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A B S T R A C T   

This paper proposes an innovative distributed longitudinal control strategy for connected auto
mated vehicles (CAVs) in the mixed traffic environment of CAV and human-driven vehicles 
(HDVs), incorporating high-dimensional platoon information. For mixed traffic, the traditional 
CAV control method focuses on microscopic trajectory information, which may not be efficient in 
handling the HDV stochasticity (e.g., long reaction time; various driving styles) and mixed traffic 
heterogeneities. Different from traditional methods, our method, for the first time, characterizes 
consecutive HDVs as a whole (i.e., AHDV) to reduce the HDV stochasticity and utilize its 
macroscopic features to control the following CAVs. The new control strategy takes advantage of 
platoon information to anticipate the disturbances and traffic features induced downstream under 
mixed traffic scenarios and greatly outperforms the traditional methods. In particular, the control 
algorithm is based on deep reinforcement learning (DRL) to fulfill car-following control efficiency 
and further address the stochasticity for the aggregated car following behavior by embedding it in 
the training environment. To better utilize the macroscopic traffic features, a general platoon of 
mixed traffic is categorized as a CAV-HDVs-CAV pattern and described by corresponding DRL 
states. The macroscopic traffic flow properties are built upon the Newell car-following model to 
capture the characteristics of aggregated HDVs’ joint behaviors. Simulated experiments are 
conducted to validate our proposed strategy. The results demonstrate that the proposed control 
method has outstanding performances in terms of oscillation dampening, eco-driving, and 
generalization capability.   
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1. Introduction 

Connected and automated vehicles (CAVs), supported by intelligent onboard units and V2X wireless communication, have gained 
extensive research interest in recent years and gradually occupied the vehicle market (Zou and Qu, 2018). It is envisioned that the 
CAVs and human-driven vehicles (HDVs) will co-exist in the near future (Zhou et al., 2019a), which will change the pure traffic flow of 
HDVs to the mixed traffic flow of CAVs and HDVs (Lu and Liu, 2021; Zhang et al., 2021). Despite the changes in the traffic envi
ronment, traffic oscillations (i.e., “stop-and-go” traffic), which impair traffic flow stability, traffic safety, vehicle energy efficiency, 
environmental sustainability, and driving comfort, remain a demanding issue in the congested mixed traffic flow (Shi et al., 2021b). 
CAVs can drive efficiently using advanced control strategies such as ACC (Takahama and Akasaka, 2018) and CACC technologies 
(Knorn et al., 2014), which have the potential to stabilize traffic oscillations and optimize the mixed traffic flow performance. 
Therefore, efficiently controlling CAVs to drive safely and smartly in a mixed traffic environment is important both in academia and 
industry implementation. 

Currently, the mainstream tools for CAV control can be divided into three categories: linear-based controller, model predictive 
control (MPC) based controller, and deep reinforcement learning (DRL) based controller. The closed-form linear or nonlinear state- 
feedback CAV controller (e.g., Naus et al., 2010; Morbidi et al., 2013; Li et al., 2019; Wang et al., 2020b) has been favored since it 
is fast and easy to implement due to its analytical representation. Despite the simplicity, this type of controller is hard to support the 
constrained optimization framework with multiple explicit objectives and constraints. The MPC-based CAV control (e.g., Gong et al., 
2016; Zhou et al., 2017; Zhou et al., 2019b) supported by a flexible framework solves this limitation, which optimizes multiple ob
jectives with constraints in a rolling horizon. However, MPC usually requires the problem to be convex and takes a relatively high 
computation burden, which makes it hard for real-time implementation with high resolution (e.g., per 0.01 sec). Compared with MPC, 
DRL-based control (e.g., Wang et al., 2019b; Duan et al., 2020; Qu et al., 2020) is suitable for capturing the stochastic characteristics of 
a complex system and normally enables great generalization capability through self-learning. Furthermore, the DRL-based controller is 
fast computing for real-time implementation since the offline training process takes the major computational burden (Görges, 2017; 
Shi et al., 2021a). However, the equilibrium concept from the control theory, which regulates an explicit gap policy and directly 
guarantees a stable traffic flow, and the consensus concept (Zhang and Orosz, 2017), which facilitates a system-level control per
formance in a distributed manner, are seldom incorporated in the DRL control framework. To the authors’ knowledge, only Shi et al. 
(2021) incorporate the equilibrium concept into DRL-based control to conduct stability analysis regarding string stability (Ploeg et al., 
2014) and local stability (Willems, 2013). 

Although these CAV longitudinal controllers can provide strong tools to control CAVs efficiently, how to handle mixed traffic still 
remains a problem due to the heterogeneity and HDVs’ stochastic and uncertain movements (Gong and Du, 2018). The stochastic HDV 
driving behavior triggers traffic disturbances and amplifies the oscillation amplitude through the vehicular stream, which impairs the 
mixed traffic flow stability, travel efficiency, and energy (Zheng et al., 2020a). Moreover, the heterogeneous driving behaviors in 
mixed traffic may create voids and further reduce traffic throughput (Chen et al., 2020). To handle the HDV uncertainty and mixed 
traffic heterogeneities, approaches of recent studies can be largely divided into two categories: 1). predict the proceeding HDV’s 
driving behaviors (Gong and Du, 2018; Bang and Ahn, 2019; Wang et al., 2020a; Zhu et al., 2018) and incorporate the prediction in the 
control strategy (e.g., by MPC); 2). divide mixed traffic into sub-platoons (Shi et al., 2021b; Wang, 2018) for more efficient control and 
apply a cooperative control strategy for CAVs assuming that the disturbances triggered by HDVs are completely random. For the first 
type of method, Gong and Du (2018) utilized an online curve matching algorithm to predict the HDV trajectory and developed a 
cooperative platoon control for the mixed traffic environment. However, this paper only predicts the last HDV of consecutive HDVs in 
the mixed traffic, which does not fully use the downstream traffic information that can be potentially conveyed by proceeding CAVs. 
The downstream traffic information can be very helpful in predicting the wave propagation and oncoming traffic scenario. On the 
other hand, Shi et al. (2021) proposed a DRL-based cooperative CAV longitudinal control strategy for the mixed traffic environment, 
which divides the mixed platoon into multiple subsystems for centralized cooperative control. However, the method cannot utilize the 
downstream information of each sub-platoon and model it as random noise in the environment. Moreover, this approach lacks suf
ficient generalization with the increased centralized CAV sizes. With this concern, a distributed manner may be better for CAV control 
in mixed traffic. Besides the two primary approaches mentioned above, the connected cruise control (CCC) strategy was developed to 
handle the various connectivity structures in heterogeneous platoons by assuming an oversimplified nonlinear car following laws for 
HDVs. Based on that, they designed a control law for CAVs to improve the car following performance and traffic efficiency (e.g., Ge and 
Orosz, 2014; Orosz, 2016; Zhang and Orosz, 2016). However, these studies did not focus on addressing HDVs’ inherent stochasticity 
and stabilizing the mixed platoon. 

In general, although these approaches (e.g., HDV behavior prediction; sub-platoon) could improve CAV control performances in the 
mixed traffic environment, the limits still remain as follows. Firstly, it is challenging to effectively incorporate HDVs’ behavior for 
control due to its inherent stochastic and personalized characteristics, especially for the aggregated (i.e., multiple consecutive) HDVs in 
the mixed traffic. The joint behaviors of multiple HDVs are hard to model. In the case of platooning, while only the individual be
haviors are modeled, the predicting error will be accumulated and propagated over time and space (Lin et al., 2020). Even the 
microscopic behavior is stochastic and difficult to capture, the aggregated HDV driving behaviors exhibit macroscopic traffic flow 
properties (e.g., kinematic wave propagating time, density) with typical traffic phenomena (e.g., shock wave propagation), and they 
can be modeled by for example the fundamental diagram (Meng et al., 2021; Tian et al., 2021). Comparing to the microscopic be
haviors, the aggregated driving behaviors show less stochasticity, as indicated by the central limit theorem (Kwak and Kim, 2017). 
Therefore, this paper aims to attenuate the aggregated HDVs’ stochasticity by incorporating their macroscopic traffic properties into 
the control framework. Secondly, the mixed traffic environment has various vehicular compositions due to the different combinations 
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of HDVs and CAVs. Approaches such as sub-platoon or centralized cooperative control (Du et al., 2020; Shi et al., 2021b; Wang, 2018; 
Zheng et al., 2020b) lack adequate flexibility and may suffer from computation burden. Such heterogeneity makes it challenging to 
develop a generic CAV control approach with a system-level control performance. With this concern, the study aims to build a generic 
CAV control framework to generalize the varied CAV-HDV topologies and incorporate the macroscopic features. 

Based on the two gaps identified above, we propose a novel vehicle following structure, “CAV-AHDV-CAV,” as a generic unit for 
mixed traffic of any vehicle ordering and simultaneously embedded platoon-level features in the distributed CAV control framework. 
‘AHDV’ means the aggregated HDVs between the two CAVs in the structure. This novel structure characterizes the aggregated 
consecutive HDVs in the mixed traffic as a whole, denoted as the ‘AHDV,’ whose aggregated HDV car-following behaviors and sto
chasticity can be further captured by the macroscopic traffic features. Specifically, we propose an estimated time-varying Newell car- 
following method (Chen et al., 2012), which links the fundamental diagram to the microscopic driving behavior parameters. 

