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This paper presents a provably safe method for constrained reorientation of a spacecraft in the presence of input
constraints, bounded disturbances, and fixed frequency zero-order-hold (ZOH) control inputs. The set of states
satisfying all pointing and rate constraints, herein called the safe set, is expressed as the intersection of the sublevel sets
of several constraint functions, which are subsequently converted into control barrier functions (CBFs). The method
then extends prior results on utilizing CBFs with ZOH controllers to the case of relative-degree-2 constraint functions,
as occurs in the constrained attitude reorientation problem. The developed sampled-data controller is also shown to
remain provably safe in the presence of input constraints and bounded disturbances. Finally, the method is validated
and compared to three prior approaches via both low-fidelity and mid-fidelity simulations.

Nomenclature

fi1:f2.81,82 arbitrary functions in model definition
H; = inner constraint set corresponding to A;,
index potentially omitted

HI.A = subset of inner constraint set correspond-
ing to h; with margin A, index potentially
omitted

h; = generic control barrier function, index
potentially omitted

My, My, M3t = constants of a constraint function of rela-

tive degree 1

constants of a constraint function of rela-

tive degree 2

Py pgl‘ = polynomials that upper bound evolution of
a constraint function of relative degree 1

M3, MS M5, M7

Dis P = polynomials that upper bound evolution of
a constraint function of relative degree 2

Q; = constraint set corresponding to k;, index
potentially omitted

o2 = subsetof constraint set corresponding to k;
with margin 8, index potentially omitted

q = state coordinates in Eq. (1), also used as
quaternion in Eq. (2)

S = safe set (intersection of constraint sets)

ssq:R > R = ssq(4) = 4|4] (ssqis monotone increasing,
invertible, and once continuously differ-
entiable)

T = time step of discretization

T = set of considered times

t = time (arbitrary units)

t, = specific time instance on a trajectory (see
also o)

to = initial time

u = set of allowable control inputs

U, = setof guaranteed safe control inputs for the
ith constraint, index potentially omitted

u = control input
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constraint set corresponding to #;, index
potentially omitted

state velocities in Eq. (1)

vector of wheel states w; in Eq. (2)

set of possible states

full state vector x is equal to (g, v)

inverse of combined matrix of moments of
inertia

submatrices of Z

= robust inner constraint set corresponding
to k; or 7;, index potentially omitted
generic relative-degree-1 constraint func-
tion, index potentially omitted

generic relative-degree-2 constraint func-
tion, index potentially omitted

parameter used to define control barrier
functions for relative-degree-2 constraints
= set of considered disturbances

perturbing input

= specific time instance on a trajectory (see
also ;)

arbitrary number in Ry,

function for 7 under no disturbances
functions used for constructing relative-
degree-1 safety conditions

function for k under no disturbances
angular velocity state in Eq. (2)

open interval, closed interval
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1. Introduction

HIS paper extends the recent theory of control barrier functions

(CBFs) to solve the problem of constrained spacecraft attitude
reorientation. At present, most spacecraft reorientations are accom-
plished either via shortest-path maneuvers, which can be easily
implemented onboard a spacecraft, or else are preplanned by ground
operators when more complex maneuvers are required. As the num-
ber of active spacecraft increases, there is potential for reducing
operating costs in the latter case by increasing spacecraft autonomy,
i.e., by computing maneuvers onboard without consulting ground
operators. A common scenario in which shortest-path maneuvers are
not allowable is when a spacecraft is not permitted to point sensitive
instruments (body-fixed vectors) at bright objects (inertially fixed
vectors), or equivalently, when a spacecraft is required to keep an
instrument pointed in a specified direction.

The problem of constrained reorientation has been studied exten-
sively, using methods including path planners [1-10], model predic-
tive controllers (MPCs) [11-15], sliding mode controllers (SMCs)
[16-18], reference governors [19], and barrier functions [20-24].
It has also been studied using CBFs combined with path planning
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in [25], along with cursory treatment using CBFs with controllers
computed online in [26-29]. Compared to prior approaches, this
paper develops a method that provably guarantees both state con-
straint (i.e., instrument pointing requirements are obeyed) and input
constraint (i.e., maximum allowable torques are not exceeded) sat-
isfaction in the presence of bounded disturbances and under a
sampled-data control law. The final control law is the output of a
four-dimensional quadratic program (QP) that is computationally
lightweight. These guarantees are particularly useful when designing
SmallSat attitude controllers, which often operate with infrequent
ground contact, using undersized actuators (i.e., tight input con-
straints), at low altitudes (i.e., large disturbances), at low control
sampling frequencies, and with limited computational capabilities.

To employ standard CBF terminology, we refer to the set of states
with allowable separations between all instruments and all bright
objects, and with allowable angular rates, as the safe set, which we
assume to be nonempty at all times. The central problem is that of
rendering trajectories always inside the safe set from some viable set
[30] of initial conditions where this problem is well-posed.

Early work on constrained reorientation in [20] developed a
Lyapunov function for safe reorientation in terms of Euler angles,
though this Lyapunov function may be nonconvex. The authors in [1]
noted that this same constraint could be expressed as a convex set of
quaternions, and in [21,22] authors developed a strictly convex
Lyapunov function in terms of quaternions. The work in [17,18]
added an angular velocity constraint and actuator-allocation algo-
rithm to the same technique. The work in [24] expanded the technique
to modified Rodrigues parameters and proposed a method for ensur-
ing input constraint satisfaction. Note that, while these Lyapunov
functions resulted in simple control laws that could be implemented
online, none of these approaches consider controller sampling, and
these controllers can result in slow trajectories, as we show in Sec. V.

An early path-planning technique utilized a variant of rapidly
exploring random trees to find safe paths in SO(3) space [10]. Later,
path-planning techniques using direct optimization along with the
quaternion constraint identified in [1] were developed in [1,2,6] and
combined with translational planning in [5], though these methods
are potentially too computationally intensive to implement online on
a spacecraft processor. Related work in [3,4,8] discretized the safe set
to a finite set of nodes and used graph search techniques to plan paths
between the nodes. The maneuvers resulting from these techniques are
safe but possibly inefficient due to the discretization. The planners in
[7,9] add additional refinements to improve efficiency, whereas the
controller proposed in [25] executes a faster transition between the path
nodes and uses CBFs to keep the trajectory within a safe region around
the preplanned path. By comparison, the approach employed in this
work and in [21,22] only keeps the state away from unsafe states rather
than in a neighborhood of a precomputed safe path as in [25].

MPC approaches to constrained reorientation, such as [11] and its
extensions in [12,13], are generally special applications of path-
planning techniques. Similarly, the SMC approach in [16-18] and
the approximate optimal control via reinforcement learning in [23]
are special applications of the barrier functions used in [21,22]. While
MPC and optimal control can provide safety guarantees, in this paper,
we seek a method that is less computationally intensive. The reference
governor approach in [19] is notable because it developed an explicit
control law without path planning that is guaranteed to satisfy input
constraints. However, few of the aforementioned approaches explicitly
consider disturbances, whereas there is extensive CBF literature on
disturbance rejection [31,32], and a recent result on simultaneous
disturbance rejection and input constraint satisfaction [33]. Finally,
spacecraft often operate with digital controllers with slow update
cycles. Path planners and MPC can account for controller sampling
given sufficiently sophisticated models, while most Lyapunov meth-
ods cannot. On the other hand, margins for controller sampling have
also been considered in prior CBF literature such as [29,34], which this
paper will extend to also account for relative-degree-2 state constraints,
input constraints, and disturbance rejection.

CBFs are a Lyapunov-like method for determining safe control
inputs, i.e., control inputs that generate trajectories that provably
satisfy the state constraints. For an overview of CBFs, see [35]. In

this methodology, we assume that each requirement that the system
trajectories must satisfy is expressed as the state belonging to a given
constraint set (e.g., the set of states such that a particular instrument is
sufficiently far away from a particular bright object). The safe set is
then the intersection of all constraint sets [36,37]. For each constraint
set, we then construct a corresponding CBF (e.g., [33,38,39]) and
associated zero-sublevel set, herein called an inner constraint set.
Each CBF then provides a pointwise condition on the control input
that is sufficient to ensure that state trajectories always belong to the
CBF’s inner constraint set. Multiple CBFs and inner constraint sets
may then be combined to establish forward invariance of a subset of
the safe set [36,37]. Application of CBFs to attitude control was first
suggested in [27], and in fact, it would be simple to express the
quaternion constraint developed in [1] as a CBF. However, such a
CBF would suffer from the same challenges with input constraints,
disturbances, and controller sampling as the related Lyapunov
approaches in [17,18,21,22]. These challenges are amplified when
some of the constraint functions are of relative degree 2 with respect
to the system dynamics, as is the case for spacecraft pointing con-
straints. That said, extensions of [35] in the CBF literature provide
several general tools for addressing these challenges [29,31-33,
35,40,41], as well as other potentially relevant phenomena not pres-
ently considered. The authors have recently addressed input con-
straint satisfaction, robustness to disturbances, and zero-order-hold
(ZOH) controller sampling with CBFs individually in [29,33,41], and
will incorporate and extend all of these results in this paper. In
particular, we will show in Example 1 that the ZOH discretization
method in [29] is not immediately compatible with the input con-
straint work in [33,40,41], so the bulk of Sec. III is devoted to
reconciling these two approaches while minimizing conservatism.
We then apply all the CBF conditions together online using an
m-dimensional (QP), where m is the number of control inputs and
is generally far smaller than the dimension of the optimizations in
planning or MPC approaches.

The rest of this paper is organized into both 1) a general method
accomplishing the above foci for arbitrary systems and constraints,
and 2) a case study that applies this method to the constrained
reorientation problem. The case study is presented in parallel as each
step of the theory is developed for numerical motivation. Section II
presents the formulation of the general problem, and of the specific
system and constraints used in the case study. Section III presents the
main result combining ZOH control inputs [29] with input constraints
[33,40,41] and disturbances [31,33] for relative-degree-2 constraints
(e.g., pointing constraints), while Sec. IV presents a related extension
of [29] for relative-degree-1 constraints (e.g., angular rate con-
straints). Section V presents the real-time QP controller and simu-
lations both in MATLAB and in a NASA-developed attitude control
simulator. Section VI presents concluding remarks. Proofs of the
theorems in Secs. Il and IV are contained in the Appendix.

II. Preliminaries and Problem Formulation
A. Model

Drawing upon [37], let ¢ € QQ C R™ be the coordinates and v €
V € R™ the velocities of a second-order system:

q=fi(t.q.v) (la)
v :fZ(tqu D)+g1(t,q, v)u—i—gz(t,q, v)g (1b)

with time r€TCR, state x 2 (q,v) EX2QxV CRu+m,
and control u € Y C R™, where U is compact, and disturbance
& € E C R?, where E is bounded. Assume that function f is twice
continuously differentiable in all arguments, that functions f5, g1, g»
are continuously differentiable in all arguments, and that f, f,, g;,
g2, u, € are sufficiently regular so as to admit unique system trajecto-
ries for the entire time domain T. The results of this paper hold for
general f1, f, g1, g», but we are most interested in applications to
attitude control, so suppose the following specific system.

