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ABSTRACT

It is well-known that the Tucker decomposition of a multi-dimensional
tensor is not unique, because its factors are subject to rotation ambi-
guities similar to matrix factorization models. Inspired by the recent
success in the identifiability of nonnegative matrix factorization,
the goal of this work is to achieve similar results for nonnegative
Tucker decomposition (NTD). We propose to add a matrix volume
regularization as the identifiability criterion, and show that NTD is
indeed identifiable if all of the Tucker factors satisfy the sufficiently
scattered condition. We then derive an algorithm to solve the modified
formulation of NTD that minimizes the generalized Kullback-Leibler
divergence of the approximation plus the proposed matrix volume
regularization. Numerical experiments show the effectiveness of the
proposed method.

1. INTRODUCTION

Tensors are multi-dimensional extensions of matrices [1,2]. The
Tucker decomposition [3] of a multiway tensor is perhaps the most
natural generalization of the celebrated matrix principal component
analysis (PCA) due to its close relationship with the higher-order
singular value decomposition (HOSVD) [4,5]. However, it also in-
herits the biggest shortcomings of PCA, namely the latent factors are
not identifiable due to the inherent rotation ambiguity (without addi-
tional constraints on the latent factors). For this reason, the Tucker
decomposition is most commonly used as a compression technique
rather than an unsupervised factor analysis approach or blind source
separation method, unlike most other tensor decomposition models
such as the canonical polyadic decomposition [6—10].

Inspired by the success of nonnegative matrix factorization
(NMF) [11], there have been nonnegative variants of Tucker de-
composition as well [12—15]. Although general matrix factorization
is not unique, NMF has been observed to be able to (sometimes,
not always) correctly identify the latent factors by simply adding
nonnegativity constraints. The most general result to date is that NMF
is unique when the latent factors satisfy the ‘sufficiently scattered’
condition [16]. Furthermore, one could enforce the factors to be
sufficiently scattered by optimizing a matrix volume criterion [17].
An overview on identifiability and applications of NMF can be found
in [18].

In this paper, we make the first ever attempt to extend such iden-
tifiability results to nonnegative tensor decomposition (NTD). We
will show that NTD is identifiable, up to scaling and permutation
ambiguity, if all the factor matrices are sufficiently scattered. Iden-
tifiability of NTD is accomplished by optimizing a novel volume
criterion imposed on the core tensor. When noise is present, this
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naturally leads to a volume-regularized NTF model that jointly fits
the data and also uniquely identifies the latent factors. Experiments
on synthetic and real data validates the effectiveness of our model.

1.1. Tensors and notations

We denote the input N-way tensor, of size I} X I X - -+ X Iy, as X.
In general, we denote tensors by boldface Euler script capital letters,
e.g., X and Y, while matrices and vectors are denoted by boldface
italic capital letters (e.g., X and Y) and boldface italic lowercase
letters (e.g., x and y), respectively. The Euclidean norm of a tensor
X is denoted as ||X||, which is defined as

I Iy
1l = (| > > Xy, i)
ii=1  iy=1

Unfolding. A tensor can be unfolded, or matricized, along any of
its mode into a matrix. The tensor unfolding along the nth mode is
denoted X ;) € RIn¥Ilvzn Iv More simply, the nth mode of X forms
the rows of X (;; and the remaining modes form the columns.

Tensor-matrix product. The n-mode tensor-matrix product multi-
plies a tensor with a matrix along the nth mode. Suppose B is a K X1,
matrix, the n-mode tensor-matrix product, denoted as XX, B, outputs
atensor of size I} X -+ - X I;,_1 X K X I;;41 X - -+ X Iy. Elementwise,

In
[ X B (i, oo i1, Ky i1y o i) = Z B(k, in)X(iy, oy in)-

in=1
Using mode-7 unfolding, it can be equivalently written as

[X xu B, = BX ).

)
Note that the resulting tensor is in general dense regardless of the
sparsity pattern of X.

