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This paper presents a provably safe method for constrained reorientation of a spacecraft in the presence of input

constraints, bounded disturbances, and fixed frequency zero-order-hold (ZOH) control inputs. The set of states

satisfying all pointing and rate constraints, herein called the safe set, is expressed as the intersection of the sublevel sets

of several constraint functions, which are subsequently converted into control barrier functions (CBFs). Themethod

then extends prior results on utilizingCBFswithZOHcontrollers to the case of relative-degree-2 constraint functions,

as occurs in the constrained attitude reorientation problem. The developed sampled-data controller is also shown to

remain provably safe in the presence of input constraints and bounded disturbances. Finally, the method is validated

and compared to three prior approaches via both low-fidelity and mid-fidelity simulations.

Nomenclature

f1; f2; g1; g2 = arbitrary functions in model definition
Hi = inner constraint set corresponding to hi,

index potentially omitted

HΔ
i = subset of inner constraint set correspond-

ing to hi with margin Δ, index potentially
omitted

hi = generic control barrier function, index
potentially omitted

M1;M2;M
alt
2

= constants of a constraint function of rela-
tive degree 1

M−
2 ;M

�
2 ;M

−
3 ;M

�
3

= constants of a constraint function of rela-
tive degree 2

pη; p
alt
η = polynomials that upper bound evolution of

a constraint function of relative degree 1
pκ; ph = polynomials that upper bound evolution of

a constraint function of relative degree 2
Qi = constraint set corresponding to κi, index

potentially omitted

Qδ
i = subset of constraint set corresponding to κi

with margin δ, index potentially omitted
q = state coordinates in Eq. (1), also used as

quaternion in Eq. (2)
S = safe set (intersection of constraint sets)
ssq∶R → R = ssq�λ� � λjλj (ssq ismonotone increasing,

invertible, and once continuously differ-
entiable)

T = time step of discretization
T = set of considered times
t = time (arbitrary units)
ts = specific time instance on a trajectory (see

also σ)
t0 = initial time
U = set of allowable control inputs
Uzi = set of guaranteed safe control inputs for the

ith constraint, index potentially omitted
u = control input

Vi = constraint set corresponding to ηi, index
potentially omitted

v = state velocities in Eq. (1)
w = vector of wheel states wi in Eq. (2)
X = set of possible states
x = full state vector x is equal to �q; v�
Z = inverse of combinedmatrix of moments of

inertia
Z11; Z12; Z21; Z22 = submatrices of Z
Zi = robust inner constraint set corresponding

to κi or ηi, index potentially omitted
ηi = generic relative-degree-1 constraint func-

tion, index potentially omitted
κi = generic relative-degree-2 constraint func-

tion, index potentially omitted
μ = parameter used to define control barrier

functions for relative-degree-2 constraints
Ξ = set of considered disturbances
ξ = perturbing input
σ = specific time instance on a trajectory (see

also ts)
τ = arbitrary number in R≥0
ϕ = function for _η under no disturbances
ϕ1;ϕ2 = functions used for constructing relative-

degree-1 safety conditions
ψ = function for �κ under no disturbances
ω = angular velocity state in Eq. (2)
� ; �, � ; � = open interval, closed interval

I. Introduction

T HIS paper extends the recent theory of control barrier functions
(CBFs) to solve the problem of constrained spacecraft attitude

reorientation. At present, most spacecraft reorientations are accom-
plished either via shortest-path maneuvers, which can be easily
implemented onboard a spacecraft, or else are preplanned by ground
operators when more complex maneuvers are required. As the num-
ber of active spacecraft increases, there is potential for reducing
operating costs in the latter case by increasing spacecraft autonomy,
i.e., by computing maneuvers onboard without consulting ground
operators. A common scenario in which shortest-path maneuvers are
not allowable is when a spacecraft is not permitted to point sensitive
instruments (body-fixed vectors) at bright objects (inertially fixed
vectors), or equivalently, when a spacecraft is required to keep an
instrument pointed in a specified direction.
The problem of constrained reorientation has been studied exten-

sively, using methods including path planners [1–10], model predic-
tive controllers (MPCs) [11–15], sliding mode controllers (SMCs)
[16–18], reference governors [19], and barrier functions [20–24].
It has also been studied using CBFs combined with path planning
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in [25], along with cursory treatment using CBFs with controllers
computed online in [26–29]. Compared to prior approaches, this
paper develops a method that provably guarantees both state con-
straint (i.e., instrument pointing requirements are obeyed) and input
constraint (i.e., maximum allowable torques are not exceeded) sat-
isfaction in the presence of bounded disturbances and under a
sampled-data control law. The final control law is the output of a
four-dimensional quadratic program (QP) that is computationally
lightweight. These guarantees are particularly useful when designing
SmallSat attitude controllers, which often operate with infrequent
ground contact, using undersized actuators (i.e., tight input con-
straints), at low altitudes (i.e., large disturbances), at low control
sampling frequencies, and with limited computational capabilities.
To employ standard CBF terminology, we refer to the set of states

with allowable separations between all instruments and all bright
objects, and with allowable angular rates, as the safe set, which we
assume to be nonempty at all times. The central problem is that of
rendering trajectories always inside the safe set from some viable set
[30] of initial conditions where this problem is well-posed.
Early work on constrained reorientation in [20] developed a

Lyapunov function for safe reorientation in terms of Euler angles,
though this Lyapunov functionmay be nonconvex. The authors in [1]
noted that this same constraint could be expressed as a convex set of
quaternions, and in [21,22] authors developed a strictly convex
Lyapunov function in terms of quaternions. The work in [17,18]
added an angular velocity constraint and actuator-allocation algo-
rithm to the same technique. Thework in [24] expanded the technique
to modified Rodrigues parameters and proposed a method for ensur-
ing input constraint satisfaction. Note that, while these Lyapunov
functions resulted in simple control laws that could be implemented
online, none of these approaches consider controller sampling, and
these controllers can result in slow trajectories, as we show in Sec. V.
An early path-planning technique utilized a variant of rapidly

exploring random trees to find safe paths in SO�3� space [10]. Later,
path-planning techniques using direct optimization along with the
quaternion constraint identified in [1] were developed in [1,2,6] and
combined with translational planning in [5], though these methods
are potentially too computationally intensive to implement online on
a spacecraft processor. Related work in [3,4,8] discretized the safe set
to a finite set of nodes and used graph search techniques to plan paths
between the nodes. Themaneuvers resulting from these techniques are
safe but possibly inefficient due to the discretization. The planners in
[7,9] add additional refinements to improve efficiency, whereas the
controller proposed in [25] executes a faster transitionbetween the path
nodes and usesCBFs to keep the trajectorywithin a safe region around
the preplanned path. By comparison, the approach employed in this
work and in [21,22] only keeps the state away from unsafe states rather
than in a neighborhood of a precomputed safe path as in [25].
MPC approaches to constrained reorientation, such as [11] and its

extensions in [12,13], are generally special applications of path-
planning techniques. Similarly, the SMC approach in [16–18] and
the approximate optimal control via reinforcement learning in [23]
are special applications of the barrier functions used in [21,22].While
MPCand optimal control can provide safety guarantees, in this paper,
we seek a method that is less computationally intensive. The reference
governor approach in [19] is notable because it developed an explicit
control law without path planning that is guaranteed to satisfy input
constraints.However, fewof the aforementioned approaches explicitly
consider disturbances, whereas there is extensive CBF literature on
disturbance rejection [31,32], and a recent result on simultaneous
disturbance rejection and input constraint satisfaction [33]. Finally,
spacecraft often operate with digital controllers with slow update
cycles. Path planners and MPC can account for controller sampling
given sufficiently sophisticated models, while most Lyapunov meth-
ods cannot. On the other hand, margins for controller sampling have
also been considered in prior CBF literature such as [29,34], which this
paperwill extend to also account for relative-degree-2 state constraints,
input constraints, and disturbance rejection.
CBFs are a Lyapunov-like method for determining safe control

inputs, i.e., control inputs that generate trajectories that provably
satisfy the state constraints. For an overview of CBFs, see [35]. In

this methodology, we assume that each requirement that the system
trajectories must satisfy is expressed as the state belonging to a given
constraint set (e.g., the set of states such that a particular instrument is
sufficiently far away from a particular bright object). The safe set is
then the intersection of all constraint sets [36,37]. For each constraint
set, we then construct a corresponding CBF (e.g., [33,38,39]) and
associated zero-sublevel set, herein called an inner constraint set.
Each CBF then provides a pointwise condition on the control input
that is sufficient to ensure that state trajectories always belong to the
CBF’s inner constraint set. Multiple CBFs and inner constraint sets
may then be combined to establish forward invariance of a subset of
the safe set [36,37]. Application of CBFs to attitude control was first
suggested in [27], and in fact, it would be simple to express the
quaternion constraint developed in [1] as a CBF. However, such a
CBF would suffer from the same challenges with input constraints,
disturbances, and controller sampling as the related Lyapunov
approaches in [17,18,21,22]. These challenges are amplified when
some of the constraint functions are of relative degree 2 with respect
to the system dynamics, as is the case for spacecraft pointing con-
straints. That said, extensions of [35] in the CBF literature provide
several general tools for addressing these challenges [29,31–33,
35,40,41], as well as other potentially relevant phenomena not pres-
ently considered. The authors have recently addressed input con-
straint satisfaction, robustness to disturbances, and zero-order-hold
(ZOH) controller samplingwithCBFs individually in [29,33,41], and
will incorporate and extend all of these results in this paper. In
particular, we will show in Example 1 that the ZOH discretization
method in [29] is not immediately compatible with the input con-
straint work in [33,40,41], so the bulk of Sec. III is devoted to
reconciling these two approaches while minimizing conservatism.
We then apply all the CBF conditions together online using an
m-dimensional (QP), where m is the number of control inputs and
is generally far smaller than the dimension of the optimizations in
planning or MPC approaches.
The rest of this paper is organized into both 1) a general method

accomplishing the above foci for arbitrary systems and constraints,
and 2) a case study that applies this method to the constrained
reorientation problem. The case study is presented in parallel as each
step of the theory is developed for numerical motivation. Section II
presents the formulation of the general problem, and of the specific
system and constraints used in the case study. Section III presents the
main result combiningZOHcontrol inputs [29]with input constraints
[33,40,41] and disturbances [31,33] for relative-degree-2 constraints
(e.g., pointing constraints), while Sec. IV presents a related extension
of [29] for relative-degree-1 constraints (e.g., angular rate con-
straints). Section V presents the real-time QP controller and simu-
lations both in MATLAB and in a NASA-developed attitude control
simulator. Section VI presents concluding remarks. Proofs of the
theorems in Secs. III and IVare contained in the Appendix.

II. Preliminaries and Problem Formulation

A. Model

Drawing upon [37], let q ∈ Q ⊆ Rn1 be the coordinates and v ∈
V ⊆ Rn2 the velocities of a second-order system:

_q � f1�t; q; v� (1a)

_v � f2�t; q; v� � g1�t; q; v�u� g2�t; q; v�ξ (1b)

with time t ∈ T ⊆ R, state x ≜ �q; v� ∈ X ≜ Q × V ⊆ Rn1�n2 ,
and control u ∈ U ⊂ Rm, where U is compact, and disturbance
ξ ∈ Ξ ⊂ Rp, where Ξ is bounded. Assume that function f1 is twice
continuously differentiable in all arguments, that functions f2; g1; g2
are continuously differentiable in all arguments, and that f1; f2; g1;
g2; u; ξ are sufficiently regular so as to admit unique system trajecto-
ries for the entire time domain T. The results of this paper hold for
general f1; f2; g1; g2, but we are most interested in applications to
attitude control, so suppose the following specific system.
Case Study Part i (SystemDefinition):Assume a single rigid-body

spacecraft. Let FN be an inertial frame and FB a spacecraft-fixed
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frame. For this case study, let Q � fq ∈ R4jkqk � 1g be the qua-

ternion space and let q � �q0; q1; q2; q3�T ∈ Q be the quaternion

(with scalar element q0 first) that rotates from FN to FB. Let ω ∈
R3 be the angular velocity of FB with respect to FN expressed in

frame FB. Suppose that the spacecraft has m reaction wheels. Let

ai; i � 1; : : : ; m, ai ∈ R3, kaik � 1, denote the spin axes of the

wheels in frame FB, and define A ∈ R3×m as A ≜ �a1; : : : ;am�. Let
wi; i � 1; : : : ; m, wi ∈ R, denote the angular velocity of the wheels
with respect to FB, and define w ∈ Rm as w � �w1; : : : ; wm�T . The
system velocities as in Eq. (1b) are v � �ω;w� ∈ V � R3�m.