Furthermore, DRL is suitable for capturing stochastic characteristics and embedding them in the environment with great gener
alization capability. Thus, this structure is incorporated into the DRL framework to fulfill car-following control efficiency and further 
reduce stochasticity based on the following two aspects. First, the ground-truth HDV trajectory data are embedded into the DRL 
training process, by which we incorporate real HDV stochastic characteristics implicitly. Second, the macroscopic features captured by 
the ‘CAV-AHDV-CAV’ structure are weighted and fused into the DRL state and reward function based on the equilibrium concept. In 
this way, the HDVs’ stochasticity is alleviated by regulating CAVs close to the pre-defined equilibrium state. With the proposed ‘CAV- 
AHDV-CAV’ structure and the designed DRL framework, the HDV stochasticity is efficiently alleviated for CAV control. 

To summarize, this paper utilizes the DRL framework to develop a generic distributed CAV longitudinal control approach for a 
mixed traffic environment. The contribution can be summarized in terms of methodology and application. From the methodology-wise 
perspective, the aggregated HDVs’ macroscopic traffic flow features are real-time estimated based on the generic ‘CAV-AHDV-CAV’ 
structure. The structure is embedded into the DRL control framework by a specially designed DRL state and reward function, which 
efficiently alleviates the adverse impact of HDVs’ stochasticity and optimizes the whole mixed traffic flow. From the application-wise 
side, a generic strategy for any CAV-HDV topology of a mixed vehicular platoon is developed to stabilize the traffic oscillations 
efficiently. Specifically, each controlled CAV receives the information from the local downstream vehicles for real-time control. The 
received information is fused as the DRL state based on the philosophy of equilibrium concept and the consensus concept, which helps 
develop a robust control policy and gives the base for analyzing car-following control efficiency and vehicular string stability. The DRL 
reward function is then designed based on the fused DRL state in a quadratic form to efficiently fulfill the car-following control ef
ficiency and improve driving comfort performance. 

The paper is organized as follows. Section 2 provides the CAV longitudinal control scheme, including the environment setting, the 
distributed control scheme, and the state fusion strategy. Section 3 gives the details of DRL-based control model development, in which 
the basics of the DRL algorithm are discussed in Section 3.1; the policy updating algorithm is given in Section 3.2, and the training 
procedure is described in Section 3.3. Section 4 analyzes the results of simulated experiments in terms of control performance, driving 
comfort, and generalization capability. Section 5 concludes the work. 

2. Cav control scheme 

2.1. Assumptions and environment setting 

2.1.1. Assumptions 
This paper focuses on the CAV longitudinal control in mixed traffic of CAVs and HDVs. We consider the car following process 

without lateral movement in an infinite highway segment. The communication between CAVs follows the Federal Communications 
Commission, allocating a dedicated short-range communication (DSRC) radio with a 5.9-GHz frequency (Du and Dao, 2015). The 
environment assumptions are given as follows: (i) The CAV can obtain the real-time state information (e.g., speed, position) of its 
immediate preceding vehicle using onboard sensors. (ii) The CAV can receive its own real-time state information. (iii) The CAV’s real- 
time state information is broadcasted to the upstream CAVs by vehicle-to-vehicle (V2V) communication. (iv) The Signal-Interference- 
plus-Noise Ratio (SINR) condition dynamically determines the transmission status (fail/success) between any CAV pairs. (v) The 
communication delay is negligible due to the short communication distance in a road segment. (vi) HDVs have no communication 
capability. (vii) The lane-changing maneuvers are not considered in the vehicular platoon. 

2.1.2. Communications 
For the DSRC-based V2V communication environment given in the above assumptions, the information transmission status be

tween CAVs can change dynamically under communication failure due to communication interference or information congestion 
(Wang et al., 2019a). The communication failure will undermine driving performance. We embed this realistic communication 
property into the control framework to enhance the robustness and practicality of the CAV controller. The information flow topology 
(IFT), which indicates the dynamic transmission status of links in the vehicular platoon, is described from the receiver side (i.e., 
controlled CAV) to illustrate the communication environment. Specifically, the IFT of CAV i at timestep t is defined as ξt

i = [ηt
i,i− 1,ηt

i,i− 2,

⋯, ηt
i,i− N], where ηt

i,i− m ∈ {0,1} denotes the information transmission status between the receiver CAV i and the downstream vehicle 
i − m. ηt

i,i− m = 1 indicates a successful transmission, while ηt
i,i− m = 0 can happen either when a communication loss or vehicle i − m is an 

HDV. In addition, we assume a permanently successful transmission status for the immediate preceding vehicle (i.e., ηt
i,i− 1 ≡ 1) due to 

CAV’s robust onboard sensors. To better replicate the DSRC-based V2V communication, the SINR communication model (Du and Dao, 
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2015), which demonstrates great estimation of communication loss on a one-way road segment, is adopted to identify CAVs’ IFTs. The 
SINR model determines the real-time transmission quality yt

i,j between the transmitter CAV j and the receiver CAV i at timestep t, 
defined as Eq. (1): 

yt
i,j =

Pj

(
Xt

ji

)− α

∑i− 1
k=j+1Pk(Xt

ki)
− α

+ O
, (1) 

where Pj denotes the transmission power of vehicle i; Xt
ji is the distance between two CAVs; α is the parameter adjusting the signal 

power decay. 
∑i− 1

k=j+1Pk(Xt
ki)

− α represents the sum of the interference signal power of vehicles between the receiver CAV i and trans
mitter CAV j. The noise term O N(μ, σ2) is used to simulate the random noise affecting the communication environment. Based on yt

i,j, a 
threshold value β related to the communication capability (e.g., modulation, code rate) is introduced to determine the real-time 
transmission status ηt

i,i− m: 

ηt
i,i− m =

{
1, yt

i,i− m > β
0, yt

i,i− m ≤ β
(2) 

Based on the SINR model, we embed critical communication features of the practical condition in the simulated V2V communi
cation environment, making the simulation more realistic. 

2.1.3. Vehicle dynamics 
Given the assumptions and communication environment, the vehicle dynamics are modeled by a first-order approximation to 

capture multiple factors (e.g., gear position, road gradient, air drag force) of the vehicle linearized dynamics (Wang, 2018): 

at+1
i = e− Δt

Ii,L × at
i +

(
1 − e− Δt

Ii,L

)
× Ki,Lut

i, (3) 

where Ki,L and Ii,L denote the system gain (ratio of the control demand that can be realized) and actuation time lag of CAV i, 
respectively; ut

i and at
i are the demanded acceleration and realized acceleration. With acceleration at

i , the real-time vehicle state is 
updated according to the kinematic point-mass equations (Zhu et al., 2018): 

vt+1
i = vt

i + at
iΔt (4a)  

Δvt+1
i,i− 1 = vt+1

i− 1 − vt+1
i (4b)  

dt+1
i,i− 1 = dt

i,i− 1 +
Δvt

i,i− 1 + Δvt+1
i,i− 1

2
Δt (4c) 

where Δt is the update interval; vt
i is the velocity of CAV i at timestep t; dt

i,i− 1 denotes the front-bumper distance between CAV i and 
CAV i − 1. 

2.2. Distributed control scheme 

Based on the above environment setting, this section provides a generic distributed control framework to regulate CAVs’ 

Fig. 1. The distributed control scheme for the vehicular platoon.  
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longitudinal movements in a mixed traffic environment, as presented in Fig. 1. The communication topology setting assumed by the 
SINR model in the framework is a common V2V communication topology, which is widely utilized in the CACC control (Wang et al., 
2020c). For this topology, each controlled CAV (i.e., CAV i) broadcasts its state information (e.g., velocity, position) to the upstream 
vehicles within a certain communication range and simultaneously communicates with the multiple downstream vehicles within the 
communication range (i.e., at most K downstream vehicles) at each timestep for real-time longitudinal control. For each timestep, the 
received information from the downstream vehicles is fused as a weighted DRL state st

i, which will be explained with details later. After 
the fusion process, the DRL-based controller generates the real-time demanded acceleration ut

i , and ut
i is then implemented based on 

the above vehicle dynamics, regulating CAV i’s longitudinal movements. 
Within the above framework, the fused DRL state st

i is notably designed to better utilize the downstream vehicles’ information. The 
communication range for state fusion, defined as the ‘local downstream environment,’ is restricted to cover at most K downstream 
vehicles. The communication quality within the range should be basically stable (i.e., rarely fails), and the kinematic traffic waves 
(Whitham, 1955) can be quickly propagated to the controlled CAV i. Despite the limited range, the diversified downstream CAV-HDV 
topologies make developing a generic distributed controller challenging. To this end, we describe any local mixed downstream 
environment as the generic CAV-HDVs-CAV pattern, which consists of a nearest downstream CAV followed by a single or multiple 
HDVs, as presented in Fig. 2(a). In this heterogeneous local environment, the traffic oscillation amplitude usually grows upstream 
through the consecutive HDVs between CAV i and CAV i − m (Zhou et al., 2019a), which hinders CAV i from driving smoothly. To 
alleviate this issue, we firstly fuse the nearest downstream CAV (i.e., CAV i − m)’ s state information to ‘actively’ anticipate its relatively 
smooth and stable driving behavior for more efficient control. Furthermore, directly modeling or predicting each HDV’s stochastic 
behavior between CAV i and CAV i − m is very challenging. To this end, we characterize the consecutive HDVs as a whole ‘large’ HDV (i. 
e., AHDV) and utilize its macroscopic traffic features to attenuate stochasticity, thus enhancing CAV i’ s driving behavior. As presented 
in Fig. 2(b), we neglect each HDV’s microscopic driving behavior between the preceding HDV (i.e., HDV i − 1) and CAV i − m and define 
this ‘CAV-HDVs-CAV’ pattern as a novel car-following structure ‘CAV i → AHDV → CAV i − m. ’ In this way, CAV i receives the real-time 
state information of its preceding HDV i − 1 and the nearest downstream CAV i − m to generate the fused DRL state st

i for the DRL-based 
control. It should be noted that if CAV i − m is out of the communication range (i.e., m > K), CAV i only receives the information of HDV 
i − 1 for control. The proposed distributed control scheme is downgraded to the ‘decentralized control’, which will be explained in 
Section 4.2 with details. 

