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ABSTRACT

It is well-known that the Tucker decomposition of a multi-dimensional

tensor is not unique, because its factors are subject to rotation ambi-

guities similar to matrix factorization models. Inspired by the recent

success in the identifiability of nonnegative matrix factorization,

the goal of this work is to achieve similar results for nonnegative

Tucker decomposition (NTD). We propose to add a matrix volume

regularization as the identifiability criterion, and show that NTD is

indeed identifiable if all of the Tucker factors satisfy the sufficiently

scattered condition. We then derive an algorithm to solve the modified

formulation of NTD that minimizes the generalized Kullback-Leibler

divergence of the approximation plus the proposed matrix volume

regularization. Numerical experiments show the effectiveness of the

proposed method.

1. INTRODUCTION

Tensors are multi-dimensional extensions of matrices [1, 2]. The

Tucker decomposition [3] of a multiway tensor is perhaps the most

natural generalization of the celebrated matrix principal component

analysis (PCA) due to its close relationship with the higher-order

singular value decomposition (HOSVD) [4, 5]. However, it also in-

herits the biggest shortcomings of PCA, namely the latent factors are

not identifiable due to the inherent rotation ambiguity (without addi-

tional constraints on the latent factors). For this reason, the Tucker

decomposition is most commonly used as a compression technique

rather than an unsupervised factor analysis approach or blind source

separation method, unlike most other tensor decomposition models

such as the canonical polyadic decomposition [6±10].

Inspired by the success of nonnegative matrix factorization

(NMF) [11], there have been nonnegative variants of Tucker de-

composition as well [12±15]. Although general matrix factorization

is not unique, NMF has been observed to be able to (sometimes,

not always) correctly identify the latent factors by simply adding

nonnegativity constraints. The most general result to date is that NMF

is unique when the latent factors satisfy the ‘sufficiently scattered’

condition [16]. Furthermore, one could enforce the factors to be

sufficiently scattered by optimizing a matrix volume criterion [17].

An overview on identifiability and applications of NMF can be found

in [18].

In this paper, we make the first ever attempt to extend such iden-

tifiability results to nonnegative tensor decomposition (NTD). We

will show that NTD is identifiable, up to scaling and permutation

ambiguity, if all the factor matrices are sufficiently scattered. Iden-

tifiability of NTD is accomplished by optimizing a novel volume

criterion imposed on the core tensor. When noise is present, this
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naturally leads to a volume-regularized NTF model that jointly fits

the data and also uniquely identifies the latent factors. Experiments

on synthetic and real data validates the effectiveness of our model.

1.1. Tensors and notations

We denote the input 𝑁 -way tensor, of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁 , as X.

In general, we denote tensors by boldface Euler script capital letters,

e.g., X and Y, while matrices and vectors are denoted by boldface

italic capital letters (e.g., 𝑿 and 𝒀 ) and boldface italic lowercase

letters (e.g., 𝒙 and 𝒚 ), respectively. The Euclidean norm of a tensor

X is denoted as ∥X∥, which is defined as

∥X∥ =

√√√√ 𝐼1∑︁
𝑖1=1

· · ·
𝐼𝑁∑︁
𝑖𝑁 =1

X(𝑖1, ..., 𝑖𝑁 )2.

Unfolding. A tensor can be unfolded, or matricized, along any of

its mode into a matrix. The tensor unfolding along the 𝑛th mode is

denoted 𝑿 (𝑛) ∈ R
𝐼𝑛×

∏
𝜈≠𝑛 𝐼𝜈 . More simply, the 𝑛th mode of X forms

the rows of 𝑿 (𝑛) and the remaining modes form the columns.

