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Abstract—Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and

bioinformatics. The problem of Bayesian networks learning is NP-hard and computationally challenging. In this paper, we propose

practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize

exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization

techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting

method is highly scalable, and it can be used to efficiently learn large globally optimal networks.

Index Terms—Bayesian networks, exact learning, task parallelism.
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1 INTRODUCTION

Bayesian networks are important class of probabilistic
graphical models used in Machine Learning [1]. In the most
basic form, they provide computationally feasible represen-
tations of multivariate probability distributions. When ex-
tended with prior information, they can express causal rela-
tionships, which are essential for data-driven decision mak-
ing [2]. Because Bayesian networks are generative, support
speculative queries, and are relatively easy to interpret [3]
they are frequently favored in real-world data analytics. For
instance, in systems biology, Bayesian networks are built
from gene expression data to simplify analysis of potential
gene regulatory interactions [4]. In clinical decision support
systems, Bayesian networks are frequently constructed from
Electronic Health Records (EHRs) to deliver the most likely
diagnosis and prognosis of patients [5]. In banking, Bayesian
networks facilitate fraud detection while maintaining trans-
parency and clarity behind flagging given transaction as
fraudulent [6]. Finally, because Bayesian networks provide
tractable representations of multivariate probability distri-
butions, they are frequently used to augment other ML
techniques (e.g., deep neural nets [7]).

The versatility of Bayesian networks comes at the price:
to be meaningful and interpretable a Bayesian network
should be based on a high quality structure (network struc-
ture is a directed acyclic graph linking random variables –
we provide details in Section 2). When a Bayesian network
comprises only a small number of variables, that addition-
ally are well understood, its structure can be solicited from
domain experts who use prior knowledge and experience to
characterize (potentially causal) dependencies between the
variables. However, this approach becomes infeasible when
the number of variables is large, or the application involves
de novo exploration with no prior background information.
In such situations, computational approaches that learn
network structure directly from the data become necessary.
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But the structure learning problem has been demonstrated
to be NP-hard [8], and is known to be computationally
challenging [9]. As a result, the existing structure learning
methods rely primarily on heuristics, compromising quality
and interpretability to achieve tractability and speed.

Although in some applications heuristics deliver suffi-
ciently accurate solutions, the question of finding provably
optimal network structure given some network evaluation
criterion (see Section 2) remains practically and theoretically
relevant. First, the ability to compute exact structure simpli-
fies comparison of different statistical methods (evaluation
criteria) that are used in network learning. This is because
given the exact structure, the quality of the Bayesian net-
work depends only on the input data and the underlying
evaluation criteria. Second, in many applications, especially
in biomedical informatics, having exact structure eliminates
the structure as a source of model uncertainty, and that is
critical for interpretation (structure depends only on the
data and not the learning algorithm). Finally, the problem
is computationally interesting and scalable exact learning
algorithms can serve as benchmarks for developing or im-
proving approximations and heuristics.

In this paper, we propose a new parallel approach for
end-to-end exact learning of Bayesian networks. Here, end-
to-end means that our approach starts from a raw input
data, and delivers a directed acyclic graph representing an
optimal network structure given user-defined scoring crite-
rion. Our approach uses shared-memory task parallelism to
realize exploration of dynamic programming lattices emerg-
ing in Bayesian networks structure learning, and introduces
several optimization techniques to constraint and partition
the search space and to mitigate inter-task synchronization.
In the paper, we report the following specific contributions:

• We describe the end-to-end Bayesian network learn-
ing process that decomposes learning into compu-
tationally independent stages of maximal parent set
assignment and optimal structure search, which both
involve dynamic programming.

• We propose Optimal Path Extension technique to
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constrain the dynamic programming lattice in the
structure search stage and prove that it is guaranteed
to deliver an optimal network structure.

• We introduce parallel algorithms to efficiently tra-
verse the dynamic programming space in both
problems, and show their realization using task
parallelism and custom data structure to manage
search frontier.

• We report extensive experimental results using the
classic benchmark networks to assess scalability of
our methods and dissect effectiveness of our pro-
posed optimization techniques.

The reminder of this paper is organized as follows. In
Section 2, we provide basic definitions and we formulate the
BN learning problem. In Section 3, we introduce our learn-
ing strategy, including problem decomposition and Optimal
Path Extension technique. In Section 4, we describe our
parallel algorithms and data structure to realize BN learning
using task parallelism on shared memory systems. Finally,
in Section 5, we report experimental results assessing scal-
ability of our proposed solutions. We close the paper with
a brief review of related work in Section 6 and conclusions
in Section 7.

2 PRELIMINARIES

Given a set of n random variables X = {X1, . . . , Xn},
Bayesian network (BN) is a tuple (G,P ), where G is a
directed acyclic graph (DAG) over X , and P is a joint
probability distribution of X that factorizes according to G.

Specifically, we have that P (X ) =
n
∏

i=1

P (Xi|Pa(Xi)), where

Pa(Xi) ⊆ X − {Xi} is a set of all parents of Xi in G. Here
parent of Xi is any variable Xj ∈ X for which there exists
edge Xj → Xi in G. In practical applications, X represents
objects that we wish to model (e.g., attributes of a patient
in Electronic Health Records), and G captures statistical or
causal relationships between the attributes (e.g., smoking
causes cancer).

