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ABSTRACT

Social play is essential in human interactions, increasing social
bonding, mitigating stress, and relieving anxiety. With advance-
ments in robotics, social robots can employ this role to assist in
human-robot interaction scenarios for clinical and healthcare pur-
poses. However, robotic intelligence still needs further development
to match the wide spectrum of social behaviors and contexts in
human interactions. In this paper, we present our robotic intelli-
gence framework with a mutual learning paradigm in which we
apply deep learning based on emotion recognition and behavior
perception, through which the robot learns human movements and
contexts through the interactive game of charades. Furthermore, we
designed a gesture-based social game to provide a more empathetic
and engaging social robot for the user. We also created a custom be-
havior database containing contextual behaviors for the proposed
social games. A pilot study was conducted with participants ranging
in age from 12 to 19 for a preliminary evaluation.
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1 INTRODUCTION

Human emotion recognition is a vital aspect of human-robot inter-
action (HRI). An effective automatic emotion recognition system
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that can understand the underlying emotions of human behaviors
is desired to establish a natural bidirectional interaction between
users and robots. These human behaviors include multimodal in-
puts such as facial expressions, tone of voice, and body movements.
Furthermore, it would be important to apply the emotion recogni-
tion system that can analyze users’ affective states from multimodal
social cues in a social HRI scenario.

Diverse deep learning methods have been widely used in recent
years for emotion recognition. Previous studies recognized emo-
tions through facial expressions [16, 34], acoustic features [10, 37],
and texts [5, 9]. However, humans always express emotions with
multimodal pathways and can achieve better performance via mul-
timodal emotion recognition [39]. Humans interact with others
primarily through speech while also coming up with body ges-
tures to emphasize certain emotions in certain parts of speech [31].
Therefore, uni-modal emotion recognition can be incomplete and
ambiguous under certain conditions, such as when human body
language can convey different social cues than verbal communi-
cation. Previous researchers also investigated the usage of body
movements to assess the affective states [1, 13, 26]. These studies
demonstrated that body posture could enhance emotional expres-
sions on the face and in speech. Furthermore, the robot can learn
the gestures from humans as the robot behaves and benefit the HRI
in terms of empathy [27], trust [29] and engagement [21, 23, 30].
Miura et al. [27] used functional magnetic resonance imaging to
measure brain activity during the observation of emotional actions
performed by humanoid robots, and the results showed that the
robots with the ability to simulate human-like behaviors could elicit
more empathy for the users. Reinhardt et al. [29] demonstrated the
importance of movement as a non-verbal social cue that could be
an indicator of trustworthiness. Ricks et al. [30] suggested that
imitation interaction is effective for motivating and engaging users
with autism spectrum disorder (ASD).

The capacity to highlight emotions using gestures is a vital so-
cial characteristic when communicating with people. Even in the
absence of verbal communication, gestures may convey a variety
of contexts in different social situations. Since it is a natural human
trait to imitate others, imitation is a fundamental social process
that helps children affiliate with others and develop empathy. The
tendency for people to imitate the actions of the person they are
communicating with is known as the "Chameleon Effect" [25]. Ad-
ditionally, it was mentioned that imitation interaction effectively
motivates and engages users with ASD [30].

In this sense, social games can be an effective method for teach-
ing communication and social skills to children and adolescents
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with social anxiety [28]. The social robot would play the role of
a sympathetic playmate or mediator during HRI [22, 38]. SARs as
interactive playmates have been widely used in autism therapy
for children with ASD [11, 12, 33]. In autism therapy, social robots
were usually involved in delivering engaging interactions to assist
children with ASD in practicing social interaction skills [36]. More
recent studies have explored the use of a serious game to reduce
the stress and anxiety suffered by children with ASD [7, 8]. The
results of the studies show the potential applications for reducing
stress and anxiety for children with ASD. However, few studies
have investigated the underlying emotional context during HRI to
provide a more empathetic and engaging social robot for the user.

In this work, we propose a novel social game scenario with an
interactive robot based on charades, a word-guessing game from
body gestures. Our system employs a mutual learning paradigm
that enables both the user and the robot to learn from the interac-
tion. The robot will learn human behaviors through the interactive
game, and the user can also benefit from creativity and social inter-
action. We also incorporate emotion recognition from human body
movements to provide emotional intelligence for more personalized
and social engagement. The goal of this study is to utilize the aspect
of imitation to influence participants’ physical, social, and mental
behavior in a structured social setting where the participant and
robot alternately engage in various gestural social interactions and
imitation games. By utilizing our mutually-growing social robot
and this mirroring process, we plan to provide an intervention for
social engagement in autistic adolescents.