A common task is to multiply a tensor by a set of matrices. This
operation is called the tensor-times-matrix chain (TTMc). When mul-
tiplication is performed with all N modes, it is denoted as X x {B},
where {B} is the set of N matrices BY, ..., B™). Sometimes the mul-
tiplication is performed with all modes except one. This is denoted as
X X_p {B}, where n is the mode not being multiplied:

X x_n {B} =X x; BO... Xp_1 g1 Xl B@D .y B,

Kronecker product. The Kroneckder product (KP) of A € RExm
and B € RP*1, denoted as A ® B, is an £p X mq matrix defined as
A(1,1)B

A®B= :
A(¢,1)B

A(l,m)B

A, m)B
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Table 1: List of notations

Symbol Definition
N number of modes
X N-way data tensor of size I X I X -+ - X Iy
X(i1, ... iN) (i1, ..., in)-th entry of X
Xn mode-n matrix unfolding of X
I, dimension of the nth mode of X
K, multilinear rank of the nth mode
core tensor of the Tucker model € RK1X--xKy
u® mode-7 factor of the Tucker model € RIn*Kn
{U} set of all factors {UV, ..., UM}
Xn n-mode tensor-matrix product
X_p chain of mode products except the nth one
(7
e
X a

Fig. 1: Tucker decomposition of a 3-way tensor

Mathematically, the n-mode TTMc can be equivalently written as the
product of mode-7 unfolding times a chain of Kronecker products:

[Xx_p {B}](n)
=X (B<1>® . @B DgRmthg. .. ®B<N>)T,

ey

More notations are shown in Table 1.

1.2. Nonnegative Tucker decomposition (NTD)

The goal of Tucker decomposition is to approximate a data tensor
X € RIXXIN with the product of a core tensor G € RK1X-xKy
and a set of N factor matrices U® e RIx%Kn n = 1,.,N, ie.,
X ~ G x {U}. An illustration of Tucker decomposition for 3-way
tensors is shown in Figure 1. To find the Tucker decomposition
of a given tensor X € R *IN with a target reduced dimension
Kj X -+ X Kp, one formulates the following problem:

minimize  [|X -G x {U}|. )

SGIRKI XX Kpy

{U(n)eRlnxKn }nN:I

Similar to matrix factorization models, the Tucker decomposition
suffers from rotation ambiguities: if each factor matrix U™ is multi-
plied by a nonsingular matrix A® from the left AU ), the oblique
rotation can be ‘absorbed’ into the core tensor G as G x {A_l }, which
will not affect the overall product

Gx (U} = (9% {47"}) x (va}. 3

For this reason, it is often without loss of generality assumed that the
factor matrices all have orthonormal columns. With this constraint,
one can eliminate variable G since it should be equal to G = Xx{U},
and equivalently maximize || X x {UT}||%. A well-known algorithmic
framework to approximately optimize it is the higher-order orthogonal
iteration (HOOI) [5], which cyclically updates the factors as the

Kp leading left singular vectors of Y (), obtained by taking the n-
mode unfolding of the tensor Y 2 X x_, {U'}. More recently, a
novel higher-order QR iteration (HOQRI) was proposed to update

the factors as an orthonormal basis of the columns of Y(n)GIn), where

G () is the mode-n unfolding of the core tensor G; the orthonormal
basis is usually obtained from the QR factorization [19]. Compared
to HOOIL, HOQRI avoids the intermediate memory explosion when
dealing with large and sparse data tensors (by defining a special kernel

to directly calculate Y(n)GIn)), and is the first Tucker algorithm that is

shown to converge to a stationary point.

Nonnegative variants of Tucker decomposition have been pro-
posed in recent years [12] by constraining the variables in (2) to be
element-wise nonnegative. However, most of them focus on algorithm
designs and not model correctness of why it is beneficial to impose
the latent constraints [13, 14]; this question was briefly discussed
in [13] and the conclusion was that the latent factors can be uniquely
recovered, up to scaling and permutation ambiguity, if they satisfy the
separability assumption [20], which is not very realistic in practice.
In this paper, we will present a new identifiability result based on the
much more practical sufficiently scattered condition [16,21], and also
propose a new algorithm based on Frank-Wolfe.

