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ABSTRACT

In this paper, we revisit bounded component analysis (BCA) and
formulate it as a geometric problem of finding the minimum vol-
ume enclosing parallelotope (MVEP) of a set of data points in the
Euclidean space. A parallelotope is an affine transformation of the
standard box, also known as the 𝐿∞-norm ball. An immediate ben-
efit of the novel formulation is that the bounds on the supports of
the latent components can be arbitrary, unlike most existing BCA
works that assume the bounds are symmetric around zero. The main
contribution is that the MVEP solution exactly recovers the latent
components, up to the inherent (and inconsequential) permutation,
shift, and scaling ambiguities, if the groundtruth components satisfy a
so-called “sufficiently scattered” condition in the standard box. This
is a great improvement to the existing result that requires all vertices
of the box are contained in the data set, which requires exponentially
many data points, or that of ICA, which essentially requires infinite
amount of data points to guarantee exact recovery. We also present
a new learning algorithm to solve the (NP-hard) MVEP problem
based on Frank-Wolfe, and show numerically that the performance is
surprisingly effective.

1. INTRODUCTION

Bounded component analysis (BCA) is an unsupervised learning /
blind source separation approach that assumes nothing but the support
of the latent components are element-wise bounded [1, 2]. It was first
proposed as an alternative to the celebrated independent component
analysis (ICA) [3] since the identifiability of ICA is based on the
assumption that the latent sources are statistically independent, which
essentially means one requires an infinite amount of data to guarantee
exact recovery. In fact, there exist different definitions of uniqueness,
identifiability, and separability in the field of ICA [4]. However,
when we limit ourselves to a finite set of data points, the three notions
coincide, as we will formally define in the sequel.

1.1. The BCA model

Consider the classical blind source separation (BSS) model of a set
of 𝑛 data points generated as:

𝒙 𝑖 = 𝑨𝒔 𝑖 , 𝑖 = 1, . . . , 𝑛, (1)

where 𝒙 𝑖 ∈ R𝑑 are the observations, 𝑨 ∈ R𝑑×𝑘 is the unknown
mixing matrix, and 𝒔 𝑖 ∈ R𝑘 are the latent sources that one is interested
in recovering. Stacking all 𝒙 𝑖 as columns of the 𝑑 × 𝑛 matrix 𝑿 and
𝒔 𝑖 as columns of the 𝑘 × 𝑛 matrix 𝑺 gives the matrix factorization
model 𝑿 = 𝑨𝑺 .

Supported in part by NSF ECCS-2237640 and NIH R01LM014027.

Without additional assumptions on the latent factors, it is im-
possible to uniquely identify the mixing matrix 𝑨 and the latent
components 𝑺 , since we can always “insert” an invertible matrix 𝑸
and 𝑸 −1 as 𝑿 = 𝑨̃𝑺̃ where 𝑨̃ = 𝑨𝑸 and 𝑺̃ = 𝑸 −1𝑺 , and one cannot
distinguish whether 𝑺 or 𝑺̃ are the groundtruth sources. Such rotation
ambiguity cannot be resolved by the well-known principal component
analysis (PCA) [5].

Independent component analysis (ICA) is perhaps the very first
model to guarantee identifiability by assuming the components of
𝒔 are statistically independent and non-Gaussian [3]. Because the
assumption is imposed on the distribution of 𝒔 , this essentially means
that the latent components can be exactly recovered when we are
given infinite amount of data, which is impossible in practice. Sev-
eral other models have been proposed for identifiable unsupervised
learning with various latent assumptions, such as dictionary learning
(by assuming latent sparsity) [6], nonnegative matrix factorization
(NMF) [7], and admixture models (by assuming each 𝒔 𝑖 is nonneg-
ative and sum to one) used in topic modeling [8] and hyperspectral
unmixing [9], to name just a few. Notably, the latter two models
guarantee identifiability under an assumption for a finite set of points
called “sufficiently scattered”, although defined slightly differently
on the nonnegative orthant for NMF [10] and the probability simplex
for the admixture model [11–13].