2.3. State fusion formulation 

A generic state fusion strategy is designed based on the equilibrium concept to regulate each CAV close to the pre-defined equi
librium state and meanwhile effectively stabilize traffic oscillations. The equilibrium concept from the modern control theory defines 
the equilibrium state (equilibrium point) for a dynamical system, which represents a state where the system can stabilize after being 
affected by external disturbances or forces (Absil and Kurdyka, 2006). A system will remain at the (stable) equilibrium state once 
reached, given the perturbation and inputs are small enough. 

In longitudinal car-following control, the equilibrium state represents the desired ideal vehicle state (i.e., equilibrium spacing and 
speed) during driving for each car following pair, which avoids arbitrary variation of the inter-vehicle spacing for control. Incorpo
rating the equilibrium concept in DRL provides the exploration direction in DRL training to help develop a robust control policy and 

Fig. 2. The mixed local downstream environment: (a) characterized as ‘CAV-HDVs-CAV’ pattern; (b) “three-vehicle” car-following structure.  
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gives the base for analyzing vehicle string stability and car following control efficiency. Based on the concept, this subsection derives 
the DRL state st

i as the weighted deviation from the equilibrium spacing Δdt
i and the weighted deviation from the equilibrium speed Δvt

i 
regarding its downstream vehicles HDV i − 1 and CAV i − m. Four parameters are predefined to fuse the DRL state, including the 
equilibrium spacing d*t

i,i− 1 and equilibrium speed v*t
i,i− 1 regarding HDV i − 1; the equilibrium spacing d*t

i,i− m and equilibrium speed v*t
i,i− m 

regarding CAV i − m. The following content describes the derivations of the DRL state. 

2.3.1. Local equilibrium 
The derivation of the DRL state starts with the local equilibrium state. The local equilibrium state for each CAV car following pair 

follows the constant time gap (CTG) policy from the Society of Automotive Engineer Standard (SAE), which regulates the CAV to set 
the same speed as its preceding vehicle and maintain the preset equilibrium spacing, defined as below: 

d*t
i,i− 1 = vt

iτ*
i + li, (5a)  

v*t
i,i− 1 = vt

i− 1, (5b) 

where vt
i denotes CAV i’s real-time velocity at timestep t; τ*

i and li are the constant time gap and the standstill spacing between CAV i 
and vehicle i − 1, respectively. The two equations above define the local equilibrium for a car following pair. 

2.3.2. Multi-agent equilibrium 
Furthermore, to consider the impact of multiple vehicles in the local downstream environment, Eq. (5a) and Eq. (5b) are expanded 

to a distributed multi-agent version, whose equilibrium spacing d*t
i,i− m and speed v*t

i,i− m between CAV i and any downstream vehicle i − m 
is specified as Eq. (6a) and Eq. (6b): 

d*t
i,i− m = vt

iT
*
i,i− m + Li,i− m, (6a)  

v*t
i,i− m = vt

i− m. (6b) 

T*
i,i− m and Li,i− m denote the equilibrium time gap and standstill spacing between CAV i and CAV i − m. The two terms regulate CAV i’s 

desired microscopic driving behavior considering its downstream vehicles, which will be explained with mathematical details later. To 
facilitate the system-optimal consensus of the vehicular platoon, we measure and embed the actual spacing and speed deviations from 
the equilibrium between CAV i and CAV i − m into the DRL framework, which is specified as: 

Δdt
i,i− m = dt

i,i− m − d*t
i,i− m

, (7a)  

Δvt
i,i− m = vt

i− m − vt
i, (7b) 

Based on Eq. (7), the equilibrium deviations for multiple downstream vehicles can be determined for the state fusion. 

2.3.3. Estimation from Newell’s Car-following model 
The remaining problem lies in calculating the equilibrium spacing d*t

i,i− m in Eq. (6a), which needs to specify the corresponding time 
gap T*

i,i− m and the standstill spacing Li,i− m. Specifically, for the defined ‘CAV-AHDV-CAV’ structure, the equilibrium spacing regarding 
HDV i − 1 (i.e., d*t

i,i− 1) and CAV i − m (i.e., d*t
i,i− m) needs to be configured. Regarding HDV i − 1, d*t

i,i− 1 is directly given in Eq. (5). Based on 

that, the deviation from equilibrium spacing is specified as Δdt
i,i− 1 = dt

i,i− 1 − d*t
i,i− 1. Regarding CAV i − m, the equilibrium time gap T*

i,i− m, 

standstill spacing Li,i− m, and equilibrium spacing d*t
i,i− m are defined as follows based on the three-vehicle following scheme ‘CAV i → 

HDV i − 1 → CAV i − m’: 

T*
i,i− m = τ*

i + T*t
i− 1,i− m, (8a)  

Li,i− m = li + Lt
i− 1,i− m (8b)  

d*t
i,i− m = vi(τ*

i + T*t
i− 1,i− m)+

(
li + Lt

i− 1,i− m

)
(8c) 

where T*t
i− 1,i− m and Lt

i− 1,i− m represent the time-varying time gap and spacing between HDV i − 1 and CAV i − m, respectively. 
Considering the aggregated HDVs in-between, T*

i− 1,i− m can be denoted as: 

T*t
i− 1,i− m =

∑m− 1

j=1
τ*t

i− j, (9) 

where τ*t
i− j denotes the time gap between HDV i − j and its preceding vehicle. Since HDV has inherent stochastic nature with great 

diversities, τ*t
i− j is time-varying and follows varied distributions for different HDVs. Moreover, τ*t

i− j is unmeasurable due to the lack of 
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communication capability of HDVs, making it challenging to determine T*t
i− 1,i− m. Compared with a single HDV’s microscopic behavior, 

the aggregated HDV driving behaviors exhibit macroscopic traffic flow properties, which show less stochasticity. Thus, rather than 
measuring τ*t

i− j individually, the aggregated HDV driving characteristics can be better captured by the macroscopic traffic features to 
address stochasticity, as indicated by the philosophy of central limit theorem (CLT) (Kwak and Kim, 2017). Though m may not be 
sufficiently large to apply CLT, the aggregation treatment of multiple HDVs brought promises to capture HDVs features. Moreover, we 
leave the remaining uncertainties by embedding the field-measured HDV trajectories in the DRL training process. 

Precisely, the two time-varying terms T*t
i− 1,i− m and Lt

i− 1,i− m need to be real-time estimated in the state fusion process to capture the 
macroscopic features. The schematic diagram for the real-time estimation is presented in Fig. 3(c). Newell’s car following model 
(Newell, 2002), which bridges the fundamental diagram and microscopic driving behavior features, and meanwhile efficiently models 
the kinematic oscillation waves (Richards, 2013), is adopted after modification, by allowing the two time-varying terms T*t

i− 1,i− m and 
Lt

i− 1,i− m to be time-variant and real-time estimated. Rather than directly modeling the microscopic driving behaviors of any CAV or 
HDV, the time-varying version of Newell’s car-following model describes the aggregated HDVs’ (AHDV’s) driving behavior to capture 

Fig. 3. Model schematic diagram: (a) Newell’s car following model; (b) Speed-spacing relationship; (c) Real-time estimation diagram of the time- 
varying time-gap T*t

i− 1,i− m and spacing..Lt
i− 1,i− m 
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its exhibited macroscopic traffic features in real-time. 
Fig. 3(a) and Fig. 3(b) demonstrates the principle of Newell’s car-following model. From the microscopic perspective, Newell’s car- 

following model gives a linear speed-spacing relationship in congested traffic flow for the following vehicle i, which assumes the 
follower reproduces the preceding leader’s trajectory with a time–space displacement (τ, l): 

di = vτ + l (10) 

where v is the vehicle speed; di is the spacing; τ represents the time shift for vehicle i to match its leader’s speed; l denotes the 
displacement of the speed change point. Moreover, from a macro perspective, the Newell’s car following model models the kinematic 
wave with a triangular fundamental diagram, in which the parameters τ and l represent macroscopic traffic features to describe traffic 
wave speed w and jam density k: 

w =
1
τk
, (11a)  

k =
1
l

=
1

wτ, (11b) 

where τ denotes the wave propagating time between two consecutive vehicles; l indicates the jam spacing. Based on Eq. (10) and 
Eq. (11), τ and l are two key terms for modeling the car-following behavior and simultaneously capturing the macroscopic features. 
Furthermore, for the vehicle following structure ‘CAV-AHDV-CAV’ described above, the time gap T*t

i− 1,i− m and spacing Lt
i− 1,i− m can be 

interpreted as Newell’s parameters τ and l in the car following pair ‘HDV i − 1 → CAV i − m’, which anticipates the relatively smooth 
behavior of CAV i − m and incorporates macroscopic features of the aggregated HDVs. Specifically, Eq. (12) is proposed to real-time 
estimate T*t

i− 1,i− m and Lt
i− 1,i− m based on the integration form of Eq. (10) and Eq. (11): 

T*t
i− 1,i− m =

Dt
i− 1,i− m

w + vt
i− 1

, (12a)  

Lt
i− 1,i− m = wT*t

i− 1,i− m, (12b) 

where vt
i− 1 is the speed of HDV i − 1 at timestep t; Dt

i− 1,i− m is the actual spacing between HDV i − 1 and CAV i − m; w denotes the 
average kinematic wave speed, which is a pre-calibrated value determined by the road infrastructure’s features and configuration. 
Since w plays an important role in the method, applications of our methods should regularly measure and update the w value. There are 
methods available for w measurement, including direct measurement w using wavelet transform (Zheng et al., 2011; Zheng and 
Washington, 2012), or indirect estimation by first estimating the fundamental diagram to derive w per Li et al., (2022). We set w to 16 
km/h due to the generalized settings in studies using Next Generation Simulation (NGSIM) data collected on eastbound I-80 with an on- 
ramp at Powell Street (e.g., Laval and Leclercq, 2010; Duret et al., 2011; Chen et al., 2012). 