Suppose that we are given a complete categorical data
table of m records, D = [D1, . . . , Dm], where each row
|Di| = n stores a single observation of all n variables in X ,
and variable Xj ∈ calX assumes rj states. The goal of
Bayesian network structure learning is to find a graph G

that best explains (or fits) the data in D.
In this paper, we consider the score-based BN learning

in which structure learning is formulated as an optimization
problem. Let Score(G:D) be a scoring function evaluating
quality of the network structure G with respect to the input
data D. Furthermore, let the function be decomposable,
that is:

Score(G:D) =
∑

Xi∈X

s (Xi, Pa(Xi)) ,

where s (Xi, Pa(Xi)) is a local score contribution of Xi

when its parents in G are Pa(Xi), evaluated directly from
the data. Given D and s we want to efficiently find G

that minimizes Score(G:D). In practice, there are several
commonly used scoring functions, for example, MDL [10],
BIC [11], BDeu [12]. Here we do not focus on any particular
one but we exploit the fact that Score is decomposable with

respect to s. Moreover, we leverage the fact that many of
these functions can be efficiently bounded based on the
input data D.

Before we proceed further, we should note that the
search space of all potential network structures is exponen-
tial, and consists of

C(n) =

n
∑

i=1

(−1)(i+1)

(

n

i

)

2i(n−i)C(n− i)

DAGs with n nodes [13]. Hence, any approach based on
the direct enumeration becomes impractical for both shared
and distributed memory systems, necessitating that we con-
straint the search space while guaranteeing that a global
minimum remains reachable. Over the years, the problem
has been investigated by different teams using multiple ap-
proaches including classic dynamic programming [14], Inte-
ger Linear Programming [15] or shortest path search [16].
Interestingly, performance of the existing methods varies
depending on the properties of the input data, and no one
method dominates the others (we refer interested readers
to [9] for the in-depth analysis).

3 STRUCTURE LEARNING STRATEGY

As we already mentioned, we treat the BN structure learn-
ing as an optimization problem in which the search space
consists of all possible DAGs over the set of nodes X . Now
observe that any DAG is equivalently represented by one
of its topological orderings over X . A topological ordering
implies that if Xj ∈ X is a parent of Xi ∈ X , that is
Xj ∈ Pa(Xi), then it must precede Xi in that ordering,
i.e., Xj ≺ Xi. Moreover, the relative ordering of the parents
of Xi is irrelevant. By combining this property with the fact
that the scoring function is decomposable, we can express
the search problem via dynamic programming. This general
idea has been exploited in different variants, for example
in [14], [16], [17], [18], [19], and it works as follows. Because
any DAG must have at least one sink node (i.e., a node
without descendants), we can first identify an optimal sink
and find its optimal parents. Then, we can continue with
the remaining nodes recursively organizing them into an
optimal structure. Since we know that a sink node has no
successors, it can be placed at the end of the topological
order we are building. Let d(Xi, U), U ⊆ X − {Xi}, be
the score of selecting optimal parent set of Xi from variables
in U , that is d(Xi, U) = min

Pa(Xi)⊆U
s(Xi, Pa(Xi)). We can

efficiently express d via the following recursion:

d(Xi, U) = min

{

s(Xi, U),

min
Xj∈U

d(Xi, U − {Xj}).
(1)

Then, the optimal sink is a node that minimizes the sum of
scores of two sub-networks, one that includes the sink, and
the other that spans over the remaining nodes. If we denote
an optimal score of a network over U ⊆ X by Q∗(U), then
we have:

Q∗(U) = min
Xi∈U

(d(Xi, U − {Xi}) +Q∗(U − {Xi})), (2)

and by using dynamic programming to compute Q∗(X ) we
can construct an optimal topological ordering of X .
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The dynamic programming for Q∗ can be visualized as
operating on the lattice L with n + 1 levels formed by the
partial order set inclusion on the power set of X [14], [16],
[18] (see Figure 1a). Two nodes in the lattice, U ′ ⊆ X and
U ⊆ X , are connected only if U ′ ⊂ U and |U | = |U ′| + 1.
Here we use U to denote both a subset of X and the corre-
sponding node in the lattice L. We may be tempted to attack
the problem directly by handling recurrences for Q∗ and d

at the same time (as for example in [18]). However, that
would necessitate memoizing both Q∗ and d. If we imag-
ine dynamic programming as progressing in the top-down
manner over the lattice L, then the memory complexity of

memoization is Θ
(

(

n
n
2

)

)

, which is the number of nodes

in the largest layer of L, and computational complexity is
proportional to Θ(n · 2n) edges in the lattice. This quickly
becomes prohibitive for any but small number of variables.

In [16], Yuan et al. observed that finding an optimal net-
work structure (i.e., its topological ordering) is equivalent
to finding a shortest path from the root to the sink in the
lattice with weights prescribed by d. The key fact is that
any path from the root of the lattice L to one of its nodes
is equivalent to a specific ordering of variables in that node.
Moreover, an edge (U ′, U) has weight d(U − U ′, U ′). For
instance, the path marked in Figure 1a represents ordering
[X3, X2, X4, X1], and edge ({X3}, {X2, X3}) has weight
computed as d(X2, {X3}). This formulation allows for easy
decomposition of the structure learning problem into two
sub-problems, referred to as parent sets assignment and struc-
ture search, which roughly correspond to Eqs. (1) and (2).
This decomposition in turn provides ample opportunities
for optimization, and hence we adopt it in our approach.

3.1 Parent Sets Assignment

Because the function Score(G:D) is decomposable with
respect to s, we could start solving our problem by finding,
for each Xi ∈ X , a subset Pa(Xi) ⊆ X − {Xi} such that
s(Xi, Pa(Xi)) is minimized. This task is known as the parent
set assignment [20], and appears not only in BN learning but
also in related ML techniques, e.g., Markov blankets. The
task can be approached by solving the recursion in Eq. (1)
for U = X − {Xi}. However, to do this efficiently, it is
advantageous to consider a slightly broader version of the
parent set assignment problem.