Bounded component analysis (BCA) is another such model that
assumes each component of 𝒔 is bounded [1, 2]. This is perhaps
the most relaxed assumption to be made on the latent components;
in fact, when the sample size is finite, one can obviously always
assume the latent components are bounded. The core idea of latent
boundedness have appeared long before the model is known to be
BCA [14–18]. Although many prior works assume that the bounds
are symmetric, i.e., there exists 𝑢 (𝑐 ) that −𝑢 (𝑐 ) ≤ 𝑠𝑖 (𝑐 ) ≤ 𝑢 (𝑐 )
for all 𝑐 = 1, . . . , 𝑘 , we will in this paper consider the more general
case that there are lowerbounds 𝑙 (𝑐 ) and upperbounds 𝑢 (𝑐 ) such
that 𝑙 (𝑐 ) ≤ 𝑠𝑖 (𝑐 ) ≤ 𝑢 (𝑐 ) for all 𝑐 = 1, . . . , 𝑘 . Stacking all 𝑙 (𝑐 )
into a 𝑘 -vector 𝒍 and 𝑢 (𝑐 ) into a 𝑘 -vector 𝒖 , the bound constraint
can be written as 𝒍 ≤ 𝒔 𝑖 ≤ 𝒖 . Notice that we do not assume the
knowledge of 𝒍 and 𝒖 , nor would we ever be able to uncover 𝒍 and 𝒖
due to inherent ambiguities in BCA, as we will explain in the next
subsection. Nevertheless, the model can still be identifiable up to
those inherent, and in practice inconsequential, ambiguities.

1.2. Identifiability of BCA

Most BSS models allow scaling and permutation ambiguity, i.e., a
permutation matrix 𝜫 and a diagonal matrix𝑫 such that the recovered
mixing matrix is 𝑨𝑫𝜫 and the recovered sources are 𝜫⊤𝑫−1𝑺 . For
BCA with arbitrary bounds 𝒍 and 𝒖 , there also exists a shift ambiguity
𝒃 such that the shifted sources 𝒔 𝑖 − 𝒃 are bounded between 𝒍 − 𝒃 and
𝒖 − 𝒃 , i.e., 𝒍 − 𝒃 ≤ 𝒔 𝑖 − 𝒃 ≤ 𝒖 − 𝒃 . In fact, one can always shift andIC
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scale the latent sources to lie in the standard box, a.k.a. the 𝐿∞-norm
ball, [−1, 1]𝑘 = {𝒔 | − 1 ≤ 𝑠 (𝑐 ) ≤ 1, 𝑐 = 1, . . . , 𝑘 }: 𝒔 = 𝑩𝒔 − 𝒃 ,
where𝑩 is a diagonal matrix with𝐵𝑐𝑐 ≤ 2/(𝑢 (𝑐 )−𝑙 (𝑐 )), 𝑐 = 1, . . . , 𝑘
and 𝒃 satisfies 𝑢 (𝑐 ) −𝐵𝑐𝑐 /2 ≤ 𝑏 (𝑐 ) ≤ 𝑙 (𝑐 ) +𝐵𝑐𝑐 /2. It is easy to see
that ∥𝒔 𝑖 ∥∞ ≤ 1, i.e., it belongs to the standard box [−1, 1]𝑘 .

Conversely, we have that 𝒔 𝑖 = 𝑩−1 (𝒔 𝑖 +𝒃); plugging it back into
the generative model (1) gives 𝒙 𝑖 = 𝑨𝑩−1 (𝒔 𝑖 + 𝒃). The generative
model becomes an affine transformation of points 𝒔 𝑖 that lie in the
standard box [−1, 1]𝑘 . Without knowing the exact bounds 𝒍 and 𝒖 ,
the existence of the affine shift 𝒃 is inherent and cannot be resolved.
On the other hand, since 𝑨 is multiplied with a diagonal matrix on
the right, together with the aforementioned scaling and permutation
ambiguity, this means identifiability of 𝑨 is still up to column scaling
and permutation.

