
"Can You Guess My Moves?" Playing Charades with a Humanoid
Robot Employing Mutual Learning with Emotional Intelligence

Baijun Xie
bdxie@gwu.edu

Department of Biomedical Engineering
School of Engineering and Applied Science

George Washington University
Washington, D.C., USA

Chung Hyuk Park
chpark@gwu.edu

Department of Biomedical Engineering
School of Engineering and Applied Science

George Washington University
Washington, D.C., USA

ABSTRACT

Social play is essential in human interactions, increasing social

bonding, mitigating stress, and relieving anxiety. With advance-

ments in robotics, social robots can employ this role to assist in

human-robot interaction scenarios for clinical and healthcare pur-

poses. However, robotic intelligence still needs further development

to match the wide spectrum of social behaviors and contexts in

human interactions. In this paper, we present our robotic intelli-

gence framework with a mutual learning paradigm in which we

apply deep learning based on emotion recognition and behavior

perception, through which the robot learns human movements and

contexts through the interactive game of charades. Furthermore, we

designed a gesture-based social game to provide a more empathetic

and engaging social robot for the user. We also created a custom be-

havior database containing contextual behaviors for the proposed

social games. A pilot studywas conducted with participants ranging

in age from 12 to 19 for a preliminary evaluation.

CCS CONCEPTS

• Human-centered computing → Scenario-based design; •

Computing methodologies→ Supervised learning by classifica-

tion; Cognitive science.
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1 INTRODUCTION

Human emotion recognition is a vital aspect of human-robot inter-

action (HRI). An effective automatic emotion recognition system
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that can understand the underlying emotions of human behaviors

is desired to establish a natural bidirectional interaction between

users and robots. These human behaviors include multimodal in-

puts such as facial expressions, tone of voice, and body movements.

Furthermore, it would be important to apply the emotion recogni-

tion system that can analyze users’ affective states frommultimodal

social cues in a social HRI scenario.

Diverse deep learning methods have been widely used in recent

years for emotion recognition. Previous studies recognized emo-

tions through facial expressions [16, 34], acoustic features [10, 37],

and texts [5, 9]. However, humans always express emotions with

multimodal pathways and can achieve better performance via mul-

timodal emotion recognition [39]. Humans interact with others

primarily through speech while also coming up with body ges-

tures to emphasize certain emotions in certain parts of speech [31].

Therefore, uni-modal emotion recognition can be incomplete and

ambiguous under certain conditions, such as when human body

language can convey different social cues than verbal communi-

cation. Previous researchers also investigated the usage of body

movements to assess the affective states [1, 13, 26]. These studies

demonstrated that body posture could enhance emotional expres-

sions on the face and in speech. Furthermore, the robot can learn

the gestures from humans as the robot behaves and benefit the HRI

in terms of empathy [27], trust [29] and engagement [21, 23, 30].

Miura et al. [27] used functional magnetic resonance imaging to

measure brain activity during the observation of emotional actions

performed by humanoid robots, and the results showed that the

robots with the ability to simulate human-like behaviors could elicit

more empathy for the users. Reinhardt et al. [29] demonstrated the

importance of movement as a non-verbal social cue that could be

an indicator of trustworthiness. Ricks et al. [30] suggested that

imitation interaction is effective for motivating and engaging users

with autism spectrum disorder (ASD).

The capacity to highlight emotions using gestures is a vital so-

cial characteristic when communicating with people. Even in the

absence of verbal communication, gestures may convey a variety

of contexts in different social situations. Since it is a natural human

trait to imitate others, imitation is a fundamental social process

that helps children affiliate with others and develop empathy. The

tendency for people to imitate the actions of the person they are

communicating with is known as the "Chameleon Effect" [25]. Ad-

ditionally, it was mentioned that imitation interaction effectively

motivates and engages users with ASD [30].

In this sense, social games can be an effective method for teach-

ing communication and social skills to children and adolescents
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with social anxiety [28]. The social robot would play the role of

a sympathetic playmate or mediator during HRI [22, 38]. SARs as

interactive playmates have been widely used in autism therapy

for children with ASD [11, 12, 33]. In autism therapy, social robots

were usually involved in delivering engaging interactions to assist

children with ASD in practicing social interaction skills [36]. More

recent studies have explored the use of a serious game to reduce

the stress and anxiety suffered by children with ASD [7, 8]. The

results of the studies show the potential applications for reducing

stress and anxiety for children with ASD. However, few studies

have investigated the underlying emotional context during HRI to

provide a more empathetic and engaging social robot for the user.