2 METHODOLOGY

In this section, we first present our emotion recognition model for
detecting users’ affective states during HRI. Detecting emotions
will be used for personalizing the robot’s behaviors and increasing
engagement. Then, we demonstrated our proposed social game
scenario with a mutual learning scheme.
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Figure 1: The overall system for bi-modal emotion recogni-
tion with embedding vectors (Q: query, K: key, and V: value).

As shown in Figure 1, the proposed model includes deep pre-
trained convolutional neural networks (CNNs) and a model-level
fusion architecture. The pre-trained CNNs are used as backbone
models for fine-tuning and extracting the features from the face
and upper body. In addition, a transformer-based neural network is
introduced for the fusion strategy to achieve model-level fusion. The
reason for employing facial inputs when the upper body contains
the face part is that individuals may emphasize their emotions
through their facial expressions, which can be a complement to the
whole upper body’s feature inputs.
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2.0.1  Pre-trained Convolution Neutral Network. The pre-trained
CNN model used in this study is the SlowFast network [14], which
was designed for the task of video recognition. The SlowFast net-
work structure comprises two pathways: a Slow pathway that op-
erates at a low frame rate to learn the spatial semantic information
of the video; and a Fast pathway that operates at a high frame rate
to capture human motion at high temporal resolution. Both the
Slow and Fast pathways are 3D ResNet [15], which operates 3D
convolution and captures the information from sequential frames
of image inputs. The Slow pathway is implemented with a large
temporal stride 7, which extracts one frame out of 7 frames. The
typical value of 7 is 16, allowing 2 frames per second for 30-fps
videos. On the other hand, the Fast pathway uses a small temporal
stride of 7/, and a typical @ = 8 can process roughly 15 frames
per second. Furthermore, to make the Fast pathway lightweight,
it uses a significantly smaller channel size, with a ratio of f§ to the
Slow pathway channel size, where the typical value of § is 1/8.
The model used in this study is pre-trained on Kinetics-400 [24],
a dataset containing 400 human action classes and more than 400
videos for each action category.

The bimodal face and body gesture (FABO) database [18] was
used to fine-tune the emotion recognition model in this study. The
FABO database captured the facial expressions and upper body
movements via two cameras and annotated them with the affective
states, including happiness, surprise, anger, fear, sadness, disgust,
boredom, puzzlement, uncertainty and anxiety. Moreover, the an-
notations of the stages of the affective states were provided and
separated into neutral, onset, apex, and offset states. For example,
in one video, the subject began with a neutral state, acted with
emotional gestures and expressions in the onset state, reached a
steady level at the apex state, and ended with an offset state. Each
video has two to four complete exhibition cycles. We extracted
the onset-apex-offset cycle to represent the emotional states of the
video, and a separate emotional state, "Neutral," is obtained based
on the neutral state from all the videos.

2.0.2  Fusion Network. To achieve the fusion of the face and body
modalities of inputs, we used the crossmodal Transformer to model
the interaction of these two modalities. The crossmodal Trans-
former was first proposed by [35] to capture the correlated cross-
modal signals for the task of natural language understanding. Fol-
lowing the definition of [35], for example, we denote the interaction
modeling of introducing modality face, F, to modality body, B, as
“F — B”.In the Transformer, the multi-head attention accepts query,
key, and value as inputs and outputs the attention vector.

We denote the input features for Modalities F and B as XF €
RTr*dr xp e RT8%X45 where T and d are the time length and
feature dimension. To achieve F — B, we calculate the crossmodal
attention via:

Yattention = Attention(Xp, Xr)

sKg
= softmax(Q F VWVE
d (1)
XBW T T
= softmax( Qs Kr " F ) XF Wy,
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where queries are defined as Qg = XgWp,;, keys are defined as
Kp = XgWk, and values are defined as Vp = XpWy,. Woy €
RéBXdxk Wk, € RAr¥di Wy, € RAr%dv are the weights.

For both modalities, we used the same two SlowFast pre-trained
models and fine-tuned them on the FABO database. Finally, to
evaluate the robustness of our proposed method, we performed a
5-fold cross-validation and reported the results.

