers would adopt

nonparametric test such as Wilcoxon-Mann-Whitney (WMW)

test rather than parametric test such as t test. However,

according to the research by Lumley et al. [41], Fagerland [42]

and Skovlund and Fenstad [43], the following rules are more

preferable: (a) if the sample size is modestly large enough,

t test should always be adopted, regardless of the distribution;
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(b) if the sample size is small and the distribution is long

tailed and skewed, WMW test should be used. In our study,

for most samples the sample sizes are modestly large, so t test

is more desirable although the distributions are not normal.

Nevertheless, the p-values of both t test and WMW test are

provided to make the analysis more holistic and rigorous.

In Table VII, the t test p-values are directly given and

WMW test p-values are given in parentheses. Overall, the

results from t test and WMW test are quite consistent. For

the second question, we can conclude that the response time

of AV is significantly (marginally significant in the case of FD)

different from HV. Specifically, the response time of AV under

all types of stimuli is consistently larger. For the third question,

when the follower is an HV, the response time difference

between following an AV and an HV is not significant (almost

marginally significant in the case of SA).

According to the aforementioned definition of response time

which is composed of LRT and ORT, the ORT time of AV

would be smaller than HV since there is no foot movement.

In terms of LRT which includes reaction time and delay time,

the reaction time (sensation, perception, decision, initiation)

of AV is similar to HV [7]. Since the overall response time

of AV is larger, we can deduce that the delay time of AV is

larger than HV. In other words, AV is deliberately delaying its

action against a stimulus. This is reasonable considering the

conservative behavior of AV.

Some previous study on ACC and CACC systems revealed

that the observable response times of ACC system range from

1.3s to 2.5s and the corresponding values for CACC are

0.1s to 0.5s [44]. Compared to the average response times

of AV (2.4s) and HV (1.8s) in this study, it is found that:

(a) CACC system has undoubtedly the smallest response time;

(b) in general the ACC system and HV have comparable

response times; and (c) the AV has the largest response time.

In conclusion, among these four types of vehicles, AV is the

most conservative.

IV. CF BEHAVIOR MODELLING

In this section, we use the IDM car following model to

model car following behavior of each vehicle group in the

Waymo Open Dataset. IDM is a widely used car following

model which is known for its capability to replicate many

real-world traffic flow phenomena and its straightforward

interpretation of each model parameter [28], [45]. Previous

studies also adopted the IDM model to simulate the behavior

of CACC vehicle and AV [2], [46]. Although IDM might not

be able to precisely replicate the behavior of both HV and

AV, it is a reasonable tool for us to detect any significant

differences in AV’s and HV’s car-following behavior, given

that: (a) IDM has been frequently used in the literature to

model both HV car-following and AV car-following; and (b) in

our study, results from IDM calibrations are only used as a

supplement to our empirical analysis. A common formulation

of IDM is:

an (t) = a

[

1 −
(

vn (t)

v0

)4

−
(

s∗
n (t)

sn (t)

)2
]

(5)

s∗
n (t) = s0 + T vn (t) −

vn (t) 1vn (t)

2
√

ab
(6)

where a is the maximum acceleration ( m/s2), v0 is the desired

speed ( m/s), s0 is the minimum gap ( m), T is the desired

time gap ( s), b is the comfortable deceleration ( m/s2), s∗
n (t)

is the desired gap, an(t), vn(t)„ sn (t), s∗
n (t) are the follower’s

acceleration, speed, spacing (vehicle length not included) and

desired spacing, respectively, 1vn (t) is the speed difference

(the leader’s speed minus the follower’s speed).

The impact of trajectory incompleteness on CF model cali-

bration error has been investigated in [40] and [47]. However,

both studies used very long trajectories (large than 180s)

and the most incomplete trajectory still included acceleration,

deceleration and following (AFD). In our case, the driving

regimes could consist of only two states or only one state in

extreme situations. With such short trajectories, it is unlikely

to expect all the calibrated IDM parameters are reliable

simultaneously. Nevertheless, whether part of the IDM model

parameters can be calibrated under certain corresponding

driving situations is still an open question. If this is true,

calibration results from the Waymo’s trajectory data can still

be used since our purpose is to compare the difference of

CF behavior, not to precisely replicate the behavior. Thus,

before implementation on Waymo’s dataset it is imperative to

verify the effectiveness of calibrating IDM with rather short

trajectories (20s in Waymo’s case).