In addition, it should be noted that T*t
i− 1,i− m and Lt

i− 1,i− m are not derived from the steady-state spacing defined in Chen et al. (2012). 
We use the actual spacing Dt

i− 1,i− m to approximate the steady-state spacing for real-time estimation, which better anticipates the actual 
disturbances from downstream (e.g., sudden change in spacing) and thus achieves adaptive control performances. Moreover, the 
estimation method for T*t

i− 1,i− m and Lt
i− 1,i− m are only suitable for heavily congested traffic conditions, where the traffic oscillations are 

continuously propagated upstream. 

2.3.4. DRL state fusion 
Based on the estimated time-varying gap T*t

i− 1,i− m and spacing Lt
i− 1,i− m in Eq. (12), the equilibrium spacing d*t

i,i− m between CAV i and 
CAV i − m in Eq. (8c) can be real-time determined. Thus, the deviation between actual spacing and equilibrium spacing is defined as 
Δdt

i,i− m = dt
i,i− m − d*t

i,i− m. To better regulate the CAVs close to the equilibrium and reduce the DRL state dimension for greater training 

performance, the DRL state st
i = [Δdt

i , Δvt
i] is generated by fusing the weighted equilibrium deviations of HDVi − 1 and CAVi − m: 

Δdt
i =

qi− 1ηt
i,i− 1Δdt

i,i− 1 + qi− mηt
i,i− mΔdt

i,i− m

qi− 1ηt
i,i− 1 + qi− mηt

i,i− m
(13a)  

Δvt
i =

qi− 1ηt
i,i− 1Δvt

i,i− 1 + qi− mηt
i,i− mΔvt

i,i− m

qi− 1ηt
i,i− 1 + qi− mηt

i,i− m
(13b) 

where weights qi− 1 and qi− m represent the information importance for HDV i − 1 and CAV i − m, respectively. The coefficient for the 

two components is computed based on the function qi− j =

⎧
⎪⎨

⎪⎩

1
2
, j = 1

1
2
, j = m

. The sum of all the weights should be equal to 1 without loss of 

generality. Since the information of both the two components is critical, we make it decay with 1/2 order to give equal weight to the 
two components based on the above function. Despite the equal weight settings in this study, the weights can be adjusted to balance the 
impact of the two components. The impact of both components can be summarized as follows. The preceding HDV i − 1’s information is 
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necessary due to safety concerns. The information Δdt
i,i− 1 and Δvt

i,i− 1 from HDV i − 1 should always be incorporated into the fused DRL 
state to enhance safety. In particular, it regulates the local equilibrium spacing deviation Δdt

i,i− 1 → 0 and relative speed Δvt
i,i− 1 → 0, 

which significantly lowers the driving risks as manifested by safety surrogate measures such as time-to-collision (TTC) (Jiménez et al., 
2013). On the other hand, the information from CAV i − m is the key part of the state fusion process, which anticipates the relatively 
smooth driving behaviors from CAV i − m and alleviates the HDVs’ stochasticity to facilitate control performances. 

For a better understanding, the above-proposed estimation method and state fusion process can be interpreted in this way. The 
controlled CAV i adapts its car-following strategy according to the state of its actual immediate preceding vehicle HDV i − 1 and the 
state of the fictive vehicle (i.e., AHDV) in front of the controlled CAV. To refine the effective position of the fictive vehicle, the Newell- 
based methodology is introduced to estimate the traffic state and propagate the current state of the leader CAV i − m through a set of 
HDV vehicles. Specifically, the time-varying terms T*t

i− 1,i− m and Lt
i− 1,i− m, which are real-time estimated from Newell’s model, determine 

the position of the fictive vehicle. Adopting the interpretation makes the introduced method similar to Multi-Anticipative ACC car- 
following rules (Lin et al., 2012; Wang et al., 2014a, 2014b). Rather than defining a fictive vehicle like in MA-ACC rules only 
based on perception and communication sensors, which provide information regarding the immediate leader HDV i − 1 and the CAV 
leader CAV i − m, the introduced method refines the approach by making use of the Newell’s car-following model to capture the 
macroscopic traffic features between the two leaders. 

From the equilibrium concept perspective, the control design maintains the CAV in the pre-defined equilibrium state, considering 
its preceding HDV and the nearest downstream CAV. The equilibrium state with the preceding HDV (i.e., d*t

i,i− 1, vt
i− 1) ensures local 

stability (Willems, 2013), representing the capability to remain in a car-following pair of equilibrium under disturbances. The equi
librium state with the nearest downstream CAV (i.e., d*t

i,i− m,vt
i− m) incorporates the relatively stable driving motion of the downstream 

CAV and the macroscopic traffic features of aggregated HDVs, which further enhances the car-following performances. Moreover, this 
control design is generic since it is suitable for diversified compositions of the mixed local downstream environment. 

2.3.5. Extension to the full CAV environment 
It should be noted that the local communication range can be a pure connected automated environment, in which consecutive 

downstream vehicles are CAVs (i.e., CAV-CAVs patten), as presented in Fig. 4. The above generic state fusion approach can also be 
applied to this full CAV condition, whose control design is to achieve a platoon-level consensus by fusing received information from all 
the aggregated CAVs (i.e., m CAVs ,1 ≤ m ≤ K) as the DRL state si

t for control (Shi et al., 2022). Specifically, the fusion process follows 
the same formulations from Eq. (5) to Eq. (7) to calculate the equilibrium speed deviation Δvt

i,i− m and spacing deviation Δdt
i,i− m between 

CAVi and CAVi − m. Due to the full CAV environment, the equilibrium time gap T*
i,i− m and equilibrium standstill spacing Li,i− m in Eq. (6) 

can be directly defined in a multi-agent version, which means T*
i,i− m = mτ*

i ; Li,i− m = mli. Similar to Eq. (13), the fused DRL state st
i =

[Δdt
i , Δvt

i] incorporates the weighted equilibrium deviations for the m aggregated CAVs to anticipate the disturbances induced 
downstream and thus achieve great system-level consensus: 

Δdt
i =

qi− 1ηt
i,i− 1Δdt

i,i− 1 + qi− 2ηt
i,i− 2Δdt

i,i− 2 + ⋯ + qi− kηt
i,i− mΔdt

i,i− m

qi− 1ηt
i,i− 1 + qi− 2ηt

i,i− 2 + ⋯qi− mηt
i,i− m

, (14a)  

Δvt
i =

qi− 1ηt
i,i− 1Δvt

i,i− 1 + qi− 2ηt
i,i− 2Δvt

i,i− 2 + ⋯ + qi− kηt
i,i− mΔvt

i,i− m

qi− 1ηt
i,i− 1 + wi− 2ηt

i,i− 2 + ⋯qi− kηt
i,i− m

, (14b) 

where the coefficient qi− j =

⎧
⎪⎨

⎪⎩

1
2j, 1 ≤ j ≤ m − 1

1
2j− 1, j = m 

represents that the closer CAV is assigned with greater power on the control 

decision. 

Fig. 4. Scenario extended to the full CAV downstream environment.  
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3. Development of Drl-Based controller 

Based on the defined control scheme in Section 2, this section develops the DRL-based controller. We discuss the detailed DRL 
scheme (Section 3.1), the adopted DRL algorithm (Section 3.2), and the training process (Section 3.3). The simulation experiments, 
including training and evaluation, are performed via Python. TensorFlow package is used to build the DRL algorithm. Pyomo package 
is applied to develop the MPC-based controller for performance comparison in the experimental part (Section 4). 

3.1. DRL scheme and formulation 

The basis of DRL is Markov Decision Process (MDP), in which the DRL agent (i.e., CAV controller) and environment (given in 
Section 2) interact with each other based on four basic elements: state, action, policy, and reward (s, a, π, r). As discussed in the 
previous section, state s represents the fused state information, which contains the weighted deviations of spacing Δdt

i and speed Δvt
i , 

denoted as st
i = [Δdt

i , Δvt
i]. The DRL agent receives st

i at each timestep and outputs the action a (i.e., the control signal ut
i) based on the 

policy π to regulate CAV i’s longitudinal movements. As an implicit function that assigns the action probability for each state, policy 
π(a|s) needs to be updated to achieve optimal control performance through the training process. 