Case Study Part i (System Definition): Assume a single rigid-body
spacecraft. Let Fy be an inertial frame and Fp a spacecraft-fixed
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Table1 Physical parameters of the spacecraft

Parameter Value
m 4
A { 0 0 0.8165 —0.8165:|
0 -09428 04714 04714
-1 0.3333 03333 0.3333
Juwi 1.722(10) kg -m?,i = 1,2,3.4
Upmax.i 7(10)™* N-m,i =1,2,3,4
Jy |:0.1672 0 0 }
0 0.1259 0 kg - m?
0 0 0.06121
P |:0.1672 P Py }
Py 0.1259 Py kg - m?
Ps; Py, 0.06121
where |P;;| < 10720 for i # j
Cmax 5.092(10)75 kg - m?/s?
Winax 628.3 rad/s
Eimax 1.00(10)™ N-m

frame. For this case study, let Q = {g € R*|||q|| = 1} be the qua-
ternion space and let ¢ = [qq, 41, ¢, q3]7 € Q be the quaternion
(with scalar element g first) that rotates from Fy to Fp. Let w €
R3 be the angular velocity of Fp with respect to F expressed in
frame Fz. Suppose that the spacecraft has m reaction wheels. Let

a,i=1,...,m, a; €R? |a;| =1, denote the spin axes of the
wheels in frame Fy;, and define A € R>" as A 2 [a,,..., a,,]. Let
w;, i =1,...,m, w; €R, denote the angular velocity of the wheels

with respect to Fj, and define w € R” as w = [w;, ..., w,,]”. The
system velocities as in Eq. (1b) are v = (w, w) € V = R3*+",
Assume that each wheel is axially symmetric and let J,,; € R, be
the axial moment of inertia of the ith wheel, and let J,, € R"™*" be a
diagonal matrix whose ith row and column elementis J,, ;. Let J, be
the moment of inertia of the spacecraft without wheels plus the
transverse moments of inertia of the wheels (e.g., see [42]
(Eq. 3.140, Chap. 3.3.5.1)) expressed in frame Fp, and let J,,, 2
Jy+ >, Jyi(a;al’) denote the total moment of inertia of the
spacecraft. Assume that J;, and J,, are constant. The spacecraft state
isthen x = (¢, w, w) € X = Q x R**" and the dynamics [43] are

0 — —W; —W3
. 1| o 0 w3 —w
9=3 q (2a)
2 Wy —Ws3 0 [OF]
[OF] ) — 0
® Jtot A‘Iu} -! —w X (Jmtw + Ajww) + g (2b)
w| | J,AT T, u
—_—
V4

where u € U C R™ is the commanded wheel torque. The maximum
wheel torque is limited to u,,,, solU = {u € R"|||u||c < Upay}- For
this particular case study, we suppose a 6U CubeSat with parameters
given in Table 1 and visualized in Fig. 1. Note that we have chosen a
configuration with four wheels in Table 1 rather than a more typical
three-wheel configuration in order to demonstrate the general appli-
cability of these results. The wheel moments of inertia and maximum
torques in Table 1 are based off a commercially available wheel pack-
age,* with the maximum per-wheel torque reduced to be comparable to
athree-wheel configuration. Let Z = {€ € R3|||€|| < Epnax} fOr Emax iN
Table 1, which comes from approximate values of aerodynamic drag
on a 6U CubeSat at 500 km altitude.

fCubeWheel Medium: www.cubespace.co.za/products/adcs-components/
cubewheel/#cubewheel-specifications.

Fig.1 A 6U CubeSat with two spacecraft-fixed keep-out zones centered
about b, b,, and an inertially fixed vector s that must be kept outside
these zones.

B. Safety Constraints

Next, suppose that the trajectories of Eq. (1) are required to lie in
the intersection of several constraint sets, each defined by the zero
sublevel set of some constraint function. Let«;: T X Q — R fori =
1,..., N, denote the relative-degree-2 constraint functions, and let
7;:TxXxV >R fori=N;+1,...,N; + N, denote the relative-
degree-1 constraint functions. The constraint sets are

Qi(t) £ {x = (¢.v) € X|x;(t.q) <0} (3a)
Vi) £ {x = (q.v) € X|n;(t,v) <0} (3b)

and the resultant safe set is

N, N+N,
so2(Ron)n( N vo) @

i=N;+1

where Q;, V;, and S are permitted to be time-varying. As an abuse of
notation, we will generally write «;(¢,x) and #;(#,x) in place of
k;(t, q) and #;(¢, v) in order to match the CBF notation in Sec. II.C.
Some constraint functions that are common in attitude control are as
follows; these constraints are also the basis of our simulations in
Sec. V.

Case Study Part ii (Constraints): For the spacecraft system in
Eq. 2), let b € R?, ||| = 1, be a body-fixed vector, such as an
instrument boresight vector (e.g., the green or blue vectors in Fig. 1).
Lets(z), ||s(t)|| = 1, be a vector, potentially time-varying (provided s
is thrice continuously differentiable), for which we require that the
angle between s(f) and b is always at least 6 (e.g., the local sun vector,
represented by the yellow vector in Fig. 1). This leads to a constraint
function of the form

k(1. q) = s()"R(q)b — cos 0 ®)
where R(q) is

1-2¢3-263 24192 ~240q3 2409 + 24143
R@) 2| 2q0g3 + 29192 1 =241 =245 24243 — 2904
29195 = 24042 29041 + 29295 1247 - 243
(6)
This is a relative-degree-2 constraint function, since k; is not
a function of u, €. Note that Eq. (5) can be used to express both
keep-out and keep-in zones. Also note that x;, in Eq. (5) is equiva-
lent to «}(t,q) = ¢*"Mq* in [1] (Eq. 2.5), where M is given in
[1] (Eq. 2.6) and q* = [—q;, —¢2, —¢q3. qo]” is the conjugate of ¢
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with the scalar element ¢, last (the conjugate arises because of
notational differences with [1]). Next, we also require that the maxi-
mum angular rate of the spacecraft is bounded for safety of the
spacecraft structure. This leads to the constraint function

’7a}(t7 v) = wTPw — €max (7)

where e, € R and P € R¥3 are given in Table 1. The values of
emax and P are constructed so that the safe set allows for angular rates
of up to 1 deg/s on the largest principal axis and up to 2.730 deg/son
the smallest principal axis, and will be elaborated upon in Case Study
Parts xi—xii. This is a relative-degree-1 constraint, since 7, is a
function of u, €. Finally, we require that the wheel angular velocities
are limited, so introduce m constraint functions:

nw,-(tsv):|wi|_wmax9 i=l,...,m (8)

where w,,, is a constant. This paper will assume that a suitable
momentum dumping control law (e.g., scheduled thruster or magne-
torquer application) has been developed so that the constraints encoded
by 1, (t,x) are always satisfied without impacting the rest of the
control design. Thus, we only focus on the relative-degree-1 constraint
in 7, and the relative-degree-2 constraint in k,, though we still
incorporate the wheel rate bounds in Eq. (8) in the safe set construction
in Eq. (4). Finally, for this case study, suppose that there are two
constraints of the form Eq. (5) for body-fixed vectors b, and b,, so
the safe setis S = @, N Qy, NV, NV, NV, NV, NV,

C. Continuous-Time CBFs

This paper will utilize and extend CBF theory to address the
problem of rendering state trajectories always inside the safe set. A
formal definition of CBF with robustness to bounded disturbances is
as follows.

Definition 1 ([33] Def. 3): For the system (1), a continuously
differentiable function 4;: T X X — R is a CBF on the set S if there
exists alocally Lipschitz continuous class-X function @; : Ryg — Ry
such that

supmin (1, x,u, €) < a;(=h;(1,x)), Vx € Hi(r) nS(1), V1 €T

£cs uell
&)
where H; is called the inner constraint set and is given by
H;i(1) & {x € X|h(t,x) <0} (10)

That is, a scalar-valued function h; is a CBF if there is sufficient
control authority given the set I/ that the total derivative of /; can be
upper bounded regardless of the disturbance value € in the considered
set 2. The following lemma, derived from [33] (Lemma 4) and [37]
(Lemma 3), can then be used to guarantee forward invariance (i.e.,
safety) of the set H;.

Lemma 1: Let u(t,x) be a control law. Given a CBF h; on S
satisfying Definition 1, if x(zy) € H;(#y) and u satisfies

sup (1, x(1), u (1, x(1)), &) < a;(=h;(1,x(1))) an

I{=5)

forall € [ty, t/), where t is possibly co, then x(¢) remains in H,(7)
forall 7 € [ty, t;).

Thatis, as long as the control law satisfies the condition (11), called
the CBF condition, the state trajectory cannot leave H;; i.e., H,; is a
controlled-invariant set. In general, H; is not equivalent to S, because
there may exist states in S(#y) that are instantaneously safe at 7, but
that cannot be rendered safe for all # € [t, ) [33]. Thus, we call H;
an inner constraint set. We note that Lemma 1 can be applied to any
number of CBFs, so we seek a collection of CBFs {A;}*, such that
N, H; is a subset of S in Eq. (4) (see [37] Lemmas 2 and 3).
Specifically, our final control law will employ one CBF #; for each

constraint function x; or #; (equivalently, one CBF set H; for each
constraint set Q; or V;) in order to leverage existing literature
[33,40,41], though such a one-to-one correspondence is not neces-
sary [37].

Denote the set of control inputs satisfying Eq. (11) as U, (¢, x).
Note that the total derivative of A; is

. ah,(l‘, x) ah,(l‘.x) ah,(t, x)
hi(t’xﬁuvg) = 6l + aq f] (t,x) + av f2(z7x)

+ g1, x)u + g (1, x)é (12)
so each condition (11),i = 1,...,N| + N,, is affine in u and each

U), is ahalf-space. Thus, a QP-based control law as in [35] (Sec. II.C)
can efficiently solve for u satisfying several constraints of the form
Eq. (11) simultaneously.

For each relative-degree-1 constraint #; in Eq. (3b), we will choose
the CBF h; =5, so 'H; = V,. For the relative-degree-2 constraints x; in
Eq. (3a), various methods to construct a CBF /; such that H; C Q,; are
covered in [33,40,41], and this paper will extend the method in [33]
(Sec. 3.1) specifically. For a constraint function «; satisfying certain
properties (covered in [33] Sec. 3.1), one possible choice of CBF is

hi(t, x) = K','(t,x) +
2u

13)

for some parameter y > 0. This choice of CBF does not work for all
systems, but is particularly useful for systems similar to the double
integrator, such as a double integrator with small nonlinearities. We
hypothesize that Eq. (13) can be used for pointing constraints as in
Eq. (5), so this is the only CBF for relative-degree-2 constraint
functions «; considered in this paper. Possible extensions of the other
CBFs in [33,40] to ZOH control inputs are left to future work.

Let py > pup, >0, and let h;, and h;, be two corresponding
CBFs. Note that H; ,, D H, ,,- Thus, the least conservative CBF of
the form (13) will have the largest allowable parameter u. Also note
that with £, as in Eq. (13), the set H; is does not meet our requirement
that H; is a subset of Q;. To address this, we recall the follow-
ing lemma.

Lemma 2 ([33] Lemma 7): Let u(t, x) be a control law. For some
function «;, let A; be as in Eq. (13). If x(#y) € H;(ty) N Q;(ty) and u
satisfies Eq. (11) for all t € [t,, t;), where ¢ is possibly oo, then x(f)
remains in H;(f) N Q;(¢) for all ¢ € [ty, t).

That is, even though Lemma 1 only guarantees forward invariance
of H;, because of the special form of  in Eq. (13), the set H; N Q, is
also rendered forward invariant. We now consider how Eq. (13)
applies to our case study.

Case Study Part iii (Continuous-Time CBF): For the constraint
function x;, in Eq. (5), the function 4, in Eq. (13) isa CBF on S as in
Definition 1 for any parameter 0 < ¢ < 0.0025.

D. Robust Sampled-Data Formulation

Thus far, all results have been for continuous controller updates,
but our goal is to apply the CBFs (13) and (7) when the controller is
instead updated at a fixed frequency. Now suppose that the control
inputu is updated at discrete times #, k € N, where #; | — t, = T for
fixed time-step 7 > 0, and that u is fixed between time steps k and
k 4 1. That is, we seek a ZOH control law

u(t) =uy, Vtelt, i) 14)

where u;, = u(t;,x(t;)) € U. Denote x, = x(t;). Since the control
input is updated only at the times 7y, it is difficult to ensure that
Eq. (11) is satisfied at every time instant (i.e., including between time
steps), as is required for Lemma 1 to apply. The work in [29]
summarizes three stricter versions of Eq. (11) that when applied only
at times f, k € N ensures that the original condition (11) is always
satisfied between time steps, and a related method that accomplishes
the same result without using Eq. (11). However, the methods in [29]
do not easily apply to CBFs constructed from relative-degree-2
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constraint functions, such as in Eq. (13). This is demonstrated by way
of the following example.