To summarize, the identifiability of BCA is formally defined as
follows:

Definition 1. Consider the generative model 𝒙 𝑖 = 𝑨♮𝒔 ♮
𝑖
, 𝑖 = 1, . . . , 𝑛,

where 𝑨♮ is the groundtruth mixing matrix and 𝒍 ≤ 𝒔 𝑖 ≤ 𝒖 are the
groundtruth latent components with element-wise bounded support,
but the bounds 𝒍 and 𝒖 are unknown. Let (𝑨̂, 𝑺̂ , 𝒃̂) be optimal for an
identification criterion 𝑞

(𝑨̂, 𝑺̂ , 𝒃̂) = arg min
𝒙 𝑖=𝑨 (𝒔 𝑖+𝒃 )

∥𝒔 𝑖 ∥∞≤1,𝑖=1,...,𝑛

𝑞 (𝑨,𝑺 ,𝒃).

If 𝑨♮ and/or 𝑺 ♮ satisfy some condition such that any (𝑨̂, 𝑺̂ , 𝒃̂), there
exist a permutation matrix 𝜫 and a diagonal matrix 𝑫 such that

𝑨♮ = 𝑨̂𝑫𝜫 and 𝒔 ♮
𝑖
= 𝜫⊤𝑫−1 (𝒔 𝑖 + 𝒃̂), 𝑖 = 1, . . . , 𝑛,

then we say that the BCA model is essentially identifiable, up to
permutation, scaling, and shift, under that condition.

Classical results on the identifiability of BCA are similar in the
style of ICA: it relaxes the statistical independence assumption on
the latent components, yet the assumption is still on the distributions
of the latent components, which requires infinite amount of data
to guarantee exact recovery [1]. The first identifiability result for
BCA with finite data set is not much better, as it requires the set
{𝒔 𝑖 } to include all vertices of the standard box, which is the set of
all 2𝑘 vectors in {±1}𝑘 [2]. The best result so far came out very
recently [19], who first proposed the sufficiently scattered condition
for the standard box as the identifiability condition. However, as we
will explain later, they assume the bound on 𝒔 to be either symmetric
or nonnegative, which is not as general as our result; the introduction
of the affine shift 𝒃 makes some BCA models identifiable under our
model, but not according to [19].

2. MINIMUM VOLUME ENCLOSING PARALLELOTOPE

In this section, we introduce a geometric interpretation of BCA as
finding the minimum volume enclosing parallelotope (MVEP) for a
set of data points in the Euclidean space. A parallelotope is an affine
transformation of the standard box [−1, 1]𝑘 , defined as

{𝑨 (𝒔 + 𝒃) | ∥𝒔 ∥∞ ≤ 1}. (2)

It is a convex polytope with 2𝑘 vertices (𝑨𝒗 + 𝒃 where 𝒗 ∈ {±1}𝑘 )
and 2𝑘 facets (−1 ≤ 𝑨−1𝒙 − 𝒃 ≤ 1). The volume of the standard
box [−1, 1]𝑘 can be very easily calculated as 2𝑘 as it involves 𝑘
independent integrals from −1 to 1, and using the change of variable
theorem of multivariate integration, we know that the volume of

Fig. 1: An illustration of two enclosing parallelotopes of a set of data
points. One of them clearly has a smaller volume than the other one.

the parallelotope defined in (2), assuming 𝑨 is a square invertible
matrix, is 2𝑘 | det𝑨 |. If 𝑨 ∈ R𝑑×𝑘 is tall, the volume in R𝑑 would be
degenerate as the dimension of the parallelotope is 𝑘 , but one can
still apply the change-of-variables formula [20] to conclude that the
(degenerate) volume is 2𝑘

√
det𝑨⊤𝑨, which equals to 2𝑘 | det𝑨 | when

𝑨 is square.