In this work, we propose a novel social game scenario with an

interactive robot based on charades, a word-guessing game from

body gestures. Our system employs a mutual learning paradigm

that enables both the user and the robot to learn from the interac-

tion. The robot will learn human behaviors through the interactive

game, and the user can also benefit from creativity and social inter-

action. We also incorporate emotion recognition from human body

movements to provide emotional intelligence for more personalized

and social engagement. The goal of this study is to utilize the aspect

of imitation to influence participants’ physical, social, and mental

behavior in a structured social setting where the participant and

robot alternately engage in various gestural social interactions and

imitation games. By utilizing our mutually-growing social robot

and this mirroring process, we plan to provide an intervention for

social engagement in autistic adolescents.

2 METHODOLOGY

In this section, we first present our emotion recognition model for

detecting users’ affective states during HRI. Detecting emotions

will be used for personalizing the robot’s behaviors and increasing

engagement. Then, we demonstrated our proposed social game

scenario with a mutual learning scheme.

Figure 1: The overall system for bi-modal emotion recogni-

tion with embedding vectors (Q: query, K: key, and V: value).

As shown in Figure 1, the proposed model includes deep pre-

trained convolutional neural networks (CNNs) and a model-level

fusion architecture. The pre-trained CNNs are used as backbone

models for fine-tuning and extracting the features from the face

and upper body. In addition, a transformer-based neural network is

introduced for the fusion strategy to achievemodel-level fusion. The

reason for employing facial inputs when the upper body contains

the face part is that individuals may emphasize their emotions

through their facial expressions, which can be a complement to the

whole upper body’s feature inputs.

2.0.1 Pre-trained Convolution Neutral Network. The pre-trained

CNN model used in this study is the SlowFast network [14], which

was designed for the task of video recognition. The SlowFast net-

work structure comprises two pathways: a Slow pathway that op-

erates at a low frame rate to learn the spatial semantic information

of the video; and a Fast pathway that operates at a high frame rate

to capture human motion at high temporal resolution. Both the

Slow and Fast pathways are 3D ResNet [15], which operates 3D

convolution and captures the information from sequential frames

of image inputs. The Slow pathway is implemented with a large

temporal stride 𝜏 , which extracts one frame out of 𝜏 frames. The

typical value of 𝜏 is 16, allowing 2 frames per second for 30-fps

videos. On the other hand, the Fast pathway uses a small temporal

stride of 𝜏/𝛼 , and a typical 𝛼 = 8 can process roughly 15 frames

per second. Furthermore, to make the Fast pathway lightweight,

it uses a significantly smaller channel size, with a ratio of 𝛽 to the

Slow pathway channel size, where the typical value of 𝛽 is 1/8.

The model used in this study is pre-trained on Kinetics-400 [24],

a dataset containing 400 human action classes and more than 400

videos for each action category.

The bimodal face and body gesture (FABO) database [18] was

used to fine-tune the emotion recognition model in this study. The

FABO database captured the facial expressions and upper body

movements via two cameras and annotated them with the affective

states, including happiness, surprise, anger, fear, sadness, disgust,

boredom, puzzlement, uncertainty and anxiety. Moreover, the an-

notations of the stages of the affective states were provided and

separated into neutral, onset, apex, and offset states. For example,

in one video, the subject began with a neutral state, acted with

emotional gestures and expressions in the onset state, reached a

steady level at the apex state, and ended with an offset state. Each

video has two to four complete exhibition cycles. We extracted

the onset-apex-offset cycle to represent the emotional states of the

video, and a separate emotional state, "Neutral," is obtained based

on the neutral state from all the videos.

2.0.2 Fusion Network. To achieve the fusion of the face and body

modalities of inputs, we used the crossmodal Transformer to model

the interaction of these two modalities. The crossmodal Trans-

former was first proposed by [35] to capture the correlated cross-

modal signals for the task of natural language understanding. Fol-

lowing the definition of [35], for example, we denote the interaction

modeling of introducing modality face, 𝐹 , to modality body, 𝐵, as
“𝐹 → 𝐵”. In the Transformer, themulti-head attention accepts query,

key, and value as inputs and outputs the attention vector.

We denote the input features for Modalities 𝐹 and 𝐵 as 𝑋𝐹 ∈

R
𝑇𝐹 ×𝑑𝐹 , 𝑋𝐵 ∈ R𝑇𝐵×𝑑𝐵 , where 𝑇 and 𝑑 are the time length and

feature dimension. To achieve 𝐹 → 𝐵, we calculate the crossmodal

attention via:

𝑌𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝐵, 𝑋𝐹 )

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐵𝐾

ᵀ
𝐹√

𝑑𝑘
)𝑉𝐹

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑋𝐵𝑊𝑄𝐵𝑊

ᵀ
𝐾𝐹

𝑋
ᵀ
𝐹

√
𝑑𝑘

)𝑋𝐹𝑊𝑉𝐹 .