The reward r determines the control objectives. In our design, the objectives of the car following control efficiency, which aims to 
maintain CAV in the pre-defined equilibrium state, and driving comfort, which pursues a smoother driving behavior with greater eco- 
driving performance, are incorporated in the DRL framework. In particular, the cost of the car following control efficiency ct

i is defined 
as the quadratic form of deviation from the equilibrium state, which is a common control design in modern control theories such as 
Linear Quadratic Regulator (LQR) and MPC. This design facilitates stability analysis, as manifested by numerous control papers (e.g., 
Fisher and Bhattacharya, 2009; Zhou et al., 2019b). Specifically, the quadratic cost ct

i is defined as: 

ct
i = (st

i)
T Qist

i, (15) 

where Qi =

[
α1,i

α2,i

]

is a positive definite diagonal coefficient matrix with weights α1,i > 0 and α2,i > 0. 

Further, the driving comfort cost gt
i suggested by Wang et al., (2014a) is defined in Eq. (16), which alleviates the acceleration to 

improve the eco-driving performance and empirical string stability (i.e., acceleration energy) (Shi et al., 2021b; Feng et al., 2019): 

gt
i = α3,i

(
at

i

)2
, (16) 

where α3,i denotes the weight for driving comfort. It should be noted that both the two costs regarding the car following control 
efficiency cost ct

i and driving comfort cost gt
i are unitless. The weight’s unit is the reciprocal of its valuable unit. Thus, each weight of 

α1,i, α2,i, and α3,i offsets the units of its variables, making the whole cost unitless. 
Combining the two control objectives above, the running cost et

i of CAV i at timestep t is defined as the sum of the car following 
efficiency cost ct

i and driving comfort cost gt
i : 

et
i = ct

i + gt
i. (17) 

Since the quadratic running cost et
i is similar to the cost function in the constrained optimization framework, and the training 

environment is similar to the state space as Zhou et al. (2019b), the coefficients setting (α1,i, α2,i, α3,i) is set to be same as Zhou et al. 
(2019b) to improve the string stability performance further. Though it is prohibitive to conduct mathematical string stability as Zhou 
et al. (2019b), due to the intrinsic complexity of DRL, we envision the setting coefficients in the same fashion as is helpful to enhance 
the string stability by the similarities mentioned above. 

Based on the above systematic cost design, we convert the running cost et
i as the immediate reward rt

i using the exponential 
function, as shown in Equation (18), which calculates the reward value as feedback for the control action at each timestep. The 
exponential equation serves the following two purposes. First, the reward value needs to be maximized in the DRL framework, whose 
optimization direction is opposite to the cost function of optimal control. Using the exponential function changes the optimization 
direction from minimization to maximization. Second, the above exponential function plays a normalization function, normalizing the 
immediate reward rt

i within the boundary [0, 1] and further enhancing the training performance. 

rt
i = exp

(
− et

i

)
(18) 

The above exponential function also normalizes the immediate reward rt
i within the boundary [0, 1] to enhance the training 

performance. With the reward value, an infinite-horizon optimal control problem is formulated for maximizing the discounted cu
mulative rewards to find the optimal control policy π*: 

π* = argmax
π

∑∞

m=0
Ymrt+m

i , (19) 

where Y is the discount factor .
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3.2. Policy update algorithm 

The DRL solves the optimization problem in Eq. (20) by continuously updating policy π in training. The choice of DRL algorithm for 
the CAV control is based on the following aspects: (i) the action space (discrete/continuous); and (ii) the algorithm performance. The 
algorithm should support continuous action space for the instance of the microscopic CAV control with great sampling efficiency and 
converging performances. The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess, 2017), one of the Actor-Critic DRL 
algorithms, is adopted for policy updating in training. The Actor-Critic DRL algorithm combines the merits of Policy-Based RL and 
Value-Based RL algorithms, which performs faster than traditional RL algorithms and supports continuous action space in the training 
process. Based on its merits, the Actor-Critic framework is widely used in the most popular reinforcement learning algorithms, such as 
the A3C algorithm (Mnih et al., 2016), DDPG algorithm (Lillicrap et al., 2016), and PPO (DPPO) algorithm (Heess, 2017). In this paper, 
we adopted the DPPO algorithm to update policy due to its great balance between sampling efficiency, implementation simplicity, and 
converging performance (Schulman et al., 2017). Compared with traditional policy gradient RL algorithms, the DPPO algorithm makes 
policy gradient less sensitive to a large step and improves the convergence of policy updates by clipping the divergence of the strategy 
update. Besides, the DPPO algorithm updates the policy of the global agent in parallel through multiple parallel agents, which further 
improves training efficiency. 

The Distributed Proximal Policy Optimization (DPPO) algorithm (Heess, 2017) is adopted for policy updating due to its great 
balance between sampling efficiency, implementation simplicity, and converging performance. The DPPO algorithm is a typical Actor- 
Critic DRL algorithm, with objective LCLIP(θ) updating in the actor network and critic loss Lc(Φ) updating in the critic network. The 
overall actor-network framework with network structures is presented in Fig. 5. The detailed hyperparameters settings are demon
strated in Table 1. The number of neurons for the actor network (200) and critic network (100) is tuned by experiences to achieve the 
desired performances without causing underfitting and overfitting issues. Since the actor network learns a more complex policy 
function that maps the DRL state to a probability distribution over all actions, thus setting with more neurons in this paper (Grondman 
et al., 2012). 

3.2.1. Actor network 
The actor network determines the policy π with parameter θ. It receives the DRL state st

i as the input and outputs a probability 
distribution over actions. The control signal ut

i is then sampled from the distribution. For the network structure, there is one hidden 
layer with 200 neurons, and the ReLu function is adopted as the activation function for the output. The actor network is updated by 
maximizing the objective function LCLIP(θ): 

LCLIP(θ) = Êt[min(pt(θ)Ât, clip(pt(θ), 1 − ε, 1 + ε )Ât ] (20) 

where pt(θ) =
πθ(at |st)

πθold (at |st)
identifies the probability ratio of the new policy πθ(at |st) and old policy πold(at |st). The clipping function 

clip(pt(θ), 1 − ε,1 +ε ) function restricts pt(θ) between 1 − ε and 1 +ε to limit the update range of new policy, making the policy gradient 
less sensitive to the step size and improving the convergence. Ɛ is the clipping parameter. Ât is the estimated advantage at state st

i , 

Fig. 5. The actor-critic structure of the policy iteration algorithm.  
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which is provided from the critic network: 

Ât = Rt − VΦ
(
st

i

)
, (21) 

where VΦ
(
st

i

)
is the value estimated from the critic network; Rt denotes the discounted sum of rewards in T steps at state st

i : 

Rt =
∑T − 1

m=0
γmrt+m

i + γT VΦ
(
st+T

i

)
, (22) 

where T is the minibatch size; rt+m
i is the immediate reward defined in Eq. (18); γ is the discount factor. Therefore, the parameter θ 

of the actor network is updated based on the gradient of LCLIP(θ) with learning rate αθ: 

θ = θ − αθ∇LCLIP(θ). (23)  

3.2.2. Critic network 
On the other hand, the critic network with parameter Φ evaluates the decision ut

i output by the actor network. The critic network 
receives the DRL state st

i as the input and outputs the estimated state value VΦ
(
st

i
)
. For the network structure, there is one hidden layer 

with 100 neurons, and the ReLu function is used as the activation function for the output. The critic network is updated by minimizing 
the critic loss function Lc(Φ): 

Lc(Φ) = Êt
(
VΦ

(
st

i

)
− Rt

)2 (24) 

where Temporal Differences (TD) error δt is denoted as δt = VΦ
(
st

i

)
− Rt in the loss function. The TD error δt estimates the advantage 

value Ât in actor since δt = − Ât. Thus, the parameter Φ is iteratively optimized based on the gradient ∇Lc(Φ) with learning rate αΦ: 
Φ = Φ − αΦ∇Lc(Φ).

Table 1 
Hyper parameters of the DPPO algorithm.  

Hyperparameter Value 

clipping value ε 0.2 
minibatch T 256 
discount factor Y 0.99 
Hidden layer of actor 1 
Hidden layer of critic 1 
actor network neurons 200 
critic network neurons 100 
parallel worker numbers 4 
actor learning rate 0.00001 
critic learning rate 0.00001  

Fig. 6. The schematic diagram of training framework.  
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3.3. Training procedure and results 

Based on the proposed DRL scheme (given in Section 3.1) and the adopted policy updating algorithm (given in Section 3.2), this 
section describes the detailed training procedure in which the DPPO agent continuously interacts with the simulation environment. 
The DPPO agent consists of one global agent for the actor-critic network updating and multiple parallel agents interacting with their 
independent simulation environments for data collecting (e.g., state, action, reward), which further improves the sampling efficiency 
and training speed. The detailed training process is demonstrated in Fig. 6. At timestep t, each parallel agent receives the CAV i’s state st

i 
of its corresponding simulation environment and outputs the control signal ut

i to update the longitudinal movement based on the 
current policy π(a|s). Concurrently, the collecting data, including the calculated reward rt

i , state st
i, and action ut

i , is sent to the memory 
buffer for storage. The update of the policy and actor-critic network is triggered after a certain batch of data is stored in the memory 
buffer. 