Assume that each wheel is axially symmetric and let Jw;i ∈ R>0 be

the axial moment of inertia of the ith wheel, and let Jw ∈ Rm×m be a

diagonal matrix whose ith row and column element is Jw;i. Let Jb be
the moment of inertia of the spacecraft without wheels plus the

transverse moments of inertia of the wheels (e.g., see [42]

(Eq. 3.140, Chap. 3.3.5.1)) expressed in frame FB, and let Jtot ≜
Jb � m

i�1 Jw;i�aia
T
i � denote the total moment of inertia of the

spacecraft. Assume that Jb and Jw are constant. The spacecraft state

is then x � �q;ω;w� ∈ X � Q × R3�m and the dynamics [43] are

_q � 1

2

0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

q (2a)

_ω

_w
�

Jtot AJw

JwA
T Jw

−1

≜Z

−ω × �Jtotω� AJww� � ξ

u
(2b)

where u ∈ U ⊂ Rm is the commanded wheel torque. The maximum

wheel torque is limited to umax, so U � fu ∈ Rmjkuk∞ ≤ umaxg. For
this particular case study, we suppose a 6U CubeSat with parameters

given in Table 1 and visualized in Fig. 1. Note that we have chosen a

configuration with four wheels in Table 1 rather than a more typical

three-wheel configuration in order to demonstrate the general appli-

cability of these results. The wheel moments of inertia and maximum

torques in Table 1 are based off a commercially available wheel pack-

age,‡with themaximumper-wheel torque reduced to be comparable to

a three-wheel configuration. LetΞ � fξ ∈ R3jkξk ≤ ξmaxg for ξmax in

Table 1, which comes from approximate values of aerodynamic drag

on a 6U CubeSat at 500 km altitude.

B. Safety Constraints

Next, suppose that the trajectories of Eq. (1) are required to lie in

the intersection of several constraint sets, each defined by the zero

sublevel set of some constraint function. Let κi∶T ×Q → R for i �
1; : : : ; N1 denote the relative-degree-2 constraint functions, and let

ηi∶T × V → R for i � N1 � 1; : : : ; N1 � N2 denote the relative-

degree-1 constraint functions. The constraint sets are

Qi�t� ≜ fx � �q; v� ∈ Xjκi�t; q� ≤ 0g (3a)

Vi�t� ≜ fx � �q; v� ∈ Xjηi�t; v� ≤ 0g (3b)

and the resultant safe set is

S�t� ≜ ⋂
N1

i�1

Qi�t� ∩ ⋂
N1�N2

i�N1�1

Vi�t� (4)

whereQi, Vi, and S are permitted to be time-varying. As an abuse of

notation, we will generally write κi�t; x� and ηi�t; x� in place of

κi�t; q� and ηi�t; v� in order to match the CBF notation in Sec. II.C.

Some constraint functions that are common in attitude control are as

follows; these constraints are also the basis of our simulations in

Sec. V.
Case Study Part ii (Constraints): For the spacecraft system in

Eq. (2), let b ∈ R3, kbk � 1, be a body-fixed vector, such as an

instrument boresight vector (e.g., the green or blue vectors in Fig. 1).

Let s�t�, ks�t�k � 1, be a vector, potentially time-varying (provided s
is thrice continuously differentiable), for which we require that the

angle between s�t� andb is always at least θ (e.g., the local sunvector,
represented by the yellow vector in Fig. 1). This leads to a constraint

function of the form

κb�t; q� � s�t�TR�q�b − cos θ (5)

where R�q� is

R�q� ≜
1 − 2q22 − 2q23 2q1q2 − 2q0q3 2q0q2 � 2q1q3

2q0q3 � 2q1q2 1 − 2q21 − 2q23 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q0q1 � 2q2q3 1 − 2q21 − 2q22

(6)

This is a relative-degree-2 constraint function, since _κb is not

a function of u; ξ. Note that Eq. (5) can be used to express both

keep-out and keep-in zones. Also note that κb in Eq. (5) is equiva-

lent to κ�b�t; q� � q�TMq� in [1] (Eq. 2.5), where M is given in

[1] (Eq. 2.6) and q� � �−q1;−q2;−q3; q0�T is the conjugate of q

Table 1 Physical parameters of the spacecraft

Parameter Value

m 4

A 0 0 0.8165 −0.8165
0 −0.9428 0.4714 0.4714

−1 0.3333 0.3333 0.3333

Jw;i 1.722�10�−5 kg ⋅m2; i � 1; 2; 3; 4

umax;i 7�10�−4 N ⋅m; i � 1; 2; 3; 4

Jb 0.1672 0 0

0 0.1259 0

0 0 0.06121

kg ⋅m2

P 0.1672 P12 P13

P21 0.1259 P23

P31 P32 0.06121

kg ⋅m2

where jPijj < 10−20 for i ≠ j

emax 5.092�10�−5 kg ⋅m2∕s2

wmax 628.3 rad∕s
ξmax 1.00�10�−5 N ⋅m

Fig. 1 A 6UCubeSat with two spacecraft-fixed keep-out zones centered
about b1; b2, and an inertially fixed vector s that must be kept outside
these zones.

‡CubeWheel Medium: www.cubespace.co.za/products/adcs-components/
cubewheel/#cubewheel-specifications.

1876 BREEDEN AND PANAGOU

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ic
hi

ga
n 

on
 F

eb
ru

ar
y 

27
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

G
00

74
56

 

www.cubespace.co.za/products/adcs-components/cubewheel/#cubewheel-specifications
www.cubespace.co.za/products/adcs-components/cubewheel/#cubewheel-specifications


with the scalar element q0 last (the conjugate arises because of
notational differences with [1]). Next, we also require that the maxi-
mum angular rate of the spacecraft is bounded for safety of the
spacecraft structure. This leads to the constraint function

ηω�t; v� � ωTPω − emax (7)

where emax ∈ R and P ∈ R3×3 are given in Table 1. The values of
emax andP are constructed so that the safe set allows for angular rates
of up to 1 deg/s on the largest principal axis and up to 2.730 deg∕s on
the smallest principal axis, andwill be elaborated upon in Case Study
Parts xi–xii. This is a relative-degree-1 constraint, since _ηω is a
function of u; ξ. Finally, we require that the wheel angular velocities
are limited, so introduce m constraint functions:

ηwi
�t; v� � jwij −wmax; i � 1; : : : ; m (8)

where wmax is a constant. This paper will assume that a suitable
momentum dumping control law (e.g., scheduled thruster or magne-
torquer application) has beendeveloped so that the constraints encoded
by ηwi

�t; x� are always satisfied without impacting the rest of the

control design. Thus, we only focus on the relative-degree-1 constraint
in ηω and the relative-degree-2 constraint in κb, though we still
incorporate thewheel rate bounds in Eq. (8) in the safe set construction
in Eq. (4). Finally, for this case study, suppose that there are two
constraints of the form Eq. (5) for body-fixed vectors b1 and b2, so
the safe set is S � Qb1 ∩ Qb2 ∩ Vω ∩ Vw1

∩ Vw2
∩ Vw3

∩ Vw4
.

C. Continuous-Time CBFs

This paper will utilize and extend CBF theory to address the
problem of rendering state trajectories always inside the safe set. A
formal definition of CBF with robustness to bounded disturbances is
as follows.
Definition 1 ([33] Def. 3): For the system (1), a continuously

differentiable function hi∶T × X → R is a CBF on the set S if there
exists a locally Lipschitz continuous class-K functionαi∶R≥0 → R≥0
such that

sup
ξ∈Ξ

min
u∈U

_hi�t;x;u; ξ� ≤ αi�−hi�t;x��; ∀x ∈Hi�t� ∩ S�t�; ∀t ∈ T

(9)

whereHi is called the inner constraint set and is given by

Hi�t� ≜ fx ∈ Xjhi�t; x� ≤ 0g (10)

That is, a scalar-valued function hi is a CBF if there is sufficient
control authority given the set U that the total derivative of hi can be
upper bounded regardless of the disturbance value ξ in the considered
set Ξ. The following lemma, derived from [33] (Lemma 4) and [37]
(Lemma 3), can then be used to guarantee forward invariance (i.e.,
safety) of the setHi.
Lemma 1: Let u�t; x� be a control law. Given a CBF hi on S

satisfying Definition 1, if x�t0� ∈ Hi�t0� and u satisfies

sup
ξ∈Ξ

_hi�t; x�t�; u�t; x�t��; ξ� ≤ αi�−hi�t; x�t��� (11)

for all t ∈ �t0; tf�, where tf is possibly∞, then x�t� remains inHi�t�
for all t ∈ �t0; tf�.
That is, as long as the control law satisfies the condition (11), called

the CBF condition, the state trajectory cannot leave Hi; i.e., Hi is a
controlled-invariant set. In general,Hi is not equivalent toS, because
there may exist states in S�t0� that are instantaneously safe at t0, but
that cannot be rendered safe for all t ∈ �t0; tf� [33]. Thus, we callHi

an inner constraint set. We note that Lemma 1 can be applied to any

number of CBFs, so we seek a collection of CBFs fhigMi�1 such that

∩M
i�1 Hi is a subset of S in Eq. (4) (see [37] Lemmas 2 and 3).

Specifically, our final control law will employ one CBF hi for each

constraint function κi or ηi (equivalently, one CBF set Hi for each
constraint set Qi or Vi) in order to leverage existing literature
[33,40,41], though such a one-to-one correspondence is not neces-
sary [37].
Denote the set of control inputs satisfying Eq. (11) as Uhi�t; x�.

Note that the total derivative of hi is

_hi�t; x;u; ξ� �
∂hi�t; x�

∂t
� ∂hi�t; x�

∂q
f1�t; x� �

∂hi�t; x�
∂v

f2�t; x�

� g1�t; x�u� g2�t; x�ξ (12)

so each condition (11), i � 1; : : : ; N1 � N2, is affine in u and each
Uhi is a half-space. Thus, aQP-based control law as in [35] (Sec. II.C)

can efficiently solve for u satisfying several constraints of the form
Eq. (11) simultaneously.
For each relative-degree-1 constraint ηi in Eq. (3b), wewill choose

theCBFhi ≡ ηi soHi ≡ Vi. For the relative-degree-2 constraints κi in
Eq. (3a), variousmethods to construct aCBFhi such thatHi ⊆ Qi are
covered in [33,40,41], and this paper will extend the method in [33]
(Sec. 3.1) specifically. For a constraint function κi satisfying certain
properties (covered in [33] Sec. 3.1), one possible choice of CBF is

hi�t; x� � κi�t; x� �
_κi�t; x�j_κi�t; x�j

2μ
(13)

for some parameter μ > 0. This choice of CBF does not work for all
systems, but is particularly useful for systems similar to the double
integrator, such as a double integrator with small nonlinearities. We
hypothesize that Eq. (13) can be used for pointing constraints as in
Eq. (5), so this is the only CBF for relative-degree-2 constraint
functions κi considered in this paper. Possible extensions of the other
CBFs in [33,40] to ZOH control inputs are left to future work.
Let μ1 > μ2 > 0, and let hi;μ1 and hi;μ2 be two corresponding

CBFs. Note that Hi;μ1 ⊃ Hi;μ2 . Thus, the least conservative CBF of

the form (13) will have the largest allowable parameter μ. Also note
that with hi as in Eq. (13), the setHi is does not meet our requirement
that Hi is a subset of Qi. To address this, we recall the follow-
ing lemma.
Lemma 2 ([33] Lemma 7): Let u�t; x� be a control law. For some

function κi, let hi be as in Eq. (13). If x�t0� ∈ Hi�t0� ∩ Qi�t0� and u
satisfies Eq. (11) for all t ∈ �t0; tf�, where tf is possibly∞, then x�t�
remains inHi�t� ∩ Qi�t� for all t ∈ �t0; tf�.
That is, even though Lemma 1 only guarantees forward invariance

ofHi, because of the special form of h in Eq. (13), the setHi ∩ Qi is
also rendered forward invariant. We now consider how Eq. (13)
applies to our case study.
Case Study Part iii (Continuous-Time CBF): For the constraint

function κb in Eq. (5), the function hb in Eq. (13) is a CBF on S as in
Definition 1 for any parameter 0 < μ ≤ 0.0025.

D. Robust Sampled-Data Formulation

Thus far, all results have been for continuous controller updates,
but our goal is to apply the CBFs (13) and (7) when the controller is
instead updated at a fixed frequency. Now suppose that the control
inputu is updated at discrete times tk; k ∈ N, where tk�1 − tk � T for
fixed time-step T > 0, and that u is fixed between time steps k and
k� 1. That is, we seek a ZOH control law

u�t� � uk; ∀t ∈ �tk; tk�1� (14)

where uk � u�tk; x�tk�� ∈ U. Denote xk � x�tk�. Since the control
input is updated only at the times tk, it is difficult to ensure that
Eq. (11) is satisfied at every time instant (i.e., including between time
steps), as is required for Lemma 1 to apply. The work in [29]
summarizes three stricter versions of Eq. (11) that when applied only
at times tk; k ∈ N ensures that the original condition (11) is always
satisfied between time steps, and a related method that accomplishes
the same result without using Eq. (11). However, the methods in [29]
do not easily apply to CBFs constructed from relative-degree-2
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constraint functions, such as in Eq. (13). This is demonstrated byway
of the following example.
Example 1: Given a relative-degree-2 constraint function κi, one

possible CBF is that in Eq. (13) for some constant μ > 0. According
to [29] (Thm. 3), this CBF can be rendered safe in aZOH fashion if for
all x ∈ Hi�t�; t ∈ T there exists u ∈ U such that

_hi�t; x� � _κi�t; x� 1� �κi�t; x; u; ξ�
μ

≤ −
1

T
κi�t; x� −

1

2
rT (15)

where r ≥ 0 is a parameter defined in [29] (Eq. (17)). As explained in
[29], r could either be a constant (“global” case), or a function of t; x
(“local” case) depending on the implementation. In either case, r
represents possible values of �κi and, for that reason, is usually lower
bounded by a positive number, here denoted r0 > 0 (in the global
case, let r0 � r).