Example 1: Given a relative-degree-2 constraint function «;, one
possible CBF is that in Eq. (13) for some constant u > 0. According
to [29] (Thm. 3), this CBF can be rendered safe in a ZOH fashion if for
allx € H;(t),t € T there exists u € U such that

i, x) = k,-(t,x)(l +M) < Lo -Lr (s
" T 2

where r > 0is a parameter defined in [29] (Eq. (17)). As explained in
[29], r could either be a constant (“global” case), or a function of 7, x
(“local” case) depending on the implementation. In either case, r
represents possible values of k; and, for that reason, is usually lower
bounded by a positive number, here denoted ry > 0 (in the global
case, let ry = r).

The issue that arises here is that, for any arbitrarily small § > 0,
there exist x € H;(¢),r € T such that ;(f,x) = § and x;(t,x) =
- % For such x, Eq. (15) simplifies to

6 wrT
Rt x,u,€) <e) 2 ——-"r
i(rx) < e0) 2 =B
Because r > ry > 0, it follows that limg_,¢+€(5) = —oo. That is,

the ZOH sampling margin r causes the required K; to go to —oco near
the boundary of H;, which also causes the required u to become
unbounded. Thus, the methods in [29] cannot be applied to the CBF
(13), or any of the relative-degree-2 strategies in [33], if there are also
input constraints.

Thus, the method in [29] suffers from the infeasibility of the
condition [29] (Eq. 5) when the control input u is constrained. The
interested reader can examine this problem further by downloading
the code linked in [29] and increasing the value of the constant y in
[29] (Table 1). Thus, the central problem of this paper is as follows.

Problem 1: Given the safe set S in Eq. (4), focus on a single
constraint function 77; : T XV — Ror k;: T X Q — R that is of rela-
tive degree 1 or 2, respectively, with respect to the dynamic model (1).
Assume that x(#;) € S(1;) in Eq. (4) at the current sample time k, and
that all other constraints x(¢) € Q;(¢) and x(¢) € V;(¢) for j # i are
satisfied for all ¢ in the inter-sample period [#;, #;,1). We seek to
derive a set Z;(t) C Q;(t) or Z;(t) C V;(¢) for all r € T and a set
U, (tr, x(t)) such that 1) given x(#) € Z;(t;) and u(t, x(#)) €
U, (. x(t;)) we can provably guarantee i) x(#,4.1) € Z;(f;1) andii)
x(1) € Q;(1) or x(¢) € V;(2) for all 1 € [#, t;4,) for any allowable
disturbance & € E, and 2) the set U N U (#, x(t;)) is nonempty for
allx(r) € Z;(t) N S(1), 1, € T.

We refer to set Z; as the ith robust inner constraint set. Similar to
how we restricted the constraint set O, to the inner constraint set ,; to
account for input constraints, leading to the safe control set U/, , in
this paper, we will further restrict the allowable sampled states to the
new set Z; to account for disturbances and controller sampling,
leading to the new safe control set /. Figure 2 shows the relation
between Q; (cyan), H; (hashed), and Z; (gray) for arelative-degree-2
constraint function. Section III will address the relative-degree-2
case of Problem 1, while Sec. IV will address the simpler relative-
degree-1 case.

III. Method for Relative Degree Two
A. Strategy

We begin by addressing the relative-degree-2 case of Problem 1, as
the relative-degree-1 case easily follows. In this section, we drop the
subscript i, so let k denote any relative-degree-2 constraint function
[e.g., Eq. (5)], and & the corresponding CBF as in Eq. (13). The
core idea of this method, and those in [29,34], is that given
h(ty, x(t;)) < 0, we want to identify a formula for a worst-case value
of h(ty + 7,x(ty + 7)), denoted hyoung(ty, X(2), 7), for 7 € [0, T
and find a suitable control input to ensure that hpgnq(tx, X(t;), 7)
is nonpositive for all = € [0, T]. However, the problem highlighted
in Example 1 is that the worst-case formulas /,q,,q following from

o

— Qescu pe

0.6
04 BQ, NH;
02f '

o (t)

< 0 x(ty)

2

02§

04| \
-0.6 \
1 A
-1 0.5 0 0.5 1
Kk(t,x)

Fig. 2 Diagram of a constraint set Q;, corresponding inner constraint
set H;, robust inner constraint set Z;, and a safe trajectory x(¢) € Q; n
H; with controller samples x(¢;) € Z; at the red “x” marks.

all the methods in [29,34] rely upon linear approximations of h
on the interval [f;, f;,(]. The obvious extension is to use a higher-
order approximation of the worst-case trajectory that A could
follow between time steps. However, when using a higher-order
approximation, it is no longer sufficient to only check that
Npound (e, X(2;), T) <0, as there may exist 7 € (0,7) such that
Npound (Te> X (1) T) > hpouna (> X(2), T), as visualized by the red
and cyan points in Fig. 3. Thus, unlike in [29,34], we must instead
check that hyoyng(fi, X(1),7) <0 for all z €[0,7], which adds
complexity to the problem. To address this possibility of exiting
and returning to the inner constraint set, we seek local maximizers
o (e.g., the red circle in Fig. 3) such that hygy,q(, x(t), 0) >
Npound (T, X (21), 7) for all = € [0, T]. We then identify a bound A on
the differences hpoung (25, X(tr),0) — h(ty, x (1)) and hpguna (te, X (2;),
6) — hyound (tx, X(2), T) and define the sets

HA() 2 {x € X|h(t,x) < —=A} (16)

Q%(t) 2 {x € X|x(t,x) < =8} (17)

It follows that if A(z;, x(2;)) < —A and hpguna (8, X(2), T) < —A,
which are relatively simple conditions to enforce [e.g., see Eq. (29)],
then A(t; +7,%(t + 7)) < Moouna (e X (1), 7) < Ppouna (11X (1), 6) <0
for all z € [0, T]. This is visualized in Fig. 2, where the red sample
trajectory is always safe, because at the sample times 7, the trajectory
meets the stricter condition of being in the gray set.

To define a set Z as in Problem 1, we will need expressions for
suitable A in Eq. (16) and ¢ in Eq. (17), from which it will follow that
Z ="H* n Q°. We seek to minimize conservatism, i.e., to choose the
smallest 6, A for which we can still provably demonstrate safety
between each f; and ¢, ;. To this end, Secs. III.C and IIL.D study
possible expressions for &, A that work well for the system (2), and
that lead to a final control strategy summarized in Theorem 4.

T T T T T T T T T

Linear
Quadratic
Actual

0 0.02 0.04 006 008 01 012 014 0.16 0.18 0.2
Time (s)
Fig.3 Diagram of a linear and quadratic upper bound on the trajectory

of h(t, x(t)) between two sampled times, and the maximizer o of the
quadratic curve.
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Table2 System constants
for case study

Parameter Value

T 02s
M5 1.64(10)~
M5 —1.64(10)™*
Mf 6.2(10)73
M3 —6.2(10)73
5 1.10(10)~°
5, 9.7(10)=¢
A, 1.3(10)3
A 1.09(10)~°
U 0.00167
M, 5.79(10)~7
M3t 1.95(10)°

We begin by presenting a naive approach to determining A, §.
Assuming a second-order /g function [such as that in Eq. (28)],
the required margin A can be determined entirely by the values of the
second derivative /2. Thus, consider the following (very conservative)
baseline example with numbers derived from our case study.

Case Study Part iv (A Naive Approach to Computing Maximum
Overshoot): Let the time step for the controller of Eq. (2) be
T =0.2s. Let h, as in Eq. (13) be a CBF for x, in Eq. (5)
and suppose that g = 0.00167 as in Table 2 (which we will
justify later). Suppose that E=0 for this example. Let r =
MiNyes() €T ueu hb (t,x,u,0) = —0.550. It follows that one possible
upper bound on the overshoot of h; between time steps is
A= —%Tzr = 2.75(10)=3. We will show in Secs. IIl.C and II1.D
that this is over 200 times as conservative as necessary for this system.

B. Sampling and Robustness Constants

‘We now proceed similarly to [29] by defining several constants of
the system, analogous to the Lipschitz constants in [29], and then
using these constants to bound system behavior. First, define

ok(t,x)
My & |
27 erxeSgez  ov 82(1.0)8 (18a)
ok (t,
MF e sup k(1, x) (t, X)E (18b)

(€T xeS() ez OV

The constants M5 and M} represent bounds on our uncertainty in &
because of the unknown disturbance. We assume that Egs. (18) and
(21) are well-defined. We represent the component of k that is certain
using the function y as follows:

0k(1.x) | 3k(1.x)

o g Sf1(t,x)

w(t,x.u) =

ok(t,
+ P (0 4 gon) 09)
so that
K(t,x,u) <y(t,x,u) + M5 (20a)
K(t.x,u) > y(t,x,u) + M; (20b)

In practice, the value of y is exactly known only at the sampling times
1, so we also define the constants

: op(t.x,u) Oyt x u
in +

1€T,x€S (1) uell E€E ot oq

oy (t,x,u)

F PO () +aeou +008)| Q1

M;é fl(tvx)

M2 sup

teT xeS(r) ucld E€E

$ X (1) 4 100+ 200 x)&)} @1b)

op(t,x,u) ow(t,x,u)
|: ot + aq fl(L x)

ov

to describe our uncertainty in the evolution of y between time steps
due to both the ZOH sampling and the disturbance. That s, for z > 0,

w(t+o,x(t+7),u) <w(t,x(@),u) + Mt (22a)

w(t+7,x(t+7),u) >yt x(),u) + M5t (22b)

Note that the control input u is the same on both sides of the inequal-
ities in Eq. (22), so these inequalities are only useful during a single
ZOH time step. Also, unlike in [29], we assume the bounds
M5, M¥, M5, M7 are global (i.e., are computed over all of S) for
simplicity, though extensions for local bounds computed online as in
[29] could also be developed at greater computational cost. If the
global bounds (18) and (21) are undefined, then more involved
analysis than is presently considered may be required. Note that we
defined the lower bounds M5, M5 and upper bounds M3, M7 sep-
arately to cover cases such as when the dynamics and/or disturbance
environment are known to tend to increase/decrease & [e.g., if the
unsafe state is of higher/lower potential energy than other states, such
as would occur if gravity gradient were included in Eq. (2)]. In other
cases, it may occur that M5 = —M5 and M5 = —M7 . Inthe upcom-
ing theorems, we will need the following relations. Let ¢ be some
time in [#, f;, 1], where u is constant on [, #; 1), and let 7 € R be
such that o + 7 (or o — 7)is also within [#;, #; 4, ]. Then, using only the
time argument for brevity, it holds that

(0w (22b) (20b)
k(o) S wlo)+ M <ylo+1)—Mit+ M < k(o+7)
- M5 - M3t + MS (23a)

@) (220) (0a) _
k(o) 2 w(o)+M; > y(o+1)—Mit+ M5 > k(o +1)

—M2+ —M;T—I—M; (23b)
. _(20b) (22b) (20a)
k(0) > w(o) + My > w(o—1) + M5t +M; > k(o —1)
- M3 + M57+ M; (230)

. (200 (22a) (20b) |
k(o) S wlo)+ M <wlo-1)+Mit+Mf < k(o—1)
- M5 +Mft+ M5 (23d)

Case Study Part v (Constants): For the system (2) and constraint x;,
in Eq. (5), the values of M5, M3, M3, M7 are given in Table 2. Note
that these values hold forall @ < z/2in Eq. (5), and are larger than the
resultant values (i.e., are overly conservative) when 6 > x/2.