Table 1: The performance comparison of our proposed model
with state-of-the-art methods. The reported results are un-
weighted. (Unit=%)

Propose method Face Upper Body Bi-modal
Gunes and Piccardi [19] | 35.2  73.1 82.7
Barros et al. [3] | 727 578 91.3
Barros and Wermter [4] ‘ 873 748 93.65
Tlyas et al. [20] | 9042 79.27 94.41

Our proposed 92.08 90.2 94.79

As demonstrated in Table 1, our proposed method of using the
fusion model for the bimodal results reached state-of-the-art meth-
ods, which reflected that combining the pre-trained models with the
domain knowledge has the capabilities to capture salient features.
Moreover, the results for the mono-modal upper body movements
were considerably higher than the previous methods. This module
will be used to measure users’ emotions during the HRI.

2.1 Charades Game Design with Motion
Imitation

2.1.1 Motion Imitation. To realize motion imitation in HRI, the
robot platform needs to be presented, and an appropriate gesture
mapping algorithm needs to be determined. We employed the Pep-
per robot platform manufactured by Softbank Robotics [17]. Pepper
is a social humanoid robot designed for social interaction with hu-
mans through conversation, gestures, and touch screen capabilities.

For the joint control module, Pepper has NAOqi APIs that allow
for the control of each joint angle. A reliable human pose estimation
technique is necessary to detect the body of the user in order to
give robots the capacity to mimic human movements. OpenPose is
a real-time human pose estimation library that can detect keypoint
skeletons on the human body, hand, and face in images or video [6].
The extracted 3D body pose keypoints will be used for motion
retargeting, and the face keypoints will also be preserved.

Researchers in the past have developed several imitation al-
gorithms for Pepper that can be used to mimic the user’s move-
ments [2, 40, 41]. Generally, the human posture skeleton keypoints
were used to build the upper body link vectors of the Pepper robot,
and the joint angles were then derived from the angles formed by
those vectors. Further details can be found in the study by Zhang
et al. [41]. The motion imitation module has been realized in real
time for the teleoperation of Pepper.

2.1.2  Charades Game. Based on the charades game, we created
an interactive social gaming scenario. At this point, five student
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researchers have provided the initial pre-defined words and related
movement data. The Pepper robot can act on nine general words
from the game of Charades, including the categories of sports,
movies, and social behaviors. In addition to these general words,
we also used emotion-based words from the gestural data in the
FABO database.

Hi, Pepper!

Hil. Would you
like to play
Charades game
with me?

The game is a word

guessing game. I will

act some movements
and you will guess
what I am acting!

Sounds

interesting! ‘s
k Mutual
Learning

Are you Bingol Youare
playing so brilliant! T also

B& e . Robot Motion
your gestures. : !
It's your turn Retargeting
—— User now!
Gestures

Emotion
Recognition

Mapping function £(-)

OO

Figure 2: The interactive social game scenario that was de-
signed based on the Charades game.

As shown in Figure 2, we intended to employ a mutual learning
scheme to design the HRI scenario. During HRI, Pepper will first
ask users whether they are willing to play the game with Pepper at
the beginning of each session; if they accept, Pepper will begin per-
forming the pre-defined charades words from the initially collected
behavior database for users to guess. If users get the question right,
Pepper will commend them; if they get it wrong, Pepper will nudge
them to keep going and repeat gestures if they want. To provide va-
riety to the interaction, Pepper can even act out the words’ gestures
performed by another person from the database. Then, once users
agree to act out their charades, Pepper will attempt to guess what
they are acting. Based on the developed motion retargeting module,
Pepper will imitate users’ movements in the meantime and solicit
feedback from them regarding how well Pepper is mimicking. The
user can benefit from the aspect of creativity when making their
own charade movements with the Pepper robot imitation. This
mirroring mechanism and mutually growing social robot are not
just for fostering empathy but also for rehabilitation in adolescents
with ASD, coinciding with the mutual learning scheme.