2. VOLUME REGULARIZED NTD

In this section, we introduce a novel volume criterion into the non-
negative Tucker decomposition, and show that it is able to guarantee
unique recovery of the ground-truth latent factors if they satisfy the
sufficiently scattered condition, up to scaling and permutation am-
biguity. Then we introduce a Frank-Wolfe algorithm based on the
formulation of fitting an NTD model with the proposed volume crite-
rion as a regularization.

2.1. Identifiability in the noiseless case

We start by assuming the data tensor X is generated exactly, without
noise, from the Tucker model G x {U} with nonnegative factors
U™ > 0forn=1,...,N. Like all latent variable models, there exist
inherent (and inconsequential) scaling and permutation ambiguity
regarding the identifiability of the latent factors. Therefore, we define
the identifiability of the Tucker factors as follows:

Definition 1 (Identifiability). Consider a data tensor generated from
the Tucker model X = gh X {Uh}, where Uh(n) >0n=1,...,N

are the ground-truth factors. Let G, and {U4} be optimal for an
identification criterion g

(G%,{Ux}) = argmin q(G,{U}).
X=Gx{U}

If Gy and/or {Uy} satisfy some condition such that, for any

(G%,{U«}), there exist permutation matrices IT O .., 1™ and
diagonal matrices D(D, e DM such that

Ué") =u"p"a®, p=1,.. N, and G, =G, x{T'D"'},

then we say that the NTD model is identifiable under that condition.

Due to the scaling ambiguity and the fact that factor matrices are
element-wise nonnegative, it is without loss of generality to assume
that each column sums to one, i.e., u® = I forn=1,...,N.
Obviously, this is far from enough to guarantee uniqueness of NTD.
Inspired by the recent success of identifiability-guaranteed NMF with
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(c) Not identifiable

(a) Separable

(b) Sufficiently scattered

Fig. 2: A geometric illustration of the sufficiently scattered condition
(middle), a special case that is separable (left), and a case that is not
identifiable (right). The triangle denotes the nonnegative orthant, the
circle denotes the hyperbolic cone C defined in Assumption 1, solid
dots represent rows of H, and the shaded regions represent cone(H).

a volume regularization [17,21], we propose to seek for, among all
admissible NTDs, the one that maximizes the volume of each Tucker
factor, leading to the following identifiability criterion

N
maximize log det(U ™y ®
SERKIX--»XKN Z—:] g ( )
(UM eRInxKn}N n=
n=1 (C))]
subjectto U >0, v =1", n=1,...,N,
X =Gx{U}.

The determinant of the Gram matrix of a general rectangular matrix
is called the volume of a matrix [22]; in this case this is the identifica-
tion criterion g mentioned in Definition 1. One may notice that, as a
new formulation for NTD, (4) does not even include a nonnegativity
constrain on the core tensor G. As we will show soon, after removing
the nonnegativity constraint, the matrix volume criterion is enough to
guarantee identifiability, which makes the decomposition more gen-
eral by allowing the core tensor to include negative values; if it turns
out the core tensor is indeed element-wise nonnegative, identifiability
guarantees that it would be exactly recovered (up to permutation and
scaling along each mode) even without enforcing the nonnegativity
constraint on the core tensor.

The condition that guarantees identifiability of NTD is the suffi-
ciently scattered condition that first appeared in [16] and was further
studied in [17,21] and many others:

Assumption 1 (Sufficiently scattered). Let C denote the hyperbolic
cone {x € RK | VK = 1||x|| < I"x} and cone(H) denote the conic
hull of the rows of H: {H"0 | 8 > 0}. A nonnegative matrix H is
sufficiently scattered if:

1. C C cone(H);

2. 0CNocone(H)={a(l —ey)|a>0,k=1,...,K}, where
0 denotes the boundary of the set.

A geometric illustration of a matrix that satisfies the sufficiently
scattered condition is shown in Figure 2b, where rows of the matrix
are depicted as dots. As we can see, C is a subset of the nonnegative
orthant [Rf , but touches the boundary of [Rf at lines a(1 — ey), k =
1,..., K. If a matrix H is sufficiently scattered, cone(H) contains C
as a subset and, as a second requirement, C touches the boundary of
cone(H) only at those points too.