C. Determining A,6 When & and x Share Maximizers

Using the above constants, we now determine suitable values of
A, 6 for Egs. (16) and (17) in two parts. First, we note that a necessary
condition for a maximizer ¢ of 4 occurring between time steps #; and
teyr 1S fz(a,x(a), uy, &) = 0. Because of the form of % in Eq. (13), a
sufficient condition for 4 = Qis k = 0, so maximizers of & will often
be co-located with maximizers of , as illustrated by the blue lines in
Fig. 4. Thus, this subsection determines appropriate margins A, §
specifically when the maximizers of k and & are co-located, while the
following subsection determines these margins when this is not the
case (green lines in Fig. 4). We begin with the following lemma.

Lemma 3: Suppose that « is thrice differentiable and of relative
degree 2 with respect to Eq. (1), and u is constant on [#;, ;. 1). If 6 €
(), ty41) is the time of alocal maximizer of /1 in Eq. (13) on (#, t441)
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K
-=-=-h
X max(k)

O max(h)

tk tk+1

t
Fig. 4 Illustration of trajectories where the maximizers of x and % on
[tx>tr+1] are co-located (blue), and where the maximizer of & precedes
that of « (green).

and x(0, x(0)) = 0, then o is also a local maximizer of k on (#;, t; 1)
and it must hold that 0 > k¥ (o, x(0), u, &) > —u.

The consequence of Lemma 3 is that, provided that the stated
condition holds, we can now use knowledge about k to upper bound
the variation in & between time steps. Lemma 3 is particularly helpful
because analysis of k is generally simpler than analysis of &, and
because p is a tunable parameter. Note that maximizers of the CBF &
can also occur when k(o,x(6)) # 0 and in these cases Lemma 3
would no longer apply, thus motivating Lemma 4 in Sec. IIL.D.
However, when Lemma 3 does hold, we can substantially reduce
the required conservatism to prevent x(¢) from leaving H(¢) between
sample times, as illustrated using our case study as follows.

Case Study Part vi (Application of Lemma 3): Suppose the same
setup as in Case Study Part iv and suppose that the conditions
of Lemma 3 hold. It follows that /(c,x(0)) = k(0,x(0)), so we
can instead compute A as a bound on the possible overshoot of x
between time steps. Let r = minye s e weuk (¢, x,u,0) = —0.0262
(recall that Case Study Part iv assumed & = 0), which leads to the
new bound A = —17?r = 1.31(10)"*. Finally, since Lemma 3
also says that k(o,x(c),u,€) > —u, and we can show that
minyes() rerueuk(t, X, u,0) = —0.0062, it follows that i(z, x(1),
u,0) > r = —pu—0.0062T = —0.00291 for all ¢ € [t;, 1;, ] assum-
ing o € [y, t; 1], which leads to A = —%Tzr = 1.46(10)7>. Thus,
Lemma 3 reduces the conservatism A on H needed to ensure safety
during the between-sample interval compared to Case Study Part iv.

‘We now apply Lemma 3 to calculate a general formula for appro-
priate margins A, § in Egs. (16) and (17) on h(ty,x;), k(t, X)) to
ensure that x remains safe between sampling times.

Theorem 1: Suppose that « is thrice differentiable and of relative
degree 2 with respect to Eq. (1), and u is constant on [t;, f; ).
Suppose that all maximizers ¢ of & in Eq. (13) on the interval
(ty, ty41) satisfy k(o, x(6)) = 0. Define §; as

.1 _ 1
5 érrg[g);][mm{i(ﬂ—l—M; - M5)(T —1)? _8M3 (T -7)%,

1 1
L M -y +6M3+13” 24)

If x(t;) € H%(#,) N Q(t;) in Egs. (16) and (3) and x(t;,) €
H(try1) N Q% (t441) in Egs. (10) and (17), then x(r) € H(¢) for
allr e [tk’ tk+1]'

Case Study Part vii (Application of Theorem 1): Using the values
of My, My, M35, M7, jin Table 2, it follows that §; = 1.10(10) 7> in
Eq. (24). This is of similar magnitude to the value of A in Case Study
Part vi, as expected, and is equivalent to 2.27 arcseconds of shrinkage
of the inner constraint set.

Thus, in the case where the maximizers of x and & are consistent,
we have an explicit formula for how much we should further restrict
the set H at the sample times to ensure that the state never leaves the
set H between the sample times. Having established this, we note that
the requirements of Theorem 1 are still overly conservative. This
is because we assumed that H* and Q° were defined using the
same margin parameter A = 6 = J;. For certain systems, applying
different margins A, on h(#;, x;) and 8, on k(#, x;) may reduce this
margin, as presented in the following theorem.

Theorem 2: Suppose that « is thrice differentiable and of relative
degree 2 with respect to Eq. (1), and u is constant on [ty, f;41)-
Suppose that all maximizers ¢ of & in Eq. (13) on the interval
(. ty41) satisty (o, x(0)) = 0. Suppose that there exist constants
6, > 0and A, > 0 for which it holds that

. 1 _ 1
Trer}g);][mm{—Az + 5(/4 + M5 - M5)(T - 7)? — 8M3 (T -—7)3,

1 1

If x(t,) € H*(t,) n Q(t;) in Egs. (16) and (3) and x(t,) €
H2%2 (1) N Q%(ty,) in Egs. (16) and (17), then x(7) € H(¢) in
Eq. (10) for all 7 € [t;, t;41]-

The primary difference between Theorem 1 and Theorem 2 is that,
in Theorem 1, the form for ; was provided explicitly. On the other
hand, in Theorem 2, neither &, nor A, is uniquely defined. If we fix
either §, or A,, we can use condition (25) to compute the other
constant. It follows from Theorem 1 that one valid combination is
A, = 8, = §;. Another helpful strategy is to set A, = A3, where Aj
is presented in the next subsection, and to then compute the smallest
allowable &,. We also note that, unlike Theorem 1, the conditions of
Theorem 2 are recursively feasible. That is, the ending condition
x(tp1) € HA22(t31) N Q% (t44y) at time t,,, implies the starting
condition x(t;) € H*2(t,) N Q(t,) when k advances by one step.

Case Study Part viii (Application of Theorem 2): Using the
values of M5, M$, M5, M7,y in Table 2, one possible combination
satisfying Eq. (25) besides A, = §, = §; is A, = 1.3(10)™ and
8, = 9.7(10)°.

D. Determining A, § When % and x Have Distinct Maximizers

Now that we have thoroughly covered excursions outside the sets
HA, Q% when Lemma 3 applies, we finally discuss the behavior
between sampling times when this is not the case, as is illustrated
by the green lines in Fig. 4.

Lemma 4: Suppose that « is thrice differentiable and of relative
degree 2 with respect to Eq. (1), and u is constant on [y, ;| ), where
fyy1 =ty + T. Suppose that M >0, M5 <0, and pu > MF —
M; + (max{|M{|, |M5|})T. Define A; as in Eq. (A34) in the
Appendix. Suppose that there exists a maximizer time ¢ € (#;, t;,1)
for which h(o,x(c)) > h(t,x(1)) for all r € [f, ;1] at which
k(0.x(0)) #0.1fx (1) € H™ (1) N Q(1y) and x(t51.1) € HA (t34.1) N
Q(try1), then x(¢) € Q(¢r) for all 7 € [#;, t;4,]. Moreover, if there
exists a time 7, € (t;, ;1) at which k(t,,x(z;)) = 0, then f, is
unique.

Note that in Lemmas 3 and 4, we supposed existence of a local
maximizer of /. If a local maximizer of 4 does not occur on [#;, 1],
then it is trivial to show that x(¢) € H(¢) forall ¢t € [t;, 1], and thus
by Lemma 2, x(¢) € Q(r) for all 1 € [f;, t; . {]. Also, it should be
emphasized that Lemma 4 does not guarantee that x(¢) € H(t) for all
t € [ty, ty41] asin Theorems 1 and 2, because the value of A; required
to guarantee that result could be larger. Rather, Lemma 4 only
guarantees that x(7) stays in the original constraint set Q() for all
t € [ty, tr41), and the proof further shows that x(r) stays in H(z) in the
special case where a local maximizer ¢, € (#;, t; 1) of k also exists.

Case Study Part ix (Application of Lemma 4): Using the values of
M35, M3$, M5, M7, uin Table 2, it follows that A; = 1.09(10)~% in
Eq. (A34). This occurs for y = 3.6(10)7°%, 6 —t, = 0.13 s, and
t; —o = 0.0023 s. In this case, A3 < §;, but this is not guaranteed
in general.

Remark 1: Note that the necessary condition k(c, x(c),u,€) = —pu
in the proof of Lemma 4 [preceding Eq. (A16)] is very specific, so in
the authors’ experience, maximizers of & meeting the conditions of
Lemma 4 are rarer than maximizers meeting the conditions of
Lemma 3. However, the conditions of Lemma 4 occur more fre-
quently if y is chosen very small.

Thus, we have now identified bounds on the overshoot of x
between time steps both when x and % share maximizers (Lemma
3) and when the maximizer of « is distinct from the maximizer of &
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(Lemma 4). We thus have all the tools we need to define the robust
inner constraint set Z. We now combine Theorem 2 and Lemma 4 to
state our main theorem.

Theorem 3: Suppose that « is thrice differentiable and of rela-
tive degree 2 with respect to Eq. (1), and u is constant on [f;, (),
where t;; =, + T. Suppose that M >0, M5 <0, and p >
M3 — M5 + max{|M{|, |M5|}T. Suppose that there exist &, and
A, satisfying condition (25), and that A, > A3 in Eq. (A34). If
x(t) € H* (1) N Q(ry) and  x(tyyy) € HA (1111) N Q% (frp1)s
then x(r) € O(¢) for all 7 € [#y, t141]-

It follows from Theorem 3 that we can express the robust inner
constraint set as in Fig. 2 as

Z(t) = Q% (1) N HA (1) 0 HA (1) (26)

Remark 2: Note that §; in Eq. (24) decreases with decreasing u,
while Aj in Eq. (A34) tends to increase with decreasing u. Although p
is a tunable variable, this tradeoff suggests that there is some mini-
mum amount of margin required when using a ZOH controller,
regardless of the choice of u. Note that both J; and A; decrease with
decreasing 7.

E. Determining the Set of Safe Controls

Now that we have thoroughly addressed the problem of overshoot
between time steps, we seek a condition on u that guarantees
h(ti1, X(1111)) < =Ag and k(f41, %(f41)) < =0, so that we may
apply Theorem 3. Moreover, we seek a choice of parameters 6,, A,, p
such that this condition is always feasible with respect to the input
constraints everywhere in Z in Eq. (26). To this end, define the
following polynomials in z:

Pt x(2),u(t), 7) 2 k(t, x(1)) + k(t,x(£))7 + %w(t, x(1), u(t))z?

1 1
I MEP M @7

pu(t.x(0). (1), 7) & p(t.x(0). u(1), 7) + issq (k(I,X(t))

+w(t,x(t), u()r + M7+ %M;rz) (28)

which we will show represent upper bounds on (¢ + 7, x(¢ + 7)) and
h(t + 7,x(t + 7)), respectively, given x(7) and a ZOH u(r). Here,
ssq(4) £ 1]4| for brevity.

Theorem 4: Suppose that « is thrice differentiable and of relative
degree 2 with respect to Eq. (1); M3, M{,8,, Ay, Az, p satisfy the
conditions of Theorem 3; Z is as given in Eq. (26); and u satisfies
Eq. (14) for every k € N. If x(¢y) € Z(ty) and

Pt X(t), u(ty, x(1)), T) £ =6, (29a)

it x(8), u(te, x(1), T) < =4, (29b)

both hold for every k € N, then x(¢) € Q(¢) forall r € T.

Note that while the upper bounds p, and p,, are valid forany 7 > 0,
Theorem 4 only considers the values of p, and p, atz = T, and thus
relies on the analysis leading up to Theorem 3 (which was not
dependent on p,, p,) to guarantee that x remains nonpositive
between sampling times, i.e., for 7 € (0, T'). Based on Theorem 4,
we conclude with the following definition of a CBF for ZOH appli-
cations, analogous to that in [35] (Def. 2).