The issue that arises here is that, for any arbitrarily small δ > 0,
there exist x ∈ Hi�t�; t ∈ T such that _κi�t; x� � δ and κi�t; x� �
− δ2

2μ. For such x, Eq. (15) simplifies to

�κi�t; x; u; ξ� ≤ ϵ�δ� ≜ δ

2T
−
μrT

2δ
.
Because r ≥ r0 > 0, it follows that limδ→0�ϵ�δ� � −∞. That is,

the ZOH sampling margin r causes the required �κi to go to −∞ near
the boundary of Hi, which also causes the required u to become
unbounded. Thus, the methods in [29] cannot be applied to the CBF
(13), or any of the relative-degree-2 strategies in [33], if there are also
input constraints.
Thus, the method in [29] suffers from the infeasibility of the

condition [29] (Eq. 5) when the control input u is constrained. The
interested reader can examine this problem further by downloading
the code linked in [29] and increasing the value of the constant μ in
[29] (Table 1). Thus, the central problem of this paper is as follows.
Problem 1: Given the safe set S in Eq. (4), focus on a single

constraint function ηi∶T × V → R or κi∶T ×Q → R that is of rela-
tive degree 1 or 2, respectively,with respect to the dynamicmodel (1).
Assume that x�tk� ∈ S�tk� in Eq. (4) at the current sample time k, and
that all other constraints x�t� ∈ Qj�t� and x�t� ∈ Vj�t� for j ≠ i are
satisfied for all t in the inter-sample period �tk; tk�1�. We seek to
derive a set Zi�t� ⊆ Qi�t� or Zi�t� ⊆ Vi�t� for all t ∈ T and a set
Uzi�tk; x�tk�� such that 1) given x�tk� ∈ Zi�tk� and u�tk; x�tk�� ∈
Uzi�tk; x�tk��wecan provably guarantee i)x�tk�1� ∈ Zi�tk�1� and ii)
x�t� ∈ Qi�t� or x�t� ∈ Vi�t� for all t ∈ �tk; tk�1� for any allowable
disturbance ξ ∈ Ξ, and 2) the set U ∩ Uzi�tk; x�tk�� is nonempty for

all x�tk� ∈ Zi�tk� ∩ S�tk�; tk ∈ T.
We refer to set Zi as the ith robust inner constraint set. Similar to

howwe restricted the constraint setQi to the inner constraint setHi to
account for input constraints, leading to the safe control set Uhi , in

this paper, we will further restrict the allowable sampled states to the
new set Zi to account for disturbances and controller sampling,
leading to the new safe control set Uzi . Figure 2 shows the relation

betweenQi (cyan),Hi (hashed), andZi (gray) for a relative-degree-2
constraint function. Section III will address the relative-degree-2
case of Problem 1, while Sec. IV will address the simpler relative-
degree-1 case.

III. Method for Relative Degree Two

A. Strategy

Webegin by addressing the relative-degree-2 case of Problem 1, as
the relative-degree-1 case easily follows. In this section, we drop the
subscript i, so let κ denote any relative-degree-2 constraint function
[e.g., Eq. (5)], and h the corresponding CBF as in Eq. (13). The
core idea of this method, and those in [29,34], is that given
h�tk; x�tk�� ≤ 0, wewant to identify a formula for a worst-case value
of h�tk � τ; x�tk � τ��, denoted hbound�tk; x�tk�; τ�, for τ ∈ �0; T�
and find a suitable control input to ensure that hbound�tk; x�tk�; τ�
is nonpositive for all τ ∈ �0; T�. However, the problem highlighted
in Example 1 is that the worst-case formulas hbound following from

all the methods in [29,34] rely upon linear approximations of h
on the interval �tk; tk�1�. The obvious extension is to use a higher-

order approximation of the worst-case trajectory that h could

follow between time steps. However, when using a higher-order

approximation, it is no longer sufficient to only check that

hbound�tk; x�tk�; T� ≤ 0, as there may exist τ ∈ �0; T� such that

hbound�tk; x�tk�; τ� > hbound�tk; x�tk�; T�, as visualized by the red

and cyan points in Fig. 3. Thus, unlike in [29,34], we must instead

check that hbound�tk; x�tk�; τ� ≤ 0 for all τ ∈ �0; T�, which adds

complexity to the problem. To address this possibility of exiting

and returning to the inner constraint set, we seek local maximizers

σ (e.g., the red circle in Fig. 3) such that hbound�tk; x�tk�; σ� ≥
hbound�tk; x�tk�; τ� for all τ ∈ �0; T�. We then identify a bound Δ on

the differences hbound�tk;x�tk�;σ�−h�tk;x�tk�� and hbound�tk; x�tk�;
σ� − hbound�tk; x�tk�; T� and define the sets

HΔ�t� ≜ fx ∈ Xjh�t; x� ≤ −Δg (16)

Qδ�t� ≜ fx ∈ Xjκ�t; x� ≤ −δg (17)

It follows that if h�tk; x�tk�� ≤ −Δ and hbound�tk; x�tk�; T� ≤ −Δ,
which are relatively simple conditions to enforce [e.g., see Eq. (29)],

then h�tk�τ;x�tk�τ��≤hbound�tk;x�tk�;τ�≤hbound�tk;x�tk�;σ�≤0
for all τ ∈ �0; T�. This is visualized in Fig. 2, where the red sample

trajectory is always safe, because at the sample times tk, the trajectory
meets the stricter condition of being in the gray set.
To define a set Z as in Problem 1, we will need expressions for

suitableΔ in Eq. (16) and δ in Eq. (17), fromwhich it will follow that

Z � HΔ ∩ Qδ.We seek tominimize conservatism, i.e., to choose the

smallest δ;Δ for which we can still provably demonstrate safety

between each tk and tk�1. To this end, Secs. III.C and III.D study

possible expressions for δ;Δ that work well for the system (2), and

that lead to a final control strategy summarized in Theorem 4.

Fig. 2 Diagram of a constraint set Qi, corresponding inner constraint

setHi, robust inner constraint setZi, and a safe trajectory x�t� ∈ Qi ∩
Hi with controller samples x�tk� ∈ Zi at the red “x” marks.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (s)

h

tk tk+T

Linear
Quadratic
Actual

Fig. 3 Diagramof a linear and quadratic upper bound on the trajectory
of h�t; x�t�� between two sampled times, and the maximizer σ of the
quadratic curve.
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We begin by presenting a naive approach to determining Δ; δ.
Assuming a second-order hbound function [such as that in Eq. (28)],
the required marginΔ can be determined entirely by the values of the

second derivative �h. Thus, consider the following (very conservative)
baseline example with numbers derived from our case study.
Case Study Part iv (A Naive Approach to Computing Maximum

Overshoot): Let the time step for the controller of Eq. (2) be
T � 0.2 s. Let hb as in Eq. (13) be a CBF for κb in Eq. (5)
and suppose that μ � 0.00167 as in Table 2 (which we will
justify later). Suppose that ξ ≡ 0 for this example. Let r �
minx∈S�t�;t∈T;u∈U �hb�t; x; u; 0� � −0.550. It follows that one possible
upper bound on the overshoot of hb between time steps is

Δ � − 1
8
T2r � 2.75�10�−3. We will show in Secs. III.C and III.D

that this is over 200 times as conservative as necessary for this system.

B. Sampling and Robustness Constants

We now proceed similarly to [29] by defining several constants of
the system, analogous to the Lipschitz constants in [29], and then
using these constants to bound system behavior. First, define

M−
2 ≜ inf

t∈T;x∈S�t�;ξ∈Ξ
∂_κ�t; x�
∂v

g2�t; x�ξ (18a)

M�
2 ≜ sup

t∈T;x∈S�t�;ξ∈Ξ

∂_κ�t; x�
∂v

g2�t; x�ξ (18b)

The constantsM−
2 andM�

2 represent bounds on our uncertainty in �κ
because of the unknown disturbance. We assume that Eqs. (18) and
(21) are well-defined.We represent the component of �κ that is certain
using the function ψ as follows:

ψ�t; x; u� ≜ ∂_κ�t; x�
∂t

� ∂_κ�t; x�
∂q

f1�t; x�

� ∂_κ�t; x�
∂v

f2�t; x� � g1�t; x�u (19)

so that

�κ�t; x; u� ≤ ψ�t; x; u� �M�
2 (20a)

�κ�t; x; u� ≥ ψ�t; x;u� �M−
2 (20b)

In practice, the value ofψ is exactly known only at the sampling times
tk, so we also define the constants

M−
3 ≜ inf

t∈T;x∈S�t�;u∈U;ξ∈Ξ
∂ψ�t; x; u�

∂t
� ∂ψ�t; x;u�

∂q
f1�t; x�

� ∂ψ�t; x;u�
∂v

f2�t; x� � g1�t; x�u� g2�t; x�ξ (21a)

M�
3 ≜ sup

t∈T;x∈S�t�;u∈U;ξ∈Ξ

∂ψ�t; x; u�
∂t

� ∂ψ�t; x;u�
∂q

f1�t; x�

� ∂ψ�t; x;u�
∂v

f2�t; x� � g1�t; x�u� g2�t; x�ξ (21b)

to describe our uncertainty in the evolution of ψ between time steps
due to both the ZOH sampling and the disturbance. That is, for τ > 0,

ψ�t� τ; x�t� τ�; u� ≤ ψ�t; x�t�; u� �M�
3 τ (22a)

ψ�t� τ; x�t� τ�;u� ≥ ψ�t; x�t�; u� �M−
3 τ (22b)

Note that the control input u is the same on both sides of the inequal-

ities in Eq. (22), so these inequalities are only useful during a single
ZOH time step. Also, unlike in [29], we assume the bounds

M−
2 ;M

�
2 ;M

−
3 ;M

�
3 are global (i.e., are computed over all of S� for

simplicity, though extensions for local bounds computed online as in

[29] could also be developed at greater computational cost. If the
global bounds (18) and (21) are undefined, then more involved

analysis than is presently considered may be required. Note that we

defined the lower bounds M−
2 ;M

−
3 and upper bounds M�

2 ;M
�
3 sep-

arately to cover cases such as when the dynamics and/or disturbance

environment are known to tend to increase/decrease h [e.g., if the
unsafe state is of higher/lower potential energy than other states, such
as would occur if gravity gradient were included in Eq. (2)]. In other

cases, it may occur thatM−
2 � −M�

2 andM−
3 � −M�

3 . In the upcom-

ing theorems, we will need the following relations. Let σ be some
time in �tk; tk�1�, where u is constant on �tk; tk�1�, and let τ ∈ R≥0 be

such that σ � τ (or σ − τ) is alsowithin �tk; tk�1�. Then, using only the
time argument for brevity, it holds that

�κ�σ� ≤
�20a�

ψ�σ� �M�
2 ≤
�22b�

ψ�σ � τ� −M−
3 τ�M�

2 ≤
�20b�

�κ�σ � τ�
−M−

2 −M−
3 τ�M�

2 (23a)

�κ�σ� ≥
�20b�

ψ�σ� �M−
2 ≥
�22a�

ψ�σ � τ� −M�
3 τ�M−

2 ≥
�20a�

�κ�σ � τ�
−M�

2 −M�
3 τ�M−

2 (23b)

�κ�σ� ≥
�20b�

ψ�σ� �M−
2 ≥
�22b�

ψ�σ − τ� �M−
3 τ�M−

2 ≥
�20a�

�κ�σ − τ�
−M�

2 �M−
3 τ�M−

2 (23c)

�κ�σ� ≤
�20a�

ψ�σ� �M�
2 ≤
�22a�

ψ�σ − τ� �M�
3 τ�M�

2 ≤
�20b�

�κ�σ − τ�
−M−

2 �M�
3 τ�M�

2 (23d)

Case StudyPart v (Constants):For the system (2) and constraint κb
in Eq. (5), the values ofM−

2 ;M
�
2 ;M

−
3 ;M

�
3 are given in Table 2. Note

that these values hold for all θ ≤ π∕2 in Eq. (5), and are larger than the
resultant values (i.e., are overly conservative) when θ > π∕2.

C. Determining Δ;δ When h and κ Share Maximizers

Using the above constants, we now determine suitable values of

Δ; δ for Eqs. (16) and (17) in two parts. First, we note that a necessary
condition for a maximizer σ of h occurring between time steps tk and

tk�1 is _h�σ; x�σ�; uk; ξ� � 0. Because of the form of h in Eq. (13), a

sufficient condition for _h � 0 is _κ � 0, so maximizers of hwill often
be co-located with maximizers of κ, as illustrated by the blue lines in
Fig. 4. Thus, this subsection determines appropriate margins Δ; δ
specifically when the maximizers of κ and h are co-located, while the
following subsection determines these margins when this is not the
case (green lines in Fig. 4). We begin with the following lemma.
Lemma 3: Suppose that κ is thrice differentiable and of relative

degree 2 with respect to Eq. (1), and u is constant on �tk; tk�1�. If σ ∈
�tk; tk�1� is the time of a local maximizer of h in Eq. (13) on �tk; tk�1�

Table 2 System constants
for case study

Parameter Value

T 0.2 s

M�
2 1.64�10�−4

M−
2 −1.64�10�−4

M�
3 6.2�10�−3

M−
3 −6.2�10�−3

δ1 1.10�10�−5
δ2 9.7�10�−6
Δ2 1.3�10�−5
Δ3 1.09�10�−5
μ 0.00167

M1 5.79�10�−7
Malt

2 1.95�10�−5
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and _κ�σ; x�σ�� � 0, then σ is also a local maximizer of κ on �tk; tk�1�
and it must hold that 0 ≥ �κ�σ; x�σ�; u; ξ� ≥ −μ.
The consequence of Lemma 3 is that, provided that the stated

condition holds, we can now use knowledge about κ to upper bound
the variation in h between time steps. Lemma 3 is particularly helpful

because analysis of κ is generally simpler than analysis of h, and
because μ is a tunable parameter. Note that maximizers of the CBF h
can also occur when _κ�σ; x�σ�� ≠ 0 and in these cases Lemma 3

would no longer apply, thus motivating Lemma 4 in Sec. III.D.