2.1. BCA via MVEP

Our previous discussion on the identifiability of BCA with arbitrary
bounded support on the latent factors leads to the problem of finding
𝑨, 𝒔 𝑖 , and 𝒃 that satisfy 𝒙 𝑖 = 𝑨 (𝒔 𝑖 + 𝒃), 𝑖 = 1, . . . , 𝑛, and the
geometric characterization of parallelotope, defined in (2), makes
it clear that BCA geometrically means to find a parallelotope that
encloses all of the data points 𝒙1, . . . , 𝒙𝑛 . An illustration of two
enclosing parallelotopes in R3 are shown in Fig. 1. As we can see, the
enclosing parallelotope is not unique, as one can always enlarge the
size of the parallelotope without violating the enclosing requirement.

However, among all possible enclosing parallelotopes, intuitively
the most plausible solution would be the one with minimum volume.
As per our previous discussion, the volume of the enclosing parallelo-
tope is proportional to | det𝑨 |, where 𝑨 is used in the description of
the parallelotope (2). Using this intuition, we propose the following
formulation for BCA, which also serves as the identification criterion
mentioned in Definition 1:

minimize
𝑨,𝒃 ,𝑺

det𝑨⊤𝑨

subject to 𝒙 𝑖 = 𝑨 (𝒔 𝑖 + 𝒃), ∥𝒔 𝑖 ∥∞ ≤ 1, 𝑖 = 1, . . . , 𝑛.
(3)

We should point out that the intuition of “minimum volume” has
always existed in the literature of BCA, under the name “minimum
support” [16] or “minimum perimeter” [1], which are not as clearly
defined as simply the absolute determinant of the mixing matrix. Er-
dogan [2] proposed an identification criterion that is a combination
of the principal hyper-ellipsoid and a bounding hyper-rectangle (a
parallelotope with a diagonal 𝑨). The most similar formulation ap-
pears in [19], where the only difference is the absence of the shift
𝒃 . This corresponds to the case that the latent bounds are symmetric
𝒍 = −𝒖 or nonnegative 𝒍 = 0. As we will see, neither case considered
in [19] is as general as our proposed formulation by including the
affine shift, which covers more cases that can be uniquely identified.
Another difference is that Tatli and Erdogan propose to maximize
det𝑺𝑺⊤ instead of minimizing det𝑨⊤𝑨, which is algebraically the
same but a bit tricky to explain geometrically.

2.2. Identifiability

Problem (3) provides an intuitive identification criterion for BCA,
stemming from the geometric interpretation of the problem. In this
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Fig. 2: An example of sufficiently scattered in 3D.

subsection, we show that if the groundtruth source matrix 𝑺 ♮, after an
element-wise affine transformation, satisfies a so-called “sufficiently
scattered” condition in the standard box, then optimally solving (3)
guarantees identifiability of the BCA model.

To study the identifiability of the BCA model 𝑿 = 𝑨♮𝑺 ♮ where
columns of 𝑺 ♮ are element-wise bounded on an unknown support
𝒍 ≤ 𝒔 ♮

𝑖
≤ 𝒖 . We first apply an element-wise affine transformation of

𝑺 ♮ so that its columns lie in the standard box [−1, 1]𝑘 :

𝑠
♮

𝑖
(𝑐 ) = 2

𝑢 (𝑐 ) − 𝑙 (𝑐 )

(
𝑠
♮

𝑖
(𝑐 ) − 𝑢 (𝑐 ) + 𝑙 (𝑐 )

2

)
. (4)

It is intuitive to see that if the groundtruth 𝑨♮ is related to the MVEP
of 𝑿 , then the standard box [−1, 1]𝑘 is also the MVEP of 𝑺̃ ♮. Con-
sequently, the columns of 𝑺̃ ♮ should be “sufficiently scattered” in
[−1, 1]𝑘 , because otherwise we can further diminish the volume of
the enclosing simplex. The formal definition of “sufficiently scat-
tered” is given as follows.