Tensor-matrix product. The 𝑛-mode tensor-matrix product multi-

plies a tensor with a matrix along the 𝑛th mode. Suppose 𝑩 is a 𝐾 ×𝐼𝑛
matrix, the 𝑛-mode tensor-matrix product, denoted as X×𝑛𝑩 , outputs

a tensor of size 𝐼1 × · · · × 𝐼𝑛−1 × 𝐾 × 𝐼𝑛+1 × · · · × 𝐼𝑁 . Elementwise,

[
X ×𝑛 𝑩

]
(𝑖1, ..., 𝑖𝑛−1, 𝑘 , 𝑖𝑛+1, ..., 𝑖𝑁 ) =

𝐼𝑁∑︁
𝑖𝑛=1

𝑩 (𝑘 , 𝑖𝑛 )X(𝑖1, ..., 𝑖𝑁 ).

Using mode-𝑛 unfolding, it can be equivalently written as[
X ×𝑛 𝑩

]
(𝑛) = 𝑩𝑿 (𝑛).

Note that the resulting tensor is in general dense regardless of the

sparsity pattern of X.

A common task is to multiply a tensor by a set of matrices. This

operation is called the tensor-times-matrix chain (TTMc). When mul-

tiplication is performed with all 𝑁 modes, it is denoted as X × {𝑩},
where {𝑩} is the set of 𝑁 matrices 𝑩 (1), ...,𝑩 (𝑁). Sometimes the mul-

tiplication is performed with all modes except one. This is denoted as

X ×−𝑛 {𝑩}, where 𝑛 is the mode not being multiplied:

X ×−𝑛 {𝑩} = X ×1 𝑩
(1) · · · ×𝑛−1 𝑩

(𝑛−1) ×𝑛+1 𝑩 (𝑛+1) · · · ×𝑁 𝑩 (𝑁).

Kronecker product. The Kroneckder product (KP) of 𝑨 ∈ R
ℓ×𝑚

and 𝑩 ∈ R
𝑝×𝑞 , denoted as 𝑨 ⊗ 𝑩 , is an ℓ𝑝 ×𝑚𝑞 matrix defined as

𝑨 ⊗ 𝑩 =


𝑨 (1, 1)𝑩 · · · 𝑨 (1,𝑚)𝑩

...
. . .

...

𝑨 (ℓ, 1)𝑩 · · · 𝑨 (ℓ,𝑚)𝑩


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Table 1: List of notations

Symbol Definition

𝑁 number of modes

X 𝑁 -way data tensor of size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁
X(𝑖1, ..., 𝑖𝑁 ) (𝑖1, ..., 𝑖𝑁 )-th entry of X

𝑿 (𝑛) mode-𝑛 matrix unfolding of X

𝐼𝑛 dimension of the 𝑛th mode of X

𝐾𝑛 multilinear rank of the 𝑛th mode

G core tensor of the Tucker model ∈ R
𝐾1×...×𝐾𝑁

𝑼 (𝑛) mode-𝑛 factor of the Tucker model ∈ R
𝐼𝑛×𝐾𝑛

{𝑼 } set of all factors {𝑼 (1), ...,𝑼 (𝑁)}
×𝑛 𝑛-mode tensor-matrix product

×−𝑛 chain of mode products except the 𝑛th one

X
≈

𝑼 (1)

G
𝑼 (2)

𝑼 (3)

Fig. 1: Tucker decomposition of a 3-way tensor

Mathematically, the 𝑛-mode TTMc can be equivalently written as the

product of mode-𝑛 unfolding times a chain of Kronecker products:[
X ×−𝑛 {𝑩}

]
(𝑛)

= 𝑿 (𝑛)
(
𝑩 (1) ⊗ · · · ⊗ 𝑩 (𝑛−1) ⊗ 𝑩 (𝑛+1) ⊗ · · · ⊗ 𝑩 (𝑁)

)⊤
. (1)

More notations are shown in Table 1.