Regarding the training environment settings, ten sets of five-vehicle ground-truth vehicular platoon trajectories with a time length 
of 334 timesteps from NGSIM datasets are embedded for the initial configuration. For each training episode, one of the ten platoon 
trajectories is randomly sampled and assigned for the trajectories of the leading vehicle CAV i − m and the following aggregated HDVs. 
Fig. 7 below shows details of one platoon trajectory. The platoon trajectories that incorporate typical phases of acceleration, decel
eration, and uniform speed are embedded in the training process for the DRL control model to better capture stochastic driving 
characteristics. It should be noted that the proposed “CAV-AHDV-CAV” structure is a generic unit in the mixed traffic flow, whose 
leading CAV’s driving behavior could be varied and even stochastic due to the impact of the downstream traffic. Thus, rather than 
setting a deterministic leading CAV, using NGSM data to represent the stochastic leading vehicle behavior should be rational. 

Specifically, the number of HDVs n(1 ≤ n ≤ K − 1) between the two CAVs is randomly sampled in the simulation environment at 
each training episode to enhance the generalized capability for different topologies. Based on sampled topology, the trajectories of the 
leading CAV i − m and following HDVs are assigned from the above NGSIM platoon data. Taking an example of the topology ‘CAV-three 
HDVs-CAV’, the NGSIM leader trajectory and three follower trajectories are assigned to CAV i − m and three HDVs. For the controlled 
CAV i, it starts with the initial equilibrium state defined in Section 2 and is then controlled by the DRL learning agent without the loss of 
generality. 

For the scenario where the local downstream environment is pure connected and automated (i.e., full CAVs), only the trajectory of 
the leading vehicle is from the NGSIM dataset, and the corresponding DRL-based models control the other downstream CAVs. 

Fig. 7. Trajectories of the vehicular platoon in the training process regarding (a) acceleration; (b) position; (c) spacing; and (d) time gap (gt
i /vt

i ).  
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Training results are represented by the moving reward trajectory (Qu et al., 2020) demonstrated in Fig. 8. For the mixed (het
erogeneous) traffic environment (Fig. 8(a)), the training platoon trajectories and number of HDVs are randomly sampled, which leads 
to a varied mixed environment. Thus, the rewards fluctuate in the converging area. On the other hand, the full CAV downstream 
environment leads to more stable reward trajectories, as presented in Fig. 8(b). In general, the rewards for both cases monotonically 
increase until convergence, indicating good converging performance. 

4. Simulation experiments 

4.1. Experiment settings 

4.1.1. Experiment overview 
After developing the DRL-based control models, we conduct several numerical experiments to evaluate the control approach using 

NGSIM datasets of I-80 in California. To remove the noises and handle the missing data, we reconstruct the datasets using a low-pass 
filter proposed by (Punzo et al., 2011) and (Montanino and Punzo, 2015). The trajectories in Lane 2 from 4:00 pm to 4:15 pm are 
selected for experiments and analysis due to the frequent traffic congestions and oscillations and the fewer lane-changing maneuvers. 
The default experimental setting is shown in Table 2. 

The simulation experiments can be divided into three parts: (i) model performance analysis; (ii) application of the proposed model 
in a long vehicular platoon with different CAV penetration rates; (iii) generalization capability validation. Based on these experiments, 
the effectiveness, robustness, and generalization of the proposed control strategy are analyzed comprehensively. For the simulated 
platoons in these experiments, the leader’s trajectory is picked from NGSIM datasets or the customized trajectory profile to reproduce 
traffic disturbances. The initial states of followers start with the pre-defined equilibrium states or start with the ground-truth NGSIM 
data. With the leader profile and followers’ initial states, the vehicular platoon trajectory can be simulated based on the proposed 
model or other compared methods. 

4.1.2. Evaluation metrics 
There are several performance indicators for quantitatively evaluating the control performance: cumulative dampening ratio dp,i, 

local stability measured by Δdt
i,i− 1 and Δvt

i− 1, driving comfort gt
i (given in Eq. (16)), and average velocity vi. The cumulative dampening 

ratio dp,i quantifies the empirical string stability, an important property that measures the capability of the CAV controller in 
dampening traffic oscillations. The traffic oscillation magnitude is reduced or remains the same as it goes through a string stable CAV. 
Specifically, the l2-norm acceleration dampening ratio dp,i (Ploeg et al., 2014) is specified as: 

dp,i =
‖at

i‖2

‖at
0‖2

=

(
∑N

t=0

⃒
⃒at

i

⃒
⃒2

)1
2

(∑N
t=0|at

0|
2
)1

2
, (25) 

where N denotes the time length; i is the vehicle index. Index 0 represents the leader of the whole vehicular platoon. The smaller 
dampening ratio dp,i indicates that the disturbances are dampened to a greater extent, leading to a more string stable driving behavior. 
The local stability is another important property of CAV longitudinal control, denoting a vehicle’s ability to remain in the equilibrium 
state with its immediate preceding vehicle (Willems, 2013). The deviations from equilibrium spacing Δdt

i,i− 1 and equilibrium speed 
Δvt

i− 1 regarding vehicle i − 1 are the indicators for local stability. Great local stability with low equilibrium deviations indirectly 
guarantees driving safety since it leads to large time-to-collision (TTC) (Minderhoud and Bovy, 2001). The average velocity vi refers to 

Fig. 8. The moving reward trajectory results for mixed traffic environment (a) and homogeneous traffic environment (b).  
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the mean velocity of all timesteps (vi =

∑N
t=0

vt
i

N ). 

4.1.3. HDV modeling method 
Furthermore, the precise modeling of HDV driving behavior in the mixed traffic simulation contributes to a more realistic simu

lation environment and convincing results. This paper uses a calibrated Intelligent Driver Model (IDM) (Kesting and Treiber, 2008; 
Treiber et al., 2000), which can be representative of HDV’s string instability property, to model the HDV behaviors in the experiments. 
The IDM parameters are calibrated by (Kesting and Treiber, 2008) using ground-truth datasets of HDV behaviors. The calibrated 
datasets show complex situations of daily city traffic with several accelerations, decelerations, or standstill periods, which is quite 
similar to the adopted NGSIM datasets for experiments. Therefore, the calibrated IDM model can be applied in the experiments of this 
paper. The calibrated parameters are presented in Table 3. 

4.2. Control performance evaluation 

For the first part of the experiments, this section analyzes the performance of the proposed distributed control strategy. The 
proposed distributed control performance is analyzed in the mixed local environment compared with the following state-of-art CAV 
controllers as comparisons:  

• Decentralized DRL-based controller. The decentralized controller, also developed by the DRL, downgrades the CAV to the 
autonomous vehicle (AV) that can only receive its immediate preceding vehicle’s information through onboard sensors. The 
decentralized DRL control model is developed using the same methodology (i.e., same reward design and training data) given in 
Section 3. The only difference lies in that the decentralized DRL state is defined as the local equilibrium deviations regarding the 
immediate preceding vehicle (i.e., st

i = [Δdt
i,i− 1,Δvt

i,i− 1]).  
• Linear-based CACC controller. The compared linear-based CACC controller (Zhou et al., 2019a) is based on the constant time gap 

(CTG) policy, which has been proved to have excellent traffic oscillation dampening performances and guaranteed string stability 
performance.  

• MPC-based CACC controller. The compared MPC-based CACC controller (Wang et al., 2016) has explicit constraints of velocity 
and acceleration to meet restrictions of the vehicle kinematics. The cost function is designed to achieve control efficiency and 
driving comfort criteria. Similarly, the CTG policy is incorporated into the control model to enhance the empirical string stability 
performances. 

The simulated mixed platoon follows a topology Tp = {1’,0,1,0,0,1,0,0,0,1}, where 1’ represents the leading CAV of the platoon 
with its trajectory from the NGSIM dataset; 0 denotes the simulated HDV follower; 1 denotes the simulated CAV follower. Each fol

Table 2 
Default parameters for the experimental setting.  

Parameters Value 

number of local downstream vehicles K 5 
update interval Δt 0.1 s 
vehicle length lv 4.6 m 
standstill spacing li 6.4 m 
constant time gap τ*

i 1 s 
SINR threshold β 0.01 
control demand ratio Ki,L 1 
actuation time lag Ii,L 0.1 
noise term N(μ,σ2) N(0,0.1)

α1,i , α2,i, α3,i 1
( 1
m2

)

,0.5
( s2

m2

)

,0.5
( s4

m2

)

[ai,min, ai,max ] [-4 m/s2, 4 m/s2] 
free flow speed vf 33.3 m/s (120 km/h) 
wave speed w 4.4 m /s (16 km/h)  

Table 3 
Calibrated Parameters of IDM.  

Variable Parameter Values 

V0 Desired velocity 33.3 m/s 
T Safe time headway 1.12 s 
a Maximum acceleration 1.23 m/s2 

b Comfortable Deceleration 3.2 m/s2 

sigma Acceleration exponent 4 
S0 Minimum distance 2.3 m  
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lower starts with the pre-defined equilibrium state. This topology provides the typically mixed traffic local environment, in which 
driving behaviors of CAV 2, CAV 5, and CAV 9 are determined by the proposed distributed control approach. The mixed platoons 
generated from the decentralized control and linear-based CACC strategy follow the same topology. 