Assumption 1 (Sufficiently scattered). Let C denote the Euclidean
ball {𝒙 ∈ R𝑘 | ∥𝒙 ∥ ≤ 1} and conv(𝑯 ) denote the convex hull of the
columns of 𝑯 : {𝑯𝜽 | 𝜽 ≥ 0, 𝜽⊤1 = 1}. A matrix 𝑯 is sufficiently
scattered if, after an element-wise affine transform as in (4):

1. C ⊆ conv(𝑯 );
2. 𝜕C ∩ 𝜕 conv(𝑯 ) = {±𝒆1, . . . ,±𝒆𝑘 }, where 𝜕 denotes the

boundary of the set.

A geometric illustration of a matrix that satisfies the sufficiently
scattered condition is shown in Figure 2, where columns of the ma-
trix are depicted as dots. As we can see, C is a subset of the stan-
dard box [−1, 1]𝑘 , but touches the boundary of [−1, 1]𝑘 at points
±𝒆1, . . . ,±𝒆𝑘 . If a matrix 𝑯 is sufficiently scattered, conv(𝑯 ) con-
tains C as a subset and, as a second requirement, C touches the
boundary of cone(𝑯 ) only at those points too.

The term “sufficiently scattered” first appeared in [11] to charac-
terize the identifiability condition for nonnegative matrix factorization
that has already appeared in [10]. The difference is that in [10,11,21],
the condition is defined over the conic hull of a set of points in the
nonnegative orthant containing a specific hyperbolic cone. It has also
been defined over the convex hull of a set of points in the probability
simplex [12, 13]. The most related case is the sufficiently scattered
condition defined for the standard box (𝐿∞-norm ball) [19], as well as
the standard orthoplex (𝐿1-norm ball). We will explain the difference
between our result and that of [19] in the sequel.

Our main result on the identifiability of BCA is presented as
follows:

Theorem 1. Consider the BCA model 𝒙 𝑖 = 𝑨♮𝒔 ♮
𝑖
, 𝑖 = 1, . . . , 𝑛, where

𝑨♮ ∈ R𝑑×𝑘 is the groundtruth mixing matrix and 𝒍 ≤ 𝒔 ♮
𝑖
≤ 𝒖 are the

Fig. 3: An example of 𝑺 ♮ with bounded support that is identifiable
from our work, but not using the result of [19].

groundtruth latent components with element-wise bounded support,
but the bounds 𝒍 and 𝒖 are unknown. If rank(𝑨♮) = 𝑘 and the
groundtruth 𝑺 ♮ is sufficiently scattered as in Assumption 1, then for
any solution of (3), denoted as (𝑨̂, 𝑺̂ , 𝒃̂), there exist a permutation
matrix 𝜫 and a diagonal matrix 𝑫 such that

𝑨♮ = 𝑨̂𝑫𝜫 and 𝒔 ♮
𝑖
= 𝜫⊤𝑫−1 (𝒔 𝑖 + 𝒃̂), 𝑖 = 1, . . . , 𝑛.

In other words, BCA is identifiable if the groundtruth 𝑨♮ has full
column rank and 𝑺 ♮ is sufficiently scattered.

Due to space limitation, the full proof is relegated to the journal
version.

An important point that needs to be emphasized is the difference
between our result and that of [19]. In terms of formulation, the
difference is the presence of the shift term 𝒃 that is only present in
our proposed MVEP formulation (3). What this allows is that the
latent source can be bounded in an arbitrary rectangle, not just one
that is centered at zero (meaning 𝒍 = −𝒖) or with zero as one of the
vertices of the bounding rectangle (meaning 𝒍 = 0). To prove that
the same identifiability property still holds under this more relaxed
sufficiently scattered condition is not trivial. Fig. 3 shows an example
of 𝑺 ♮ ∈ [−1, 2] × [0.5, 1.5] × [−2, 0.5] that is identifiable according
to our result in Theorem 1, but not identifiable from [19].

3. ALGORITHM

In this section, we propose an algorithm for approximately solving
(3). We will reformulate (3) as a determinant maximization problem
subject to linear constraints and apply the Frank-Wolfe algorithm,
which is guaranteed to converge to a stationary point.