1.2. Nonnegative Tucker decomposition (NTD)

The goal of Tucker decomposition is to approximate a data tensor

X ∈ R
𝐼1×···×𝐼𝑁 with the product of a core tensor G ∈ R

𝐾1×···×𝐾𝑁
and a set of 𝑁 factor matrices 𝑼 (𝑛) ∈ R

𝐼𝑛×𝐾𝑛 , 𝑛 = 1, ..., 𝑁 , i.e.,

X ≈ G × {𝑼 }. An illustration of Tucker decomposition for 3-way

tensors is shown in Figure 1. To find the Tucker decomposition

of a given tensor X ∈ R
𝐼1×···×𝐼𝑁 with a target reduced dimension

𝐾1 × · · · × 𝐾𝑁 , one formulates the following problem:

minimize
G∈R𝐾1×···×𝐾𝑁
{𝑼 (𝑛)∈R𝐼𝑛 ×𝐾𝑛 }𝑁

𝑛=1

∥X − G × {𝑼 }∥2 . (2)

Similar to matrix factorization models, the Tucker decomposition

suffers from rotation ambiguities: if each factor matrix 𝑼 (𝑛) is multi-

plied by a nonsingular matrix 𝑨 (𝑛) from the left 𝑨 (𝑛)𝑼 (𝑛), the oblique

rotation can be ‘absorbed’ into the core tensor G as G× {𝑨−1}, which

will not affect the overall product

G × {𝑼 } =
(
G × {𝑨−1}

)
× {𝑼𝑨}. (3)

For this reason, it is often without loss of generality assumed that the

factor matrices all have orthonormal columns. With this constraint,

one can eliminate variable G since it should be equal to G = X×{𝑼⊤},
and equivalently maximize ∥X × {𝑼⊤}∥2. A well-known algorithmic

framework to approximately optimize it is the higher-order orthogonal

iteration (HOOI) [5], which cyclically updates the factors as the

𝐾𝑛 leading left singular vectors of 𝒀 (𝑛), obtained by taking the 𝑛-

mode unfolding of the tensor Y ≜ X ×−𝑛 {𝑼⊤}. More recently, a

novel higher-order QR iteration (HOQRI) was proposed to update

the factors as an orthonormal basis of the columns of𝒀 (𝑛)𝑮
⊤
(𝑛), where

𝑮 (𝑛) is the mode-𝑛 unfolding of the core tensor G; the orthonormal

basis is usually obtained from the QR factorization [19]. Compared

to HOOI, HOQRI avoids the intermediate memory explosion when

dealing with large and sparse data tensors (by defining a special kernel

to directly calculate𝒀 (𝑛)𝑮
⊤
(𝑛)), and is the first Tucker algorithm that is

shown to converge to a stationary point.

Nonnegative variants of Tucker decomposition have been pro-

posed in recent years [12] by constraining the variables in (2) to be

element-wise nonnegative. However, most of them focus on algorithm

designs and not model correctness of why it is beneficial to impose

the latent constraints [13, 14]; this question was briefly discussed

in [13] and the conclusion was that the latent factors can be uniquely

recovered, up to scaling and permutation ambiguity, if they satisfy the

separability assumption [20], which is not very realistic in practice.

In this paper, we will present a new identifiability result based on the

much more practical sufficiently scattered condition [16,21], and also

propose a new algorithm based on Frank-Wolfe.

2. VOLUME REGULARIZED NTD

In this section, we introduce a novel volume criterion into the non-

negative Tucker decomposition, and show that it is able to guarantee

unique recovery of the ground-truth latent factors if they satisfy the

sufficiently scattered condition, up to scaling and permutation am-

biguity. Then we introduce a Frank-Wolfe algorithm based on the

formulation of fitting an NTD model with the proposed volume crite-

rion as a regularization.

2.1. Identifiability in the noiseless case

We start by assuming the data tensor X is generated exactly, without

noise, from the Tucker model G × {𝑼 } with nonnegative factors

𝑼 (𝑛) ≥ 0 for 𝑛 = 1, . . . , 𝑁 . Like all latent variable models, there exist

inherent (and inconsequential) scaling and permutation ambiguity

regarding the identifiability of the latent factors. Therefore, we define

the identifiability of the Tucker factors as follows:

Definition 1 (Identifiability). Consider a data tensor generated from

the Tucker model X = G♮ × {𝑼 ♮}, where 𝑼
(𝑛)
♮
≥ 0, 𝑛 = 1, . . . , 𝑁

are the ground-truth factors. Let G★ and {𝑼★} be optimal for an

identification criterion 𝑞

(G★, {𝑼★}) = arg min
X=G×{𝑼 }

𝑞 (G, {𝑼 }).