(1)
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where queries are defined as 𝑄𝐵 = 𝑋𝐵𝑊𝑄𝐵 , keys are defined as

𝐾𝐵 = 𝑋𝐵𝑊𝐾𝐵 and values are defined as 𝑉𝐹 = 𝑋𝐹𝑊𝑉𝐹 . 𝑊𝑄𝐵 ∈

R
𝑑𝐵×𝑑𝑘 ,𝑊𝐾𝐹 ∈ R𝑑𝐹 ×𝑑𝑘 ,𝑊𝑉𝐹 ∈ R𝑑𝐹 ×𝑑𝑉 are the weights.

For both modalities, we used the same two SlowFast pre-trained

models and fine-tuned them on the FABO database. Finally, to

evaluate the robustness of our proposed method, we performed a

5-fold cross-validation and reported the results.

Table 1: The performance comparison of our proposedmodel

with state-of-the-art methods. The reported results are un-

weighted. (Unit=%)

Propose method Face Upper Body Bi-modal

Gunes and Piccardi [19] 35.2 73.1 82.7

Barros et al. [3] 72.7 57.8 91.3

Barros and Wermter [4] 87.3 74.8 93.65

Ilyas et al. [20] 90.42 79.27 94.41

Our proposed 92.08 90.2 94.79

As demonstrated in Table 1, our proposed method of using the

fusion model for the bimodal results reached state-of-the-art meth-

ods, which reflected that combining the pre-trained models with the

domain knowledge has the capabilities to capture salient features.

Moreover, the results for the mono-modal upper body movements

were considerably higher than the previous methods. This module

will be used to measure users’ emotions during the HRI.

2.1 Charades Game Design with Motion
Imitation

2.1.1 Motion Imitation. To realize motion imitation in HRI, the

robot platform needs to be presented, and an appropriate gesture

mapping algorithm needs to be determined. We employed the Pep-

per robot platform manufactured by Softbank Robotics [17]. Pepper

is a social humanoid robot designed for social interaction with hu-

mans through conversation, gestures, and touch screen capabilities.

For the joint control module, Pepper has NAOqi APIs that allow

for the control of each joint angle. A reliable human pose estimation

technique is necessary to detect the body of the user in order to

give robots the capacity to mimic human movements. OpenPose is

a real-time human pose estimation library that can detect keypoint

skeletons on the human body, hand, and face in images or video [6].

The extracted 3D body pose keypoints will be used for motion

retargeting, and the face keypoints will also be preserved.

Researchers in the past have developed several imitation al-

gorithms for Pepper that can be used to mimic the user’s move-

ments [2, 40, 41]. Generally, the human posture skeleton keypoints

were used to build the upper body link vectors of the Pepper robot,

and the joint angles were then derived from the angles formed by

those vectors. Further details can be found in the study by Zhang

et al. [41]. The motion imitation module has been realized in real

time for the teleoperation of Pepper.

2.1.2 Charades Game. Based on the charades game, we created

an interactive social gaming scenario. At this point, five student

researchers have provided the initial pre-defined words and related

movement data. The Pepper robot can act on nine general words

from the game of Charades, including the categories of sports,

movies, and social behaviors. In addition to these general words,

we also used emotion-based words from the gestural data in the

FABO database.

Figure 2: The interactive social game scenario that was de-

signed based on the Charades game.

As shown in Figure 2, we intended to employ a mutual learning

scheme to design the HRI scenario. During HRI, Pepper will first

ask users whether they are willing to play the game with Pepper at

the beginning of each session; if they accept, Pepper will begin per-

forming the pre-defined charades words from the initially collected

behavior database for users to guess. If users get the question right,

Pepper will commend them; if they get it wrong, Pepper will nudge

them to keep going and repeat gestures if they want. To provide va-

riety to the interaction, Pepper can even act out the words’ gestures

performed by another person from the database. Then, once users

agree to act out their charades, Pepper will attempt to guess what

they are acting. Based on the developed motion retargeting module,

Pepper will imitate users’ movements in the meantime and solicit

feedback from them regarding how well Pepper is mimicking. The

user can benefit from the aspect of creativity when making their

own charade movements with the Pepper robot imitation. This

mirroring mechanism and mutually growing social robot are not

just for fostering empathy but also for rehabilitation in adolescents

with ASD, coinciding with the mutual learning scheme.