We will say that U ⊆ X − {Xi} is a maximal candidate
parent set of Xi if d(Xi, U) = s(Xi, U). From Eq. (1)
we have that if U is a maximal candidate parent set of
Xi, then no subset of U has score better than d(Xi, U),
i.e., ∀U ′⊂Ud(Xi, U) < d(Xi, U

′). Hence, by identifying all
maximal candidate parent sets of Xi and memoizing their
corresponding scores s, we can efficiently answer queries
about any optimal parent set of Xi. Specifically, to answer
query d(Xi, U

′) for any U ′ it is sufficient to check if U ′ is
one of the maximal candidate parent sets of Xi. If it is, then
all we have to do is to return the memoized score s of that
maximal candidate parent set. Otherwise, d(Xi, U

′) must
be equal to the smallest s among all maximal candidate
parent sets of Xi for which U ′ is a superset. This implies
that the maximal candidate parent set with the smallest s

will be representing answer to the query d(Xi,X − {Xi}).

∅

(a)

∅

∅

∅

∅

s(X1, {X3, X4})

(b) (c)

∅

(d)

Fig. 1: (a) Dynamic programming lattice for the problem
with four variables. (b) Example maximal parent sets list
where for each variable Xi an ordered vector of tuples
(U, s(Xi, U)) is stored. (c) Graph G′

X and its SCCs con-
structed from the parent sets in (b). (d) Constrained lattice
created by applying OPE as prescribed by the parent sets
list in (b). Let path marked in bold be the optimal solution.
By constraining the dynamic programming lattice, after dis-
covering node {X3} a search algorithm can follow directly
to the final node.

For convenience, we will refer to such maximal candidate
parent set as optimal parents of Xi.

Because the set of all maximal candidate parent sets
is commonly several orders of magnitude smaller than all
possible values of d, maintaining only that set is advanta-
geous from the memory use perspective. In Section 4.1, we
propose efficient parallel algorithm to enumerate and store
all maximal candidate parent sets. Our method delivers a
lookup table that for each Xi maintains an ordered vector
of tuples (U, s(Xi, U)), where U is a maximal candidate
parent set (see example in Figure 1b). Tuples are sorted in
the ascending order of s, and we use binary encoding to
represent set U , i.e., bitmap set representation. This binary
representation allows for O(1) set containment and set
equality checking for queries involving U , as long as the
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total number of variables is a small constant factor of the
word size of the executing hardware (e.g., n ≤ 128 on
a 64-bit architecture). By keeping vectors ordered, we can
get optimal parents of Xi and their score in O(1), and we
can answer arbitrary query d(Xi, U) in O(l), where l is the
size of the vector for Xi. This is because for a given Xi

its optimal parents d(Xi,X − {Xi}) will be stored as the
first entry of the corresponding sorted vector, and to answer
d(Xi, U) we have to find the first maximal candidate parent
set that is a subset of U .

3.2 Structure Search

Given an efficient strategy to compute d(Xi, U) for any
pair (Xi, U), provided by the solution to the parent set
assignment, the structure search becomes a variant of the
shortest path problem. As explained earlier, by finding the
shortest path from the root to the sink of the lattice L we
are constructing a specific topological ordering of the input
variables. While that may suggest a simple solution based
on classic approaches like the Dijkstra’s algorithm, BFS or A-
star, we have to keep in mind that the size of the underlying
graph (lattice) is exponential in n, and hence instantiating
it entirely is infeasible. Furthermore, even if the graph is
instantiated on the fly, the memory requirement becomes
prohibitive for a single server. For example, in BFS at least
two consecutive layers of the lattice L have to be maintained
in memory, and in A-star open and closed lists may grow
excessively depending on the quality of the heuristic func-
tion used. Consequently, to scale up in the shared memory
regime, it is critical to further constraint the search space,
i.e., reduce the number of nodes in the dynamic program-
ming lattice that have to be actually visited. To achieve this,
we introduce the Optimal Path Extension technique (OPE).

Optimal Path Extension

Consider a node U at the level k in the lattice L (the root of
the lattice is at level k = 0). This node has k incoming edges
and n − k outgoing edges. Each of the outgoing edges cor-
responds to one particular way in which U , and thus any of
the orderings that it represents, can be extended. However,
in many cases we can immediately identify extensions (i.e.,
outgoing edges) of U that are guaranteed to be part of the
optimal path from U to the sink of the lattice.

To decide if a node U can be optimally extended we
build the following observation. Suppose that U is a su-
perset of the optimal parents of some variable Xi 6∈ U .
Then it follows that in any valid topological ordering of X
induced by a path passing through U , Xi must be preceded
by all variables in U (since Xi must be preceded by its
parents). Equivalently, any path from U to the sink of the
lattice L will have to pass through a node containing Xi.
Furthermore, consider a node U ′ on a path from U to the
sink, such that Xi 6∈ U ′. Because U ⊂ U ′ we have that
d(Xi, U

′) = d(Xi, U) as both U and U ′ are supersets of the
optimal parents of Xi. Now take any optimal path from U

to the sink of L, and its corresponding ordering of variables
in X − U . We can transform that ordering such that Xi is
at the first position and the remaining variables maintain
their relative positions. Because placing Xi at the beginning
guarantees that it precedes all variables it was preceding

in the original ordering, we have that the cost of the path
induced by the transformed ordering remains unchanged
and optimal. This proves the following theorem:

Theorem 1 (Optimal Path Extension, Karan et al. [21]1).
Let U be a superset of the optimal parents of Xi ∈ X −U−{Xi}.
Then, there exists an optimal path from U to the sink of the
lattice L, in which U is followed by U ∪ {Xi}.