However, when Lemma 3 does hold, we can substantially reduce

the required conservatism to prevent x�t� from leavingH�t� between
sample times, as illustrated using our case study as follows.
Case Study Part vi (Application of Lemma 3): Suppose the same

setup as in Case Study Part iv and suppose that the conditions

of Lemma 3 hold. It follows that h�σ; x�σ�� � κ�σ; x�σ��, so we
can instead compute Δ as a bound on the possible overshoot of κ
between time steps. Let r�minx∈S�t�;t∈T ;u∈U κ

:::�t;x;u;0� �−0.0262
(recall that Case Study Part iv assumed ξ ≡ 0), which leads to the

new bound Δ � − 1
8
T2r � 1.31�10�−4. Finally, since Lemma 3

also says that �κ�σ; x�σ�; u; ξ� ≥ −μ, and we can show that

minx∈S�t�;t∈T ;u∈U κ
:::�t; x; u; 0� � −0.0062, it follows that �κ�t; x�t�;

u; 0� ≥ r � −μ − 0.0062T � −0.00291 for all t ∈ �tk; tk�1� assum-

ing σ ∈ �tk; tk�1�, which leads to Δ � − 1
8
T2r � 1.46�10�−5. Thus,

Lemma 3 reduces the conservatism Δ on H needed to ensure safety

during the between-sample interval compared to Case Study Part iv.
We now apply Lemma 3 to calculate a general formula for appro-

priate margins Δ; δ in Eqs. (16) and (17) on h�tk; xk�; κ�tk; xk� to
ensure that x remains safe between sampling times.
Theorem 1: Suppose that κ is thrice differentiable and of relative

degree 2 with respect to Eq. (1), and u is constant on �tk; tk�1�.
Suppose that all maximizers σ of h in Eq. (13) on the interval

�tk; tk�1� satisfy _κ�σ; x�σ�� � 0. Define δ1 as

δ1 ≜ max
τ∈�0;T�

min
1

2
�μ�M�

2 −M−
2 ��T − τ�2 − 1

6
M−

3 �T − τ�3;

1

2
�μ�M�

2 −M−
2 �τ2 �

1

6
M�

3 τ
3 (24)

If x�tk� ∈ Hδ1�tk� ∩ Q�tk� in Eqs. (16) and (3) and x�tk�1� ∈
H�tk�1� ∩ Qδ1 �tk�1� in Eqs. (10) and (17), then x�t� ∈ H�t� for

all t ∈ �tk; tk�1�.
Case Study Part vii (Application of Theorem 1): Using the values

ofM−
2 ;M

�
2 ;M

−
3 ;M

�
3 ; μ in Table 2, it follows that δ1 � 1.10�10�−5 in

Eq. (24). This is of similar magnitude to the value ofΔ in Case Study

Part vi, as expected, and is equivalent to 2.27 arcseconds of shrinkage

of the inner constraint set.
Thus, in the case where the maximizers of κ and h are consistent,

we have an explicit formula for how much we should further restrict

the setH at the sample times to ensure that the state never leaves the

setH between the sample times. Having established this, we note that

the requirements of Theorem 1 are still overly conservative. This

is because we assumed that HΔ and Qδ were defined using the

same margin parameter Δ � δ � δ1. For certain systems, applying

different marginsΔ2 on h�tk; xk� and δ2 on κ�tk; xk�may reduce this

margin, as presented in the following theorem.

Theorem 2: Suppose that κ is thrice differentiable and of relative
degree 2 with respect to Eq. (1), and u is constant on �tk; tk�1�.
Suppose that all maximizers σ of h in Eq. (13) on the interval
�tk; tk�1� satisfy _κ�σ; x�σ�� � 0. Suppose that there exist constants
δ2 ≥ 0 and Δ2 ≥ 0 for which it holds that

max
τ∈�0;T�

min −Δ2 �
1

2
�μ�M�

2 −M−
2 ��T − τ�2 − 1

6
M−

3 �T − τ�3;

− δ2 �
1

2
�μ�M�

2 −M−
2 �τ2 �

1

6
M�

3 τ
3 ≤ 0 (25)

If x�tk� ∈ HΔ2�tk� ∩ Q�tk� in Eqs. (16) and (3) and x�tk�1� ∈
HΔ2�tk�1� ∩ Qδ2�tk�1� in Eqs. (16) and (17), then x�t� ∈ H�t� in
Eq. (10) for all t ∈ �tk; tk�1�.
The primary difference between Theorem 1 and Theorem 2 is that,

in Theorem 1, the form for δ1 was provided explicitly. On the other
hand, in Theorem 2, neither δ2 nor Δ2 is uniquely defined. If we fix
either δ2 or Δ2, we can use condition (25) to compute the other
constant. It follows from Theorem 1 that one valid combination is
Δ2 � δ2 � δ1. Another helpful strategy is to setΔ2 � Δ3, whereΔ3

is presented in the next subsection, and to then compute the smallest
allowable δ2. We also note that, unlike Theorem 1, the conditions of
Theorem 2 are recursively feasible. That is, the ending condition

x�tk�1� ∈ HΔ2�tk�1� ∩ Qδ2�tk�1� at time tk�1 implies the starting

condition x�tk� ∈ HΔ2�tk� ∩ Q�tk� when k advances by one step.
Case Study Part viii (Application of Theorem 2): Using the

values ofM−
2 ;M

�
2 ;M

−
3 ;M

�
3 ; μ in Table 2, one possible combination

satisfying Eq. (25) besides Δ2 � δ2 � δ1 is Δ2 � 1.3�10�−5 and

δ2 � 9.7�10�−6.

D. Determining Δ; δWhen h and κ Have Distinct Maximizers

Now that we have thoroughly covered excursions outside the sets

HΔ;Qδ when Lemma 3 applies, we finally discuss the behavior
between sampling times when this is not the case, as is illustrated
by the green lines in Fig. 4.
Lemma 4: Suppose that κ is thrice differentiable and of relative

degree 2 with respect to Eq. (1), and u is constant on �tk; tk�1�, where
tk�1 � tk � T. Suppose that M�

3 > 0, M−
3 < 0, and μ ≥ M�

2 −
M−

2 � �maxfjM�
3 j; jM−

3 jg�T. Define Δ3 as in Eq. (A34) in the

Appendix. Suppose that there exists a maximizer time σ ∈ �tk; tk�1�
for which h�σ; x�σ�� ≥ h�t; x�t�� for all t ∈ �tk; tk�1� at which

_κ�σ;x�σ��≠0. Ifx�tk�∈HΔ3�tk�∩Q�tk� andx�tk�1� ∈ HΔ3�tk�1� ∩
Q�tk�1�, then x�t� ∈ Q�t� for all t ∈ �tk; tk�1�. Moreover, if there
exists a time ts ∈ �tk; tk�1� at which _κ�ts; x�ts�� � 0, then ts is
unique.
Note that in Lemmas 3 and 4, we supposed existence of a local

maximizer of h. If a local maximizer of h does not occur on �tk; tk�1�,
then it is trivial to show that x�t� ∈ H�t� for all t ∈ �tk; tk�1�, and thus
by Lemma 2, x�t� ∈ Q�t� for all t ∈ �tk; tk�1�. Also, it should be
emphasized that Lemma 4 does not guarantee that x�t� ∈ H�t� for all
t ∈ �tk; tk�1� as in Theorems 1 and 2, because the value ofΔ3 required
to guarantee that result could be larger. Rather, Lemma 4 only
guarantees that x�t� stays in the original constraint set Q�t� for all
t ∈ �tk; tk�1�, and the proof further shows that x�t� stays inH�t� in the
special case where a local maximizer ts ∈ �tk; tk�1� of κ also exists.
Case Study Part ix (Application of Lemma 4): Using the values of

M−
2 ;M

�
2 ;M

−
3 ;M

�
3 ; μ in Table 2, it follows that Δ3 � 1.09�10�−5 in

Eq. (A34). This occurs for γ � 3.6�10�−6, σ − tk � 0.13 s, and
ts − σ � 0.0023 s. In this case, Δ3 < δ1, but this is not guaranteed
in general.
Remark 1:Note that the necessary condition �κ�σ; x�σ�; u; ξ� � −μ

in the proof of Lemma 4 [preceding Eq. (A16)] is very specific, so in
the authors’ experience, maximizers of h meeting the conditions of
Lemma 4 are rarer than maximizers meeting the conditions of
Lemma 3. However, the conditions of Lemma 4 occur more fre-
quently if μ is chosen very small.
Thus, we have now identified bounds on the overshoot of κ

between time steps both when κ and h share maximizers (Lemma
3) and when the maximizer of κ is distinct from the maximizer of h

tk tk+1

Fig. 4 Illustration of trajectories where the maximizers of κ and h on
�tk;tk�1� are co-located (blue), and where the maximizer of h precedes

that of κ (green).
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(Lemma 4). We thus have all the tools we need to define the robust

inner constraint setZ. We now combine Theorem 2 and Lemma 4 to

state our main theorem.
Theorem 3: Suppose that κ is thrice differentiable and of rela-

tive degree 2 with respect to Eq. (1), and u is constant on �tk; tk�1�,
where tk�1 � tk � T. Suppose that M�

3 > 0, M−
3 < 0, and μ ≥

M�
2 −M−

2 �maxfjM�
3 j; jM−

3 jgT. Suppose that there exist δ2 and

Δ2 satisfying condition (25), and that Δ2 ≥ Δ3 in Eq. (A34). If

x�tk� ∈ HΔ2 �tk� ∩ Q�tk� and x�tk�1� ∈ HΔ2�tk�1� ∩ Qδ2�tk�1�,
then x�t� ∈ Q�t� for all t ∈ �tk; tk�1�.
It follows from Theorem 3 that we can express the robust inner

constraint set as in Fig. 2 as

Z�tk� � Qδ2�tk� ∩ HΔ2�tk� ∩ HΔ3�tk� (26)

Remark 2: Note that δ1 in Eq. (24) decreases with decreasing μ,
whileΔ3 in Eq. (A34) tends to increasewith decreasing μ. Although μ
is a tunable variable, this tradeoff suggests that there is some mini-

mum amount of margin required when using a ZOH controller,

regardless of the choice of μ. Note that both δ1 and Δ3 decrease with

decreasing T.

E. Determining the Set of Safe Controls

Now that we have thoroughly addressed the problem of overshoot

between time steps, we seek a condition on u that guarantees

h�tk�1; x�tk�1�� ≤ −Δ2 and κ�tk�1; x�tk�1�� ≤ −δ2 so that we may

apply Theorem 3.Moreover, we seek a choice of parameters δ2;Δ2; μ
such that this condition is always feasible with respect to the input

constraints everywhere in Z in Eq. (26). To this end, define the

following polynomials in τ:

pκ�t; x�t�; u�t�; τ� ≜ κ�t; x�t�� � _κ�t; x�t��τ� 1

2
ψ�t; x�t�; u�t��τ2

� 1

2
M�

2 τ
2 � 1

6
M�

3 τ
3 (27)

ph�t; x�t�; u�t�; τ� ≜ pκ�t; x�t�; u�t�; τ� �
1

2μ
ssq _κ�t; x�t��

� ψ�t; x�t�; u�t��τ�M�
2 τ�

1

2
M�

3 τ
2 (28)

whichwewill show represent upper bounds on κ�t� τ; x�t� τ�� and
h�t� τ; x�t� τ��, respectively, given x�t� and a ZOH u�t�. Here,
ssq�λ� ≜ λjλj for brevity.
Theorem 4: Suppose that κ is thrice differentiable and of relative

degree 2 with respect to Eq. (1); M−
3 ;M

�
3 ; δ2;Δ2;Δ3; μ satisfy the

conditions of Theorem 3; Z is as given in Eq. (26); and u satisfies

Eq. (14) for every k ∈ N. If x�t0� ∈ Z�t0� and

pκ�tk; x�tk�; u�tk; x�tk��; T� ≤ −δ2 (29a)

ph�tk; x�tk�; u�tk; x�tk��; T� ≤ −Δ2 (29b)

both hold for every k ∈ N, then x�t� ∈ Q�t� for all t ∈ T.
Note that while the upper boundspκ andph are valid for any τ ≥ 0,

Theorem 4 only considers the values of pκ and ph at τ � T, and thus
relies on the analysis leading up to Theorem 3 (which was not

dependent on pκ; ph) to guarantee that κ remains nonpositive

between sampling times, i.e., for τ ∈ �0; T�. Based on Theorem 4,

we conclude with the following definition of a CBF for ZOH appli-

cations, analogous to that in [35] (Def. 2).
Definition 2: For a thrice continuously differentiable constraint

function κi, the function hi∶T × X → R in Eq. (13) with parameter

μ is a degree-2 ZOH CBF (D2ZohCBF) on the set S for time-step T
if there exist constants δ2;Δ2 satisfying Eq. (25) and Δ2 ≥ Δ3 in

Eq. (A34) such that

min
u∈U

�maxfpκi�t; x;u; T� � δ2; phi�t; x; u; T� � Δ2g� ≤ 0;

∀x ∈ Zi�t� ∩ S�t�; ∀t ∈ T (30)

where Zi, pκi , and phi are given in Eqs. (26–28), respectively.