Fig. 9 presents the position, velocity, and acceleration trajectory results under DRL-based distributed control (Fig. 9(a)) and DRL- 
based decentralized control (Fig. 9(b)). The leading CAV’s trajectory (black trajectory) shows frequent acceleration-deceleration 
waves and a short standstill period. For the mixed platoon under the decentralized control strategy (Fig. 9(b)), the HDV tends to 
amplify the traffic oscillations due to the long reaction time, aggravating the traffic jam. Compared with HDVs, the decentralized CAVs 
are more responsive to their leaders with smaller spacing, showing efficient car-following behaviors. However, the decentralized CAVs 
only slightly dampen the traffic disturbances since they are separated and distributed in the mixed platoon. The decentralized CAV 
makes the control decision only based on its preceding HDV, whose driving behavior is negatively affected by the propagated traffic 
disturbances. Thus, the decentralized CAV is hard to diminish the disturbances in this mixed traffic scenario. 

On the other hand, the distributed CAVs, as presented in Fig. 9(a), also demonstrate responsive driving behaviors with smaller 
spacings compared with the HDVs. Moreover, the distributed CAV can dampen the traffic oscillation significantly, showing great string 
stability. The reason is that the downstream CAV’s driving state and macroscopic traffic flow property of the aggregated HDVs are 

Fig. 9. The position, velocity and acceleration trajectory results comparison: (a) distributed control; (b) decentralized control; (c) MPC-based CACC 
and Linear-based CACC velocity trajectories. 
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conveyed into the DRL control framework, which enhances the car following performance and better optimizes the entire mixed traffic 
flow. Fig. 9(c) gives the velocity portfolio of the linear-based CACC controller and MPC-based CACC controller. Compared with these 
two approaches, the distributed DRL-based control can alleviate the propagated oscillations to a more significant extent. The per
formance of these approaches can be differentiated around the inflection point of the acceleration-deceleration process (e.g., timestep 
280, timestep 320). The underlying reason is that the DRL can better capture leading HDV characteristics and stochasticity with the 
proposed ‘CAV-AHDV-CAV’ structure and ground truth training dataset. Whereas Zhou et al. (2019a) focused on the frequency pre
dominant range, Wang et al. (2016) focused on the formation and propagation of moving jams, which may lose some nuanced 
characteristics of leading HDV behaviors. 

The quantified performance indicators of the nine followers from the distributed control, decentralized control, and CACC strategy 
are shown in Fig. 10, respectively, in which we focus on each vehicle’s average performance. In general, the mixed platoon under 
distributed control framework greatly outperforms the decentralized control-based mixed platoon in terms of string stability and 
driving comfort. The performance of the linear-based CACC strategy is more akin to the proposed distributed DRL-based approach, 
while it scarifies certain performances in velocity. Particularly, the three distributed CAVs (CAV 2, CAV 5, and CAV 9) differentiate 
their performances from other strategies, in which the most upstream CAV 9 has the greatest advantage. This indicates that the more 
HDVs between the controlled CAV and the downstream CAV, the distributed control can better dampen traffic oscillations and have 
higher advantages than other strategies. Specifically, compared with the decentralized CAV 9, the distributed CAV 9 can reduce a 
20.23% dampening ratio, 36.38% driving comfort cost, and increase by 0.52% average velocity. Regarding the local stability, Fig. 11 
demonstrates the trajectories of equilibrium spacing Δdt

i,i− 1 and equilibrium speed Δvt
i,i− 1 of vehicle i − 1. The equilibrium deviations of 

the CAVs are within a relatively small range (i.e., − 2.5 m/s to 0.8 m/s for Δvt
i− 1; − 1.6m to 2.4m for Δdt

i,i− 1), which indicates that local 
stability is achieved empirically. 

4.2.1. Evaluation under the extreme scenario 
Furthermore, we conduct an experiment under an extreme traffic scenario to validate the robustness of the proposed controller. The 

vehicular platoon topology has the same topology as the previous experiment, while the leading vehicle profile is customized with one 
rapid deceleration-stall-acceleration cycle ( − 2.4m/s2 → 0ft/s2 → 1.5m/s2) traffic oscillation. Fig. 12(a) gives the position, velocity, 
and acceleration for the proposed DRL-based controller, and Fig. 12 (b) shows the velocity for the other three compared approaches. 
Similarly, the aggregated HDVs amplify traffic oscillations while the distributed CAVs greatly dampen traffic oscillations with stability- 
wise performances. The quantified results of indicators are presented in Fig. 13, which shows the proposed DRL-based control has 
manifest advantages over other approaches regarding string stability and driving comfort. 

4.2.2. Evaluation under communication failure 
Although we assume the communication quality within the communication range should be stable (i.e., communication rarely 

fails), the communication loss could happen at a certain period when the communication distance is relatively far (e.g., four aggre

Fig. 10. The detailed performance indicators of the distributed control, decentralized control, linear-based CACC, and MPC-based CACC.  
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gated HDVs in between CAV i and CAV i − m). If communication failures between CAV i and CAV i − m happen, the IFT status ηt
i,i− m (in 

Equation 14) frequently switches between 0 and 1, which makes the DRL state st
i fluctuate. This will lead to high-jerk accelerations 

since the DRL policy directly maps the DRL state to the control action, as presented in Fig. 14(a). Considering the issue, we adopted the 
‘dynamic information fusion mechanism’ proposed by (Shi et al., 2022) to reduce the adverse impact caused by communication losses. 
The ‘dynamic information fusion mechanism’ adjusted the IFT status ηt

i,i− m during communication failures to smooth the acceleration 
signal, alleviating the high-jerk DRL control issue. 

The experiments are conducted to evaluate the control performances under communication failure, as presented in Fig. 14. The 

Fig. 11. The spacing equilibrium deviation Δdt
i,i− 1 and speed equilibrium deviation Δvt

i,i− 1 trajectories (equilibrium deviation with the preced
ing vehicle). 

Fig. 12. The position, velocity and acceleration trajectory results under the extreme scenario: (a) Distributed DRL-based controller; (b) Velocity 
trajectories of decentralized CAV, MPC-based CACC, and linear-based CACC. 
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communication failure happens during 500 to 550 timesteps, where the IFT status ηt
i,i− m between the receiver CAV 9 and transmitter 

CAV 5 switches frequently (Fig. 14(a)). With the adopted dynamic information fusion mechanism, the acceleration trajectory suddenly 
changes when communication failure happens and then performs smoothly without high jerks (Fig/ 12b). The quantified results for 
indicators are presented in Fig. 14(c). Similar to the previous experiments, the proposed DRL-based control outperforms other ap
proaches in oscillation dampening and driving comfort performances. 

4.2.3. Evaluation with different IDM model parameter settings 
The adopted IDM model only reproduces one HDV driving pattern. To evaluate the CAV controller considering different HDV 

driving patterns, we further conducted an experiment using the IDM model with three sets of parameters calibrated based on the 
NGSIM datasets (Jiang et al., 2023). The trajectory and indicator results are illustrated in Fig. 15. The performances using different 
IDM models show a similar tendency of control performances, illustrating that the distributed CAV can markedly dampen traffic 

Fig. 13. The detailed performance indicators of the distributed control, decentralized control, linear-based CACC, and MPC-based CACC under the 
extreme scenarios. 

Fig. 14. The performance comparison under communication failure: (a) trajectory under communication failure (b) trajectory under communi
cation failure with adjusted IFT by ‘dynamic information fusion mechanism’; (c) performance indicator comparison under communication failure. 
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disturbances in the mixed traffic flow regarding different HDV driving patterns. 

4.2.4. Evaluation using ground-truth AV trajectory 
The previous experiments use ground-truth NGSIM data (i.e., HDV trajectory) as the leading vehicle trajectory for evaluation. 

Fig. 15. Performance evaluation results using different calibrated IDM models: (a) trajectory results; (b) indicator results.  

Fig. 16. Two cases of AV ground-truth trajectories as the platoon leading trajectory for control performance evaluation: (a) case 1; (b) case 2; (c) 
indicator performance. 
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Furthermore, we evaluate our model using two ground-truth AV trajectories adopted from (Li et al., 2022) as the platoon leader 
trajectory, with results presented in Fig. 16 below. As suggested by the results, each CAV in the platoon can greatly stabilize the 
propagated traffic oscillations, suggesting similar control performances as the previous experiments. 

4.3. Mixed platoon with different penetration rates 

To further visually demonstrate the dampening performance of the proposed control strategy, we utilized the strategy to control 
CAVs in a 50-follower mixed platoon with different penetration rates (0%, 20%, 40%, 60%, 80%, 100%), where the CAVs are randomly 
sampled and distributed in the mixed traffic. The platoon leader experienced two typical deceleration-acceleration maneuvers. The 
followers start with the pre-defined equilibrium states. For results, Fig. 17 illustrates the mixed platoon’s velocity and acceleration heat 
map, and the platoon trajectories under three typical penetration rates (0%, 60%, 100%) are demonstrated in Fig. 18. Generally, the 
traffic oscillations are dampened gradually with the increasing CAV penetration rate. When the followers are all HDVs (i.e., %0 CAV), 
the disturbances are propagated and amplified towards the end, seriously impairing the entire traffic flow. Furthermore, the oscil
lations are undermined to a large extent when the CAV penetration rate reaches 60%, where the upstream vehicles are much less 
affected by the dampened disturbances. Finally, the disturbances are quickly dissipated in the 100% CAV penetration rate, and the 
downstream CAVs can promptly recover from the disturbances, showing the controller’s strong robustness and resilience. Therefore, 
the distributed CAV control strategy can effectively stabilize traffic oscillations and significantly improve the entire traffic flow. 

4.4. Generalization capability validation 

After evaluating the model performance, the generalization capability is validated in this section. 