One can also see from Figure 2a that the separability assumption,
considered in [20] and in the context of NTD [13], is a very special
case of sufficiently scattered. It requires that all the coordinate vectors
be included in rows of Hy, which makes cone(Hy) = Rf , while the

sufficiently scattered condition is allowed to grossly violate separa-
bility. In fact, it has been empirically observed that a nonnegative
sparse matrix satisfies the sufficiently scattered condition with very
high probability [18].

Our main result on the identifiability of NTD is presented as
follows:

Theorem 1. Assume that X = Gy x {Uy}, where all the ground-

truth nonnegative Tucker factors " are sufficiently scattered (As-

sumption 1). Let (G, {Ux}) be an optimal solution of (4), then
there exist permutation matrices IT 1), oL IT ™) and diagonal matri-
ces D(D, e DW such that

U;”) =u"pPa", p=1,.. N, and G, =G x (IT'D"'}.

In other words, NTD is identifiable (Definition 1) if all the Tucker
factors are sufficiently scattered.

Due to space limitation, the proof is relegated to the journal
version.

2.2. Algorithm

In practice, the data tensor most likely does not admit an exact NTD
X =G x {U}. Therefore, when designing an algorithm for identifia-
bility guaranteed NTD, one has to balance the identification criterion,
the volumes of the Tucker factors in this case, and data fidelity. We
propose to formulate the problem as

minimize

SEIRKIX---XKN

(n) InxKp N
{UWeRm>En} "

N
D(X|Gx{U}) -1 Z log det(U(”)Tu(n))

subjectto §>0,U" >0, v =1", n=1,...,N,

where A is the regularization parameter that controls the balance
between data fidelity and the identification criterion, and D(-||-) is
the generalized Kullback-Leibler (GKL) divergence defined as

X(@p,-- -5 in)

DX x{Uh = ) DC(il,...,iN)log—9 a0 ),
X ul.l,...,ul.N

i1yeniN

~X(iy, .. @ quN)} .

"iN)+9X{”i1""’

Ignoring terms that do not depend on the variables, and using the fact
that columns of U ® all sum to one, the GKL divergence is equivalent
to (up to a constant difference)

2.5 ). (Xxlog(§x{U}), ©)

where we overload the notation ), to denote summation over all
elements of the tensor, * denote element-wise multiplication, and the
log of a tensor is also taken element-wise.

Since Problem 5 is non-convex, we propose to approximately
solve it using successive convex approximation (SCA) [23]. At
iteration ¢ when the updates are G; and {U}, we define

O kN)
Ge(ky, . kUi ) - UMy, k)

Z 9t(k1;---ka)Uil)(il,kl)’"UgN)(iNrkN)
kpokn

I (iy, ..., in, Ky, ..
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ObViOuSly Zk[,...,k(\r Hl(il, ey iN, kl, ey kN) =1 and

I (iy,...,iN, k1, ..., kn) = 0, which defines a probability mass
function for each (ij,...,ix). Using Jensen’s inequality, we have
that

~X(iy,..., in) log) " G(ky, ..., kn)U D (iy, k) - Uiy, k)
kl,...,k‘N

<=0 Xy i) iy in i k)X
kiynkn

(1og G (k... kn) +10g Uiy, k) + - +10g UN iy, k)

—IOgHt(il,...,iN,kl,...,kN)),

which defines a convex and locally tight upperbound for the first term
in the loss function of (5). Regarding the second term, we propose to
simply take the linear approximation

log det(U U ) ~ log dev (@ U ") + 2T U " (U® - U "),

where 2(U£n)+)T is the gradient of log det(UEn)TU gn)).

Now that we have derived a convex approximation to the ob-
jective of (5), which is separable down to each scalar variable, we
can obtain the SCA updates without much difficulty. Due to space
limitations, we skip some of the tedious steps and directly present the
SCA algorithm as in (1). We would like to make two comments: 1)
the operation performed in line 5 is mathematically represented as
matrix multiplication of the n-mode matricization of X x_, {UT}
and the transpose of that of G; if the data tensor is large and sparse,
this operation can be done efficiently via the TTMcTC (stands for
tensor times matrix chain times core) kernel without instantiating the
large and dense intermediate tensors [19]; and 2) the scalar « in line
13 corresponds to the Lagrange multiplier of the constraint I'u = 1;
even though it is the solution of a nonlinear equation that cannot be
solved analytically, it can be efficiently computed via bi-section.