To illustrate practical implications of the optimal path
extension idea, consider example dynamic programming
lattice L, and maximal candidate parent sets in Figure 1.
The optimal parents of X2 and X4 consist of X3 only (in
Figure 1b, X3 is the first maximal candidate parent set for
both X2 and X4). Now take node U = {X3}. Since U

is a superset of the optimal parents of X2 and X4, from
Theorem 1 to extend U it is sufficient to consider one of
only these two variables. Suppose that we extend U by
adding X2. The new node {X2, X3} with the ordering
[X3, X2] remains the superset of the optimal parents of X4.
Thus, we can further extend {X2, X3} by adding X4 with
the corresponding ordering [X3, X2, X4]. In the final step,
we can extend one more time by adding X1, hence reaching
the sink of the lattice. In a similar way, we can extend
{X1, X4} by including X3 and then X2. Naturally, it will
not be always possible to apply the path extension. For
example, nodes {X1} and {X1, X2} cannot be extended as
no variable has optimal parents that would be a subset of
either of them. In such cases, a search procedure will have to
explore all possible outgoing paths. In Figure 1d, we show
the final compacted lattice obtained by applying all possible
optimal path extensions.

By applying OPE, which can be easily integrated with
any shortest path solver (e.g., BFS, A-star, etc.), we can
significantly reduce the number of nodes and edges that
have to be considered when searching the dynamic pro-
gramming lattice. The extent to which the reduction can be
performed will depend on the size of the set of maximal
candidate parent sets of each variable – smaller the set,
higher the chance that the optimal path extension can be
applied. Moreover, OPE will be more effective for larger
problem instances (i.e., problems with larger X ) because the
dynamic programming lattice will include more nodes with
a potential to extend.

4 PARALLEL BAYESIAN NETWORKS LEARNING

We are now ready to present our parallel approach. As men-
tioned earlier, in this work our focus is on shared memory
systems and we elect to use task-based parallelism as it
provides ideal level of abstraction for the problem at hand.

4.1 Parallel Parent Sets Identification

Given a set of variables X , database of observations D, and
a scoring function s, our first task is to enumerate and store
all maximal candidate parent sets for all Xi ∈ X . Let L(Xi)
be a list of maximal candidate parent sets of Xi, where
each parent set U is represented by a tuple (U, s(Xi, U)).
To construct the list, we can directly apply recursion in
Eq. (1) and starting from the empty set we can consider

1. The theorem and proof are corrected version of those from [21].
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parent sets of growing size. Similar to structure search, this
process can be though of as a top-down traversal of the
dynamic programming lattice with n levels formed by set
inclusion on the power set of X − {Xi} (see Figure 2a).
A node U in this lattice represents a potential parent set
of Xi, and its edges represent precedence constraints. When
the node is discovered (processed), we compute s(Xi, U),
compare it with scores d computed for the predecessors of
U , this way obtaining d(Xi, U). Then, if U is a maximal
candidate parent set we simply add it to L(Xi) such that
the ordering of L(Xi) is preserved. These steps form a single
computational task.

While the above strategy is clearly guaranteed to enu-
merate all maximal candidate parent sets, it is both com-
putationally and memory challenging if used directly (due
to the size of the lattice). Moreover, while lattices for each
variable Xi ∈ X can be processed independently, the re-
sulting embarrassing parallelism is highly limited. This is
because the computational cost for a single lattice is expo-
nential in n, which effectively constraints the total number
of lattices (and hence variables) we may hope to process. For
example, if we assume n = 48 then the estimated memory
requirements to process a single lattice, with O(2n) nodes
and 16 bytes to represent a node, is around 4 PB with a
modest 48-way parallelism.

Constraining the Search Space

For every variable Xi it is reasonable to expect that its
optimal parent set will not contain all other variables. In
other words, there is a bound on the depth to which we
should be exploring the dynamic programming lattice of Xi.
It turns out that such bounds had been derived for all major
scoring functions s, such as, e.g., AIC [22] or BDeu [23]. In
short, these bounds exploit the fact that the input data D is
finite, specifically, it has a limited number of observations,
and hence usually does not provide sufficient information
to justify conditioning a variable on more than few other
variables (we previously demonstrated this effect for MDL
function [24]). The example result of constraining the search
space is presented in Figure 2b.

Folding Lattices

In the dynamic programming lattice for variable Xi, before
search space bounds become effective, we have to manage
(

n− 1

l

)

nodes at the level l of the lattice. Consequently, the

memory required to represent the entire layer l is bounded

by B1 = c1 · n ·

(

n− 1

l

)

, assuming cost c1 to store a node.

This easily becomes problematic for larger problems as soon
as l > 2. However, we can fold the dynamic programming
lattices such that the nodes for the same set U across differ-
ent lattices are represented by a single node, and handled
by a single computational task (see Figure 2c). Let the
memory taken by such combined node be c2. The memory

requirement of the new lattice is B2 = c2 ·

(

n

l

)

. This gives

us
B1

B2
=

c1

c2
·(n− l) reduction in the memory complexity. To

represent a node we use a bitmap in which i-th bit indicates
whether element i is in the set. In such case, c2 = 2 ·c1, since

∅ ∅ ∅ ∅

∅∅

(a)

∅ ∅ ∅ ∅

(b)

∅

(c)

Fig. 2: (a) Example of the dynamic programming lattices
for X = {X1, X2, X3, X4}. Processing node U in the lattice
for variable Xi requires computing s(Xi, U) and access to
d(Xi, U

′) for each predecessor U ′ of U . (b) Example con-
strained lattices, and (c) their corresponding “folded” repre-
sentation. A node U in the compacted lattice requires that s
is evaluated for several variables that share candidate par-
ents U . This improves efficiency of computing s, decreases
memory requirements and increases computational density.
The precedence constraints marked with dotted gray edges
are eliminated to bypass synchronization overhead.

in the compacted lattice we require one bitmap to indicate
which variables Xi share U , and one bitmap to represent the
actual set U (versus storing only U as in the original lattice).