Definition 2: For a thrice continuously differentiable constraint
function «;, the function 4;: T X X — R in Eq. (13) with parameter
u is a degree-2 ZOH CBF (D,ZohCBF) on the set S for time-step T
if there exist constants &,, A, satistying Eq. (25) and A, > A3z in
Eq. (A34) such that

rnig{l(max{p,( (t,x,u,T) + 6,, pj (t,x,u, T) + Ay}) <0,
ue ! !

Vx e Z,(t)nS(t), vVteT (30)

where Z;, p,, and p,, are given in Egs. (26-28), respectively.

We revert to using the i indexing notation in Definition 2 for
completeness (recall that this entire section and thus Definition 2
too are for one constraint at a time). Similar to Eq. (9) with continuous
control, Eq. (30) accounts for the allowable control set U, so if &
is a D,ZohCBF, then the conditions (29) are feasible in the presence
of input constraints for all x(r) € Z(¢),t € T. Equivalently, if A
is a D,ZohCBF then the set U, (t,x) N is nonempty for all
xe€ Z(t)nS(1), t € T, where

U, (t,x) = {u € R"|p(t,x,u,T) <=5, and p,(t,x,u,T) < —A,}
(€1

The only remaining component is to determine a valid triple
(65, Ay, ). One such triple is §, = §; in Eq. (24), A, = A, where
A, £ max{8,, As;} in Egs. (24) and (A34), and u = u* as follows:

W (65, Ay) & max y suchthat
1€(0,00)

max (min(max{p,((t,x, u,T)+ 6, pp(t,x,u,T) + Az})) <0

x€ZnS(0) \ ueld
1eT

(32)

assuming that u* exists. One can also choose u < p*(6,, A,). Note
that for large € or T, 6, and A, will also be large, and there may be no
u* satistying Eq. (32) and the conditions of Theorem 3, indicating
that Eq. (1) cannot be safely controlled at such a sampling time 7. A
plot of y* using 5, = §; and A, = A; for dynamics (2) is shown in
Fig. 5, where the black region is where u* does not exist or is less
than MF — M5 + max{|M7|, [M5|}T.

Case Study Part x (Selection of u for Input Constraints): Using the
values of M5, M5, M5, M7 in Table 2, the choice (6, 81, u* (5, 6,))
where p*(6;,8,) = 0.00167 as in Eq. (32) is one valid triple. Alter-
natively, (8,, Ay, u*(8,, A,)) is another such triple. We note that
u*(8,, A,) is slightly larger than p* (8, 6, ), but the difference is only
in the fourth significant digit of u for this particular system. The
authors observed a greater difference between u*(8,,A,) and
u*(8,, 6,) for problems where u,,,, was greater. Thus, ZOH discre-
tization has led to a more conservative result than the continuous-time
case with y = 0.0025 in Case Study Part iii.

Note that the polynomial p, is linear in y, and therefore affine
in u, so one can encode Eq. (29a) in a QP-based control law as in
[35] (Sec. II-C). The polynomial p; has nonlinear dependence on y
(because of the ssq function), but p,, is still monotone increasing iny,

%107
25+ 24
20 23
g | 22 %,
£ 15¢ 121 >
=~ >
x —
g 10 2 <
o

1.9

o

1.8

ot ‘ , ‘ 1.7
0.05 0.1 0.15 0.2 0.25 0.3

T(s)
Fig. 5 Plot of u* in Eq. (32) variation with the disturbance bound &,
and sampling period 7 for the system (2), where “x” marks the case study
parameters.
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and thus one can write p;, < —A, in Eq. (29b) equivalently as y <
Wmax fOr some number ., (the expression for ., is omitted
for brevity, but the interested reader is referred to the function
get_PhiQ in the simulation code in Sec. V). Thus, one can also
encode Eq. (29b) in a QP, and the set{, in Eq. (31) is a polytope. In
conclusion, the sets Z in Eq. (26) and U/ in Eq. (31) solve the relative-
degree-2 case of Problem 1.

IV. Method for Relative Degree 1

A. Preliminary Method

We now extend the method in Sec. III to constraint functions that
are of relative degree 1 with respect to the dynamics (1). As before, we
drop the subscript i and assume that 5 represents any relative-degree-
1 constraint function. In this section, we assume that 7 is also a CBF,
so we will not need to employ the intermediary step of defining /4 and
'H, as was done for relative-degree-2 constraints. Similar to Eq. (19),
define the function

Ht.x. )_0n(t x)+011(t ,X)

fat,x) + g1 (1, x)u (33)

which represents the component of # that is known to the controller.
Likewise, define the constant

on(t,
M, 2 sup ’7; x)
€T xeS(1) £€E v

82 (1. x)€ (34)

which represents our uncertainty in # because of the unknown
disturbance. It then holds that

ﬁ(t7x7u) < ¢(t,x, u) + Ml (35)

Because we intend to implement a ZOH controller, we then define

op(t,x,u op(t,x,u
M, % sup [ ¢(a ) ¢( )fl(l x)
teT xeS(1) ucld €2 1
6¢(t x,u)

W) 1)+ g1 + a0, x)@} (36)

so that for 7 > 0 it holds that
ot +7,x(t +7),u) < P(t,x(¢),u) + Myt 37

In this section, we only require the upper bounds on Egs. (34) and
(36), so we omit the superscripts + and — used in the prior section.
Here, M, and M, are analogous to M3 and M7, respectively, from
Sec. III.B. Now define the following polynomial in =

py(t,x,u, 7) 2yt x) + p(t, x, u)t + M7 + ;Mzr (38)

which serves as an upper bound on the evolution of 7 and is employed
in the following theorem.

Theorem 5: Suppose that # is twice differentiable and of relative
degree 1 with respect to Eq. (1) and u satisfies Eq. (14) for every
k € N. Suppose that M, > 0 in Eq. (36). If x(¢,) € V(¢;) and

pq(lk’x(lk)’ u(tkvx(tk))ﬂ T) <0 (39)

for every k € N, then x(7) € V(¢) forall t € T.

Note that Theorem 5 is a straightforward extension of [29] (Cor. 3)
to systems with disturbances, while the insights in the following
subsection are new to this paper and motivated specifically by the
system in Eq. (2).

Case Study Part xi (Application of Theorem 5): For the system (2),
in order for the constants M5, M5, M5, M for k;, in Eq. (5) to
be well-defined [i.e., for S in Eqs. (18) and (21) to be compact],
the maximum system angular velocity must be bounded. There
are various ways to encode such a bound. First, if one desires that

|lo|| £ @y, for some wy,, € R.,, then one could use either
’71([7 x) = ||(1)|| — Wpax OT ’72(t’ x) = ||(U||2 - (Ulzmlx- Note that M2 is
undefined for the constraint function 7, so Theorem 5 does not apply.
Instead, suppose that we choose #,. Then, letting ;. =
0.0175 rad/s, it follows that M, = 0.00153. While #, satisfies the
definition of D,ZohCBF, this leads to an effective margin of
(% M,T?) /w?, ~ 10%, which is rather large. While this does not
directly impact the robust inner constraint set Z in Eq. (46), this
margin in effect makes certain states in the safe set inaccessible (see
[29] for a more extensive discussion of ZOH margins), so we would
like to reduce this margin
Next, suppose that the matrix Z in Eq. (2) is of the form

Zy le]
zZ= 40
[221 Zn “0

where le (S R3X3, 212 (S RSXM, Z2l S RmXS, 222 (S Rmxm. Note
that, under the dynamics in Eq. (2), [|@||? is not a conserved quantity,
so if the spacecraft is not spinning about a principal axis, it will take
active control effort to keep the state within a level set of 77,. On the
other hand, kinetic energy is a conserved quantity, which takes no
control effort to maintain (unless the disturbance adds energy to the
system). For this reason, define P in#,, in Eq. (7) as P = Z7}, so that
7, encodes a maximum Kkinetic energy constraint. Then, using 7,, in
Eq. (7) with e, in Table 1, one finds M, = 8.30(10)7>, leading to a
smaller effective margin of (3 M,T?) /ey = 3.3%.

B. Reducing Conservatism

Before we present a definition for a valid CBF for the relative-
degree-1 case, we present an extension of Theorem 5 that reduces
conservatism for certain systems and constraint functions, and in
particular the constraint function #,, in our case study in Eq. (7). In
developing this paper, the authors noticed that the main contributor to
M, for the constraint function in Eq. (7) was the control input u.
While x and € are not known exactly between time steps #; and |,
the value of u(t) = u(z,) for t € (1, t;41) is a known quantity, and
thus can be removed from the uncertainty bound M,. Motivated by
this, suppose that there exists functions ¢, :U — Ry, and ¢, : T X
S XU X E — Rsuch that

P(t.x.u.8) = () + d(1,x,u. &) (41)

forallt € T,x € S,u € U, € € E. The value of ¢, (u) is known, so
define a constant analogous to Eq. (36) using ¢, only as

Mt & sup
1€T xeS(t) ,uel E€E

Pt x.u.8) (42)
Then we can define the polynomial

PR X, 7) 2 0(0,0) + 0 xw0)e + Mz () + M)
(43)

Corollary 1: Suppose that 7 is twice differentiable and of relative
degree 1 with respect to Eq. (1) and u satisfies Eq. (14) forall k € N.
Suppose that ¢, in Eq. (41) is positive semidefinite and M3" > 0 in
Eq. (42). If x(1y) € V(ty) and

Pt (e, x (1) u(ty, x(11)), T) <0 (44)

for every k € N, then x(z) € V(¢) forall t € T.

We are now ready to give the complete requirements for a relative-
degree-1 constraint function # to be a CBF in ZOH applications.

Definition 3: A twice continuously differentiable function #; is a
degree-1 ZOH CBF (D, ZohCBF) on the set S for time-step T if there
exists a positive semidefinite function ¢, :U/ — R, and a function
¢,:T X S XU X B (where one can use ¢, (u) = 0) satisfying Eq. (41)
such that
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rnig{l pf;}‘(t,x, u,7)<0, Vxe8@), VteT 45)
ue

alt 1

where pj! is as given in Eq. (43).

That is, 7 is a D;ZohCBF if the condition (39) is always feasible
inside the safe set. Unlike Definition 2, Definition 3 does not contain
any additional tuning parameters. We assume that the function # has
already been constructed or tuned so as to be possible to render the
corresponding set V forward invariant in the presence of input con-
straints. This is reasonable in the context of spacecraft attitude
control, because the function 7, in Eq. (7) represents spacecraft
kinetic energy. A fundamental requirement of control design should
be that the spacecraft is able to reduce its kinetic energy from any safe
state. In math, this requirement is equivalent to Eq. (45) for #,,. One
case in which this requirement is not satisfied is if the spacecraft is
allowed to achieve large angular velocities while operating at a
control frequency too slow to stabilize the system. In this case, no
amount of tuning will yield a safe controller, so Eq. (45) will be
violated, and one will need to operate at lower angular velocities or
smaller time steps to achieve a stable system and satisfy Eq. (45).

For the D;ZohCBF, denote

Z(H=V(1), U, (t,.x)={uecR"

pil(t,x,u, T) <0}  (46)

which solves the relative-degree-1 case of Problem 1. Note that if
¢, =0in Eq. (41), then U/, in Eq. (46) is a half-space and safe control
inputs can again be computed using a QP-based control law. Alter-
natively, if ¢, is a convex function, then U/, in Eq. (46) is not
necessarily a polytope, but will still be a convex set, allowing the
use of other convex optimization tools to choose control inputs. For
instance, in Sec. V.A, ¢, will be a strictly convex quadratic function,
yielding a quadratically constrained quadratic program (QCQP) as a
control law.