Algorithm 1 Proposed algorithm: Solving (5) with SCA
1: initialize G and {U'}
2: repf,at
3 X=X/(Gx{U})

> element-wise division

4. forn=1,...,N do
s5: T [X x_p {UT}] 06Ty
6: endfor
7. GG (Xx{U}) > element-wise multiplication
8: forn=1,...,Ndo
9: vV =2(u®™hHT
10: for k,=1,...,Ky do
11: denote v as the kth column of V/
12: denote it as the kth column of U "
13: find scalar @ such that u = it/ (-Av+a)>0and I'u=1
14: update the kth column of U™ as u
15: end for
16:  end for

17: until convergence

Regarding initialization, we propose to start by applying any
algorithm for Tucker decomposition with orthonormal constraints,
such as HOOI [5] or HOQRI [19], then apply the algorithm in [21]
on each factor to obtain an initialization of U "; the oblique rotations
are then absorbed into the core tensor, followed by setting all negative
values as zeros as initialization of G.

3. NUMERICAL VALIDATION

We conclude the paper by providing some numerical validation to
the proposed theoretical analysis. We focus on 3-way tensors of
dimension I} = I, = I3 = 100 and multilinear ranks K| = K, =
Kz = 10. Since the focus of this paper is identifiability, we will
(€)
i

and the core tensor Gy, multiply them to get the data tensor X =

synthetically generate the ground-truth Tucker factors U, h(l)’ U ;"), U

G X Uél) Xo U é") x3 U ;3), possibly contaminated with some noise.
All the positive elements in the ground-truth factors are generated
from independent exponential distributions. A portion of randomly
selected elements in the ground-truth factors are set to zeros, since it
has been observed that a sparse latent factor satisfies the sufficiently

scattered condition with very high probability [18]. To resolve the
scaling ambiguity, all columns of Uhn are rescaled to sum to one,

leaving only permutation ambiguity to be resolved in the end.

In our first numerical experiment, we vary the level of sparsity
of the latent factors and check how it affects identifiability. It has
been shown in [16] that if a [;; X K}, matrix is sufficiently scattered,
then each columns of it contains at least K;; — 1 zeros. This gives
a rule-of-thumb of how sparse the latent factors should be in order
to guarantee identifiability. Since we fix I, = 100 and Kj; = 10, we
could expect the model to be identifiable when the density, meaning
the percentage of elements being nonzero, is lower than 90%. We
vary the latent density from 50% to 95%, and check the probability
of exact recovery. In each case, we generate 100 random instances
of the ground-truth factors and the core tensor, multiply them to get
the data tensor, and apply the initialization strategy of Algorithm 1.
After resolving the permutation matrix via the Hungarian algorithm,
we declare success if the estimation errors of all of the latent factors
are less than 107>, As we can see, the probability of success remains
close to 1 even when the latent density is at the marginal 90%, but
quickly goes to zero once it becomes higher.

1

o o o
* > ®

probability of success

o
N

=3

o
@

06 07 08 09 1
latent density

Fig. 3: Probability of exact recovery of the latent factors as we vary
the density of the latent factors.

Finally, we demonstrate the convergence behavior of the proposed
Algorithm 1. In this case the data tensor X is no longer noiseless.
Since Algorithm 1 tries to solve Problem (5) with the generalized
KL divergence, it makes sense to generate the elements of X from
independent Poisson distributions parameterized by the correspond-
ing values in the Tucker product of the ground-truth factors. As we
can see in Fig. 4, the algorithm does monotonically decrease the
loss value. Due to the Poisson noise, the loss is not close to zero.
However, as we will elaborate in the journal paper, the introduced
volume-regularization still helps reduce the estimation errors of the
latent factors.

x10°

loss

0 100 200 300 400 500
iteration

Fig. 4: An instance of the convergence of Algorithm 1.
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