For the robot to understand the users’ preferences, the emotion

recognition module will continue to function during the encounter

to recognize the underlying emotions of the users’ behaviors. Based

on the user’s preferences, the learned policy can comfort them

using the recognized emotions. For example, the policy can learn

which category of charades words can elicit positive emotions from

the users so that the robot can personalize the interaction in the

next stage. Nevertheless, the primary goal of this study is to gather

user data, which will be utilized to train the policy later.
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3 PILOT STUDY

We conducted a pilot study to evaluate the robotic system with

our proposed social game scenario (user study approved by the

Institutional Review Board (GW IRB 111540)). The pilot study was

conducted among four high school students (three males and one

female). During each session, Pepper initiated the predefined cha-

rade words and let the participant guess; then, Pepper requested the

participant to perform their charade words, which Pepper guessed

in turn. The participants were invited to interact with Pepper to

play the charades game as long as they wanted and were also in-

formed that they were free to stop whenever they did not want to

continue.

Table 2: The number of the charades words performed by

Pepper and the participants.

S1 S2 S3 S4

Pepper’s Words 3 2 2 3

User’s Words 3 1 4 4

Overall Interactions 6 3 6 7

Detected Positive Emotions 3 0 1 2

Table 2 demonstrates the number of charades words performed

by Pepper and participants and the detected positive emotions by

the multimodal emotion recognition model during the HRI. The

proposed multimodal emotion recognition provides a measurement

for evaluating the system. However, most of the detected emotions

were neutral. Therefore, the model needs more personalized user

behavior data to increase performance. Nevertheless, despite the

limited number of users, it still shows the tendency that if Pepper

acts with more words, the user will be more likely to act with their

own words.

Figure 3: The change of emotions is detected by the proposed

emotion recognitionmodel. The x-axis is the time step, which

is based on a window size of 30 seconds. Thus, the figure

shows a 12-minute video that is segmented into 24 clips and

fed into the model to detect emotion.

Figure 3 presents the change in emotions of one of the partici-

pants detected by the proposed emotion recognition model based

on upper body movements. It can be seen that most of the detected

emotions were neutral because the user hung his hands when stand-

ing. Three happy emotionswere detected. However, five puzzlement

emotions and one anxiety emotion were also detected.

We also used the Negative Attitude toward Robots Scale (NARS)

[32] to measure the user’s attitude toward and acceptance level of

the robot. Three sub-scales make up the NARS: negative attitudes

toward robot interaction scenarios, negative attitudes toward robot

social influence, and negative attitudes toward robot interaction

emotions. There are 17 items total, and each is evaluated from 1

(strongly disagree) to 5 (strongly agree). We calculated the overall

NARS scale (M = 37.0, STD = 3.93), and we were primarily inter-

ested in the sub-scale of negative attitudes toward robot interaction

emotions (M = 9.33, STD = 0.47), where the sub-scale includes all

the reversed items from the scale. A lower score is desired for an

emotional robot. We also investigated the relationship between the

NARS scores and the overall count of interactions. However, there

is a non-significant, very small negative relationship between the

overall NARS scores and the number of interactions (𝑟 = 0.041,
𝑝 = 0.959). Nevertheless, if the focus is on the sub-scale of negative

attitudes toward robot interaction emotions, in that case, the results

indicate a more significant negative relationship between the sub-

scale scores and the number of interactions (𝑟 = 0.802, 𝑝 = 0.198).
Despite the limited sample size, we found that users with positive

emotions toward the robot could play more during the interaction.

4 CONCLUSIONS

This study presented our novel social interaction scenarios for HRI.

The scenarios were designed based on the charades game and com-

bined with the emotion recognition module to recognize and collect

more personalized data from users. The emotion recognition model

could recognize the emotions based on the dataset with salient

accuracy, even though it only depended on upper body movements.

Furthermore, the imitation module for social games has been devel-

oped and can be run in real-time. The mutual learning framework

enabled the robot to learn human behaviors through the proposed

interactive game. We also created a custom behavior database to

recognize contextual behaviors in social games. A pilot study was

conducted to evaluate the proposed social game scenario, and the

proposed emotion recognition model detected the user’s emotions

during the interaction. However, the emotion recognition model

needs to be improved by fine-tuning users’ personalized behavior

data. Furthermore, the robotic agent can be personalized via actions

that elicit positive emotions from users, which our proposed model

can detect. We plan to conduct a further user study to evaluate the

impact of the socio-emotional interventions for autistic individuals

with this novel interactive game we proposed.

As a next step, we will conduct a user study to evaluate the

designed social gaming scenario to alleviate participants’ anxiety.

The user study for future work will be conducted among teenagers

between 13 and 19 years old. The participants will be recruited

from high school or as freshmen at the university.
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