The main advantage of the folding step is significantly
increased computational density. To process a node in the
folded lattice, we perform multiple evaluations of s with
the same parent set U . Without explaining details of how s is
computed from D (we invite the reader to [25] for in-depth
presentation), we note that by having the same parents in
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the consecutive invocations of s, we can precompute statis-
tics about D induced by U , and reuse them from one invo-
cation to another. Consequently, the cost of processing a task
in the folded lattice is higher than the cost of processing an
individual related task in the original lattice, but it is lower
than the total cost of processing all corresponding tasks from
the original lattices, i.e., if X is a set of random variables

sharing U we have that T (s(X,U)) <
∑

Xi∈X

T (s(Xi, U)),

where T is the processing cost.

Parallel Exploration

We traverse the folded dynamic programming lattice in the
BFS order. Each node in the search front, where search
front corresponds to a layer in the lattice, is handled by
a task, and the entire front is processed in parallel (in
our implementation, we use Intel TBB tasks abstraction).
Consider a task for node U at the layer l. That task is
responsible for performing evaluation of the function s,
and checking the bounding conditions. Now suppose that
the resulting search space constraints hold. In such case,
no task that corresponds to a superset of U should be
generated and included for processing in the layer l + 1 (as
it cannot contribute new maximal candidate parent sets). In
other words, when processing given layer we should see
only tasks whose predecessors all did not satisfy the search
space constraining conditions. However, to enforce this re-
quirement we would need either complex synchronization
between all tasks within the same layer, or a filter operation
on all possible tasks for the next layer, which effectively
would defy the purpose of constraining the search space (as
we would first generate all nodes/tasks for the next layer
and only then prune them).

To address this challenge, we propose a new exploration
strategy in which tasks for the next layer are enumerated
such that the synchronization is bypassed at the small cost of
considering a few unnecessary tasks in the next layer. To this
end, we first order variables in X by the decreasing number
of states they have in D, i.e., for any Xi and Xj , if i < j then
ri ≥ rj meaning that Xi has higher arity than Xj (recall
that variable Xi can assume on of ri states). When deciding
whether a task should be generated for the next layer, in-
stead of checking if any of its predecessors satisfied pruning
condition, which would require synchronization, we check
only one selected predecessor. Specifically, let Xj ∈ U be
the maximal element in U . To enumerate descendants of U ,
we consider only U ′ = U ∪ {Xk} for all k > j. Thus, node
U becomes a predecessor to n − j nodes (solid black edges
in Figure 2c). For example, consider node (X3, X4|X1, X2)
in Figure 2c. For this node to be considered during the
search, tasks corresponding to the nodes (X2, X3, X4|X1)
and (X1, X3, X4|X2) would both have to agree whether
pruning condition holds or not (by synchronization). In our
proposed approach, only task (X2, X3, X4|X1) makes this
decision, eliminating the synchronization point.

The above procedure is motivated by the properties of
bounding functions (we invite the reader to review our work
in [24] for detailed discussion). In the essence, nodes that
in our scheme are predecessors to the largest number of
nodes in the next layer are most likely to satisfy the pruning
conditions. While this approach does not guarantee that all

tasks that should be pruned will not be generated, it works
very well in practice. In fact, in our experiments we found
that we remove no less than 97% of all tasks that should
be pruned. The remaining 3% constitute an extra work of
processing nodes that do not contribute maximal candidate
parent sets. Note that these nodes once processed never
create successors and thus the extra work overhead does
not propagate between BFS layers.

Recall that to decide whether node U at layer l is a maxi-
mal candidate parent set for Xi, we require scores d(Xi, U

′)
for all subsets U ′ ⊂ U from the layer l−1. Because each task
at layer l may contribute new maximal candidate parent sets
that must be available to all tasks in the subsequent layers,
we maintain all L(Xi) as a global state that is updated
between BFS layers. Each thread maintains a local copy of
L(Xi) on which parallel reduction with list merging as an
operator is performed after given layer is entirely processed.
This step is easy to execute efficiently considering a small
size of L(Xi).

4.2 Parallel Structure Search

Given the list L(Xi) of maximal candidate parent sets for
each variable Xi, our final step is to find an optimal network
structure. Recall that this problem is a variant of the shortest
path problem in the corresponding latticeL. It is challenging
due to the memory requirements, which can be addressed
by the application of our OPE technique, and due to the
non-trivial precedence constraints, which OPE amplifies.
Specifically, because OPE introduces shortcuts in the lattice
(see Figure 1c) we need a strategy to efficiently maintain
parallel search front. Here standard methods commonly
used in parallel BFS algorithms are infeasible since they
assume that all nodes in the search space are known and
indexed a priori. Hence in our approach, we first augment
OPE with search space decomposition to further reduce the
search space size, then we propose a hashing scheme to
efficiently keep track of the search front while executing
parallel BFS.

Strongly Connected Components Decomposition

Consider a graph G′
X over all variables in X such that

every variable Xi has incoming edges only from variables
contained in its maximal candidate parent sets L(Xi), i.e.,
G′

X = (X , E), E = {(Xj , Xi)|∃U∈L(Xi)Xj ∈ U}. By con-
struction, this directed and potentially cyclic graph must
contain a DAG that represents optimal network structure. It
means also that edges that do not appear in G′

X cannot be
part of the final optimal network structure for X . We can
decompose G′

X into strongly connected components (thus
partitioning X ), learn sub-network for each partition, and
obtain the final structure by considering edges between the
strongly connected components (SCCs). We note that this
fairly intuitive idea was reported before and independently
by several groups, e.g., [26], [27]. In Figure 1c, we provide
example SCCs for maximal candidate parent sets in Fig-
ure 1b. Here we would first learn network for component
denoted SCC1 and then following edges to SCC2 we could
obtain the final network.
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The SCC decomposition is guaranteed to preserve op-
timal network structure as long as each sub-network is
optimal (that can be proved by, e.g., observing that ordering
of variables between SCCs will always be consistent with
an optimal ordering). It has the advantage that learning
optimal network for each partition is more tractable since
even small decrease in the number of input variables trans-
lates into significant savings due to the exponential cost
of learning. However, depending on the size of L(Xi) the
partitioning may not be feasible since the resulting G′

X

may consist of single SCC. Moreover, the SCCs have to
be processed following precedence constraints induced by
the edges between SCCs (e.g., in Figure 1c, SCC1 must be
processed before SCC2). This is because ordering of the
variables in a preceding SCC decides which variable will
be at the root of the subsequent SCC. To tackle these issues
we show how to effectively combine SCC decomposition
with OPE.