We revert to using the i indexing notation in Definition 2 for

completeness (recall that this entire section and thus Definition 2

too are for one constraint at a time). Similar to Eq. (9) with continuous

control, Eq. (30) accounts for the allowable control set U, so if h
is a D2ZohCBF, then the conditions (29) are feasible in the presence
of input constraints for all x�t� ∈ Z�t�; t ∈ T. Equivalently, if h
is a D2ZohCBF then the set Uz�t; x� ∩ U is nonempty for all

x ∈ Z�t� ∩ S�t�, t ∈ T, where

Uz�t; x� � fu ∈ Rmjpκ�t; x; u; T� ≤ −δ2 and ph�t; x;u; T� ≤ −Δ2g
(31)

The only remaining component is to determine a valid triple

�δ2;Δ2; μ�. One such triple is δ2 � δ1 in Eq. (24), Δ2 � Δ1 where

Δ1 ≜ maxfδ1;Δ3g in Eqs. (24) and (A34), and μ � μ� as follows:

μ��δ2;Δ2� ≜ max
μ∈�0;∞�

μ such that

max
x∈Z�t�∩S�t�

t∈T

min
u∈U

�maxfpκ�t; x;u; T� � δ2; ph�t;x;u; T� �Δ2g� ≤ 0

(32)

assuming that μ� exists. One can also choose μ ≤ μ��δ2;Δ2�. Note
that for large ξ or T, δ2 andΔ2 will also be large, and there may be no

μ� satisfying Eq. (32) and the conditions of Theorem 3, indicating

that Eq. (1) cannot be safely controlled at such a sampling time T. A
plot of μ� using δ2 � δ1 and Δ2 � Δ1 for dynamics (2) is shown in

Fig. 5, where the black region is where μ� does not exist or is less

than M�
2 −M−

2 �maxfjM�
3 j; jM−

3 jgT.
Case Study Part x (Selection of μ for Input Constraints):Using the

values ofM−
2 ;M

�
2 ;M

−
3 ;M

�
3 in Table 2, the choice �δ1; δ1; μ��δ1; δ1��

where μ��δ1; δ1� � 0.00167 as in Eq. (32) is one valid triple. Alter-

natively, �δ2;Δ2; μ
��δ2;Δ2�� is another such triple. We note that

μ��δ2;Δ2� is slightly larger than μ��δ1; δ1�, but the difference is only
in the fourth significant digit of μ for this particular system. The

authors observed a greater difference between μ��δ2;Δ2� and

μ��δ1; δ1� for problems where umax was greater. Thus, ZOH discre-

tization has led to amore conservative result than the continuous-time

case with μ � 0.0025 in Case Study Part iii.
Note that the polynomial pκ is linear in ψ , and therefore affine

in u, so one can encode Eq. (29a) in a QP-based control law as in

[35] (Sec. II-C). The polynomial ph has nonlinear dependence on ψ
(because of the ssq function), butph is still monotone increasing inψ ,

Fig. 5 Plot of μ� in Eq. (32) variation with the disturbance bound ξmax

and sampling periodT for the system (2), where “x”marks the case study
parameters.
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and thus one can write ph ≤ −Δ2 in Eq. (29b) equivalently as ψ ≤
ψmax for some number ψmax (the expression for ψmax is omitted
for brevity, but the interested reader is referred to the function
get_PhiQ in the simulation code in Sec. V). Thus, one can also
encode Eq. (29b) in a QP, and the set Uz in Eq. (31) is a polytope. In
conclusion, the setsZ in Eq. (26) andUz in Eq. (31) solve the relative-
degree-2 case of Problem 1.

IV. Method for Relative Degree 1

A. Preliminary Method

We now extend the method in Sec. III to constraint functions that
are of relative degree 1with respect to the dynamics (1).As before,we
drop the subscript i and assume that η represents any relative-degree-
1 constraint function. In this section, we assume that η is also a CBF,
sowewill not need to employ the intermediary step of defining h and
H, as was done for relative-degree-2 constraints. Similar to Eq. (19),
define the function

ϕ�t; x; u� ≜ ∂η�t; x�
∂t

� ∂η�t; x�
∂v

f2�t; x� � g1�t; x�u (33)

which represents the component of _η that is known to the controller.
Likewise, define the constant

M1 ≜ sup
t∈T;x∈S�t�;ξ∈Ξ

∂η�t; x�
∂v

g2�t; x�ξ (34)

which represents our uncertainty in _η because of the unknown
disturbance. It then holds that

_η�t; x;u� ≤ ϕ�t; x; u� �M1 (35)

Because we intend to implement a ZOH controller, we then define

M2 ≜ sup
t∈T;x∈S�t�;u∈U;ξ∈Ξ

∂ϕ�t; x;u�
∂t

� ∂ϕ�t; x;u�
∂q

f1�t; x�

� ∂ϕ�t; x;u�
∂v

�f2�t; x� � g1�t; x�u� g2�t; x�ξ� (36)

so that for τ ≥ 0 it holds that

ϕ�t� τ; x�t� τ�; u� ≤ ϕ�t; x�t�; u� �M2τ (37)

In this section, we only require the upper bounds on Eqs. (34) and
(36), so we omit the superscripts + and − used in the prior section.

Here, M1 and M2 are analogous to M�
2 and M�

3 , respectively, from

Sec. III.B. Now define the following polynomial in τ

pη�t; x; u; τ� ≜ η�t; x� � ϕ�t; x; u�τ�M1τ�
1

2
M2τ

2 (38)

which serves as an upper bound on the evolution of η and is employed
in the following theorem.
Theorem 5: Suppose that η is twice differentiable and of relative

degree 1 with respect to Eq. (1) and u satisfies Eq. (14) for every
k ∈ N. Suppose thatM2 ≥ 0 in Eq. (36). If x�t0� ∈ V�t0� and

pη�tk; x�tk�; u�tk; x�tk��; T� ≤ 0 (39)

for every k ∈ N, then x�t� ∈ V�t� for all t ∈ T.
Note that Theorem 5 is a straightforward extension of [29] (Cor. 3)

to systems with disturbances, while the insights in the following
subsection are new to this paper and motivated specifically by the
system in Eq. (2).
Case Study Part xi (Application of Theorem 5): For the system (2),

in order for the constants M−
2 ;M

�
2 ;M

−
3 ;M

�
3 for κb in Eq. (5) to

be well-defined [i.e., for S in Eqs. (18) and (21) to be compact],
the maximum system angular velocity must be bounded. There
are various ways to encode such a bound. First, if one desires that

kωk ≤ ωmax for some ωmax ∈ R>0, then one could use either

η1�t; x� � kωk − ωmax or η2�t; x� � kωk2 − ω2
max. Note that M2 is

undefined for the constraint function η1, so Theorem5 does not apply.
Instead, suppose that we choose η2. Then, letting ωmax �
0.0175 rad∕s, it follows that M2 � 0.00153. While η2 satisfies the
definition of D1ZohCBF, this leads to an effective margin of

�1
2
M2T

2�∕w2
max ≈ 10%, which is rather large. While this does not

directly impact the robust inner constraint set Z in Eq. (46), this
margin in effect makes certain states in the safe set inaccessible (see
[29] for a more extensive discussion of ZOH margins), so we would
like to reduce this margin
Next, suppose that the matrix Z in Eq. (2) is of the form

Z � Z11 Z12

Z21 Z22
(40)

where Z11 ∈ R3×3; Z12 ∈ R3×m; Z21 ∈ Rm×3; Z22 ∈ Rm×m. Note

that, under the dynamics in Eq. (2), kωk2 is not a conserved quantity,
so if the spacecraft is not spinning about a principal axis, it will take
active control effort to keep the state within a level set of η2. On the
other hand, kinetic energy is a conserved quantity, which takes no
control effort to maintain (unless the disturbance adds energy to the

system). For this reason, define P in ηω in Eq. (7) asP � Z−1
11 , so that

ηω encodes a maximum kinetic energy constraint. Then, using ηω in

Eq. (7) with emax in Table 1, one findsM2 � 8.30�10�−5, leading to a
smaller effective margin of �1

2
M2T

2�∕emax ≈ 3.3%.

B. Reducing Conservatism

Before we present a definition for a valid CBF for the relative-
degree-1 case, we present an extension of Theorem 5 that reduces
conservatism for certain systems and constraint functions, and in
particular the constraint function ηω in our case study in Eq. (7). In
developing this paper, the authors noticed that themain contributor to
M2 for the constraint function in Eq. (7) was the control input u.
While x and ξ are not known exactly between time steps tk and tk�1,
the value of u�t� � u�tk� for t ∈ �tk; tk�1� is a known quantity, and
thus can be removed from the uncertainty bound M2. Motivated by
this, suppose that there exists functions ϕ1∶U → R≥0 and ϕ2∶T ×
S × U × Ξ → R such that

_ϕ�t; x; u; ξ� ≡ ϕ1�u� � ϕ2�t; x; u; ξ� (41)

for all t ∈ T; x ∈ S; u ∈ U; ξ ∈ Ξ. The value of ϕ1�u� is known, so
define a constant analogous to Eq. (36) using ϕ2 only as

Malt
2 ≜ sup

t∈T;x∈S�t�;u∈U;ξ∈Ξ
ϕ2�t; x; u; ξ� (42)

Then we can define the polynomial

palt
η �t; x; u; τ� ≜ η�t; x� � ϕ�t; x; u�τ�M1τ�

1

2
ϕ1�u� �Malt

2 τ2

(43)

Corollary 1: Suppose that η is twice differentiable and of relative
degree 1 with respect to Eq. (1) and u satisfies Eq. (14) for all k ∈ N.
Suppose that ϕ1 in Eq. (41) is positive semidefinite and Malt

2 ≥ 0 in

Eq. (42). If x�t0� ∈ V�t0� and

palt
η �tk; x�tk�; u�tk; x�tk��; T� ≤ 0 (44)

for every k ∈ N, then x�t� ∈ V�t� for all t ∈ T.
We are now ready to give the complete requirements for a relative-

degree-1 constraint function η to be a CBF in ZOH applications.
Definition 3: A twice continuously differentiable function ηi is a

degree-1 ZOHCBF (D1ZohCBF) on the setS for time-step T if there
exists a positive semidefinite function ϕ1∶U → R≥0 and a function
ϕ2∶T × S × U × Ξ (where one can useϕ1�u� ≡ 0) satisfying Eq. (41)
such that
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min
u∈U

palt
ηi �t; x; u; T� ≤ 0; ∀x ∈ S�t�; ∀t ∈ T (45)

where palt
ηi is as given in Eq. (43).

That is, η is a D1ZohCBF if the condition (39) is always feasible
inside the safe set. Unlike Definition 2, Definition 3 does not contain
any additional tuning parameters. We assume that the function η has
already been constructed or tuned so as to be possible to render the
corresponding set V forward invariant in the presence of input con-
straints. This is reasonable in the context of spacecraft attitude
control, because the function ηω in Eq. (7) represents spacecraft
kinetic energy. A fundamental requirement of control design should
be that the spacecraft is able to reduce its kinetic energy from any safe
state. In math, this requirement is equivalent to Eq. (45) for ηω. One
case in which this requirement is not satisfied is if the spacecraft is
allowed to achieve large angular velocities while operating at a
control frequency too slow to stabilize the system. In this case, no
amount of tuning will yield a safe controller, so Eq. (45) will be
violated, and one will need to operate at lower angular velocities or
smaller time steps to achieve a stable system and satisfy Eq. (45).
For the D1ZohCBF, denote

Z�t� ≡ V�t�; Uz�t; x� � fu ∈ Rmjpalt
η �t; x; u; T� ≤ 0g (46)

which solves the relative-degree-1 case of Problem 1. Note that if
ϕ1 ≡ 0 in Eq. (41), thenUz in Eq. (46) is a half-space and safe control
inputs can again be computed using a QP-based control law. Alter-
natively, if ϕ1 is a convex function, then Uz in Eq. (46) is not
necessarily a polytope, but will still be a convex set, allowing the
use of other convex optimization tools to choose control inputs. For
instance, in Sec. V.A, ϕ1 will be a strictly convex quadratic function,
yielding a quadratically constrained quadratic program (QCQP) as a
control law.
Case Study Part xii (Application of Corollary 1): Suppose that η2

is as described in Case Study Part xi, and let ϕ1�u� � 2uTZT
12Z12u.

This leads to Malt
2 � 4.88�10�−4, resulting in an effective margin of

�1
2
Malt

2 T2�∕w2
max ≈ 3.2%, much less than in the prior case with

ϕ1�u� ≡ 0. Thus, when ϕ1�u� is large, we still end up applying the
same amount of margin as in Case Study Part xi, but when ϕ1�u� is
small (i.e., u is small), the margin inherent in palt

η in Eq. (43) is

reduced compared to the margin in pη in Eq. (38).

Next, for ηω with P as described in Case Study Part xi, let

ϕ1�u� � uTZT
12PZ12u, resulting in Malt

2 � 1.95�10�−5. This yields
an effective margin of �1

2
Malt

2 T2�∕emax ≈ 0.77%, and is therefore the

setup used for simulation in Sec. V.A.