A. Validation of CF Model Calibration With Short Synthetic

Trajectories

In order to investigate the impact of short trajectories on

IDM calibration, synthetic trajectories generated with ground

truth model parameters have been used. In principle, efforts

have been made to force the synthetic trajectories to be as

similar as the actual Waymo’s data. The following rules are

designed to generate the paired synthetic trajectory data:

• The length and resolution of the synthetic trajectory is

the same as that in Waymo’s data (20s, 0.1s)

• 8 types of driving state combinations are considered: F,

AF, FD, DS, AFS, AFD, FDS, AFDS, which are based

on the analysis in Hu et al. [16]

• The leader trajectories are directly obtained from the

actual Waymo’s paired trajectory data. For each type of

driving regime, 10 typical paired trajectories are selected

• For each chosen leader trajectory, generate 10 set of

model parameters and their corresponding follower tra-

jectories

• Each generated follower trajectory has the same initial

state as the actual follower

Examples of the generated synthetic trajectories and the

corresponding IDM parameter values are shown in Fig. 8.

As can be observed, these trajectories are rather similar to

the actual Waymo’s trajectories which have been shared in

Hu et al. [16]. If the model parameters (at least some of

the parameters) of these trajectories can be reproduced by

calibration, then it is also valid to use the trajectories in

Waymo Open Dataset to calibrate IDM model.
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Fig. 7. Velocity-Spacing relationship scatter plots and curve fitting results: (a) AV-HV group; (b) HV-AV group; (c) HV-HV group; (d) Comparison.

TABLE VIII

CALIBRATION ERROR WITH SYNTHETIC TRAJECTORIES

By largely following the guidelines in [48], the calibration

settings in this study are described below:

• Global calibration is adopted in which the whole original

trajectory is compared with the simulated trajectory rather

than each data point.

• The measure of performance is spacing instead of speed

or acceleration.

• The goodness of fit function is the RMSE of spacing.

Although this is not the optimal choice according to [48],

the results from this function are reasonable with a small

computational cost.

• Interior point method is selected to solve the optimization

problem.

• The ranges of parameters are set as: v0 [10], [30], T

[0.1]3, s0 [0.1]10, a [0.5]5, b [0.5]5.

The errors (Mean Absolute Error, MAE, and Mean Absolute

Percentage Error, MAPE) between the calibrated parameters

and the ground truth values with synthetic trajectories are

presented in Table VIII. Surprisingly, in most cases the overall

calibration errors are not large even with 20s trajectories. It is

obvious that if only F regime is present, the calibration results

are not trust worthy. Also, in some cases, certain parameters

are not precisely calibrated (MAPEs larger than 10% are in

bold): s0 in AF, a in DS, b in AFS, v0 in FDS and AFDS. How-

ever, for all driving regime combinations (except F in which

T is still extracted reasonably well), the calibration results of

desired time gap T (the principal parameter in IDM [16], [49])

are always reliable. Additionally, if standstill regime is present,
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Fig. 8. Examples of the generated synthetic trajectories and the corresponding IDM parameter values (v0, T, s0, a, b): (a) F (15, 1.8, 2.5, 2.7, 2.1); (b) AF

(19, 0.6, 1.4, 1.8, 2.8); (c) FD (19, 0.6, 0.8, 2.6, 1.6); (d) DS (12, 0.8, 1.5, 1.2, 1.7); (e) AFS (10, 2.0, 1.8, 1.1, 2.1); (f) AFD (21, 1.1, 2.3, 1.9, 2.5); (g) FDS

(12, 0.8, 2.0, 2.8, 2.5); (h) AFDS (10, 1.2, 0.9, 1.4, 2.0).

the accuracy of s0 will generally be improved. In conclusion,

this outcome verifies that it is feasible to compare the CF

behavior of each vehicle group by calibrating IDM using the

trajectories in Waymo Open Dataset.

B. CF Model Calibration With the Waymo’s Dataset

This subsection compares the CF behavior difference among

the three CF groups by calibrating the IDM model using

the trajectories in the Waymo Open Dataset. Each model

parameter is analyzed separately, where v0 is excluded since

it might be influenced by the road speed limits and thus

not a good indicator to distinguish CF behavior. Trajectory

data from 196 AV-HV pairs, 274 HV-AV pairs and 1032 HV-

HV pairs are used in calibrating IDM separately. However,

based on the aforementioned findings from using synthetic

trajectories results from the pairs with the only F regime are

excluded; and minimum gap s0 results from those with the AF

regimes and maximum acceleration a results from those with

the DS regimes, and comfortable deceleration b results from

those with the AFS regimes are discarded as well. In addition,

to avoid bias, boundary values from the calibration results (a

common issue in CF model calibration) are also removed from

the comparison analysis.