Parallel OPE with SCC Decomposition

To execute the parallel structure search we perform BFS
traversal starting from the root of the lattice L. When
processing a node U ′ = U ∪ {Xi} of the lattice, we first try
to apply OPE, which essentially means detecting a short-
cut within the lattice (as we explain in Section 3.2). Once
possible extensions from U ′ are exhausted (i.e., we cannot
apply OPE anymore) we narrow down the processing to
the remaining variables X − U ′. Specifically, we consider
graph G′

X−U ′ which we decompose into SCCs that are next
handled one-by-one to discover more possible extensions.
These high level processing steps are applied to every node
in the search front in parallel, and are summarized in
Algorithms 1 and 2.

Algorithm 1 STRUCTURESEARCH()

1: Q[0]← {∅}
2: for k ← 1 . . . n pardo
3: Q[k]← ∅
4: for k ← 0 . . . n do
5: if Q[k] 6= ∅ then
6: for all U ∈ Q[k] and Xi ∈ {X − U} pardo
7: PROCESSNODE(Q,U,Xi)
8: return Q[n]

Our BFS search strategy, outlined in Algorithm 1, pro-
cesses the search front in parallel. The key enabling ele-
ment is data structure Q, which is our custom hash table
(described in detail in the following section). This structure
tracks the search front by maintaining a list of nodes from
the lattice L that should be processed at level k. Hence, in
line 1, Q[0] is initialized with the root of the lattice, and
the final result is stored in Q[n] (see line 8). Moreover, for
the purpose of algorithm explanation and correctness anal-
ysis, we assume that Q guarantees strict consistency and
atomic execution of FIND-UPDATE-OR-INSERT operation.
We should note also that in our implementation, every node
U keeps information about the ordering of its constituent
variables (denoted by U.path) as well as the length of the
path ending in that node (denoted by U.d). While storing
path information in a node may seem wasteful, the space

overhead is actually small while it enables us to eliminate
synchronization that would be required to keep track of the
optimal path, and simplifies implementation of the OPE and
SCC optimizations. Finally, the main computational work
happens in line 6, where for each node U in the current
search front we consider all outgoing edges indexed by
variables Xi 6∈ U . As previously, the entire loop is executed
by parallel tasks.

Algorithm 2 PROCESSNODE(Q,U,Xi)

1: if Xi ∈ U.subopt then
2: return
3: U ′ ← U ∪ {Xi}
4: U ′.path← U ′.path +Xi

5: U ′.d← U ′.d+ d(Xi, U) � retrieved efficiently from L(Xi)

6: U ′′ ← OPE(U ′) � apply Optimal Path Extension to U ′

7: R← Q[|U ′′|].FIND(U ′′)
8: if R 6= ∅ then
9: if R.d > U ′′.d then

10: Q[|U ′′|].UPDATE(U ′′) � keep shorter path

11: else
12: return
13: S ← TARJANSCC(G′

X−U ′′) � get ordered list of SCCs

14: k ← 0
15: while k < |S| and |Sk| < τ do
16: U ′′ ← U ′′ + OPTORDER(Sk) � optimal structure for Sk

17: k ← k + 1
18: k ← k + 1 � advance k to skip one SCC

19: while k < |S| do
20: U ′′.subopt← U ′′.subopt ∪ Sk

21: k ← k + 1
22: R← Q[|U ′′|].FIND(U ′′)
23: if R 6= ∅ then
24: if R.d > U ′′.d then
25: Q[|U ′′|].UPDATE(U ′′)
26: else
27: Q[|U ′′|].INSERT(U ′′)

The computational core of our approach is Algorithm 2.
We start its explanation from the steps in lines 3-5 (we will
return to the condition in line 1 later on). Here we first
generate node U ′ and then compute its distance from the
root leveraging a fast access to the read-only list L(Xi),
as discussed in Section 3.1. Then, in line 6, we apply the
optimal path extension such that U ′′ becomes the end of the
optimal extension starting at U ′. When applying OPE we
update U ′′.path and U ′′.d accordingly. Because it is possible
that an alternative path passing through U ′′ has been dis-
covered in the previous iterations, or by different processing
threads in the current iteration of STRUCTURESEARCH, we
update the search front in lines 7-12. The update depends on
efficient execution of FIND and UPDATE operations over Q,
which we discuss in the next section. In the case when the
current node U ′′ does not improve over the one previously
found, referenced by R in line 7, we simply end the process
in lines 11-12. This is because applying our optimizations
(OPE and SCC) will not provide further extensions to U ′′

– if existed, these extensions would had been discovered
for node R in earlier iterations. Observe however that U ′′

will be processed in the subsequent iterations of STRUC-
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TURESEARCH to explore paths that may be optimal but not
discoverable by OPE or SCC.