V. Simulations

A. Preliminary Simulations

In this section, we demonstrate the above methods in simulation.
We assume a spacecraft with two instruments with boresight vectors
b1, b2 and keep-out zones θ1, θ2 in Table 3, which induce two
pointing constraint functions κ1, κ2 of the form in Eq. (5). Let s1 �
s2 be the local sunvector, which is slowly time-varying.We construct
two D2ZohCBFs h1, h2 as in Sec. III with the constants in Table 2.
Suppose that there is also an angular velocity constraint function η3 of
the form in Eq. (7) with the previously presented parameters in

Table 1, and with ϕ1�u� � uTZT
12PZ12u as discussed in Case Study

Part xii. Then η3 is a D1ZohCBF. The set of safe control inputs
is U ∩ Uz1�t; x� ∩ Uz2�t; x� ∩ Uz3�t; x�.
Suppose that the spacecraft (visualized in Fig. 1) is required to

point instrument b1 at inertially fixed target bt, given in Table 3.
Define the following shortest-path proportional-derivative control
law:

φ � satφ� arccos bTt R�q�b1 (47a)

y � b1 × R�q�Tbt (47b)

upd�t; x� � Z†

12 kp sin
φ

2

y

kyk − kdω (47c)

where upd may be unsafe and does not necessarily satisfy the input

constraints. Here, let sat be the saturation function and Z†

12 be the

Moore–Penrose pseudoinverse. We then construct the final control

law as a QCQP:

uzohcbf � argmin
u∈U∩Uz1

�t;x�∩Uz2
�t;x�∩Uz3

�t;x�
ku − upd�t; x�k2 (48)

Using this “ZohCBF” controller, we simulated a single reorientation

maneuverwith initial and final parameters given in Table 3, and in the

presence of a random disturbance bounded by ξmax in Table 1. For

Table 3 Simulation parameters
for Sec. V.A

Parameter Value

b1 �0.5774; 0.5774; 0.5774�T
b2 �−0.8660; 0.5; 0�T
bt �0;−0.7072;−0.7072�T
θ1 π∕4 rad

θ2 π∕4 rad

φ� 0.2 rad

kp 0.1

kd 0.5

q�t0� �0.5; 0.5; 0.5; 0.5�T
ω�t0� �0; 0; 0�T
w�t0� �0; 0; 0; 0�T

Fig. 6 Plot of the azimuth and elevation in an inertial coordinate system
of the two instrument pointing vectors b1 (solid) and b2 (dashed) and the
keep-out zone (red) centered about the sun vector.

-1
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1 2

0 100 200 300 400 500
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-0.04
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ZohCBF
Log-B
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Fig. 7 Plots of the two instrument constraint values κ1;κ2 for the lines in
Fig. 6, and the system energy constraint values η3 using all control laws.
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more details, we refer the interested reader to the simulation code.§

The simulation is short enough that we do not presently concern

ourselves with momentum management (i.e., ensuring that wi

remains bounded for i � 1; 2; 3; 4). A diagram of the excluded

pointing zone and the trajectories of the two instrument vectors is
shown in Fig. 6, and a video of the reorientation in three dimensions

can be found below.¶ The constraint values over the maneuver
duration are shown in Fig. 7, and the control inputs are shown in

Fig. 8. As expected, safety is maintained, and the control input
constraints are always satisfied. The absolute value of the maximum

value of η3 in Fig. 7 is the “controller margin” explained in [29]. Both
ZohCBF plots in Fig. 7 exhibit a controller margin, but the margin is

only noticeable for the constraint η3 without zooming in.
For comparison, we also simulated the controllers in 1) [21]

(Eq. 22), denoted “Log-B”, with α � 0.75, β � 8, k1 � 0.0165;
2) [17] (Eq. 17) denoted “SMC”, with k � 0.01, k1 � 5015,

k2 � 0.0167, �̂d ≡ 0; and 3) [12], denoted “NMPC”, with n � 5,
h � 0.2, Q1 � P1 � 0.01I, Q2 � P2 � 38I, Q3 � 100I, where I
is the identitymatrix. The resultant trajectories are shown in Figs. 6–8
and described in Table 4,where all simulationswere run on a 3.5GHz

Intel Xeon processor. While the Log-B and SMC controllers do not
guarantee safety in the presence of input constraints or ZOH control

inputs, Figs 6–8 show that when properly tuned, all of the above
controllers can behave similarly. That said, the ZohCBF controller
took a different route around the exclusion zone than all of the

comparison controllers. The ZohCBF and NMPC controllers
approached closer to the edge of the safe set than the Log-B and

SMC controllers, and the NMPC controller briefly violated the κ1
constraint. Also, the Lyapunov function introduced in [21] is infi-

nitely differentiable, so the trajectories under the Log-B controller are
smooth. We observe this particularly in Fig. 7, where the green lines

have unique maximizers, whereas the other controllers spend much
of the trajectory very close to zero. This allowed the ZohCBF con-

troller to achieve the fastest settling time, defined here as time to
0.1 deg error, in Table 4.We note that for larger values of k1, the Log-
B controller could be faster but would exceed the angular velocity
constraint, and for much larger values of k1, the Log-B controller

would violate the pointing constraints due the ZOH implementation.
The NMPC controller approached the target at a rate similar to the

ZohCBF controller, but exhibited oscillations around the target due to
the small prediction horizon, thus resulting in a large settling time.

The SMC controller was the slowest due to the upper bound on k
implied by [17] (Eq. 16).

Another notable difference between the ZohCBF and Log-B con-

trollers is that the Lyapunov function in [21] is strictly convex, so the

controller is globally convergent. This is not true of the ZohCBF or

NMPC controllers. To examine this, we increased the value of θ1; θ2
to 0.95 rad and resimulated the ZohCBF and Log-B controllers. The

results are shown in Figs. 9 and 10 and Table 5 and are demonstrated

in the video below.** Note that the blue lines (ZohCBF controller) in

Fig. 9 both approach the edge of the red region, and then stop when

the controller cannot safely move closer to the target direction (green

dot) due to the set S ∩ Z1 ∩ Z2 ∩ Z3 being nonconvex. The space-

craft remains safe, but does not complete its objective. On the other
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Fig. 8 Plots of the control inputs and input constraints (black dashed lines) for Fig. 6 using all control laws.

Table 4 Simulation times for Figs. 6–8

Method Settling time, s Mean compute time, s Max compute time, s

CBF 207.0 0.0088 0.021
Log-B 338.8 0.00022 0.0082
SMC 1719.8 0.00016 0.0087
NMPC 803.6 0.15 2.3

Fig. 9 Plot of the azimuth and elevation in an inertial coordinate system
of the two instrument pointing vectors b1 (solid) and b2 (dashed) in the
presence of a larger exclusion zone than in Fig. 6.

-1
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Fig. 10 Plots of the two instrument constraint values κ1; κ2 for the lines
in Fig. 9, and the systemenergy constraint values η3 using all three control
laws.

§All simulation code can be found at https://github.com/jbreeden-um/phd-
code/tree/main/2022.

¶https://youtu.be/EVuyZ-06-1Y. **https://youtu.be/sZ_F4N75kcw.
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hand, the Log-B controller is eventually able to navigate around the
exclusion zone and converge to the target vector. That said, the Log-B
controller is very slow in Table 5. Lastly, we note that the ZohCBF
technique can be applied to any nominal controller, so we introduce
the control law

ucombined � argmin
u∈U∩Uz1

�t;x�∩Uz2
�t;x�∩Uz3

�t;x�
ku − ulogb-fast�t; x�k2 (49)

which we call the “Combined” controller. The controller ulogb-fast in
Eq. (49) is the same as the Log-B controller, but with a much more
aggressive choice of gain k1 � 0.04. Without the ZohCBF applica-
tion, the controller ulogb-fast would violate the system energy con-

straint η3, butwith the additional ZohCBF acting as a safety-filter, the
controller ucombined yields the orange trajectory in Figs. 9 and 10.
Unlike under uzohcbf, the trajectory under ucombined converged to the
target, and exhibited a reduced settling time in Table 5 compared to
the Log-B controller.
Remark 3: We note that while the controllers (48) and (49) were

successful in the simulations above, it still may be possible for the
optimizations (48) and (49) to become infeasible because these
controllers apply multiple CBFs at once. Progress toward provably
guaranteed feasibility of multiple CBFs simultaneously with input
constraints is studied in continuous time in [37], and such studies for
sampled-data CBFs are left to future work.

B. Spacecraft Simulator Simulations

The prior subsection validates the methods in Secs. III and IV in a
simple simulation, so we now present results from a more detailed
spacecraft simulator, specifically theNASA “42” open-source space-
craft attitude control simulator [44]. Here, rather than random dis-
turbances, the disturbances are representative of disturbances in the
orbital environment for an input spacecraft geometry and specified
solar and geomagnetic activity indices.
Specifically, we simulated a 6U CubeSat with the parameters

presented in Table 1 in a 500 km altitude circular Earth orbit. Suppose
that the spacecraft has a single instrument that must point at a
sequence of targets but must avoid the sun by at least 25° (encoded
in κ1), and a star tracker that must not point at the sun within 45°
(encoded in κ2) or the moon within 30° (encoded in κ3). The angular
velocity is constrained by η4 � ηω as in Case Study Part xi, wherewe
now use ϕ1�u� � 0, so that Malt

2 � M2 � 8.3�10�−5. This change
makes Uz4 more conservative than in the prior subsection, but makes

U ∩ Uz1 ∩ Uz2 ∩ Uz3 ∩ Uz4 a polytope and thus changes Eq. (48)

from a QCQP to a regular QP, which was implemented using the fast
Operator Splitting QP solver [45]. Finally, the code limited the QP
solver to only 20 solver iterations to mimic realistic spacecraft
computing constraints. For more details and input parameters, the
interested reader is referred to the simulation code.
The instrument and star tracker pointing vectors are shown in

Fig. 11, the constraint values are shown in Fig. 12, and the control
inputs are shown in Fig. 13 using both uzohcbf in Eq. (48) and upd in

Table 5 Simulation times for Figs. 9 and 10

Method Settling time, s Mean compute time, s Max compute time, s

CBF ∞ 0.0072 0.0237

Log-B 1079.6 0.00024 0.0084
Combined 374.2 0.0097 0.0243

Fig. 11 Plot of the azimuth and elevation in an inertial coordinate
system of the instrument pointing vector b1 (green) and star tracker

pointing vector b2 (orange) along with all three keep-out zones.
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Fig. 12 Plots of the instrument to sun CBF values (green), the star
tracker to sun CBF values (orange), and the star tracker to moon CBF
values (red) for the lines in Fig. 11, and the system energy constraint
(gray) values η4 using both control laws.
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Fig. 13 Plots of the control inputs and input constraints (black dashed lines) for Fig. 11 using both control laws.
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Eq. (47c). Avideo of the reorientation sequence is linked below.††All
constraints and actuator limits were satisfied for the entire pointing
sequence using the ZohCBF controller (solid lines in Fig. 11), while
there were several constraint violations using the nominal controller
(dashed lines in Fig. 11). We note that three of the targets (green dots
in Fig. 11) were located very close to the sun vector (i.e., outside the
safe set), so the ZohCBF controller prioritized safety over conver-
gence for these targets.

VI. Conclusions

We have presented a methodology for ensuring that trajectories
of a dynamic system always remainwithin a specified constraint set
in the presence of ZOH sampled-data control inputs, bounded
disturbances, and input constraints using extensions of CBF theory.
This methodology is generally applicable to constraint functions of
relative degree 1 or 2, and was specialized to spacecraft attitude
control. Special attentionwas devoted to decreasing themargins for
overshoot in the case of relative-degree-2 constraints, and for the
case of a relative-degree-1 kinetic energy constraint specifically.
The methodology was then demonstrated in simulation, where it
exhibited faster settling times than all compared online controllers
(note that path-planning methods were not tested). While the
methods in this paper provably achieve all desired safety criteria,
the comparison plots show that similar safe reorientations can
be achieved with the comparison methods, although only with
careful tuning and without proof of safety under these circum-
stances. The improvement in convergence by the “combined”
controller over the original ZohCBF controller show that this
approach may be limited in part by the capabilities of the nominal
control law, so choosing “optimal” nominal control laws is one area
of future work. Additional future work includes the incorporation
of momentum-management techniques and measurement-delay
considerations, and study of more general conditions on the exist-
ence of a guaranteed safe control input in the presence of several
CBFs simultaneously.

Appendix: Proofs

For brevity,we onlywrite out the time argument of κ, η,h,ψ ,ϕ,ϕ1,

pκ , ph, pη, and palt
η and their derivatives in the following proofs.