4.4.1. Statistical validation in mixed traffic 
First, we use 150 NGSIM ground-truth trajectories excluded from training set, which is with a time length of over 50 s, to validate 

the statistical robustness of the proposed model’s control performances. The experiment is configured with a 15-follower mixed 
platoon with different penetration rates (0%, 20%, 40%, 60%, 80%, 100%), where CAVs are randomly distributed in the mixed traffic. 
Each ground-truth trajectory of the 150 NGSIM datasets is assigned as the platoon leader’s trajectory for each penetration rate, which 
means there are 150 simulated vehicular platoons for each penetration rate. The followers start with the initial equilibrium state and 
are then simulated by the corresponding control models (IDM for HDVs and DRL model for CAVs). 

For each simulated platoon in the experiment, we first average the performance indicators of the 15 followers to represent the 
performance of the whole platoon. Then for each penetration rate, the mean indicator performance value over the 150 platoons is 
calculated, representing the generalized performance of the penetration rate. The results are demonstrated in Fig. 19, which illustrates 
that the traffic flow performance in terms of travel efficiency, string stability, and driving comfort is improved monotonically with the 
increasing CAV penetration rate. Specifically, compared with the HDV platoon, the platoon with a 100% CAV penetration rate reduces 
a 38.54% dampening ratio, 55.74% driving comfort cost, and increases 5.16% travel efficiency, respectively. These generalized results 
further validate the generalization capability of the proposed control strategy. To focus on the detailed performance of each vehicle in 
the platoon, we directly average the indicator performance for each vehicle over the 150 platoons under different CAV penetration 
rates, as illustrated in Fig. 20. As the CAV penetration rate increases, the traffic disturbances are dampened to a greater extent through 
the platoon, which optimizes the entire mixed traffic flow. 

4.4.2. Cases for irregular initial condition 
The initial condition (e.g., initial velocity, acceleration, spacing) of a vehicular platoon has a great impact on the CAV controller (Li 

et al., 2016; Gao et al., 2019). Irregular initial conditions normally impair the control performances. To further validate the gener
alization capability, different NGSIM datasets are assigned for both the leader trajectory and the follower’s initial states. The vehicular 
platoon has a topology {0, 1, 0, 0, 0, 1}, where ‘0′ represents the HDV, and ‘1′ represents the CAV. The results are presented in Fig. 21. 
Like the previous experiments, the DRL-based distributed CAV has responsive driving behaviors with great oscillation dampening 
performances even under the various initial conditions. With the equilibrium-based control philosophy, the CAV can quickly recover to 
the equilibrium state from the large initial spacing (Fig. 21 (c), (e)) or small initial spacing (Fig. 21 (b), (d)) and maintain close to the 
equilibrium, which stabilizes the traffic flow and alleviates the adverse impact brought by HDVs’ stochasticity. The results validate the 
great robustness and resilience of the proposed controller. 

4.4.3. Generalization capability comparison with other approaches 
Finally, multiple ground-truth trajectories from NGSIM datasets are used to further statistically validate the advantage of the 

proposed DRL-based controller over other compared control methods (given in Section 4.2). The experiments comprise two parts, 
including (i) equilibrium initial condition and (ii) random initial condition. For each vehicular platoon in the experiments, the first part 
follows the same experiment configuration in Section 4.2, and the second part follows the same experiment configuration of ‘Cases for 
Random Initial Condition’ in Section 4.4. Specifically for each vehicular platoon, a superiority percentage P is defined to quantify the 
advantage of the proposed DRL-based method over other control approaches: 

P =
PIo − PId

PIo
*100% (26) 

H. Shi et al.                                                                                                                                                                                                             



Transportation Research Part C 148 (2023) 104019

22

where PIo and PId represent the CAV’s performance indicator value of the compared control approaches (PIo) and the proposed 
DRL-based control approach (PId), respectively. Then, the average superiority percentage P̃ over multiple vehicular platoons is 
calculated as the final result. 

For the first experiment, whose vehicular topology is Tp = {1,0,1,0,0,1,0,0,0,1}, we focus on the performance of CAV 2, CAV 5, 
and CAV 9 in the platoon. The average superiority percentage P̃ is calculated over the 150 vehicular platoons with different NGSIM 

Fig. 17. Velocity and acceleration heat map of mixed platoon with different penetration rates.  

Fig. 18. Trajectories of velocity and acceleration under 0% (Fig. 18 (a)), 60% (Fig. 18 (b)), and 100% (Fig. 18 (c)) penetration rates. (For illus
tration, only vehicle5, vehicle10, vehicle15⋯vehicle50 are plotted for 0% and 100% penetration rates). 
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leading trajectories (i.e., same NGSIM data in Section 4.4). The results are presented in Fig. 22. As can be found in the Figure, the 
proposed control method markedly outperforms other control approaches regarding oscillation dampening and driving comfort. 
Moreover, the more HDVs between the controlled CAV and the immediate CAV downstream, the proposed DRL-based control shows 
higher advantages than other approaches. With more HDVs and a longer distance between the two CAVs, the proposed control can 
better capture the stochastic characteristics of the aggregated HDVs joint driving behaviors and stabilize traffic disturbances to a 
greater extent. 

For the second experiment, whose vehicular topology is Tp = {0, 1, 0, 0, 0, 1}, we focus on the performance of CAV 5, which is the 
last CAV in the platoon. The average superiority percentage ̃P is calculated over thirty vehicular platoons with different NGSIM leading 
trajectories over 500 timesteps and irregular initial conditions for followers. The average superiority percentage P̃ is shown in Fig. 23. 
The MPC-based controller does not perform well in this case since the optimized control policy is more sensitive to the initial state. A 
large initial spacing may lead to a relatively aggressive control policy, which increases acceleration energy. Similarly, the proposed 
control method performs better in every aspect than other compared approaches for the cases with irregular initialized conditions. 

Fig. 19. The generalized statistical results of the mixed platoon with different penetration rates.  

Fig. 20. The generalized indicator results of each vehicle in the mixed platoon under different penetration rates.  
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5. Conclusion 

This research proposes a DRL-based distributed CAV longitudinal control strategy for mixed traffic of CAVs and HDVs. In this 
generic distributed control framework, each CAV receives the fused real-time information of vehicles in the local downstream envi
ronment for longitudinal control. To generalize the diversified downstream topologies, any mixed local downstream environment is 

Fig. 21. The generalized mixed platoon trajectories with initial states from ground-truth NGSIM data.  

Fig. 22. Generalization capability comparisons for different CAVs in the mixed platoon (CAV 2 with one downstream HDVs (a); CAV 5 with two 
downstream HDVs (b); CAV 9 with three downstream CAVs (c); 0 line represents the performance of the proposed approach). 
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categorized as the CAV-HDVs-CAV pattern, which consists of a nearest downstream CAV followed by aggregated HDVs. For this local 
heterogeneous environment, we construct a novel vehicle-following structure ‘CAV-AHDV-CAV’ based on Newell’s car-following 
model to capture the macroscopic traffic properties of the aggregated HDVs and embed them into the control framework. This 
approach efficiently attenuates the HDVs’ stochasticity and enhances the car-following performances. With the philosophy, a novel 
DRL state fusion strategy based on the equilibrium concept is proposed to regulate each CAV close to the pre-defined equilibrium state 
and greatly stabilize traffic oscillations. For model development, NGSIM datasets are embedded in training to better incorporate the 
preceding vehicles’ stochastic characteristics into control. The DPPO algorithm is adopted to enhance the convergence of control 
policy updated in the training process. 

A series of simulated experiments are conducted with NGSIM datasets. The proposed strategy’s control performance is evaluated 
regarding empirical string stability, travel efficiency, and driving comfort. Numerical results indicate that the proposed distributed 
control strategy can significantly dampen the traffic oscillation and outperform the decentralized strategy and linear-based CACC 
strategy in every aspect. Then, the dampening performance of the proposed control strategy is intuitively demonstrated in a 50-fol
lower mixed platoon with different penetration rates, showing its strong robustness and resilience. Finally, the generalization capa
bility of the proposed strategy is validated. 

This study still has several limitations. The first point lies in that the proposed control method focuses on heavily congested traffic 
conditions, while it is not suitable for free flow conditions. Besides, this paper does not consider the communication delay, which may 
lead to an over-optimistic performance. Moreover, the paper only considers the longitudinal car-following movement, which is 
relatively limited for applications in more complex scenarios (e.g., lane-changing movement). Some future work can be conducted 
based on the research. For instance, the vehicle dynamics can be built more complex considering the internal vehicle components (e.g., 
pedal, steering wheel, brake). Moreover, lateral movement can be incorporated into the control framework to reproduce more complex 
traffic scenarios, such as lane-changing, merging, or diverging behaviors. 
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Grondman, I., Busoniu, L., Lopes, G.A.D., Babuška, R., 2012. A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Trans. Syst. 
Man Cybern. Part C Appl. Rev. 42 (6), 1291–1307. https://doi.org/10.1109/TSMCC.2012.2218595. 

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S. M. A., Riedmiller, M., & Silver, D. (2017). Emergence of 
Locomotion Behaviours in Rich Environments. http://arxiv.org/abs/1707.02286. 

Jiang, J., Zhou, Y., Wang, X., & Ahn., S. A Generic Stochastic Hybrid Car-following Model Based on Approximate Bayesian Computation. Presented at 102ed 
Transportation Research Board (TRB) Annual Meeting. TRBAM-23-02657. Washington, D.C., 2023. 
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