The mean values of IDM parameters with their corre-

sponding sample sizes are shown in Table IX. To quickly

assess the accuracy of the calibration results, the value of

minimum gap s0 can be analyzed because of its clear phys-

ical meaning, i.e., the jam spacing with the vehicle length

TABLE IX

CALIBRATION RESULTS USING WAYMO’S TRAJECTORY DATA

TABLE X

T TEST (WMW TEST)P-VALUES FOR CALIBRATION RESULTS COMPAR-
ISONAMONG CF GROUPS

TABLE XI

STRING UNSTABLE PROPORTION

excluded. Recall that the average empirical jam spacings

(vehicle length included) are shown in Table III. If we subtract

the minimum gap s0 from the jam spacings for each CF

group, the corresponding values are 4.78m, 4.49m, 4.6m,
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Fig. 9. Calibrated parameters distribution: (a) desired time gap T ; (b) minimum gap s0; (c) maximum acceleration a; (d) comfortable deceleration b.

which turns out to be very close to the typical average length of

light-duty vehicles (4.5m), which indicates that our calibration

results are accurate. In addition, the calibrated parameters from

HV-HV group are compared with previous IDM calibration

research on pure HV interactions [40], [45], [50], results also

demonstrate that our calibrated parameters are in reasonable

ranges.

OAs shown in Table IX, compared to the other two groups

the AV-HV group has the largest mean desired time gap T

and minimum gap s0. Compared to the HV-HV group, the

HV-AV group shows similar calibration results except that

the minimum gap s0 is smaller. Meanwhile, the distribution

for each model parameter is presented in Fig. 9. To draw a

more rigorous conclusion, statistical tests are carried out using

both unpaired t test and WMW test, and results are shown

in Table X, where p values from WMW test are given in

parenthesis. In most cases, the p-values of t test and WMW

test are consistent (assume that the confidence level is 95%).

However, with regard to the comfortable deceleration b, these

two tests give contradictory conclusion when comparing the

AV-HV and HV-HV group. we believe the result from WMW

test should be preferred in this case because the sample size

is not large and the distribution of b is long tailed and skewed

in all CF groups.

From Fig. 9 and Table X, the difference of parameters max-

imum acceleration a and comfortable deceleration b are not

significant or only marginally significant, either in comparing

AV-HV and HV-HV group or comparing HV-AV and HV-

HV group. Although there’s no strict one to one matching

between IDM parameters and their corresponding driving

regimes [47], in general a and b are related to the acceleration

and deceleration behavior. In this sense, we can roughly

conclude that the difference of acceleration and deceleration

characteristics in car following between AV and HV is not

significant. In contrast, T and s0 values of the AV-HV group

are both significantly larger than those of the HV-HV group.

Such results are consistent with the empirical analysis section

in this paper. Compared to the HV-HV group, the HV-AV

group has a significantly smaller s0 value, but the difference

in T values is not significant between these two groups. One

possible explanation is that out of curiosity, the HV drivers

might tend to keep a smaller jam spacing in order to observe

the AV more closely.

Furthermore, once the model calibration results are

obtained, CF string stability analysis can be carried out sub-

sequently. String stability analysis investigates the evolution

of small perturbations (i.e., speed and spacing deviation from

the equilibrium state) in driving behavior over a platoon
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of vehicles. If a perturbation amplifies (diminishes) along

space, then the platoon is unstable (stable). In general, the

empirical L∞ instability analysis [51] should be implemented

if the dataset includes a platoon of vehicles’ trajectories with

equilibrium states, perturbations and their propagations. In this

study we do not have such trajectories and a stability analysis

method based on calibrated IDM is adopted. Suppose a general

form of CF model an (t) = f (sn, vn, 1vn)t , according to [52]

the measure of string stability can be defined as:

S =
1

2
−

f1v

fv
−

fs

f 2
v

(7)

where S is the value of stability measure, fs = ∂ f
∂s

|e, fv =
∂ f
∂v

|e, f1v = ∂ f
∂1v

|e are the Taylor expansion coefficients of

the acceleration function at the steady state after first order

linearization.