Case Study Part xii (Application of Corollary 1): Suppose that 7,
is as described in Case Study Part xi, and let ¢, (u) = 2u’Z%, Z ,u.
This leads to M3 = 4.88(10)™*, resulting in an effective margin of
(G M3T?) /wl ~3.2%, much less than in the prior case with
¢ (u) =0. Thus, when ¢, (u) is large, we still end up applying the
same amount of margin as in Case Study Part xi, but when ¢, () is
small (i.e., u is small), the margin inherent in pg" in Eq. (43) is
reduced compared to the margin in p, in Eq. (38).

Next, for 5, with P as described in Case Study Part xi, let
¢\ (u) = u"ZT,PZ ,u, resulting in M3 = 1.95(10)7>. This yields
an effective margin of (% M3T?) /epnax ~ 0.77%, and is therefore the
setup used for simulation in Sec. V.A.

V. Simulations
A. Preliminary Simulations

In this section, we demonstrate the above methods in simulation.
We assume a spacecraft with two instruments with boresight vectors
b, b, and keep-out zones 0, 6, in Table 3, which induce two
pointing constraint functions ki, k, of the form in Eq. (5). Let s; =
s, be the local sun vector, which is slowly time-varying. We construct
two D,ZohCBFs h,, h, as in Sec. III with the constants in Table 2.
Suppose that there is also an angular velocity constraint function #3 of
the form in Eq. (7) with the previously presented parameters in
Table 1, and with ¢, (u) = uTZ],PZ,u as discussed in Case Study
Part xii. Then 73 is a D;ZohCBF. The set of safe control inputs
isUNU(t,x) NUH(t,x) N U (2, X).

Suppose that the spacecraft (visualized in Fig. 1) is required to
point instrument b, at inertially fixed target b,, given in Table 3.
Define the following shortest-path proportional-derivative control
law:

@ = sat,, (arccos(b,TR(q)bl)) (47a)

y=bx(R@",) (47b)

Table 3 Simulation parameters

for Sec. V.A
Parameter Value
b, [0.5774,0.5774,0.5774]"
b, [~0.8660,0.5, 0]
b, [0,-0.7072, -0.7072]"
0, /4 rad
6, /4 rad
@* 0.2 rad
kp 0.1
kq 0.5
q(t) [0.5,0.5,0.5,0.5]"
o(ty) [0,0,0]"
w(ty) [0,0,0,0]"

AN
u,y(t,x) =Z! (k s1n(f) — —k w) 47¢)
P YA T

where u,; may be unsafe and does not necessarily satisfy the input

constraints. Here, let sat be the saturation function and Z!, be the
Moore—Penrose pseudoinverse. We then construct the final control
law as a QCQP:

arg min
uEI/{DUZI (t,x)r\b{:2 (t,x)ﬁl/{23 (t,x)

Uzohebt = ”u - upd(ts x) “2 (48)

Using this “ZohCBF” controller, we simulated a single reorientation
maneuver with initial and final parameters given in Table 3, and in the
presence of a random disturbance bounded by &,,,, in Table 1. For
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Fig. 6 Plot of the azimuth and elevation in an inertial coordinate system
of the two instrument pointing vectors b, (solid) and b, (dashed) and the
keep-out zone (red) centered about the sun vector.
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Fig.7 Plots of the two instrument constraint values k ,k, for the lines in
Fig. 6, and the system energy constraint values #; using all control laws.
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Fig. 8 Plots of the control inputs and input constraints (black dashed lines) for Fig. 6 using all control laws.

Table4 Simulation times for Figs. 6-8

Method _ Settling time, s Mean compute time, s Max compute time, s

CBF 207.0 0.0088 0.021
Log-B 338.8 0.00022 0.0082
SMC 1719.8 0.00016 0.0087
NMPC 803.6 0.15 2.3

more details, we refer the interested reader to the simulation code.’
The simulation is short enough that we do not presently concern
ourselves with momentum management (i.e., ensuring that w;
remains bounded for i = 1,2,3,4). A diagram of the excluded
pointing zone and the trajectories of the two instrument vectors is
shown in Fig. 6, and a video of the reorientation in three dimensions
can be found below.” The constraint values over the maneuver
duration are shown in Fig. 7, and the control inputs are shown in
Fig. 8. As expected, safety is maintained, and the control input
constraints are always satisfied. The absolute value of the maximum
value of 75 in Fig. 7 is the “controller margin” explained in [29]. Both
ZohCBF plots in Fig. 7 exhibit a controller margin, but the margin is
only noticeable for the constraint 773 without zooming in.

For comparison, we also simulated the controllers in 1) [21]
(Eq. 22), denoted “Log-B”, with @ = 0.75, = 8, k; = 0.0165;
2) [17] (Eq. 17) denoted “SMC”, with k= 0.01, k; = 5015,

ky = 0.0167, d =0; and 3) [12], denoted “NMPC”, with n =5,
h=02, 0, =P =0.011, O, = P, =381, 03 = 1001, where 1
is the identity matrix. The resultant trajectories are shown in Figs. 6-8
and described in Table 4, where all simulations wererunon a 3.5 GHz
Intel Xeon processor. While the Log-B and SMC controllers do not
guarantee safety in the presence of input constraints or ZOH control
inputs, Figs 6-8 show that when properly tuned, all of the above
controllers can behave similarly. That said, the ZohCBF controller
took a different route around the exclusion zone than all of the
comparison controllers. The ZohCBF and NMPC controllers
approached closer to the edge of the safe set than the Log-B and
SMC controllers, and the NMPC controller briefly violated the
constraint. Also, the Lyapunov function introduced in [21] is infi-
nitely differentiable, so the trajectories under the Log-B controller are
smooth. We observe this particularly in Fig. 7, where the green lines
have unique maximizers, whereas the other controllers spend much
of the trajectory very close to zero. This allowed the ZohCBF con-
troller to achieve the fastest settling time, defined here as time to
0.1 deg error, in Table 4. We note that for larger values of k;, the Log-
B controller could be faster but would exceed the angular velocity
constraint, and for much larger values of k;, the Log-B controller
would violate the pointing constraints due the ZOH implementation.
The NMPC controller approached the target at a rate similar to the
ZohCBF controller, but exhibited oscillations around the target due to
the small prediction horizon, thus resulting in a large settling time.

SAll simulation code can be found at https://github.com/jbreeden-um/phd-
code/tree/main/2022.
Ihttps://youtu.be/EVuyZ-06-1Y.
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Fig.9 Plot of the azimuth and elevation in an inertial coordinate system
of the two instrument pointing vectors b, (solid) and b, (dashed) in the
presence of a larger exclusion zone than in Fig. 6.
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Fig. 10 Plots of the two instrument constraint values k;, k, for the lines
in Fig. 9, and the system energy constraint values 73 using all three control
laws.

The SMC controller was the slowest due to the upper bound on &
implied by [17] (Eq. 16).

Another notable difference between the ZohCBF and Log-B con-
trollers is that the Lyapunov function in [21] is strictly convex, so the
controller is globally convergent. This is not true of the ZohCBF or
NMPC controllers. To examine this, we increased the value of 6,, 6,
to 0.95 rad and resimulated the ZohCBF and Log-B controllers. The
results are shown in Figs. 9 and 10 and Table 5 and are demonstrated
in the video below.™ Note that the blue lines (ZohCBF controller) in
Fig. 9 both approach the edge of the red region, and then stop when
the controller cannot safely move closer to the target direction (green
dot) due to the set S N Z; N Z, N Z; being nonconvex. The space-
craft remains safe, but does not complete its objective. On the other

**https://youtu.be/sZ_F4N75kcw.
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Table 5 Simulation times for Figs. 9 and 10

Method Settling time, s Mean compute time, s Max compute time, s
CBF 00 0.0072 0.0237
Log-B 1079.6 0.00024 0.0084
Combined 374.2 0.0097 0.0243
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Fig. 11 Plot of the azimuth and elevation in an inertial coordinate
system of the instrument pointing vector b; (green) and star tracker
pointing vector b, (orange) along with all three keep-out zones.
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Fig. 12 Plots of the instrument to sun CBF values (green), the star

tracker to sun CBF values (orange), and the star tracker to moon CBF

values (red) for the lines in Fig. 11, and the system energy constraint

(gray) values 74 using both control laws.
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hand, the Log-B controller is eventually able to navigate around the
exclusion zone and converge to the target vector. That said, the Log-B
controller is very slow in Table 5. Lastly, we note that the ZohCBF
technique can be applied to any nominal controller, so we introduce
the control law

arg min
ueur\l/{,] (f,x)r\l/{,2 (x,x)r\l/{,3 (t,x)

”u - ulogb-fast(ta x) “2 (49)

Ucombined =

which we call the “Combined” controller. The controller u;qg,.fy in
Eq. (49) is the same as the Log-B controller, but with a much more
aggressive choice of gain k; = 0.04. Without the ZohCBF applica-
tion, the controller #og.1a Would violate the system energy con-
straint 73, but with the additional ZohCBF acting as a safety-filter, the
controller u.,pineq yields the orange trajectory in Figs. 9 and 10.
Unlike under u,,,p,.,¢, the trajectory under #.,mpineq converged to the
target, and exhibited a reduced settling time in Table 5 compared to
the Log-B controller.

Remark 3: We note that while the controllers (48) and (49) were
successful in the simulations above, it still may be possible for the
optimizations (48) and (49) to become infeasible because these
controllers apply multiple CBFs at once. Progress toward provably
guaranteed feasibility of multiple CBFs simultaneously with input
constraints is studied in continuous time in [37], and such studies for
sampled-data CBFs are left to future work.

B. Spacecraft Simulator Simulations

The prior subsection validates the methods in Secs. IIl and IV in a
simple simulation, so we now present results from a more detailed
spacecraft simulator, specifically the NASA “42” open-source space-
craft attitude control simulator [44]. Here, rather than random dis-
turbances, the disturbances are representative of disturbances in the
orbital environment for an input spacecraft geometry and specified
solar and geomagnetic activity indices.

Specifically, we simulated a 6U CubeSat with the parameters
presented in Table 1 in a 500 km altitude circular Earth orbit. Suppose
that the spacecraft has a single instrument that must point at a
sequence of targets but must avoid the sun by at least 25° (encoded
in k), and a star tracker that must not point at the sun within 45°
(encoded in k,) or the moon within 30° (encoded in k3). The angular
velocity is constrained by 4 = 7, as in Case Study Part xi, where we
now use ¢, (1) = 0, so that M3 = M, = 8.3(10). This change
makes U, more conservative than in the prior subsection, but makes
uni, n,, nU,, nU,, a polytope and thus changes Eq. (48)
from a QCQP to a regular QP, which was implemented using the fast
Operator Splitting QP solver [45]. Finally, the code limited the QP
solver to only 20 solver iterations to mimic realistic spacecraft
computing constraints. For more details and input parameters, the
interested reader is referred to the simulation code.

The instrument and star tracker pointing vectors are shown in
Fig. 11, the constraint values are shown in Fig. 12, and the control
inputs are shown in Fig. 13 using both #,,. in Eq. (48) and u,q in

u, (mNm)

. 0.5'777,777 ___i%hCBF T T Lj
R
é 0
T o5l |
It I N S
0 500

Fig. 13 Plots of the control inputs and input constraints (black dashed lines) for Fig. 11 using both control laws.
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Eq. (47¢). Avideo of the reorientation sequence is linked below.™ All
constraints and actuator limits were satisfied for the entire pointing
sequence using the ZohCBF controller (solid lines in Fig. 11), while
there were several constraint violations using the nominal controller
(dashed lines in Fig. 11). We note that three of the targets (green dots
in Fig. 11) were located very close to the sun vector (i.e., outside the
safe set), so the ZohCBF controller prioritized safety over conver-
gence for these targets.