In the case when we have a new best path to U ′′ (i.e., con-
dition in line 8 does not hold, or condition in line 9 holds) we
try to further extend U ′′ by applying SCC decomposition.
Specifically, we observe that finding an optimal path from
U ′′ to the sink of the lattice L is equivalent to learning an
optimal network over variables X − U ′′ (this follows from
the basic properties of the poset lattice [18]). Consequently,
we can continue search from U ′′ by applying SCC decom-
position over G′

X−U ′′ . We start by enumerating SCCs in
line 13. We use the classic Tarjan algorithm which delivers
SCCs in a topological order over the DAG formed by all
SCCs in G′

X−U ′′ [28]. Next, using any sequential solver
denoted by OPTORDER (e.g., basic BFS search) we find op-
timal ordering of variables, and hence optimal structure, for
each component Sk whose size is smaller than user-defined
threshold τ (lines 15-17). The reason we put the threshold
on the size of connected component is to avoid a situation
where the cost of OPTORDER becomes prohibitive (recall
that the cost is exponential in the size of the component). We
note also that it is possible to make τ a function that changes
as the algorithm progresses. If we encounter component
whose size is above the threshold, we advance beyond that
component (line 18) and mark the variables belonging to
the remaining unprocessed components as suboptimal. This
is done by adding them to the set referenced by U ′′.subopt
in lines 19-20. Although at this stage we stop extending
node U ′′, the variables marked as suboptimal can be safely
ignored as possible extensions for node U ′′ in subsequent
iterations, which we prove below. This in turn enables us to
further constraint the search space, as expressed by condi-
tion in line 1 (in the actual implementation, the condition
is tested before the task PROCESSNODE is even created).
We note also, that by performing more extensive analysis
of the DAG of SCCs (compared to testing only SCC size) we
could potentially process more SCCs (hence extend U ′′ even
more) and have tighter list U ′′.subopt. However, that would
require more complex implementation with potentially sig-
nificant performance overheads. The processing is finalized
in lines 22-27 where we update the search front with newly
discovered best path to U ′′.

Theorem 2. Given input lists L(Xi), Algorithms 1 and 2 are
guaranteed to find an exact network structure for X .

Proof. Since our algorithms perform BFS search over the
lattice L for X , it is sufficient to show that the search space
pruning in Algorithm 2 preserves at least one optimal path
from the root to the sink of L. The correctness of pruning
by OPE in line 6 follows directly from Theorem 1. To show
that pruning by condition in line 1 will preserve an optimal
path, we observe the following. The SCC decomposition in
lines 13-21 is guaranteed to find an optimal path from U ′′

to the sink of L as long as all components in S are smaller
than τ (which means that condition in line 1 for U ′′ will not
hold). From the property of SCCs we have that there is an
optimal path from U ′′ to the sink in which all variables from
component Sk ∈ S precede all variables from component
Sl ∈ S, for all k < l in the topological order of SCCs
returned by the Tarjan algorithm in line 13. Consequently,
by advancing k in line 18 we can be certain that at least one

Q[n]

Q[0]

Q[i]

Hi[1]

Hi[B]

Hi[j]

Fig. 3: High level overview of the data structure Q.

optimal path from U ′′ will be directly passing via variables
in Sk, and thus can postpone processing of the remaining
variables as implemented in lines 19-21 and the condition
in line 1.

One final observation is that the SCC optimization in-
volves balancing between computational overheads (due to
internal SCC algorithms, e.g., TARJANSCC) and memory
overheads (due to the nodes not pruned by SCC). In other
words, by using SCC we reduce the size of the search space,
but that reduction comes at the cost that may offset the
resulting performance gains.

Maintaining Search Front

As mentioned earlier, the performance and correctness of
our parallel BFS algorithm depends on Q, which is the
data structure maintaining the search front. More precisely,
the sequence of operations FIND-UPDATE-OR-INSERT in Q

must correctly maintain information about shortest paths
discovered while minimizing synchronization overheads.
The correctness can be easily achieved by guarding the
entire sequence of operations on Q, e.g., lines 22-27 in
Algorithm 2, with a mutex lock. However, in such case Q

becomes a contention point for the processing threads. At
the same time, the existing fully concurrent hash tables do
not support arbitrary types (critical to implementing BFS) or
if they do, like hash_map in Intel TBB, they tend to be very
slow [29].

To address this challenge we designed Q such that
the tasks are partitioned across and within the layers of
the search lattice. The memory organization of our data
structure is outlined in Figure 3. Technically, Q is simply
an array of arrays of hash tables. The array Q[i] stores all
tasks representing the search frontier for level i of the lattice
(recall that level 0 is the root of the lattice). At the given
level, the tasks are distributed into B individual hash tables,
where each hash table Hi[j] is guarded by a mutex. Here we
use a high performance hash table implementation from the
excellent phmap project [30] that is based on closed hashing
with SIMD parallelism.

Spreading tasks within a layer across B hash tables
allows for higher concurrency with modest additional mem-
ory use. However, to be effective this strategy requires a
hashing function that will distribute lattice nodes between
B hash tables such that the locking within table is limited.
To achieve such function, we follow observations from [18],
and exploit properties of the search space. Specifically, be-
cause the lattice L is an n-dimensional hypercube, we can
partition it into d-dimensional hypercubes, d < n, by first
assigning to each node U a bitmap that represents variables
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TABLE 4: Search space reduction factor (RF) and runtime
(T in minutes) for different τ .

RF T
τ 4 5 6 7 4 5 6 7

Alarm 155 164 172 180 49 50 55 57

Barley 70941 83453 93198 1 · 105 212 212 233 259

Hailfinder 5.4 · 106 7.1 · 106 1.1 · 107 8.7 · 106 803 818 642 1030

Hepar II 1.8 · 1011 2.8 · 1011 3.7 · 1011 4.6 · 1011 543 544 511 572
Insurance 6 6 6 6 1 1 1 1
Mildew 112 112 113 114 15 14 16 16
Water 900 929 960 1001 1 1 1 1

Win95pts 1.8 · 1014 2.3 · 1014 2.4 · 1014 2.6 · 1014 64 68 70 77

TABLE 5: Search space reduction factor for OPE and SCC.