If G♮ and/or {𝑼 ♮} satisfy some condition such that, for any

(G★, {𝑼★}), there exist permutation matrices 𝜫 (1), . . . ,𝜫 (𝑁) and

diagonal matrices 𝑫 (1), . . . ,𝑫 (𝑁) such that

𝑼
(𝑛)
♮

=𝑼
(𝑛)
★ 𝑫 (𝑛)𝜫 (𝑛), 𝑛 = 1, . . . , 𝑁 , and G♮ = G★ × {𝜫⊤𝑫−1},

then we say that the NTD model is identifiable under that condition.

Due to the scaling ambiguity and the fact that factor matrices are

element-wise nonnegative, it is without loss of generality to assume

that each column sums to one, i.e., 1
⊤𝑼 (𝑛) = 1

⊤, for 𝑛 = 1, . . . , 𝑁 .

Obviously, this is far from enough to guarantee uniqueness of NTD.

Inspired by the recent success of identifiability-guaranteed NMF with
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(a) Separable (b) Sufficiently scattered (c) Not identifiable

Fig. 2: A geometric illustration of the sufficiently scattered condition

(middle), a special case that is separable (left), and a case that is not

identifiable (right). The triangle denotes the nonnegative orthant, the

circle denotes the hyperbolic cone C defined in Assumption 1, solid

dots represent rows of 𝑯 , and the shaded regions represent cone(𝑯 ).

a volume regularization [17, 21], we propose to seek for, among all

admissible NTDs, the one that maximizes the volume of each Tucker

factor, leading to the following identifiability criterion

maximize
G∈R𝐾1×···×𝐾𝑁
{𝑼 (𝑛)∈R𝐼𝑛 ×𝐾𝑛 }𝑁

𝑛=1

𝑁∑︁
𝑛=1

log det(𝑼 (𝑛)⊤𝑼 (𝑛))

subject to 𝑼 (𝑛) ≥ 0, 1
⊤𝑼 (𝑛) = 1

⊤, 𝑛 = 1, . . . , 𝑁 ,

X = G × {𝑼 }.

(4)

The determinant of the Gram matrix of a general rectangular matrix

is called the volume of a matrix [22]; in this case this is the identifica-

tion criterion 𝑞 mentioned in Definition 1. One may notice that, as a

new formulation for NTD, (4) does not even include a nonnegativity

constrain on the core tensor G. As we will show soon, after removing

the nonnegativity constraint, the matrix volume criterion is enough to

guarantee identifiability, which makes the decomposition more gen-

eral by allowing the core tensor to include negative values; if it turns

out the core tensor is indeed element-wise nonnegative, identifiability

guarantees that it would be exactly recovered (up to permutation and

scaling along each mode) even without enforcing the nonnegativity

constraint on the core tensor.

The condition that guarantees identifiability of NTD is the suffi-

ciently scattered condition that first appeared in [16] and was further

studied in [17, 21] and many others:

Assumption 1 (Sufficiently scattered). Let C denote the hyperbolic

cone {𝒙 ∈ R
𝐾 |
√
𝐾 − 1∥𝒙 ∥ ≤ 1

⊤𝒙 } and cone(𝑯 ) denote the conic

hull of the rows of 𝑯 : {𝑯⊤𝜽 | 𝜽 ≥ 0}. A nonnegative matrix 𝑯 is

sufficiently scattered if:

1. C ⊆ cone(𝑯 );
2. 𝜕C ∩ 𝜕 cone(𝑯 ) = {𝛼 (1 − 𝒆𝑘 ) | 𝛼 ≥ 0, 𝑘 = 1, . . . , 𝐾 }, where

𝜕 denotes the boundary of the set.

A geometric illustration of a matrix that satisfies the sufficiently

scattered condition is shown in Figure 2b, where rows of the matrix

are depicted as dots. As we can see, C is a subset of the nonnegative

orthant R
𝐾
+ , but touches the boundary of R

𝐾
+ at lines 𝛼 (1 − 𝒆𝑘 ), 𝑘 =

1, ..., 𝐾 . If a matrix 𝑯 is sufficiently scattered, cone(𝑯 ) contains C
as a subset and, as a second requirement, C touches the boundary of

cone(𝑯 ) only at those points too.