For the robot to understand the users’ preferences, the emotion
recognition module will continue to function during the encounter
to recognize the underlying emotions of the users’ behaviors. Based
on the user’s preferences, the learned policy can comfort them
using the recognized emotions. For example, the policy can learn
which category of charades words can elicit positive emotions from
the users so that the robot can personalize the interaction in the
next stage. Nevertheless, the primary goal of this study is to gather
user data, which will be utilized to train the policy later.
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3 PILOT STUDY

We conducted a pilot study to evaluate the robotic system with
our proposed social game scenario (user study approved by the
Institutional Review Board (GW IRB 111540)). The pilot study was
conducted among four high school students (three males and one
female). During each session, Pepper initiated the predefined cha-
rade words and let the participant guess; then, Pepper requested the
participant to perform their charade words, which Pepper guessed
in turn. The participants were invited to interact with Pepper to
play the charades game as long as they wanted and were also in-
formed that they were free to stop whenever they did not want to
continue.

Table 2: The number of the charades words performed by
Pepper and the participants.

S1 S2 S3 S4
Pepper’s Words 3 2 2 3
User’s Words 3 1 4 4
Overall Interactions 6 3 6 7
Detected Positive Emotions 3 0 1 2

Table 2 demonstrates the number of charades words performed
by Pepper and participants and the detected positive emotions by
the multimodal emotion recognition model during the HRI. The
proposed multimodal emotion recognition provides a measurement
for evaluating the system. However, most of the detected emotions
were neutral. Therefore, the model needs more personalized user
behavior data to increase performance. Nevertheless, despite the
limited number of users, it still shows the tendency that if Pepper
acts with more words, the user will be more likely to act with their
own words.
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Figure 3: The change of emotions is detected by the proposed
emotion recognition model. The x-axis is the time step, which
is based on a window size of 30 seconds. Thus, the figure
shows a 12-minute video that is segmented into 24 clips and
fed into the model to detect emotion.

Figure 3 presents the change in emotions of one of the partici-
pants detected by the proposed emotion recognition model based
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on upper body movements. It can be seen that most of the detected
emotions were neutral because the user hung his hands when stand-
ing. Three happy emotions were detected. However, five puzzlement
emotions and one anxiety emotion were also detected.

We also used the Negative Attitude toward Robots Scale (NARS)
[32] to measure the user’s attitude toward and acceptance level of
the robot. Three sub-scales make up the NARS: negative attitudes
toward robot interaction scenarios, negative attitudes toward robot
social influence, and negative attitudes toward robot interaction
emotions. There are 17 items total, and each is evaluated from 1
(strongly disagree) to 5 (strongly agree). We calculated the overall
NARS scale (M = 37.0, STD = 3.93), and we were primarily inter-
ested in the sub-scale of negative attitudes toward robot interaction
emotions (M = 9.33, STD = 0.47), where the sub-scale includes all
the reversed items from the scale. A lower score is desired for an
emotional robot. We also investigated the relationship between the
NARS scores and the overall count of interactions. However, there
is a non-significant, very small negative relationship between the
overall NARS scores and the number of interactions (r = 0.041,
p = 0.959). Nevertheless, if the focus is on the sub-scale of negative
attitudes toward robot interaction emotions, in that case, the results
indicate a more significant negative relationship between the sub-
scale scores and the number of interactions (r = 0.802, p = 0.198).
Despite the limited sample size, we found that users with positive
emotions toward the robot could play more during the interaction.

4 CONCLUSIONS

This study presented our novel social interaction scenarios for HRI.
The scenarios were designed based on the charades game and com-
bined with the emotion recognition module to recognize and collect
more personalized data from users. The emotion recognition model
could recognize the emotions based on the dataset with salient
accuracy, even though it only depended on upper body movements.
Furthermore, the imitation module for social games has been devel-
oped and can be run in real-time. The mutual learning framework
enabled the robot to learn human behaviors through the proposed
interactive game. We also created a custom behavior database to
recognize contextual behaviors in social games. A pilot study was
conducted to evaluate the proposed social game scenario, and the
proposed emotion recognition model detected the user’s emotions
during the interaction. However, the emotion recognition model
needs to be improved by fine-tuning users’ personalized behavior
data. Furthermore, the robotic agent can be personalized via actions
that elicit positive emotions from users, which our proposed model
can detect. We plan to conduct a further user study to evaluate the
impact of the socio-emotional interventions for autistic individuals
with this novel interactive game we proposed.

As a next step, we will conduct a user study to evaluate the
designed social gaming scenario to alleviate participants’ anxiety.
The user study for future work will be conducted among teenagers
between 13 and 19 years old. The participants will be recruited
from high school or as freshmen at the university.
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