NoSCC NoOPE OPE + SCC

Alarm 81.42 143.32 172.31

Barley OM OM 1.6457 × 10
6

Hailfinder OM OM 1.1249 × 10
7

Hepar II OM 116.35 × 10
9

371.05 × 10
9

Insurance 5.49 5.48 6.04
Mildew 63.36 88.72 113.41
Water 664.24 860.99 960.60

Win95pts OM 146.05 × 10
12

249.38 × 10
12

The first observation we make is with respect to the
parameter τ , which controls the size of the connected com-
ponents considered by the SCC optimization. From Figure 6
and Table 4, we can see that changing τ to τ = 4 (from
the default τ = 6) has somewhat limited impact on the
performance: for some datasets, e.g., Barley, we observe a
slight improvement, and for some others, e.g., Hailfinder, we
see a slowdown. On the other hand, increasing τ to τ = 8
becomes problematic for some datasets. Specifically, we are
unable to process Barley and Hailfinder (the structure search
runs out of time). This is because considering larger com-
ponents in the SCC phase is too computationally expensive
compared to the gains it offers by reducing the size of the
search space. Indeed, Table 4 shows how runtime and the
space reduction are affected by the choice of τ . Here the
space reduction factor is the ratio between the total number
of 2n nodes in the dynamic programming lattice and the
actual number of nodes visited by the search algorithm
with given optimization enabled. As τ increases so does the
space reduction factor, with a notable exception of Insurance
and Mildew networks. The gains in the space reduction are
especially visible for large networks, however, this does
not translate into runtime reduction. This means that by
increasing τ we are able to reduce the memory footprint of
the search but at the expense of extra computational work.
This issue is further highlighted if we consider the effect
of disabling SCC entirely (NoSCC in Figure 6). Although
disabling SCC significantly improves the performance (by
eliminating the cost of SCC decomposition), this is not
entirely practical. Specifically, with SCC disabled we are
unable to process four out of the eight test datasets as our
solver runs out of memory. This shows that reducing the
search space via SCC may be necessary in some cases, even
if it comes at the significant computational overhead.

Table 5 offers further insights into the performance of
both optimization techniques. It shows that SCC and OPE
provide the space reduction at the level of up to 1012. For the
majority of the datasets SCC results with somewhat higher

space reduction factor than OPE. On the other hand, the
results suggest that OPE is indeed inexpensive while still
offering significant space reduction. Moreover, OPE remains
essential: when it is disabled (NoOPE in Figure 6), we are
again unable to process Barley and Hailfinder, and the cost
of processing the largest datasets increases more than 1.5×.
Overall, these results show that both optimizations should
be considered in tandem as none is sufficient to handle all
the test cases on its own. Here we should clarify that using
a naive exhaustive search, i.e., with both SCC and OPE
disabled, we are unable to process any of the datasets.

6 RELATED WORK

There is a significant body of work on parallelizing Bayesian
networks learning, including for distributed and shared
memory systems, as well as for GPGPU accelerators. How-
ever, the existing methods either focus on heuristics or
ignore properties of the search space thus they remain
very limited.

One of the early attempts at exact parallel algorithms are
due to Tamada et al. [33] and Nikolova et al. [18]. Both these
works start with the dynamic programming formulation
that considers recursions in Eqs. (1) and (2) together, and
they target distributed memory clusters. Because of that,
they do not introduce any techniques to constrain the search
space. The resulting algorithms, while work-efficient under
the MPI model, still have to consider all 2n nodes in the
dynamic programming lattice. Consequently, the resulting
methods although theoretically elegant are of very limited
practical application.

In [34], Gao et al. describe algorithm that decomposes
the learning process into learning of sub-networks that are
next combined into the final target network. Because each
sub-network can be learned independently, the algorithm
exploits the resulting embarrassing parallelism. However,
although each sub-network can be learned using optimal
algorithms, the final network cannot be guaranteed to be
optimal. Hence, the method remains heuristic. Interestingly,
Nikolova et al. proposed a similar idea in [35] (both works
differ in how the decomposition is achieved).

To conclude the review, we should note also that there
are many publications focusing on Bayesian networks learn-
ing based on the PC algorithm, for example [36], [37],
[38]. However, the PC algorithm belongs to the class of so
called constraint-based learning methods, which are another
set of strategies that complement but do not substitute
the score-based techniques we consider in the paper. The
PC algorithms provide no guarantees with respect to the
learning process and as such they are considered heuristics.
Finally, these solutions are tailored for continuous data and
exploit numerical properties of the underlying conditional
independence tests. While that makes them relatively easier
to parallelize, they still do not guarantee any optimality.
Because of that they are not directly comparable to our
score-based formulation.

7 CONCLUSION

Bayesian networks are an important tool for reasoning and
data analytics. Their key advantage is interpretability –
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both the model graph, which describes conditional indepen-
dencies, and the model parameters, which quantify condi-
tional probabilities, have clear and intuitive interpretation.
However, the extent to which the interpretation is viable
depends on the quality of the model itself.

In this paper, we presented a set of parallel computing
techniques that push the scale of exact learning of BNs. Since
exact learning eliminates model uncertainty due to struc-
ture search, it effectively improves quality of the learned
models and hence contributes to their better interpretability.
High quality BN models are of the essence, for example in
biomedicine or fraud detection, and our solvers are directly
applicable in such situations. Our solutions are packaged
into an ease-to-deploy and open source software with a
permissive license, and that should simplify their broader
adoption. Furthermore, because our methods advance both
parent sets identification and structure search, they can
be piecemeal combined to aid the future development
of new solvers.

Despite the improvements we report in this paper, we
believe that the problem of exact learning is far from solved.
For example, many of the test networks we considered in
our experiments become intractable (e.g., due to memory or
time constraints) if the number of observations is increased.
Moreover, as reported in [9], depending on the input data,
some optimizations may be more effective than other, yet
the choice of the best set of optimizations is not obvious. In
our opinion, all this necessitates further research especially
to improve the search space constraining during the struc-
ture search. We hope that by establishing a new baseline
for exact learning, our results will contribute to further
advancements in exact learning.
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