Since we assume 𝑨 has full column rank, we can define 𝑷 = 𝑨†

and apply a change of variable to problem (3): the objective would
become minimizing 1/det𝑷𝑷⊤, which we apply the log function and
make it − log det𝑷𝑷⊤, and in the constraints we can now eliminate
the 𝑺 variables by simply requiring ∥𝑷𝒙 𝑖 − 𝒃 ∥∞ ≤ 1, 𝑖 = 1, . . . , 𝑛.
In fact, the 𝐿∞-norm constraint is nothing but an element-wise bound
constraint. This leads to the following reformulation

minimize
𝑷 ,𝒃

− log det𝑷𝑷⊤

subject to − 1 ≤ 𝑷𝑿 − 𝒃1⊤ ≤ 1.
(5)

Problem (5) now has a convex, or more specifically linear, con-
straint set, although the objective is still not convex. We propose to ap-
ply the Frank-Wolfe algorithm to approximately solve (5). The Frank-
Wolfe algorithm, also known as the conditional gradient method for
constrained optimization [22], iteratively minimizes a linear objective,

Authorized licensed use limited to: University of Florida. Downloaded on February 28,2024 at 03:04:32 UTC from IEEE Xplore.  Restrictions apply. 



defined by the gradient at the current iterate, under the same con-
straint set to determine the search direction and obtain the next iterate
via some line search approach along the search direction. For the
log-determinant objective in (5), we have that the gradient is −(𝑷 †)⊤.
As a result, the Frank-Wolfe algorithm for (5) is given in Algorithm 1.

Algorithm 1 Proposed algorithm: Solving (5) with Frank-Wolfe

initialize 𝑷 (0) ,𝒃 (0)
for 𝑡 = 0, 1, 2, . . . until convergence do

(𝑷𝑑 ,𝒃𝑑 ) = arg min
𝑷 ,𝒃

−Tr(𝑷 †
(𝑡 )𝑷 )

subject to −1 ≤ 𝑷𝑿 − 𝒃1⊤ ≤ 1
line search: 𝑷 (𝑡+1) = 𝑷 (𝑡 ) + 𝛼𝑡 (𝑷𝑑 − 𝑷 (𝑡 ) )

𝒃 (𝑡+1) = 𝒃 (𝑡 ) + 𝛼𝑡 (𝒃𝑑 − 𝒃 (𝑡 ) )
end for

Regarding the line search step, we propose to use the backtrack-
ing line search (Armijo rule) [22] to guarantee sufficient decrease
of the objective function. Since the constraint set of (5), as long as
(𝑷 (𝑡 ) ,𝒃 (𝑡 ) ) is feasible, then (𝑷 (𝑡+1) ,𝒃 (𝑡+1) ) is also feasible since
it is a convex combination of (𝑷 (𝑡 ) ,𝒃 (𝑡 ) ) and (𝑷𝑑 ,𝒃𝑑 ), which is
by definition feasible. Therefore, the only nontrivial part is to find a
feasible initialization 𝑷 (0) ,𝒃 (0) . This can be done by optimizing an
arbitrary linear objective subject to the same constraint as (5) (which
means one should not apply line search at this step). If 𝑨 is square,
there is a simple initialization that works really well in our experience,
by setting 𝒃 (0) = 0 and 𝑷 (0) as a diagonal matrix with

𝑷 (0) (𝑐 , 𝑐 ) = 1/max( |𝑋𝑐 ,1 |, . . . , |𝑋𝑐 ,𝑛 |),

i.e., rescaling each row of 𝑿 so that every element is in [−1, 1].
In terms of complexity, each iteration is dominated by the linear

programming with 𝑑 (𝑘 + 1) variables and 2𝑘𝑛 constraints. Without
exploiting any structure, the per-iteration complexity could be as
high as O(𝑑3𝑘3). However, the linear programming to be solved
in Algorithm 1 is blessed with structures to be exploited to greatly
reduce the complexity. Denote 𝒑𝑐 as the 𝑐 th row of 𝑷 and 𝑏𝑐 the
𝑐 th element of 𝒃 , then the linear programming in each iteration of
Algorithm 1 is in fact 𝑘 independent problems, each involving only
one row of 𝑷 and one element of 𝒃 ; let 𝒇 𝑐 denote the 𝑐 th column of
𝑷 †