Proof of Lemma 3: Note that, on the open interval �tk; tk�1�, the
functions κ, _κ, �κ, and κ

:::
are continuous due to the assumptions on

f1; f2; g1; g2; ξ in Eq. (1) and how u is constant. We divide this proof
into two cases depending on whether _κ changes signs at σ.
First, suppose that _κ does not change signs at σ [including the case

where _κ�t� � 0 for all t ∈ �tk; tk�1�]. This can only occur if �κ changes
signs at σ or if �κ�t� is zero for all t ∈ �tk; tk�1�. Since �κ is continuous,
this implies �κ�σ� � 0. Since μ > 0, it follows that there exists suffi-
ciently small τ > 0 such that j�κ�t�j < μ for all t in a neighborhood

t ∈ �σ − τ; σ � τ�. Note that _h is given by

_h�t� � _κ�t� � 1

μ
j_κ�t�j�κ�t� (A1)

It follows from Eq. (A1) that _h�t� has the same sign as _κ�t� for all
t ∈ �σ − τ; σ � τ�. Since _h�σ� does not change signs, σ cannot be a

local maximizer of h on �tk; tk�1� unless _κ�t� � _h�t� � �κ�t� � 0 for
all t ∈ �tk; tk�1�, in which case the lemma is trivially true.
Second, suppose that _κ does change signs at σ. The second

derivative of h is

�h�t� � �κ�t� � 1

μ
sign�_κ�t���κ�t�2 � 1

μ
j_κ�t�jκ:::�t� (A2)

so h is twice differentiable for almost all t ∈ �tk; tk�1�. Therefore, a
necessary condition for σ to be local maximizer of h is for �h to be

nonpositive in a neighborhood of σ. At t � σ exactly, �h�σ� is unde-

fined since we assumed _κ�σ� to be zero, but the limits of �h�t� as t
approaches σ from the left and right arewell-defined andmust both be

nonpositive for σ to be a maximizer of h. These limits are

�h−�σ� � lim
_κ�t�→0−

�h�t� � �κ�σ� − �κ�σ�2
μ

(A3a)

�h��σ� � lim
_κ�t�→0�

�h�t� � �κ�σ� � �κ�σ�2
μ

(A3b)

A necessary condition for both Eqs. (A3a) and (A3b) to be non-

positive simultaneously is for 0 ≥ �κ�σ� ≥ −μ. Since �κ�σ� ≤ 0, andwe
assumed _κ�t� changed sign at σ, it follows that σ is necessarily also a
maximizer of κ, so the lemma holds in this case as well. □

Proof of Theorem 1: The trajectory x�t� belongs to H�t� for all
t ∈ �tk; tk�1� if the maximum value h�σ� for some maximizer σ ∈
�tk; tk�1� satisfies h�σ� ≤ 0, so we proceed by trying to bound h�σ�
using Lemma 3 and the system constants (18) and (21). By

assumption, h�tk� ≤ −δ1 ≤ 0 and h�tk�1� ≤ 0, so the theorem is

immediately true in the case where σ is either endpoint. By Lemma

3, if σ is a local maximizer of h on the open interval �tk; tk�1�, then σ
must also be a local maximizer of κ. This implies that h�σ� � κ�σ�.
Thus, we focus on κ instead of h going forward.
Suppose that there exists a local maximizer σ of κ on �tk; tk�1� for

which κ�σ� � h�σ� > maxfh�tk�; h�tk�1�g. The largest possible

value of κ�σ� occurs when _κ�t� is positive for all t ∈ �tk; σ� and

negative for all t ∈ �σ; tk�1�, so without loss of generality, suppose

that the sign of _κ�t� follows this partitioning. By assumption,

h�tk� ≤ −δ1, and since we assumed that _κ�tk� > 0, it follows from
Eq. (13) that κ�tk� ≤ −δ1 as well. Thus, for the worst-case value of
κ�σ�, both κ�tk� and κ�tk�1� are at most −δ1. Also, by Lemma 3,
�κ�σ� ≥ −μ. It follows from Eq. (23a) that

�κ�σ � τ� ≥ −μ�M−
2 �M−

3 τ −M�
2 (A4)

Thus, we can lower bound _κ�t� for t ∈ �σ; tk�1� as

_κ�σ � τ� � _κ�σ�
�0

�
σ�τ

σ
�κ�t� dt

≥
�A4� σ�τ

σ
�−μ −M�

2 �M−
3 �t − σ� �M−

2 � dt

� �−μ −M�
2 �M−

2 �τ�
1

2
M−

3 τ
2 (A5)

and lower bound κ�t� for t ∈ �σ; tk�1� as

κ�σ�τ�� κ�σ��
σ�τ

σ
_κ�t�dt

≥
�A5�

h�σ��
σ�τ

σ
�−μ−M�

2 �M−
2 ��t−σ��1

2
M−

3 �t−σ�2 dt

� κ�σ��1

2
�−μ−M�

2 �M−
2 �τ2�

1

6
M−

3 τ
3 (A6)

Similarly, it follows from Eq. (23d) that

�κ�σ − τ� ≥ −μ�M−
2 −M�

3 τ −M�
2 (A7)

Thus, we can upper bound _κ�t� for t ∈ �tk; σ� as

_κ�σ − τ� � _κ�σ�
�0

−
σ

σ−τ
_κ�t� dt

≤
�A7�

−
σ

σ−τ
�−μ −M�

2 −M�
3 �σ − t� �M−

2 � dt

� �μ�M�
2 −M−

2 �τ�
1

2
M�

3 τ
2 (A8)

††https://youtu.be/qeB-F5J4ZFI.
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and lower bound κ�t� for t ∈ �tk; σ� as

κ�σ−τ��κ�σ�−
σ

σ−τ
_κ�t�dt

≥
�A8�

κ�σ�−
σ

σ−τ
−�−μ−M�

2 �M−
2 ��σ− t��1

2
M�

3 �σ− t�2 dt

�κ�σ��1

2
�−μ−M�

2 �M−
2 �τ2−

1

6
M�

3 τ
3 (A9)

We can then rearrange Eqs. (A6) and (A9) to

κ�σ� ≤ κ�σ � τ� − 1

2
�−μ −M�

2 �M−
2 �τ2 −

1

6
M−

3 τ
3 (A10)

κ�σ� ≤ κ�σ − τ� − 1

2
�−μ −M�

2 �M−
2 �τ2 �

1

6
M�

3 τ
3 (A11)

Let τ � tk�1 − σ in Eq. (A10) and τ � σ − tk in Eq. (A11). Note that
the bounds inEqs. (A10) and (A11)must both apply simultaneously, or
equivalently, whichever bound is tighter must apply. Thus, we obtain

κ�σ� ≤
�A10�;�A11�

min −δ1 �
1

2
�μ�M�

2 −M−
2 ��tk�1 − σ�2 − 1

6
M−

3 �tk�1 − σ�3;

− δ1 �
1

2
�μ�M�

2 −M−
2 ��σ − tk�2 �

1

6
M�

3 �σ − tk�3 ≤
�24�

0 (A12)

Thus, because of the choice of δ1 in Eq. (24), it is guaranteed
that κ�σ� ≤ 0 in Eq. (A12). It follows that h�t� ≤ h�σ� � κ�σ� ≤ 0
for all t ∈ �tk; tk�1�, or equivalently x�t� ∈ H�t� for all
t ∈ �tk; tk�1�. □

Proof of Theorem 2: The proof follows almost identical logic to
that of Theorem 1, but instead of having κ�tk� ≤ −δ1 and
κ�tk�1� ≤ −δ1, we end up with κ�tk� ≤ −Δ2 and κ�tk�1� ≤ −δ2.
Thus, in place of Eq. (A12), we have

κ�σ�≤min −δ2 �
1

2
�μ�M�

2 −M−
2 ��tk�1 − σ�2 − 1

6
M−

3 �tk�1 − σ�3;

−Δ2 �
1

2
�μ�M�

2 −M−
2 ��σ− tk�2 �

1

6
M�

3 �σ− tk�3 ≤
�25�

0

(A13)

Similar to in Theorem 1, the condition on Δ2 and δ2 in Eq. (25)
ensures that κ�σ� ≤ 0 regardless of the actual maximizer location
σ ∈ �tk; tk�1�. By the same logic as in Theorem 1, it follows that
x�t� ∈ H�t� for all t ∈ �tk; tk�1�. □

Proof of Lemma 4: By assumption, x�tk� ∈ Q�tk� and x�tk�1� ∈
Q�tk�1�, so the trajectory can only leave Q if there exists a local
maximizer ts ∈ �tk; tk�1� of κ such that κ�ts� > 0. Thus, the rest of this
proof proceeds by analyzing whether such a maximizer ts can exist.
Note that, on the open interval �tk; tk�1�, the functions κ, _κ, and �κ are

continuous in time, and therefore _h in Eq. (A1) is continuous as well.

By assumption, σ is a maximizer of h, so it follows that _h�σ� � 0.

Because of the formof _h in Eq. (A1), if _h�σ� � 0 and _κ�σ� ≠ 0, itmust
be that �κ�σ� � −μsign�_κ�σ��. That is, for a critical point of h to occur
at σ when _κ�σ� ≠ 0, the second derivative of κ (e.g., angular accel-
eration) at σmust pass through one of two critical values,	μ, depend-
ing on the sign of _κ�σ�. This yields the two cases below.
First, suppose that _κ�σ� < 0, which implies that �κ�σ� � μ. Thus,

we can derive an expression for �κ�t� for t in a neighborhood of σ. Let
τ ≥ 0 and it follows from Eq. (23a) that

�κ�σ � τ� ≥ μ�M−
2 �M−

3 τ −M�
2 (A14)

Because of the assumed lower bound on μ, Eq. (A14) implies that
�κ�σ � τ� > 0 for any τ ∈ �0; T�. Similarly, it follows from Eq. (23d)
that

�κ�σ − τ� ≥ μ�M−
2 −M�

3 τ −M�
2 (A15)

which implies that �κ�σ − τ� > 0 for any τ ∈ �0; T�. Thus, by
Eqs (A14) and (A15), �κ�t� > 0 for all t ∈ �tk; tk�1� and therefore
there can be no local maximizers of κ on �tk; tk�1�. Moreover, if there
exists a time ts ∈ �tk; tk�1� atwhich _κ�ts� � 0, then ts is unique and is
a local minimizer of κ since �κ is strictly positive.
Second, suppose that _κ�σ� > 0, which implies that �κ�σ� � −μ. It

follows from Eq. (23c) that

�κ�σ − τ� ≤ −μ�M�
2 −M−

3 τ −M−
2 (A16)

which implies that �κ�σ − τ� < 0 for all τ ∈ �0; T�. Since _κ�σ� > 0 and
�κ�σ − τ� < 0, it follows that _κ�t� > 0 for all t ∈ �tk; σ� and therefore
there can be no local maximizers of κ on �tk; σ�. Next, it follows from
Eq. (23b) that

�κ�σ � τ� ≤ −μ�M�
2 �M�

3 τ −M−
2 (A17)

which again implies that �κ�σ � τ� < 0 for all τ ∈ �0; T�, and thus by
Eqs. (A16) and (A17), �κ�t� < 0 for all t ∈ �tk; tk�1�. Thus, in this
case, there may exist a local maximizer ts of κ but only for
ts ∈ �σ; tk�1�, such as shown by the green “x” in Fig. 4. If such a ts
exists, then _κ�ts� � 0, and ts is the uniquemaximizer of κ on �tk; tk�1�
since �κ is strictly negative. Going forward, we assume that such a ts
exists and now seek to ascertain its value.
From here, there are several possible ways to ensure that κ�t� ≤ 0

for all t ∈ �tk; tk�1�, and we only present one method. In our
approach, we now shift our focus from the values of κ to the values
of h.Wewill show that, for the choice ofΔ3 in Eq. (A34), it holds that
h�t� ≤ 0 for all t ∈ �tk; tk�1� and conclude that x�t� ∈ Q�t� for all t ∈
�tk; tk�1� by applying Lemma 2.
Since _h�σ� � 0, we are interested in how positive _h�t� can be for

t ∈ �tk; σ� and how negative _h�t� can be for t ∈ �σ; tk�1�, from which
we can derive amargin that ensures thath�σ� does not exceed zero. To
this end, it follows from Eq. (23d) that

�κ�σ − τ� ≥ −μ�M−
2 −M�

3 τ −M�
2 (A18)

Let _κ�σ� � γ for γ ∈ R>0 at themaximizer σ ofh, where the existence
of ts ∈ �σ; tk�1� implies that γ is close to zero. First, for t ∈ �tk; σ�,
_κ�t� is upper bounded as

_κ�σ − τ� � _κ�σ� −
σ

σ−τ
�κ�t� dt

≤
�A18�

γ −
σ

σ−τ
−μ�M−

2 −M�
2 −M�

3 �σ − t� dt

� γ � �μ −M−
2 �M�

2 �τ�
1

2
M�

3 τ
2 (A19)

Since we have _κ�t� > 0 for all t ∈ �tk; σ�, it follows that _h�t� is upper
bounded by

_h�σ − τ� ��A1� _κ�σ − τ� 1� �κ�σ − τ�
μ

≤
�A19�;�A16�

γ � �μ −M−
2 �M�

2 �τ

� 1

2
M�

3 τ
2

M�
2 −M−

3 τ −M−
2

μ
(A20)

Next, similar to Eq. (A18), for t ∈ �σ; tk�1�, _κ�t� is upper bounded by

_κ�σ � τ� � _κ�σ� �
σ�τ

σ
�κ�t� dt

≤
�A17�

γ �
σ�τ

σ
−μ�M�

2 −M−
2 �M�

3 �t − σ� dt

� γ − �μ�M−
2 −M�

2 �τ�
1

2
M�

3 τ
2 (A21)

BREEDEN AND PANAGOU 1887

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ic
hi

ga
n 

on
 F

eb
ru

ar
y 

27
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

G
00

74
56

 



We now divide the interval �σ; tk�1� into two intervals �σ; ts� and

�ts; tk�1� because, unlike the upper bound in Eq. (A20), our lower

bounds for _h in Eq. (A1) will be different before and after _κ changes
from positive to negative at ts. For the interval t ∈ �σ; ts� where

_κ�t� > 0, _h�t� is minimized by minimizing �κ�t�, so we note that

Eq. (23a) lower bounds �κ�t� as

�κ�σ � τ� ≥ −μ�M−
2 �M−

3 τ −M�
2 (A22)

Thus, during the interval t ∈ �σ; ts� where _κ�t� > 0, it follows that
_h�t� is lower bounded by