One can also see from Figure 2a that the separability assumption,

considered in [20] and in the context of NTD [13], is a very special

case of sufficiently scattered. It requires that all the coordinate vectors

be included in rows of 𝑯 ♮, which makes cone(𝑯 ♮) = R
𝐾
+ , while the

sufficiently scattered condition is allowed to grossly violate separa-

bility. In fact, it has been empirically observed that a nonnegative

sparse matrix satisfies the sufficiently scattered condition with very

high probability [18].

Our main result on the identifiability of NTD is presented as

follows:

Theorem 1. Assume that X = G♮ × {𝑼 ♮}, where all the ground-

truth nonnegative Tucker factors 𝑼
(𝑛)
♮

are sufficiently scattered (As-

sumption 1). Let (G★, {𝑼★}) be an optimal solution of (4), then

there exist permutation matrices 𝜫 (1), . . . ,𝜫 (𝑁) and diagonal matri-

ces 𝑫 (1), . . . ,𝑫 (𝑁) such that

𝑼
(𝑛)
♮

=𝑼
(𝑛)
★ 𝑫 (𝑛)𝜫 (𝑛), 𝑛 = 1, . . . , 𝑁 , and G♮ = G★ × {𝜫⊤𝑫−1}.

In other words, NTD is identifiable (Definition 1) if all the Tucker

factors are sufficiently scattered.

Due to space limitation, the proof is relegated to the journal

version.

2.2. Algorithm

In practice, the data tensor most likely does not admit an exact NTD

X = G × {𝑼 }. Therefore, when designing an algorithm for identifia-

bility guaranteed NTD, one has to balance the identification criterion,

the volumes of the Tucker factors in this case, and data fidelity. We

propose to formulate the problem as

minimize
G∈R𝐾1×···×𝐾𝑁
{𝑼 (𝑛)∈R𝐼𝑛 ×𝐾𝑛 }𝑁

𝑛=1

𝐷 (X∥G × {𝑼 }) − 𝜆
𝑁∑︁
𝑛=1

log det(𝑼 (𝑛)⊤𝑼 (𝑛))

subject to G ≥ 0, 𝑼 (𝑛) ≥ 0, 1
⊤𝑼 (𝑛) = 1

⊤, 𝑛 = 1, . . . , 𝑁 ,

(5)

where 𝜆 is the regularization parameter that controls the balance

between data fidelity and the identification criterion, and 𝐷 (·∥·) is

the generalized Kullback-Leibler (GKL) divergence defined as

𝐷 (X∥G × {𝑼 }) =
∑︁

𝑖1,...,𝑖𝑁

©­
«
X(𝑖1, . . . , 𝑖𝑁 ) log

X(𝑖1, . . . , 𝑖𝑁 )
G × {𝒖 (1)

𝑖1
, . . . ,𝒖

(𝑁)
𝑖𝑁
}

−X(𝑖1, . . . , 𝑖𝑁 ) + G × {𝒖 (1)𝑖1 , . . . ,𝒖
(𝑁)
𝑖𝑁
}
)
.

Ignoring terms that do not depend on the variables, and using the fact

that columns of𝑼 (𝑛) all sum to one, the GKL divergence is equivalent

to (up to a constant difference)∑︁
G −

∑︁
(X ∗ log(G × {𝑼 })) , (6)

where we overload the notation
∑

to denote summation over all

elements of the tensor, ∗ denote element-wise multiplication, and the

log of a tensor is also taken element-wise.