Under the equilibrium speed ve and equilibrium spacing se,

the coefficients of IDM are constructed as follows:

fs =
2a

se

(

s0 + T ve

se

)2

(8)

fv = −a

[

4

v0

(

ve

v0

)3

+
2T (s0 + T ve)

s2
e

]

(9)

f1v =
√

a

b

ve

se

s0+T ve

se

(10)

Thus, for each pair of CF trajectories, a value of stability

measure S can be calculated. A positive value of S indicates

that the CF behavior is string stable. And a negative value

of S can be interpreted as different severity levels of traffic

oscillations as defined by Sun et al. [50].

The proportion of string unstable CF behavior for each CF

group is presented in Table XI. Clearly, the AV-HV group has

the least string unstable CF behavior, which mostly can be

attributed to the larger desired time gap T . According to Sun

et al. [50], a higher stability can alleviate the traffic oscillation

(stop/slow and go waves) severity. In fact, previous studies also

corroborated that a larger time gap is required to successfully

dampen the traffic oscillation [53], [54], [55]. Therefore, this

result indicates that the current AV technology can poten-

tially mitigate traffic oscillations thanks to its conservative

behavior.

V. CONCLUSION

By utilizing the Waymo Open Dataset this paper has com-

pleted two goals: a comprehensive and rigorous CF behavior

comparison analysis between AV and HV; and capturing

important behavioral differences between AV and HV using

the IDM car-following model. For the first goal, AV’s impact

on traffic safety and efficiency is revealed through a four-part

empirical analysis. First, two safety surrogate measures TTC

and DRAC are adopted to evaluate the CF safety of different

vehicle pairs. Second, the time headways under various speed

ranges are analyzed. Third, the velocity-spacing relationship

is approximated by using a piecewise linear curve fitting

method. Fourth, the response times under different stimuli are

estimated with a wavelet-based Local Maxima Lines method.

For the second goal, we have first confirmed the feasibility of

using the short-length trajectories (i.e., 20 s) to calibrate IDM,

using synthetic trajectory data, and then calibrated IDM using

vehicle pairs contained in the Waymo Open Dataset. Based on

the modelling result, AV’s implication on string stability has

also been assessed.

Regarding the safety evaluation, results from both TTC

and DRAC consistently show that AV is often observed to

have a larger time headway, jam spacing, critical spacing

and response time, and thus is much safer than HV during

the car-following process. However, AV’s conservative CF

behavior indicates negative influence on traffic flow efficiency,

which is further confirmed by result from IDM modelling

that the desired time gap T and the minimum gap s0 of

AV is significantly larger than HV. Further string stability

analysis suggests that the proportion of string unstable CF

behavior of AV is smaller than that of HV. This feature

of AV can be potentially beneficial for mitigating traffic

oscillation.

Meanwhile, results from the comparison analysis of HV-AV

group and HV-HV group show that when HV is the following

vehicle, there is no significant difference in its CF behavior

regardless whether the lead vehicle is AV or not, with only

one exception, i.e., the jam spacing is significantly smaller

when the leader vehicle is an AV, which is likely caused by

the curiosity of the HV driver.

Nevertheless, there are several open questions that need to

be further investigated. First, note that this study only analyzes

the case of a single AV rather than a platoon of AVs due to

the limitation of the dataset. In such a case, it is not surprising

to see that AV ensures its safety at the cost of efficiency since

there is no coordination between AV and other vehicles. In the

future, it is possible that a platoon of AVs with the cooperative

driving capability is capable of improving their safety and

efficiency simultaneously. Second, also note that the Waymo

data used in this study were all collected in US. Although we

believe the main conclusions drawn in this study will hold

in a different country, specific details are likely to change

when IDM models are re-calibrated using a new dataset.

It would be interesting to check those differences between

different countries if more data are available. Third, due to

lack of hardware-level microscopic data (e.g., the error and

delay of the actuation or control system), the safety evaluation

of this study is limited to surrogate safety measures. It is

important to pinpoint the underlying causal factors that can

lead to a collision in the context of designing AV car-following

algorithms in the future.

In conclusion, the implications of the main findings in this

study are threefold: (a). currently AV has significantly larger

TTC and smaller DRAC values, which is much safer than HV;

(b) compared to HV, ACC and CACC vehicles, trajectories

from AV show that they have larger average time headways,

response times and jam spacings, indicating that AV is less

efficient as other vehicle types; and (c) for HV, in general,

there is no significant difference between following AV and

following HV. Overall, we conclude that currently AV behaves

in a conservative way to enhance its safety at the cost of traffic

efficiency.
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