_h�σ� τ� ��A1� _κ�σ� τ� 1� �κ�σ − τ�
μ

≥
�A21�;�A22�

γ − �μ�M−
2 −M�

2 �τ�
1

2
M�

3 τ
2

M−
2 �M−

3 τ −M�
2

μ

(A23)

To take into account the interval t ∈ �ts; tk�1�where _κ�t� < 0, instead
of the upper bound Eq. (A17), we will utilize the following lower

bound for _κ:

_κ�σ � τ� � _κ�σ� �
σ�τ

σ
�κ�t� dt

≥
�A22�

γ �
σ�τ

σ
−μ�M−

2 −M�
2 �M−

3 �t − σ� dt

� γ − �μ −M−
2 �M�

2 �τ�
1

2
M−

3 τ
2 (A24)

Finally, during the interval t ∈ �ts; tk�1� where _κ�t� < 0, it follows

that _h�t� is lower bounded as

_h�σ�τ� ��A1� _κ�σ�τ� 1−
�κ�σ−τ�

μ

≥
�A24�;�A22�

γ−�μ−M−
2 �M�

2 �τ�
1

2
M−

3 τ
2 2−

M−
2 �M−

3 τ−M�
2

μ

(A25)

Next, given the bounds for _h�t� in Eqs. (A20), (A23), and (A25),

we seek to upper bound h�σ� − h�tk� and h�σ� − h�tk�1�. Starting
with the latter, we have that

h�σ� − h�tk�1� � −
ts

σ

_h�t� dt −
tk�1

ts

_h�t� dt

≤ −
ts

σ
� _h�t� as in �A23�� dt

−
tk�1

ts

� _h�t� as in �A25�� dt (A26)

where ts ∈ �σ; tk�1� is an unknown parameter. Because of the dis-

turbance, we cannot develop an exact expression for ts as a function
of γ [this is why τ1; τ2 will be free optimization parameters in

Eq. (A34)], but we can develop lower and upper bounds on ts for
the computation of Eq. (A26). Possible trajectories of _κ�σ � τ� are
visualized in Fig. A1. At ts, _κ�ts� � 0, where _κ is bounded by

Eqs. (A21) and (A24), so all candidate values of ts must lie between

the roots of the bounding functions (A21) and (A24). Since we

assumed that M−
3 < 0, the red line (A24) is a concave downward

quadratic polynomial. Since _κ�t� > 0 for t ∈ �σ; ts�, it follows that ts
must lie to the right of the second root of Eq. (A24) (dashed red

vertical line in Fig. A1), denoted r1∶R≥0 → R:

ts − σ ≥
�A24�

r1�γ� ≜
1

M−
3

�μ�M−
2 −M�

2 �

− �μ�M−
2 −M�

2 �2 − 2M−
3 γ (A27)

Similarly, since we assumed that M�
3 > 0, the blue line (A21) is a

concave upward quadratic polynomial, and since _κ�t� < 0 for

t ∈ �ts; tk�1�, it follows that ts must lie to the left of the first root of

Eq. (A21) (dashed blue vertical line in Fig. A1), denoted

r�2∶R≥0 → R:

r�2�γ� ≜
1

M�
3

�μ −M−
2 �M�

2 � − �μ −M−
2 �M�

2 �2 − 2M�
3 γ

(A28)

The time ts must also occur inside the present time step, so we define

the bound r2∶R≥0 × R≥0 → R as follows, and conclude that

ts − σ ≤
�A21�

r2�γ; σ − tk�

≜
minfr�2�γ�; T − �σ − tk�g if γ ≤ �μ −M−

2 �M�
2 �2∕�2M�

3 �
T − �σ − tk� else

(A29)

The second case of Eq. (A29) occurs when γ is such that Eq. (A28) is
nonreal, inwhich case ts is instead upper bounded by the length of the
time step. Note that the bounds (A27) and (A29) greatly simplify the

complete relationship between ts and γ, but accounting for all pos-

sible curves of κ in a neighborhood of ts would require more

assumptions about the disturbance and would make this proof far

more complex. Instead, we choose to treat ts and γ as free parameters

with minimal coupling to each other except that in Eq. (A27) and

(A29), so that Eq. (A26) is computable. We then simplify the right

hand side of Eq. (A26) and assign the result to the function

dright∶R≥0 × R≥0 × R≥0 → R defined as

dright�γ; τ1; τ2� ≜
�M−

3 �2
8μ

τ41 − τ42 −
M−

3M
�
3

8μ
τ42

� M−
3 �M−

2 −M�
2 �

2μ
−
2M−

3

3
τ31 − τ32

� 1

6μ
2M−

3 �M−
2 −M�

2 � μ� −M�
3 �M−

2 −M�
2 � τ32

� 1

2μ
�M�

2 −M−
2 � 2μ��M�

2 −M−
2 � μ� �M−

3 γ τ21 − τ22

� 1

2μ
�M−

2 −M�
2 ��M−

2 −M�
2 � μ� −M−

3 γ τ22

� γ

μ
�M−

2 −M�
2 − 2μ��τ1 − τ2� −

1

μ
γ�M−

2 −M�
2 � τ2 (A30)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

0

Fig. A1 Visualization of the lower and upper bounds on _κ�σ � τ�
imposed by Eq. (A24) (red solid line) and Eq. (A21) (blue solid line),
respectively, and how this results in a finite interval of possible roots
of _κ.

1888 BREEDEN AND PANAGOU

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f M

ic
hi

ga
n 

on
 F

eb
ru

ar
y 

27
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

G
00

74
56

 



so that Eq. (A26) simplifies to

h�σ� − h�tk�1� ≤ dright�γ; tk�1 − σ; ts − σ� (A31)

where the third argument ts − σ is bounded by Eqs. (A27) and (A29).
Similar to Eq. (A26), we can bound h�σ� − h�tk� as

h�σ� − h�tk� �
σ

tk

_h�t� ≤
σ

tk

� _h�t� as in �A20�� dt � dleft�γ; σ − tk�

(A32)

wherewe do not need to break the integral into two parts here because
_κ�t� does not change signs on �tk; σ�. We then define the function
dleft∶R≥0 × R≥0 → R as the simplificationof the integral inEq. (A32)

as follows:

dleft�γ; τ� ≜ −
τ4

8μ
�M−

3M
�
3 � −

τ3

6μ
�2M−

3 �M�
2 −M−

2 � μ�

�M�
3 �M−

2 −M�
2 �� −

τ2

2μ
��M−

2 −M�
2 ��M�

2 −M−
2 � μ�

�M−
3 γ� −

γτ

μ
�M−

2 −M�
2 � (A33)

Both Eqs. (A31) and (A32) must apply simultaneously, so we define
Δ3 below as a maximization of the lesser of dleft and dright, subject to
the constraints on ts − σ in Eqs. (A26) and (A29). Furthermore, the
maximizer σ of h must occur in the present time step, so
σ − tk ∈ �0; T�, and γ must be positive. Let τ1 � σ − tk and τ2 �
ts − σ, and finally define

Δ3 ≜ max
γ∈�0;∞�
τ1∈�0;T�

τ2∈�r1�γ�;r2�γ;τ1��

minfdleft�γ; τ1�; dright�γ; T − τ1; τ2�g (A34)

Note that although γ is not upper bounded in Eq. (A34), in practice
there is a maximum value of γ for which the interval �r1�γ�; r2�γ; σ −
tk�� is nonempty. Finally, using both bounds (A31) and (A32), the
maximum value of h is bounded by

h�σ� ≤
�A31�;�A32�

minfh�tk��dleft�γ;σ− tk�;
h�tk�1��dright�γ; tk�1 − σ; ts − σ�g

≤−Δ3 �minfdleft�γ;σ− tk�;dright�γ; tk�1 − σ; ts − σ�g ≤
�A34�

0

(A35)

so x�t� ∈ H�t� for all t ∈ �tk; tk�1�. By Lemma 2, x�t� ∈ Q�t� for all
t ∈ �tk; tk�1� too. In summary, we have shown that 1) when _κ�σ� < 0,
no maximizer ts of κ can occur, and 2) when _κ�σ� > 0, only one
maximizer ts of κ can occur and by Eq. (A35) and Lemma 2,
κ�ts� < 0, so x�t� ∈ Q�t� for all t ∈ �tk; tk�1� in all cases where
_κ�σ� ≠ 0. □

Proof of Theorem 3: By assumption, κ�tk� ≤ 0, h�tk� ≤ −Δ2 ≤ 0,
κ�tk�1� ≤ −δ2 ≤ 0, and h�tk�1� ≤ −Δ2 ≤ 0. Thus, x�t� can only exit
Q if there is a local maximizer ts of κ for ts ∈ �tk; tk�1�. As a result of
Lemma2, it is only possible for κ�ts� > 0 to occur if there also exists a
local maximizer σ of h for σ ∈ �tk; tk�1� such that h�σ� > 0, where it
is possible that σ � ts. Suppose the existence of both ts and σ, where
neither is necessarily unique. If there exists a maximizer σ of h such
that _κ�σ� ≠ 0, then Lemma 4 implies that ts is unique and that
κ�ts� ≤ 0.

Next, if everymaximizer σ of h satisfies _κ�σ� � 0, then Theorem 2
implies that κ�ts� ≤ 0 for every ts, where ts � σ. Finally, if there is
one or more maximizers σ1 of h such that _κ�σ1� � 0, and one
maximizer σ2 of h such that _κ�σ2� ≠ 0, then by the first paragraph,
ts is unique and κ�ts� ≤ 0, and it follows that σ1 is unique and σ1 � ts.
That is, the conditions presented so far do not preclude the possibility
of the cases described in Lemma 3 andLemma 4 both occurring in the

same time step, but in this case, safety is ensured by Lemma 4 alone.
Since κ�ts� ≤ 0 for every maximizer ts of κ, it follows that κ�t� ≤ 0
for all t ∈ �tk; tk�1�, and thus x�t� ∈ Q�t� for all t ∈ �tk; tk�1�.
Proof of Theorem 4: First, note that we can upper bound the

evolution of _κ and κ between time steps as follows:

_κ�tk � τ� � _κ�tk� �
tk�τ

tk

�κ�t� dt

≤
�22a� tk�τ

tk

ψ�tk� �M�
2 �M�

3 �t − tk� dt

� _κ�tk� � ψ�tk�τ�M�
2 τ�

1

2
M�

3 τ
2 (A36)

κ�tk�τ��κ�tk��
tk�τ

tk

_κ�tk��
τ1

tk

�κ�t�dtdτ1

≤
�22a�

κ�tk��
tk�τ

tk

_κ�tk��
τ1

tk

ψ�tk��M�
2 �M�

3 �t−tk�dtdτ1

�pκ�tk;τ� (A37)

Thus, pκ in Eq. (27) is an upper bound on κ�tk � τ�, and Eq. (A36)
is an upper bound on _κ�tk � τ�. Since h in Eq. (13) is monotoni-
cally increasing in both κ and _κ, it follows that ph in Eq. (28) is an
upper bound on h�tk � τ�. Since tk�1 � tk � T, it follows that

Eq. (29a) implies x�tk�1� ∈ Qδ2�tk�1� and Eq. (29b) implies

x�tk�1� ∈ HΔ2�tk�1�, or equivalently x�tk�1� ∈ Z�tk�1�. Since this
holds for every k ∈ N, Theorem 3 implies that x�t� ∈ Q�t� for all
t ∈ T. □

Proof of Theorem 5: First, note that we can upper bound the
evolution of η between time steps as follows:

η�tk � τ� � η�tk� �
tk�τ

tk

_η�tk� �
τ1

tk

�η�tk � τ2� dτ2 dτ1

≤
�36�

η�tk� �
tk�τ

tk

_η�tk� �
τ1

tk

M2 dτ2 dτ1

≤
�34�

η�tk� �
tk�τ

tk

ϕ�tk� �M1 �M2τ1 dτ1 ≤
�38�

pη�tk; τ�

(A38)

It follows that if pη�tk; τ� ≤ 0, then η�tk � τ� ≤ 0 and thus

x�tk � τ� ∈ V�tk � τ�. Note that pη in Eq. (38) is a concave upward

quadratic in τ (since M2 is assumed to be nonnegative), so if
pη�tk; 0� � η�tk� ≤ 0 and pη�tk; T� ≤ 0, then η�tk � τ� ≤
pη�tk; τ� ≤ pη�tk; T� ≤ 0 for all τ ∈ �0; T�. Since we assumed

x�t0� ∈ V�t0�, or equivalently pη�t0; 0� � η�t0� ≤ 0, and since

Eq. (A38) implies pη�tk; T� ≤ 0 for all k ∈ N, it follows that η�t� ≤
0 for all t ∈ T, or equivalently, x�t� ∈ V�t� for all t ∈ T. □

Proof of Corollary 1: Similar to Eq. (A38),palt
η �tk; τ� in Eq. (43) is

an upper bound on η�tk � τ�. By Eq. (14), u is constant between time

steps and therefore the quadratic coefficient of palt
η given by

ϕ1�u�tk�� �Malt
2 is constant. Because ϕ1 maps to R≥0 and Malt

2 ≥
0, the coefficient ϕ1�u�tk�� �Malt

2 is also nonnegative. Thus,

palt
η �tk; τ� is a concave upward quadratic polynomial in τ, so if η�tk� ≤

0 and palt
η �tk; T� ≤ 0, then it follows by the same logic as Theorem 5

that x�t� ∈ V�t� for all t ∈ T. □
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