Since Problem 5 is non-convex, we propose to approximately

solve it using successive convex approximation (SCA) [23]. At

iteration 𝑡 when the updates are G𝑡 and {𝑼 𝑡 }, we define

𝛱𝑡 (𝑖1, . . . , 𝑖𝑁 , 𝑘1, . . . , 𝑘𝑁 )

=

G𝑡 (𝑘1, . . . , 𝑘𝑁 )𝑼 (1)𝑡 (𝑖1, 𝑘1) · · ·𝑼 (𝑁)𝑡 (𝑖𝑁 , 𝑘𝑁 )∑︁
𝑘1,...,𝑘𝑁

G𝑡 (𝑘1, . . . , 𝑘𝑁 )𝑼 (1)𝑡 (𝑖1, 𝑘1) · · ·𝑼 (𝑁)𝑡 (𝑖𝑁 , 𝑘𝑁 )
.
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Obviously
∑
𝑘1,...,𝑘𝑁 𝛱𝑡 (𝑖1, . . . , 𝑖𝑁 , 𝑘1, . . . , 𝑘𝑁 ) = 1 and

𝛱𝑡 (𝑖1, . . . , 𝑖𝑁 , 𝑘1, . . . , 𝑘𝑁 ) ≥ 0, which defines a probability mass

function for each (𝑖1, . . . , 𝑖𝑁 ). Using Jensen’s inequality, we have

that

−X(𝑖1, . . . , 𝑖𝑁 ) log
∑︁

𝑘1,...,𝑘𝑁

G(𝑘1, . . . , 𝑘𝑁 )𝑼 (1)(𝑖1, 𝑘1) · · ·𝑼 (𝑁)(𝑖𝑁 , 𝑘𝑁 )

≤ −
∑︁

𝑘1,...,𝑘𝑁

X(𝑖1, . . . , 𝑖𝑁 )𝛱𝑡 (𝑖1, . . . , 𝑖𝑁 , 𝑘1, . . . , 𝑘𝑁 )×

(
logG(𝑘1, . . . , 𝑘𝑁 ) + log𝑼 (1)(𝑖1, 𝑘1) + · · · + log𝑼 (𝑁)(𝑖𝑁 , 𝑘𝑁 )

− log𝛱𝑡 (𝑖1, . . . , 𝑖𝑁 , 𝑘1, . . . , 𝑘𝑁 )
)
,

which defines a convex and locally tight upperbound for the first term

in the loss function of (5). Regarding the second term, we propose to

simply take the linear approximation

log det(𝑼 (𝑛)⊤𝑼 (𝑛)) ≈ log det(𝑼 (𝑛)⊤𝑡 𝑼
(𝑛)
𝑡 ) + 2 Tr𝑼

(𝑛)†
𝑡

(
𝑼 (𝑛) −𝑼 (𝑛)𝑡

)
,

where 2(𝑼 (𝑛)†𝑡 )⊤ is the gradient of log det(𝑼 (𝑛)⊤𝑡 𝑼
(𝑛)
𝑡 ).

Now that we have derived a convex approximation to the ob-

jective of (5), which is separable down to each scalar variable, we

can obtain the SCA updates without much difficulty. Due to space

limitations, we skip some of the tedious steps and directly present the

SCA algorithm as in (1). We would like to make two comments: 1)

the operation performed in line 5 is mathematically represented as

matrix multiplication of the 𝑛-mode matricization of X̃ ×−𝑛 {𝑼⊤}
and the transpose of that of G; if the data tensor is large and sparse,

this operation can be done efficiently via the TTMcTC (stands for

tensor times matrix chain times core) kernel without instantiating the

large and dense intermediate tensors [19]; and 2) the scalar 𝛼 in line

13 corresponds to the Lagrange multiplier of the constraint 1
⊤𝒖 = 1;

even though it is the solution of a nonlinear equation that cannot be

solved analytically, it can be efficiently computed via bi-section.