(𝑡 ) , then we should solve the following problem with 𝑐 = 1, . . . , 𝑘

minimize
𝒑𝑐 ,𝑏𝑐

− 𝒇⊤𝑐𝒑𝑐

subject to − 1 ≤ 𝒑⊤𝑐𝑿 − 𝑏𝑐1⊤ ≤ 1.

Each of these problems involves 𝑑 + 1 variables and 2𝑛 constraints,
which can be solved with O(𝑑3) flops. This important observation
brings the per-iteration complexity of Algorithm 1 down to O(𝑘𝑑3).

4. NUMERICAL VALIDATION

We conclude the paper by providing some numerical validation to the
proposed theoretical analysis. We fix 𝑛 = 100 and 𝑑 = 𝑘 = 10. To
make it easy to evaluate the identifiability result, we directly generate
the sources 𝒔 ♮

𝑖
from the standard box [−1, 1]𝑘 , and then generate the

mixing matrix 𝑨♮ as well as a shift vector 𝒃 ♮ with elements drawn
from i.i.d. normal distributions. As we have argued before, this would
be equivalent to the generative model (1) with unknown bounds 𝒍
and 𝒖 , while we do not need to deal with scaling and shift ambiguity
when calculating the estimation error, leaving only permutation and
sign ambiguity to be resolved.

4.1. Convergence of Algorithm 1

We start by evaluating the performance of Algorithm 1. Since Prob-
lem (5) is nonconvex, one would expect that the algorithm may some-
times stuck at a local optimum. Much to our surprise, Algorithm 1
seems to always find the optimal solution when the BCA model is
identifiable, meaning it always recovers the groundtruth factors up to
column permutation and sign ambiguities as we know they are the
optimal solution as per our identifiability result given in Theorem 1.
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Fig. 4: The convergence of Algorithm 1 on 10 random instances.

The convergence of Algorithm 1 on 10 random instances are
shown in Fig. 4. In order to guarantee that the model is identifiable,
we use the intuition that matrix 𝑺 ♮ is more likely to satisfy the suffi-
ciently scattered condition if there are many points on the boundary
of the standard box [−1, 1]𝑘 . In this case each entry of 𝑺 ♮ has a
50% chance of being ±1, and the other 50% chance to be a number
between [−1, 1]. Since we know 𝑨♮ is optimal for (3), then the op-
timal value of (5) must be −2 log | det𝑨♮ |. This is used to calculate
the optimality gap shown on the vertical axis of Fig. 4. As we can
see, in all 10 instances a global optimum is attained. The surprising
effectiveness is well-worth further investigation.

4.2. Identifiability performance

Finally, we showcase how the “scattered level” of the latent sources
affect the identifiability performance. As we explained in the previous
subsection, a set of points is more likely to be sufficiently scattered
if a lot of points lie on the boundary of the standard box [−1, 1]𝑘 .
Therefore, we define the “scattered level” of a matrix 𝑺 ∈ [−1, 1]𝑘×𝑛
as the percentage of entries that equals to either 1 or −1: the more
±1’s in 𝑺 , the higher the “scattered level” and thus more likely to
be identifiable. For various scattered levels, we randomly generated
100 instances and use Algorithm 1 to try to exactly recover the latent
sources. If after resolving the permutation and sign ambiguities, the
estimation error is less than 10−5, then we declare success. The
results are shown in Fig. 5. The transition threshold seems to be
around 70%.
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Fig. 5: Probability of exact recovery of the latent factors as we vary
the “scattered level” of the latent sources.
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