VI. Conclusions

We have presented a methodology for ensuring that trajectories
of adynamic system always remain within a specified constraint set
in the presence of ZOH sampled-data control inputs, bounded
disturbances, and input constraints using extensions of CBF theory.
This methodology is generally applicable to constraint functions of
relative degree 1 or 2, and was specialized to spacecraft attitude
control. Special attention was devoted to decreasing the margins for
overshoot in the case of relative-degree-2 constraints, and for the
case of a relative-degree-1 kinetic energy constraint specifically.
The methodology was then demonstrated in simulation, where it
exhibited faster settling times than all compared online controllers
(note that path-planning methods were not tested). While the
methods in this paper provably achieve all desired safety criteria,
the comparison plots show that similar safe reorientations can
be achieved with the comparison methods, although only with
careful tuning and without proof of safety under these circum-
stances. The improvement in convergence by the “combined”
controller over the original ZohCBF controller show that this
approach may be limited in part by the capabilities of the nominal
control law, so choosing “optimal” nominal control laws is one area
of future work. Additional future work includes the incorporation
of momentum-management techniques and measurement-delay
considerations, and study of more general conditions on the exist-
ence of a guaranteed safe control input in the presence of several
CBFs simultaneously.

Appendix: Proofs

For brevity, we only write out the time argument of k, 7, h, y, ¢, @1,
Pxs Pis Py» and pgl‘ and their derivatives in the following proofs.

Proof of Lemma 3: Note that, on the open interval (#;, #;,1), the
functions «, k, ¥, and k are continuous due to the assumptions on
f1, 12,81, 82, EIn Eq. (1) and how u is constant. We divide this proof
into two cases depending on whether k changes signs at .

First, suppose that £ does not change signs at o [including the case
where k() = Oforallz € (#;, f;,1)]. This can only occur if & changes
signs at o or if K(7) is zero for all t € (1, #;,1). Since K is continuous,
this implies k(o) = 0. Since u > 0, it follows that there exists suffi-
ciently small 7 > 0 such that |€(¢)| < p for all ¢ in a neighborhood
t € (6 — 7.6 + 7). Note that & is given by

h(t) = k(1) + /% lic(0) |ie(1) (AD)

It follows from Eq. (A1) that ﬁ(t) has the same sign as x(¢) for all
t € (6 — 7,06 + 7). Since h(c) does not change signs, ¢ cannot be a
local maximizer of / on (#;, t;, 1) unless k() = h(t) = i(r) = Ofor
all t € (t;, t;,1), in which case the lemma is trivially true.

Second, suppose that k does change signs at o. The second
derivative of & is

- .. ., | N

h(1) = k(1) + l;Slgn(K(l))K(t)2 o lic(1) [k (1) (A2)
so h is twice differentiable for almost all 7 € [#;, t;,]. Therefore, a
necessary condition for ¢ to be local maximizer of & is for 4 to be

nonpositive in a neighborhood of 6. At t = ¢ exactly, h(c) is unde-

https://youtu.be/qeB-F5J4ZFIL.

fined since we assumed k(o) to be zero, but the limits of fi(t) as t
approaches o from the left and right are well-defined and must both be
nonpositive for o to be a maximizer of /. These limits are

.

(o) = Jim () = ko) =" (A3a)
o

(o) = lim ii(t):ie(a)+@ (A3b)
k(1)—0* M

A necessary condition for both Eqs. (A3a) and (A3b) to be non-
positive simultaneously is for 0 > ¥(6) > —pu. Since k(6) < 0,and we
assumed k() changed sign at o, it follows that ¢ is necessarily also a
maximizer of k, so the lemma holds in this case as well. O

Proof of Theorem 1: The trajectory x(f) belongs to H(¢) for all
t € [ty try1] if the maximum value A (o) for some maximizer o €
[tk 141] satisfies (o) < 0, so we proceed by trying to bound /(o)
using Lemma 3 and the system constants (18) and (21). By
assumption, A(f,) < —6; <0 and A(#,y) <0, so the theorem is
immediately true in the case where o is either endpoint. By Lemma
3, if 6 is alocal maximizer of /2 on the open interval (#;, #;,1), then ¢
must also be a local maximizer of x. This implies that (c) = k(o).
Thus, we focus on « instead of & going forward.

Suppose that there exists a local maximizer ¢ of k on (7, ;1) for
which k(o) = h(c) > max{h(t;), h(t;,,)}. The largest possible
value of k(c) occurs when «(¢) is positive for all ¢ € [, 6) and
negative for all ¢ € (o, f;,1], so without loss of generality, suppose
that the sign of k(7) follows this partitioning. By assumption,
h(t,) < —6;, and since we assumed that x(t;) > 0, it follows from
Eq. (13) that k(7)) < —6; as well. Thus, for the worst-case value of
k(0), both x(#;) and x(#;,,) are at most —J;. Also, by Lemma 3,
k(o) > —u. It follows from Eq. (23a) that

Klo+7) 2 —p+ M; + M3t — M3 (A4)

Thus, we can lower bound k(¢) for r € (o, ;1] as

o+1
k(c+17)= k(o) + / K(z)dt
=0 ‘

(A4) [o+7
> / (—u=M3 +M5(t—0) + M) dt

1
= (—pu-Mf+ M)+ EM;rz (A5)

and lower bound x(7) for 1 € (o, 1;,] as

o+7
k(o +1)=x(0)+ / k(t)dt

[

S hio)+ / 6+T((—,M—M;' +M;3)(t-0) +%Mg(t—6)2) dr

1 1
=x(o) —|—§(—/4—M;“ +M;)7? +€M;13 (A6)

Similarly, it follows from Eq. (23d) that
Kle—1) > —p+M; —Mfr—MS (A7)
Thus, we can upper bound «(¢) for ¢ € [t;, 6) as
. . o .
k(o —1) = k(o) — / k(1) dt
~— o—T

=0

(A7) c i "
< - [—u— M7 — M5 (c—1)+ M;]dt
o—T

1
= (u+MS-M)r+ §M3+12 (A8)


https://youtu.be/qeB-F5J4ZFI
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and lower bound «(¢) for ¢ € [t;, 0) as

k(6 —7) = K(0) — / _ i(r)dr

(A8) o 1
> k(o) — (—(—y—M; +M;5)(o—1) +§M§r(a—t)2) dr

1 1
=K(6)—|—5(—/4—M2+—|—M5)12—6M3+13 (A9)
We can then rearrange Egs. (A6) and (A9) to

1 1
k(o) <x(o+7) - 5 (—p = MS + M7)22 - 6M§T3 (A10)

1 1
k(o) <k(e—1) =5 (-p = My + M3)7* + EM;"L'S (A11)

Let7 = t;,1 —oinEq. (A10) and 7 = ¢ — 1, in Eq. (A11). Note that
the bounds in Egs. (A10) and (A11) must both apply simultaneously, or
equivalently, whichever bound is tighter must apply. Thus, we obtain

(A10),(A11)
k(o <

N ] L,
minf =51+ 54 M = M5)1k01 =0 = M 1 = 0,

1 +_ - 2 b 3| @
—61+§(M+M2 - M;5)(o—1;) +8M3 (6—1) ¢ <0 (Al2)

Thus, because of the choice of §; in Eq. (24), it is guaranteed
that k(o) < 0 in Eq. (A12). It follows that i(7) < h(c) = k(6) <0
for all re(f,t41], or equivalently x(r) € H(r) for all
t € [ty teg]- |

Proof of Theorem 2: The proof follows almost identical logic to
that of Theorem 1, but instead of having «(f;) < -8, and
k(try1) < =61, we end up with k(7)) < —A, and x(;41) < —6,.
Thus, in place of Eq. (A12), we have

. 1 _ 1
x(o) Smlﬂ{—52 +§(ﬂ + M3 = M3) (141 —0)* _6M3 (k1 —0)%,

1 1 (25)
—-A, +§(;4 + M —M5)(o—1,)? +5M3+(a—tk)3} <0

(A13)

Similar to in Theorem 1, the condition on A, and J, in Eq. (25)
ensures that k(o) < 0 regardless of the actual maximizer location
0 € (1, tr41)- By the same logic as in Theorem 1, it follows that
x(1) € H(z) for all 1 € [y, t;.41]- a

Proof of Lemma 4: By assumption, x(#;) € Q(;) and x(;,{) €
Q(tx41), so the trajectory can only leave Q if there exists a local
maximizer t; € (t;, t;, 1) of k suchthatx(z;) > 0. Thus, the rest of this
proof proceeds by analyzing whether such a maximizer ¢, can exist.

Note that, on the open interval (;, . | ), the functions k, k, and & are
continuous in time, and therefore / in Eq. (A1) is continuous as well.
By assumption, ¢ is a maximizer of 4, so it follows that h(c) = 0.
Because of the form of /1 in Eq. (A1), if i(c) = 0 and k() # 0, it must
be that k(o) = —usign(k(c)). That is, for a critical point of / to occur
at o when k(o) # 0, the second derivative of « (e.g., angular accel-
eration) at ¢ must pass through one of two critical values, £y, depend-
ing on the sign of k(o). This yields the two cases below.

First, suppose that k(6) < 0, which implies that K(¢) = p. Thus,
we can derive an expression for ¥(#) for ¢ in a neighborhood of ¢. Let
7 > 0 and it follows from Eq. (23a) that

k(o +17) > p+ My + Myt —M; (Al14)

Because of the assumed lower bound on y, Eq. (A14) implies that
k(o 4+ ) > 0 for any = € (0, T). Similarly, it follows from Eq. (23d)
that

k(o —1) > p+M; —Mit— M} (A15)

which implies that k(c —7) > 0 for any 7€ (0,7). Thus, by
Eqs (A14) and (A15), &(r) > O for all 1 € (;, t;,;) and therefore
there can be no local maximizers of k on (7, ;. 1). Moreover, if there
existsatimet; € (f;, t;,1) atwhich(z;) = 0, then ¢, is unique and is
a local minimizer of x since ¥ is strictly positive.

Second, suppose that k() > 0, which implies that k() = —p. It
follows from Eq. (23c) that

Klo—1) < —p+ M5 —M5t-M; (A16)

which implies that¥(c — 7) < Oforallz € (0, T). Since k(6) > 0and
k(o — 1) <0, it follows that k() > 0 for all ¢ € [#,, o] and therefore
there can be no local maximizers of k on [#;, o]. Next, it follows from
Eq. (23b) that

Kle+17) <—pu+MF+Mft—M; (A17)

which again implies that ¥(¢ + 7) < 0 for all 7 € (0, T'), and thus by
Eqs. (A16) and (A17), &(z) <O for all 7 € (#;, t;1). Thus, in this
case, there may exist a local maximizer #, of x but only for
t; € (o, t;, 1), such as shown by the green “x” in Fig. 4. If such a 7,
exists, then k(z,) = 0, and 7 is the unique maximizer of k on [, t; , ;]
since K is strictly negative. Going forward, we assume that such a 7,
exists and now seek to ascertain its value.