Algorithm 1 Proposed algorithm: Solving (5) with SCA

1: initialize G and {𝑼 }
2: repeat

3: X̃ = X/(G × {𝑼 }) ▷ element-wise division

4: for 𝑛 = 1, . . . , 𝑁 do

5: 𝑼
(𝑛)← [X̃ ×−𝑛 {𝑼⊤}] (𝑛)𝑮⊤(𝑛)

6: end for

7: G← G ∗ (X̃ × {𝑼⊤}) ▷ element-wise multiplication

8: for 𝑛 = 1, . . . , 𝑁 do

9: 𝑽 = 2(𝑼 (𝑛)†)⊤
10: for 𝑘𝑛 = 1, . . . , 𝐾𝑁 do

11: denote 𝒗 as the 𝑘 th column of𝑽

12: denote 𝒖̃ as the 𝑘 th column of 𝑼
(𝑛)

13: find scalar 𝛼 such that 𝒖 = 𝒖̃/(−𝜆𝒗 +𝛼)>0 and 1
⊤𝒖 =1

14: update the 𝑘 th column of 𝑼 (𝑛) as 𝒖

15: end for

16: end for

17: until convergence

Regarding initialization, we propose to start by applying any

algorithm for Tucker decomposition with orthonormal constraints,

such as HOOI [5] or HOQRI [19], then apply the algorithm in [21]

on each factor to obtain an initialization of𝑼 (𝑛); the oblique rotations

are then absorbed into the core tensor, followed by setting all negative

values as zeros as initialization of G.

3. NUMERICAL VALIDATION

We conclude the paper by providing some numerical validation to

the proposed theoretical analysis. We focus on 3-way tensors of

dimension 𝐼1 = 𝐼2 = 𝐼3 = 100 and multilinear ranks 𝐾1 = 𝐾2 =

𝐾3 = 10. Since the focus of this paper is identifiability, we will

synthetically generate the ground-truth Tucker factors 𝑼
(1)
♮
,𝑼
(𝑛)
♮
,𝑼
(3)
♮

and the core tensor G♮, multiply them to get the data tensor X =

G ×1 𝑼
(1)
♮
×2 𝑼

(𝑛)
♮
×3 𝑼

(3)
♮

, possibly contaminated with some noise.

All the positive elements in the ground-truth factors are generated

from independent exponential distributions. A portion of randomly

selected elements in the ground-truth factors are set to zeros, since it

has been observed that a sparse latent factor satisfies the sufficiently

scattered condition with very high probability [18]. To resolve the

scaling ambiguity, all columns of 𝑼
(𝑛)
♮

are rescaled to sum to one,

leaving only permutation ambiguity to be resolved in the end.

In our first numerical experiment, we vary the level of sparsity

of the latent factors and check how it affects identifiability. It has

been shown in [16] that if a 𝐼𝑛 × 𝐾𝑛 matrix is sufficiently scattered,

then each columns of it contains at least 𝐾𝑛 − 1 zeros. This gives

a rule-of-thumb of how sparse the latent factors should be in order

to guarantee identifiability. Since we fix 𝐼𝑛 = 100 and 𝐾𝑛 = 10, we

could expect the model to be identifiable when the density, meaning

the percentage of elements being nonzero, is lower than 90%. We

vary the latent density from 50% to 95%, and check the probability

of exact recovery. In each case, we generate 100 random instances

of the ground-truth factors and the core tensor, multiply them to get

the data tensor, and apply the initialization strategy of Algorithm 1.

After resolving the permutation matrix via the Hungarian algorithm,

we declare success if the estimation errors of all of the latent factors

are less than 10−5. As we can see, the probability of success remains

close to 1 even when the latent density is at the marginal 90%, but

quickly goes to zero once it becomes higher.
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Fig. 3: Probability of exact recovery of the latent factors as we vary

the density of the latent factors.

Finally, we demonstrate the convergence behavior of the proposed

Algorithm 1. In this case the data tensor X is no longer noiseless.

Since Algorithm 1 tries to solve Problem (5) with the generalized

KL divergence, it makes sense to generate the elements of X from

independent Poisson distributions parameterized by the correspond-

ing values in the Tucker product of the ground-truth factors. As we

can see in Fig. 4, the algorithm does monotonically decrease the

loss value. Due to the Poisson noise, the loss is not close to zero.

However, as we will elaborate in the journal paper, the introduced

volume-regularization still helps reduce the estimation errors of the

latent factors.
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Fig. 4: An instance of the convergence of Algorithm 1.
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