From here, there are several possible ways to ensure that x(r) < 0
for all 7€ [t;,#4,], and we only present one method. In our
approach, we now shift our focus from the values of « to the values
of h. We will show that, for the choice of A; in Eq. (A34), itholds that
h(r) < Oforallt € [t t;,1] and conclude that x(r) € Q(r) forallt €
[t¢, tx+1] by applying Lemma 2. )

Since h(o) = 0, we are interested in how positive /() can be for
t € [t;, 0] and how negative h(t) can be for t € [, t;41], from which
we can derive a margin that ensures that /(c) does not exceed zero. To
this end, it follows from Eq. (23d) that

Klo—1) > —p+M; —Mfr—-MS (A18)

Letx(o) = yfory € R atthe maximizer o of i, where the existence
of t, € (o, 1;,1) implies that y is close to zero. First, for t € [, o],
k(t) is upper bounded as

k(o —1) = k(o) — / " k() dr

(A18) - N N
<y- —u+M; —M; — M5 (c—1t)dt
-7

1
=7+ =My + M)+ M7 (A19)

Since we have k(7) > 0 forall t € [#;, 6], it follows that /(7) is upper
bounded by

hi(o - k(o - r)(l 4 K- T))
u

(A19),(A16)
< (}/—F(ﬂ—M;—i—M;r)r

1 MF —M5t-M;
4 EMjTZ) (#) (A20)
; JZ

Next, similar to Eq. (A18), for ¢ € [o, ;. (], k(¢) is upper bounded by

c+1
k(o + 1) = k(o) + / HOL

(2
(A17) 47
< }/—I—/ —p+ M — M5 + M} (t—0)dt
(2

1
=y—(u+M; —M;)T+§M3+12 (A21)
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We now divide the interval [, ;] into two intervals [o, ;) and
(t,, tr41] because, unlike the upper bound in Eq. (A20), our lower
bounds for / in Eq. (A1) will be different before and after x changes
from positive to negative at f,. For the interval t € [0, ;) where
k(t) > 0, h(¢) is minimized by minimizing ¥(r), so we note that
Eq. (23a) lower bounds k(¢) as

Ko +1)>—pu+M; +Mjt—-MS (A22)

Thus, during the interval ¢ € [0, t;) where k(f) > 0, it follows that
h(t) is lower bounded by

h(o + )2 k(o + 1)(1 + @)

(A21),(A22)

1 M5 + M51—-MF
e ) (MM

"
(A23)

To take into account the interval ¢ € (%, ;] where k(r) < 0, instead
of the upper bound Eq. (A17), we will utilize the following lower
bound for «:

o+T
k(o + 1) = k(o) + / K(r) dt

(A22) o+T
> }/+/ —pu+ M5 —MF +M;5(t—o0)dt

1
=y—(u-M; +M2+)1+§M;12 (A24)

Finally, during the interval ¢ € (z,, 1;, ;] where k(r) <0, it follows
that (r) is lower bounded as

h(a+r)"§)k(a+f)(1——;é("ﬂ_f))

(A24).(A22)

1 M3 +M5t—MF
=y

"
(A25)

Next, given the bounds for fz(t) in Egs. (A20), (A23), and (A25),
we seek to upper bound (o) — h(t;) and h(c) — h(t;4). Starting
with the latter, we have that

h(o) — h(tiy)) = — /

c

§ h(r)dr — /Ik+1 h(7) dr
<- / “[h(1) asin (A23)] dr

- / " (1) as in (A25)] dr (A26)

t.\

where 7, € (0, ;4] is an unknown parameter. Because of the dis-
turbance, we cannot develop an exact expression for 7, as a function
of y [this is why 7,7, will be free optimization parameters in
Eq. (A34)], but we can develop lower and upper bounds on ¢, for
the computation of Eq. (A26). Possible trajectories of k(o + 7) are
visualized in Fig. Al. At t,, k(t;) = 0, where k is bounded by
Egs. (A21) and (A24), so all candidate values of ¢, must lie between
the roots of the bounding functions (A21) and (A24). Since we
assumed that M3 <0, the red line (A24) is a concave downward
quadratic polynomial. Since k(¢) > 0 for ¢ € [0, t,), it follows that 7,
must lie to the right of the second root of Eq. (A24) (dashed red
vertical line in Fig. A1), denoted r| :Ryo — R:

£ Lower Bound

k(o +7)

% Upper Bound
mmmmm Allowable ¢,

1 1 1 (’Yl
-02 -015 -0.1 -0.05 0 0.05 0.1

Time 7 since o (s)

1

1
0.15 0.2

Fig. A1 Visualization of the lower and upper bounds on k(¢ + 7)
imposed by Eq. (A24) (red solid line) and Eq. (A21) (blue solid line),
respectively, and how this results in a finite interval of possible roots
of k.

(A24) L ~ N
t,—0 2 V|(7)=F (u+M; —M3)
3

- \/ (4 + M5 —M3)? - 2M3‘y:| (A27)

Similarly, since we assumed that M;r > 0, the blue line (A21) is a
concave upward quadratic polynomial, and since «(¢) <0 for
t € (t,, t;41), it follows that #; must lie to the left of the first root of
Eq. (A21) (dashed blue vertical line in Fig. Al), denoted
5 Ryp = R:

1
) 2 g = 5 M) = o= 5 4 b = 2w
3

(A28)

The time ¢, must also occur inside the present time step, so we define
the bound r, :R5y X R5; — R as follows, and conclude that

(A21)
Iy—o < 7'2(]/,()'—l‘k)

o min{r3 (). T = (- 1)} if y < (u—M; + M3)*/(2M7)
- (6 —t) else
(A29)

The second case of Eq. (A29) occurs when y is such that Eq. (A28) is
nonreal, in which case 7, is instead upper bounded by the length of the
time step. Note that the bounds (A27) and (A29) greatly simplify the
complete relationship between 7, and y, but accounting for all pos-
sible curves of x in a neighborhood of 7, would require more
assumptions about the disturbance and would make this proof far
more complex. Instead, we choose to treat 7, and y as free parameters
with minimal coupling to each other except that in Eq. (A27) and
(A29), so that Eq. (A26) is computable. We then simplify the right
hand side of Eq. (A26) and assign the result to the function
dright * R0 X Ryg X Ry — R defined as

s (M3)? (1_411 1_421) _MEM;— T%

dright(y’ 71,72) = 8u 8u

+ [M_ZM§](13 —13)

1 2

2u 3
1
g [2M3 05 = M3 g — 5 (15 = M) 3
1
3 L0 = M5+ 205 = M3+ )+ M7 (7 - )

1
+ 3| M5 = MM = ME + ) = M3y |3

1
M5 =M =20 =) = (1M - M) e (A30)
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so that Eq. (A26) simplifies to
h(o) = h(tiy1) < drign (Vs tig1 — 0,1, — 0) (A31)

where the third argument ¢, — ¢ is bounded by Eqgs. (A27) and (A29).
Similar to Eq. (A26), we can bound 4 (6) — h(t,) as

h(o) = h(t) = [ ") < / "li(1) asin (A20)] dt = dien (7.0 — 1,)

Ir

(A32)

where we do not need to break the integral into two parts here because
k(¢) does not change signs on [t;, c]. We then define the function
dier - R59 X Ry — Ras the simplification of the integral in Eq. (A32)
as follows:

7,'4 T3
d 1) A —— (MiMT) —— QM5 (M — M5
et (7 7) Sy( IMY) 6/4( 3 (M3 2+

2
T
+ M3 (M5 - M) =5 (M3 - M3YMF = M5 + p)

T
+ Msy) - % (M5 - M) (A33)

Both Eqgs. (A31) and (A32) must apply simultaneously, so we define
A3 below as a maximization of the lesser of die and dijgy, Subject to
the constraints on ¢, — o in Egs. (A26) and (A29). Furthermore, the
maximizer ¢ of h must occur in the present time step, so
o—t; €[0,T], and y must be positive. Let 7; = 6 — t; and 7, =
t; — 0, and finally define

(min{dleﬁ(% 71)s diign (v, T — 71, Tz)}) (A34)
72€[ry (r) . ra(r.71)]

Note that although y is not upper bounded in Eq. (A34), in practice
there is a maximum value of y for which the interval [ (y), r,(y, o6 —
t)] is nonempty. Finally, using both bounds (A31) and (A32), the
maximum value of % is bounded by

(A3D),(A32)
h(o) < min{h(ty) + dien (v, 0 — 1),

h(tig1) + drigh (7 iy — 0,1, — 0)}

) (A34)
< =Az +min{dien (7,6 = 1), diign (Vs tep1 — 0,1, —0)} < 0

(A35)

sox(r) € H(r) forall r € [, ;). By Lemma 2, x(¢) € Q(r) for all
t € [ty, t; ;1] too. In summary, we have shown that 1) when k(o) < 0,
no maximizer ¢, of k¥ can occur, and 2) when x(c) > 0, only one
maximizer ¢, of x can occur and by Eq. (A35) and Lemma 2,
k(ty) <0, so x(t) € Q(¢) for all ¢ € [t;,t,,;] in all cases where
k(o) # 0. |

Proof of Theorem 3: By assumption, x(;) <0, h(f;) < —A, <0,
k(try1) < =6, <0,and h(ty ) < —A, < 0. Thus, x(¢) can only exit
Q if there is a local maximizer ¢, of k for t; € (#;, t;,1). As aresult of
Lemma 2, itis only possible fork(z;) > 0to occur if there also exists a
local maximizer o of & for o € (#;, t;,1) such that (c) > 0, where it
is possible that o = t,. Suppose the existence of both ¢, and o, where
neither is necessarily unique. If there exists a maximizer o of /& such
that k(o) # 0, then Lemma 4 implies that ¢, is unique and that
k(t,) <0.

Next, if every maximizer o of & satisfies k(¢) = 0, then Theorem 2
implies that x(t,) < O for every t,, where t, = o. Finally, if there is
one or more maximizers o, of & such that x(¢;) = 0, and one
maximizer o, of & such that k(o,) # 0, then by the first paragraph,
t,isunique and x(¢,) < 0, and it follows that o} is unique and o) = ¢,.
That is, the conditions presented so far do not preclude the possibility
of the cases described in Lemma 3 and Lemma 4 both occurring in the

same time step, but in this case, safety is ensured by Lemma 4 alone.
Since «(#,) < 0 for every maximizer ¢, of «, it follows that x() < 0
for all t € [t;, t;,1], and thus x(7) € Q(¢) for all ¢ € [ty t;41]-

Proof of Theorem 4: First, note that we can upper bound the
evolution of k and k between time steps as follows:

1+t
k(ty + 1) = k(1) + / K(t)dr

(220) [ttt
< / w(t) + M5 + MT(r—1)de
3

. 1
=k(t) +w(t)t + M7+ EMS%J (A36)

K(t, +7) = k(1) + / )+ / " &(r)drde,

(22) it )
<)+ / k(1) + [ w(t) + M5 + M (t—1,)ded,
1y 1
=p(t,7) (A37)

Thus, p, in Eq. (27) is an upper bound on «(#; + 7), and Eq. (A36)
is an upper bound on «(#; + 7). Since & in Eq. (13) is monotoni-
cally increasing in both x and «, it follows that p; in Eq. (28) is an
upper bound on h(t; + 7). Since #; . = t; + T, it follows that
Eq. (29a) implies x(t;.,) € Q> (#;,,) and Eq. (29b) implies
x(ty11) € HA2(t341), or equivalently x(t ;) € Z(t). Since this
holds for every k € N, Theorem 3 implies that x(7) € Q(¢) for all
teT. g

Proof of Theorem 5: First, note that we can upper bound the
evolution of 7 between time steps as follows:

1+t . T,
n(t +7) = n(e) + [ i) + [ (1 + 1) dey dr,
A A
(36) ftr )
<n(ty) + / n(ty) + / M, dr, dr,
1 1

(34) T (38)
S'?(l‘k)‘f'[ d(t) + My + Myt dey < py (1, 7)
I
(A38)

It follows that if p,(#,7) <0, then 5(t; +7) <0 and thus
x(t; + 7) € V(t, + 7). Note that p, in Eq. (38) is a concave upward
quadratic in 7 (since M, is assumed to be nonnegative), so if
Py, 0) =n(t) <0 and  p,(#,7) <0, then n(t +17)<
Py(te.7) < py(t, T) £0 for all 7€[0,7]. Since we assumed
x(t)) € V(ty), or equivalently p,(#5,0) =n(t) <0, and since
Eq. (A38) implies p,(t;, T) < 0 for all k € N, it follows that 5(z) <
0 forall r € T, or equivalently, x(r) € V(¢) forall t € T. O

Proof of Corollary 1: Similar to Eq. (A38), p;‘}“(tk, 7)in Eq. (43)is
an upper bound on 5(#; + 7). By Eq. (14), u is constant between time
steps and therefore the quadratic coefficient of pgh given by
@1 (u(ty)) + M3 is constant. Because ¢, maps to Ry, and M3" >
0, the coefficient ¢ (u(t;)) + M3" is also nonnegative. Thus,
p;‘;“ (., 7) is aconcave upward quadratic polynomial in 7, so if (#;) <
0 and pj;“(tk, T) <0, then it follows by the same logic as Theorem 5
that x(r) € V(¢) forall t € T. O
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